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Abstract The behavior of human blood flowing in arteries is still an open topic for its7

multi-phase nature and heterogeneity. In large arterial vessels the well-known Hagen-8

Poisueille law, which main assumption is that the blood is Newtonian, is considered9

acceptable. In small arterial vessels, instead, this law does not reproduce experimen-10

tal results that show non-parabolic profiles of velocity across the vessel diameter. For11

capillary vessels the Casson model of fluids that is nonlinear is used in place the12

Newton law, resulting in nonlinear governing equations and difficulties in mathemat-13

ical manipulation. For these reasons an alternative approach is proposed in this paper.14

Starting from the micro-mechanics of blood, the Hagen-Poisueille model is enriched15

with long-range interactions that simulate the interactions of non-adjacent fluid vol-16

ume elements due to the presence of red blood cells and other dispersed cells in the17

plasma. These nonlocal forces are defined as linearly dependent on the product of18

the volumes of the considered elements and on their relative velocity. Moreover, as19

the distance between two volume elements increases, the nonlocal forces are scaled20

through an attenuation function; if this function is chosen as a power law of real21

order of the distance between the volume elements, an operator related to the frac-22

tional derivative of relative velocity appears in the resulting governing equation. It is23
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shown that the fractional Hagen-Poisueille law is able to reproduce experimentally1

measured profiles of velocity with a great accuracy, moreover as the dimension of the2

vessel increases, nonlocal forces become negligible and the proposed model reverts3

to the classical Hagen-Poisueille model.4

Keywords Blood flow · nonlocal fluid ·Mesoscale approach · fractional model5

1 Introduction6

The rheological behavior of blood has been investigated from the nineteenth century7

and it is still an open debate. Indeed the characteristic of blood flow inside vessels8

strongly affects stresses that are transmitted by the blood to the vessels themselves;9

in a biomechanics context, stresses on the vessels may be determinant for some ar-10

terial widespread diffused diseases such as aneurysm or for consequences of arterial11

stenosis. For these reasons, analytical models capable to accurately predict the main12

features of blood flow inside human arteries are essential in order to better understand13

the mechanisms of appearance of aneurysms and consequence in blood supply down-14

stream the aneurysm or a stenosis; moreover, an accurate description of blood flow15

is essential in order to allow the definition of medical protocols able to predict the16

evolution of an aneurysm on the basis of medical images. The first model for blood17

flow inside arterial vessels is the well-known Hagen-Poiseuille (HP) law [1], derived18

assuming Newtonian fluid and providing parabolic profile of velocity along the diam-19

eter of a circular vessel; this model has proven to be reliable for large arterial vessels20

[1,2]. For capillary arterial vessels experimentally measured profiles of velocity are21

not parabolic [3], hence the HP model is not suitable for this kind of problem. In22

the case of capillary vessels the Casson model is certainly more reliable of the HP;23

this law considers a nonlinear relationship between shear stress and shear rate with24

the introduction of the concept of yield stress of the fluid that leads to a nonlinear25

governing equation and piece-wise profile of velocity across the vessel diameter. The26

Casson law provides results in good agreement with experimental observations, how-27

ever mathematical manipulations are not straightforward due to the nonlinearity and28

the model is not obtained on physical evidences on the mechanics of blood flow. An29

alternative and effective approach to nonlinear modeling of blood is represented by30

the nonlocal approach.31

Nonlocal mechanics, both in terms of gradients [4,5,6,7] or integrals [8,9,10] of the32

state variables of the problem, has proved to be effective in modeling a wide range33

of solid mechanics problems such as wave dispersion, shear bands as well as strain34

localization in mechanical interfaces [11,12], but also to take into account for hetero-35

geneity in the medium at hands. In the context of fluid mechanics, nonlocal theories36

have been proposed to capture the motion of fluids in microvessels or in order to37

perform efficient simulation of fluid with dispersion [13,14,15,16,17,18]. In the ap-38

proaches available in literature, however, the nonlocal interactions are not constructed39

on solid mechanical basis. For the above-mentioned reasons, in this paper an alter-40

native mesoscale approach is proposed. The model is based on the HP law that is41

enriched with nonlocal forces mutually exerted by non-adjacent fluid elements; these42

forces are transmitted to relatively long distance by relatively large cells, mainly Red43
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Blood Cells (RBC). These long-range interactions are constructed as volume viscous1

forces scaled by an attenuation function that decreases the forces mutually exerted by2

two non-adjacent volume elements as the distance between them increases; the ap-3

proach is analogous of that successfully used in various micro/nanomechanics prob-4

lems [19,20,21,22,23,24]. As a consequence in the governing equation an integral5

representing these additional forces appears; it is shown that if the attenuation func-6

tion is chosen as a power law of the distance between two volume elements, the inte-7

gral representing non local forces is closely related to a fractional derivative operator8

[25,26] (or it is exactly a fractional derivative if unbounded domains are considered).9

The advantage of this formulation is that the governing equation remains linear and10

comparison with experimentally observed velocity profiles along capillary vessels di-11

ameter shows very good agreement, with lower root mean square error in comparison12

with Casson model. The model is able to automatically reverts to the classical Hagen-13

Poiseuille law when the vessel is not capillary, indeed as the diameter of the vessel14

increases nonlocal forces become negligible. Moreover it is shown that the model15

is able to numerically reproduce the shear thinning behavior of blood observed in16

rotating viscometer.17

2 Governing equation of nonlocal flow18

In this section the equations governing the fluid motion are briefly described. In Sec.19

2.1 the Navier-Stokes equations for Newtonian uncompressible fluids are recalled,20

while in Sec. 2.2 the gradient and integral approaches to nonlocality are briefly de-21

scribed and finally the proposed mechanically based approach to nonlocality is intro-22

duced in Sec. 2.3.23

2.1 Navier-Stokes equations (local)24

The dynamic equilibrium of a generic fluid element is completely described by en-25

forcing the linear momentum balance and the balance of mass. The equation of the26

linear momentum balance, describing the dynamic equilibrium of a fluid element,27

may be written as follows:28

ρ(xxx, t) fff (xxx, t)− Dρ(xxx, t)vvv(xxx, t)
Dt

+divTTT (xxx, t) = 0 (1)

where ρ(xxx, t) is the density, fff (xxx, t) is the volume forces vector, vvv(xxx, t) is the velocity29

vector, D/Dt is the total derivative operator, TTT (xxx, t) is the Cauchy stress tensor, xxx is30

the position vector and t is the time. Eq. (1) is a set of three coupled partial differential31

equations in the unknown fields vvv(xxx, t), TTT (xxx, t) and ρ(xxx, t); they describe the dynamic32

equilibrium along three mutually orthogonal directions.33

To the purpose of solving the system in Eq. (1) the constitutive behavior of the fluid34

at hands must be introduced. In particular, the Navier-Stokes equation are related35

to uncompressible Newtonian fluid. From the uncompressibility hypothesis descends36

that ρ(xxx, t) = ρ . A Newtonian fluid is such that the deviatoric component of the stress37
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tensor is directly proportional to the strain rate tensor ε̇εεD and for this reason the stress1

tensor may be written as in the following:2

TTT (xxx, t) = p(xxx, t)III +2µ ε̇εεD(xxx, t) (2)

where the first term of the rhs is the volumetric part of the stress tensor and the3

second term is the deviatoric part, p is the pressure, III is the identity matrix and µ4

is the dynamic viscosity. The strain rate tensor εεεD may be written in terms of the5

velocity field vvv(xxx, t) by means of the compatibility equations as follows:6

ε̇D,i j =
1
2

(
∂vi

∂x j
+

∂v j

∂xi

)
− θ̇

3
δi j; i, j = 1,2,3; (3)

being ε̇D,i j the element in the i-th row and the j-th column of ε̇εεD, vi the i-th com-7

ponent of the velocity vector, xi the i-th axis in the coordinate system and θ̇ the8

volumetric strain rate. By inserting Eq. (2) and Eq. (3) into Eq. (1) and taking into9

account of the uncompressibility condition the Navier-Stokes equations are obtained10

in the following form:11

ρ
Dvvv(xxx, t)

Dt
−∇p(xxx, t)−µ∇

2vvv(xxx, t)−ρ fff (xxx, t) = 0 (4)

in the unknown velocity field vvv(xxx, t) and in the unknown pressure field p(xxx, t). In12

order to obtain the solution, it is necessary to enforce the balance of mass that, for13

uncompressible fluids, reads:14

divvvv = 0 (5)

that is commonly known as continuity equation. Note that Eq. (5) has been also con-15

sidered in the substitution of the compatibility equations inside the linear momentum16

balance Eq. (1). The Navier-Stokes equations are the basis of the fluid mechanics,17

however they are not satisfactory in describing multiphase or microstructured fluid18

such as the blood. For this reason researchers of the field have made a great effort in19

the last decades in order to formulate models capable to predict more accurately the20

blood behavior.21

2.2 Nonlocal models22

In the last decades many nonlocal models have appeared in literature with appli-23

cations both in the field of solid mechanics and in field of fluid mechanics. These24

models may be subdivided into two main categories, that are gradient or weak non-25

local models and integral or strong nonlocal models. We will briefly recall both kind26

of nonlocal models in the following.27

In gradient nonlocal models the stress tensor is the sum of the Cauchy stress and of28

the second order gradient of the stress; the constitutive law may be written as follows:29

σσσ(xxx, t) = TTT (xxx, t)−∇
2TTT (xxx, t)l2

c (6)

where σσσ(xxx, t) is the total stress tensor, while ∇2TTT (xxx, t) is the so-called higher order30

stress tensor that is the work conjugate of the strain gradient (for solid or strain rate31
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gradient for fluid) tensor that represents the nonlocal part of the stress tensor and lc is1

a specific internal scale. Constitutive models of the type of Eq. (6) have been applied2

successfully in the study of many engineering problems, such as nonlocal effects,3

dislocation kinematics, the formation of shear bands and also during the plastic de-4

formations of metals and to eliminate singularities at dislocation lines and crack tips5

[27]. Mathematical manipulations in presence of the constitutive equation (6) is very6

cumbersome, then many authors have put their effort to obtain simplified formula-7

tions able to reproduce the same results of Eq. (6) (see for example [28]). Recently,8

microstructured fluid have been investigated in the context of gradient models of me-9

chanics [29] introducing a nonlocal model of Herschal-Bulkey relation that reads in10

our particular study:11

< |trz|− l2
c

d2|trz|
dr2 − τ0 >= µ1/n|γ̇rz|n (7)

where < x >= x+|x|
2 is the positive operator, n is a non-Newtonian dependence on the12

material flow rate, τ0 is the initial yield stress, trz is the shear stress in the direction13

of the fluid flow (z), r is the radial coordinate and γrz is the shear strain. The flow14

transport equation in Eq. (7) is a nonlocal gradient generalization of linear nonlocal15

approach ([27]) with the introduction of a nonlocal stress as (τ0 = 0, n = 1):16

trz− l2
c

d2trz

dr2 − τ0 = µγ̇rz = µ
dvz

dr
(8)

being vz the velocity in the flow direction, that can be compared with the well-known17

stress gradient approaches to nonlocal solid mechanics in 1D reading [28]:18

t(l)rz + t(nl)
rz = Eγrz (9)

where E is the elastic modulus and the nonlocal stresses t(nl)
rz = −l2

c
d2trz
dz2 is related19

to the local contribution by the second order gradient operator. The constitutive as-20

sumption in Eq. (8) may be considered in the balance equation to yield, upon the21

integration, the velocity profile of the microstructured fluid [14,15,29].22

In integral models the equilibrium of a solid or fluid elements involves terms depend-23

ing on the integral over the domain of the strain (or strain rate for the case of fluid).24

The first to propose such a kind of strong nonlocal model was Eringen [8] regarding25

solid mechanics problems and many modifications appeared in literature after the pa-26

per [8] in order to adapt it to various engineering and physical problems. A general27

integral nonlocal model may be written as follows:28

σσσ(xxx, t) = TTT (xxx, t)+
∫

V
g(xxx−ξξξ )εεε(ξξξ , t)dξξξ (10)

where g(·) is the Kroner-Eringen attenuation function, xxx and ξξξ are the positions of29

the interacting volume elements and εεε is the strain tensor. Eq. (10) is particularized30

for nonlocal elasticity. Integral approach to fluids nonlocality have been proposed in31

recent papers (see e.g. [18]) assuming that the relations among the shear stress and32

shear strain are of the type of Eq. (10) where the strain tensor εεε has been substi-33

tuted with the strain rate tensor εεεD. Examples of strong nonlocality applied to fluid34
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mechanics can be also found in [13,14,15]. Despite the wide diffusion of integral1

nonlocal elasticity and viscosity models, they show mathematical inconsistencies as2

bounded domains are considered [19]; indeed in this case the presence of nonlocal3

interactions involves the appearance of constitutive boundary conditions that violate4

the equilibrium [30].5

These considerations push toward a different approach to nonlocal viscosity model6

as proposed in the next sections.7

2.3 Mechanically based nonlocality8

In the last years the authors of the present paper developed an alternative approach9

to nonlocal models described above for nonlocal-elasticity [19,21,22,23,24]. In this10

approach, the nonlocal forces are constructed on a mechanical basis by inserting in11

the model long-range springs such that non-adjacent volume elements mutually ex-12

change forces due to relative motion. In the case of fluids, the mechanics of long-13

range interactions is assumed Newtonian and the resultant of nonlocal viscous forces14

applied (see Fig. 1) to a generic volume element reads:15

fff (nl)
v (xxx, t) =

∫

V
fff (nl)

v (xxx,ξξξ , t) = dV (xxx)
∫

V
GGGv (xxx−ξξξ )(vvv(ξξξ , t)− vvv(xxx, t))dV (ξξξ ) (11)

where fff (nl)
v (xxx,ξξξ , t) is the nonlocal viscous force applied to volume element located16

at xxx due to the relative velocity with the volume element located at ξξξ , GGGv (xxx−ξξξ ) =17

g(xxx−ξξξ ) [III− JJJ(xxx,ξξξ )], being g(xxx,ξξξ ) the attenuation function and JJJ (xxx,ξξξ ) the Jacobi18

directional tensor which components are written as Jk j (xxx,ξξξ )= ik (xxx,ξξξ ) i j (xxx,ξξξ ), where19

ik (xxx,ξξξ ) is the k− th component of the unit vector in the direction (xxx−ξξξ ) defined as:20

ik (xxx,ξξξ ) =
(ξk− xk)

|iii(xxx,ξξξ ) | (12)

The attenuation or decay function g(xxx−ξξξ ) is a symmetric and real function that de-
cays with the distance.
In the case of the human blood the nonlocal forces in Eq. (11) are introduced for its

multiphase nature and the tendency to self organize in a microstructure. Such a kind
of microstructures are mainly constituted by RBCs that are considered to be the most
responsible for the non-Newtonian behavior of blood. Indeed they aggregates into
the so-called Rouleaux formations (see Fig. 2); moreover, RBCs have the tendency
to migrate toward the center of the arterial vessels (Fahereus-Lindqvuist wall effect,
see Fig. 3). In small arterial vessels these two phenomena are able to modify the
whole blood behavior, while in large arterial vessels their influence is negligible.This
fact highlights the size-dependent behavior of the blood flow. In order to perform
reliable and computationally efficient biomechanical simulations for cardiovascular
applications, the blood domain is considered homogeneous and its heterogeneity and
microstructure is accounted by means of the long-range viscous forces introduced in
Eq. (11). Indeed the simulation of liquid phase and corpuscle require high computa-
tional efforts.
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x
1

x
2

x
3

g(xxx
−ξξξ

∫

V
fff (nl)

v (xxx,ξξξ ) =
∫

V
fff (nl)

v (xxx,ξξξ ) = g(xxx−ξξξ )(

)(vvv(ξξξ )

− vvv(xxx))(

))dV (ξξξ )

) = dV (xxx)

Fig. 1 Nonlocal forces mutually exerted by two non-adjacent volume forces are proportional to the differ-
ence of velocity vectors.

The nonlocal Navier-Stokes equations are written starting from the linear momen-
tum balance, by including the local constitutive behavior Eq. (2), introducing the non
local forces of Eq. (11) and taking into account uncompressibility condition as:

ρ
(

∂vvv(xxx, t)
∂ t

+ vvv(xxx, t) ·∇vvv(xxx, t)
)
−∇p(xxx, t)−µ∇

2vvv(xxx, t)+

−
∫

V
GGGv (xxx−ξξξ )(vvv(ξξξ , t)− vvv(xxx, t))dV (ξξξ )−ρ fff (xxx, t) = 0 (13)

Eq. (13) corresponds to Eq. (4) with the additional integral terms representing the1

resultant of nonlocal forces. Inspection of Eq. (13) reveals that the nonlocal force2

between two volume elements is defined in the direction of the component of the3

vector [vvv(ξξξ , t)− vvv(xxx, t)] perpendicular to (xxx−ξξξ ).4

3 Mesoscale model of the Poiseuille flow5

In this section Eq. (13) is particularized to the case of the 1D axisymmetric flow in
stationary conditions. Let us consider a cylindrical volume V = AL, where L is the
length in the direction of the axis of the cylinder and A the cross sectional area of the
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Fig. 2 Rouleaux formations.

RBCs Cell free region

Arterial wall

Fig. 3 Fahraeus-Lindqvist wall effect.

considered domain. Volume V is referred to a cylindrical coordinate system (r,θ ,z) as
reported in Fig. 4 and let us assume that a pressure drop of ∆ p= p(r,θ ,0)− p(r,θ ,L)
is applied at the two sides of the cylinder. In such circumstances the linear momentum
balance on a volume element Fig. 4b along the flux direction (z) reads:

[tzz(r,θ ,z+∆z)− tzz(r,θ ,z)]r∆θ∆r+[tθz(r,θ +∆θ ,z)− tθz(r,θ ,z)]∆z∆r+

trz(r+∆r,θ ,z)(r+∆r)∆z∆θ − trz(r,θ ,z)r∆z∆θ =
Dρvz

Dt
r∆z∆θ∆r (14)

being ρ the fluid density ρ(r,θ ,z, t) and D
Dt the total derivative operator. Eq. (14) may1

be rewritten, after some straightforward manipulations, as:2

∂ trz

∂ r
+

trz

r
+

1
r

∂ tθz

∂θ
+

∂ tzz

∂ z
=

Dρvz

Dt
(15)



A fractional nonlocal approach to nonlinear blood flow in small-lumen arterial vessels 9

Flow
Direction

z

2R

r
L

(a)

[tzz(r,θ ,z+∆z)

− tzz(r,θ ,z)]

+[tθz(r,θ +∆θ ,z)

− tθz(r,θ ,z)]

trz(r+∆r,θ ,z)(

− trz(r,θ ,z)r

+∆r)

)(r+

+∆θ ,

∆z)

+∆z)

(b)

Fig. 4 Blood vessel model.

Under the assumptions of axisymmetric flow and stationary flow (Dρvz/Dt = 0) the1

balance equation in Eq. (15) yields:2

∂ trz

∂ r
+

trz

r
=−∂ tzz

∂ z
=−∆ p

L
(16)

where we assumed that the pressure gradient is constant from z = 0 to z = L. Eq. (16)3

is a differential equation in the unknown shear stress trz(r); in order to be solved it4

is necessary to enforce the rheological behavior, that in the case of Newtonian fluid5

reads:6

trz = µ
∂vz

∂ r
= µ

∂
∂ t

∂uz

∂ r
= µγ̇rz (17)

where γ̇rz is the shear rate, that is the rate of the change of the displacement uz = uz(r)7

of the generic particle inside the control volume. Eq. (17) is a constitutive equation8

that relates the shear stress to the shear rate in the actual configuration of the fluid,9

and, after substitution, we get:10

µ
d2vz

dr2 +
µ
r

dvz

dr
=−∆ p

L
(18a)

11

vz(−R) = 0; vz(R) = 0 (18b)

being R the radius of the cylinder, that may be solved with the additional boundary12

conditions in Eq. (18b) for the velocity at the border of the domain to yield:13

vz(r) =
R2− r2

4µ
∆ p
L

(19)

that describes a parabolic velocity profile along the diameter of the considered circu-14

lar cross-section. It is to emphasize that the equation in Eq. (18a) may be obtained15

directly by particularizing Eq. (4).16
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3.1 Small capillary vessels1

In small-diameter vessels the experimental evidences [3] show a strong deviation2

from the parabolic profile predicted by assuming the Newtonian constitutive equa-3

tion. Such a discrepancy, observed at the beginning of the fifties of last century is4

probably due to Fahreius-Lindqvist effect (Fig. 3) and Rouleaux formations (Fig. 2)5

already described in the previous section. The constitutive model capable to repro-6

duce the experimental measured velocity profiles is the so-called Casson model, that7

reads:8 √
trz(r) =

√
τ0 +
√

µ (γ̇rz)
1/2 (20)

Eq. (20) is a nonlinear relationship between shear stress and shear rate. If τ0 = 0 it9

reverts to the Newtonian model of Eq. (17). Introducing Eq. (20) into the balance10

equation in Eq. (16), a nonlinear governing equation is obtained:11

− ∆ p
L

=
1
r

[
τ0 +µ

duz

dr
+2
√

τ0µ
(

duz

dr

) 1
2
]
+

d2uz

dr2

[
µ +2

√
τ0µ

(
duz

dr

)− 1
2
]

(21)

The solution to Eq. (21) is a piece-wise velocity profile that may be expressed in the12

form:13

uz(r) =
R2

4µ

{
∆ p
L

[
1−
( r

R

)2
]
− 8

3

(
2τ0

R
∆ p
L

) 1
2
×

[(
1− r

R

) 3
2
]
+

4τ0

R

(
1− r

R

)}
|r|> ry

(22a)

14

uz(r) = uz(ry) |r| ≤ ry (22b)

where ry =(2τ0L)/∆ p. From the inspection of Eq. (22) we find that in the central part15

of the vessel, the velocity is constant; this is related to the fact that in the region−ry≤16

r ≤ ry the yield stress τ0 is not exceeded, hence the velocity gradient is zero. The17

Casson model is satisfying in the reproduction of non-Newtonian velocity profiles,18

however it has the disadvantage to be nonlinear, hence mathematical manipulations19

are not straightforward except that for simple problems (see e.g. [2]), such as the case20

of the Poiseuille flow studied in this section. Moreover the concept of shear yield21

stress, in the authors opinion, does not reflect the real mechanics of the blood flow,22

that is not a visco-plastic fluid but it is a multiphase medium. For these reasons, in23

the next sections an alternative approach is proposed.24

3.2 Mesoscale approach to blood circulation in small-size arterial vessels25

In this section the nonlocal blood flow model is introduced starting from simple ob-26

servations regarding the mechanics of blood. In particular two main facts are taken27

into account:28

– the blood is multiphase material, which contains a fluid part, the plasma, and29

many different solid parts, such as RBCs that are the larger and more influent30

cells;31
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– the blood is strongly heterogeneous, indeed the presence of the Fahraues-Lindqvuist1

wall effect (see Fig. 3) and Rouleaux formations(see Fig. 2) make the concentra-2

tion of RBCs larger at the center of the vessels than at the sides; as a consequence3

if the dimensions and the position of a representative volume are changed, differ-4

ent situations may be found.5

In order to take into account of these peculiarities without really modelling all the6

phases contained in the blood, it is possible to adopt a mesoscale approach. In this7

manner, the blood is considered as a homogeneous fluid and the presence of RBCs8

and fibrinogen is taken into account by inserting in the governing equations long-9

range forces mutually exerted by non-adjacent fluids elements. The reason to intro-10

duce these forces is readily understandable if Fig. 5 is closely inspected. Indeed when

Red Blood Cells

Arterial wall

Too small RVE

Non-adjacent

interacting VEs

Too large RVE

Capillary vessels  d=10-300 mm

Fig. 5 Heterogeneity and multiphase nature of blood. In the circle, two non-adjacent fluid elements mutu-
ally exchange forces because of the presence of the RBC.

11

the dimension of the vessel is comparable to the average dimension of RBCs, that is12

about 7.5 µm, a Representative Volume Elements (RVE) that is suitable for the di-13

mension of the domain is too small because it is not really representative of all hetero-14

geneity of the blood; on the contrary, an RVE sufficiently large to be representative of15

the heterogeneous nature of blood is too large because its dimensions are of the same16

order of magnitude of the domain dimension. Then, in the framework of a mesoscale17

approach, if two very small volume elements are taken on the boundary of a RBC, it18

is reasonable to think that they interact because of the presence of the RBC itself, and19

their interaction is modeled here as a nonlocal viscous force. In particular nonlocal20

forces are thought as linearly depending on the product between the two interacting21

volumes and their relative velocity; moreover the long-range forces are weighted by22

an attenuation function that decreases the force magnitude as the distance between23

the two elements increases. Under these assumptions the force mutually exerted by24

two non-adjacent volume elements may be written as follows for a one-dimensional25
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problem (see Fig. 6):1

Fki = µki∆Vk∆Vi(vi− vk) (23)
where ∆Vk and ∆Vi are the volume of the two fluid elements, while vk and vi are2

the velocities of the fluid elements; µki is a viscous coefficient that varies with the3

distance dki through an appropriate attenuation function g(·), that is µki = µNLg(dki),4

being µNL a nonlocal viscosity parameter of the model. The nonlocal viscosity µNL,5

together with the attenuation function g(·), governs the entity of long-range viscous6

forces. It may be thought as the nonlocal counterpart of the local viscosity µ . For fixed7

local viscosity µ and attenuation function g(·) a larger value of µNL implies a larger8

intensity of nonlocal interactions compared with the local ones and then a major9

deviation from the local behavior of the fluid. Its physical meaning may be defined10

with the following parallelism: as the local viscosity fluid µ reflects the capability11

of the fluid volume to “drag” adjacent volume elements, the nonlocal viscosity µNL12

quantifies the capability of the fluid volume to “drag” non-adjacent volume elements.13

The resultant of nonlocal forces on the element k may be written as follows:

DVi

mki
Fki

dki

DVk

vkvi

Fik=-Fki

Fig. 6 Nonlocal forces mutually exerted by the two volume elements i and k in a one-dimensional problem.

14

Fk = µNL∆Vk

N

∑
i=1

∆Vig(dki)(vi− vk) (24)

being N the number of element in which the domain is discretized. If we refer to15

the two dimensional domain of Fig. 7 in axisymmetric conditions, the resultant of16

nonlocal forces on the k− th volume element may be written as:17

Fk = µNL∆Vk

Nr

∑
i=1

Nθ

∑
j=1

∆Vi jg(dk,i j)(vi j− vk) (25)
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Fig. 7 Two dimensional axisymmetric domain (cross section of the circular vessel).

where:1

∆Vk = rk∆r∆θL ∆Vi j = ρi j∆ρ∆ϕL (26)
are the volumes of the two considered fluid elements and Nr and Nθ are the number2

of elements in which the radial and circumferential directions have been discretized,3

respectively. By taking the limits for ∆Vk→ 0 and ∆Vi j→ 0 , the double sum reverts4

to a double integral as:5

F(r) = µNL

∫ R

0

∫ 2π

0
g(drθ ,ρϕ)(v(ρ)− v(r))ρdϕdρ (27)

where the dependence of F , v(r) and v(ρ) from the angular coordinates θ and ϕ has6

intentionally been omitted because the problem is axisymmetric, while for obvious7

geometric reasons the same can not be done for g(drθ ,ρϕ), being drθ ,ρϕ the distance8

between two generic volume elements. As for the attenuation function, typical forms9

are exponential, power law or Gaussian; in this study a power law attenuation function10

in the form:11

g(drθ ,ρϕ) =
1

(drθ ,ρϕ)2+α (28)

has been selected; in Eq. (28) drθ ,ρϕ =
√

ρ2 + r2−2rρ cosϕ and α is a parameter12

governing the velocity of decaying of the entity of long-range interactions as the13

distance increases; with these assumptions the governing equation is obtained as:14

− ∆ p
L

= µ
(

1
r

dv(r)
dr

+
d2v(r)

dr2

)
+µNLL

∫ R

0

∫ 2π

0

(v(ρ)− v(r))

(ρ2 + r2−2rρ cosϕ)
2+α

2
ρdϕdρ

(29)
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which may be labelled as Fractional Hagen-Poiseuille (FHP) law, since the integral1

term is strictly related to the Marchaud fractional derivative in polar coordinates (see2

Appendix and [26,31]). From a rigorous point of view a proper fractional operator3

is not present in Eq. (29). Indeed in a bounded domain, as in the considered applica-4

tion, a properly said fractional operator would involve additional non integral terms,5

as in the case of Eqs. (37) of the Appendix (for one-dimensional problem). From a6

mechanical point of view these additional terms have not correspondence, except if7

we admit the presence of long-range viscosity connecting volume elements with the8

frontier, analogously to the approach followed in [32] in the case of nonlocal elastic-9

ity. However in our mechanical representation these long-range interactions between10

volume elements and the bounds of the domain are not present and then the addi-11

tional terms related to fractional derivative in bounded domain do not appear. But12

if the domain was unbounded, the integral in Eq. (29) would be a two-dimensional13

Central Marchaud fractional derivative (see Appendix) in polar coordinates and for14

this reason we feel that the present formulation may be labeled as “fractional”.15

The solution of such a problem in analytical form is not straightforward and it may16

be found for a restricted class of problem, such as very simple geometry with no real17

engineering relevance (e.g. unbounded domains); however, accurate solutions may be18

easily found by discretizing the domain and the governing equation with a finite dif-19

ference approximation. The advantage on the use of the proposed approach compared20

with the gradient or Eringen integral approaches is that the boundary conditions can21

be enforced as in a problem involving a classical local fluid [19]; then the boundary22

conditions are exactly the same of those in Eq. (18b) that in the context of a finite dif-23

ference approximation are enforced in a straightforward manner. In the next section,24

Eq. (29) is used in order to fit experimental data and the simulate velocity profiles in25

a small arterial vessel.26

3.3 Best fitting of model parameters27

In [3] results of measurements of velocity profiles on arterioles of rabbit mesentery28

have been reported. The data refers to arterioles with diameter size in the range 17-29

32 µm. In this study data obtained on a 32 µm diameter vessels (Fig. (3) of Ref.30

[3]) have been used in order to calibrate parameters of the HP model, the Casson31

model and the proposed fractional nonlocal model. For the HP and the Casson mod-32

els the least squares method has been used in order to calibrate the mechanical pa-33

rameters. For the FHP model, since analytical solution for the Poiseuille flow is34

not available, the parameters have been calibrated by means of an iterative proce-35

dure. In this procedure the discretized version of Eq. (29) has been solved numeri-36

cally several times with different set of parameters. At the end of the procedure, the37

adopted parameters are those that minimize the Root Mean Square Error (RMSE)38

between experimental data and theoretical curve. More specifically, the procedure39

has been developed through three refinement steps. In the first one the following40

range values of the moduli have been explored: µ = (5÷ 1000)× 10−4 Pas and41

µNL = (5÷1000)×10−7 Ns/mm6−α . The moduli have been progressively increased42

by ∆ µ = 5× 10−4 Pas and ∆ µNL = 5× 10−7 Ns/mm6−α , respectively. The low-43
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est values were chosen in a way such that magnitude of the maximume velocity in1

the theoretical profile was about some tenths larger then the maximum experimen-2

tal velocity. As for the order α , in the first refinement step it has been varied in the3

range α = 0÷ 1 at intervals ∆α = 0.05. In the second refinement step the mechan-4

ical parameters have been varied with smaller interval in smaller ranges around the5

values giving the minimum RMSE in the previous step. The same has been done6

when passing from the second to the third step. The procedure of each refinement7

step was completely automatic and performed by means of a custom subroutine in8

Matlab [33]. Between one refinement step and the successive the range and the inter-9

val amplitude of parameters have been updated manually. Results of the best fitting10

are reported in Table 1 and theoretical curves are contrasted with experimental data11

in Fig. 8. From this figure it is evident that the classical Hagen-Poiseuille model is

Table 1 Parameters obtained by the best-fitting procedure for the HP, Casson and NLHP model.

Model µ (Pa s) τ0 (Pa) µNL (Ns/mm6−α ) α
HP 1.23×10−2 – – –

Casson 2.45×10−3 1.79 – –
FHP 5.36×10−3 – 7.8×10−5 0.042

12

not capable of simulating the blood flow in small arterial vessels; the Casson and the13

proposed fractional nonlocal models, instead, are suitable for simulate the character-14

istics flattened velocity profiles that are experimentally observed. Some differences,15

however, may be highlighted between these last two models. While the Casson model16

has two different behaviors along the diameter, the latter provides a velocity profile17

that varies very gradually. In order to numerically assess the accuracy of the three18

models, the RMSE is used. This quantity is defined as:19

RMSE =

√
∑

n
i (vT (xi)− vm,i)

2

n
(30)

where n is the number of velocity data along the diameter, vT is the theoretical ve-20

locity and vm is the measured velocity. In Table 2 the RMSEs of the three models21

are compared. From Table 2 it may be concluded that the proposed nonlocal model

Table 2 Comparison of the RMSEs obtained with the three models HP, Casson and FHP.

Model RMSE

HP 0.6644
Casson 0.4486

FHP 0.3937

22

represents an improvement, in terms of accuracy, of results obtained with the Casson23

model. Then we can state that the proposed nonlocal model is a linear model that is24

capable to simulate an apparent nonlinearity in the blood behavior. Moreover, it can25
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Fig. 8 Comparison between theoretical velocity profile and experimental data (black dots). HP model
black line, Casson model blue line, FHP model red line.

be easily verified that another desirable feature of the proposed model is that as the1

diameter of the vessel increases, nonlocal forces become negligible and the model2

reverts to the classical Hagen-Poiseuille model. The proposed model, indeed, is size3

dependent. In order to highlight this concept, in Fig. 9 velocity profiles obtained for4

different values of the diameter dimensions are compared. Each profile is normalized5

with respect to the maximum velocity value obtained, for the same diameter value,6

with the classical HP model (vl(0)). It is easy to note that for relatively large diameter7

the velocity profile tends to the local response, characterized by a parabolic velocity8

profile. In contrast, as the diameter of the vessel decreases, the velocity profile be-9

comes flatter and the ratio between the maximum non-local velocity magnitude and10

the maximum local velocity magnitude becomes smaller and tends to unity.11

4 Shear thinning of blood in coaxial cylinder viscometer12

An important feature of the rheological behavior of blood is the so-called shear thin-13

ning. This effect has been observed experimentally from decades and it regards the14

decrease of apparent viscosity of blood for increasing shear rate. It is widely believed15

that the shear thinning of blood is due mainly to the deformability of RBCs ([34]).16

This hypothesis is particularly suitable for the mesoscale approach adopted in this17

paper; indeed, in [34] measurements in a coaxial cylinder viscometer have been per-18

formed with three types of suspension: normal RBC in heparinized plasma, normal19

RBC in 11% albumin-Ringer solution and hardened RBC in 11% albumin-Ringer20

solution. It has been shown that only the suspension with hardened RBC shows an21

almost constant viscosity for varying shear rate, while the other suspensions show a22

clear shear thinning effect, expecially for normal RBC in plasma (see Fig. 1 of [34])23
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Fig. 9 Size effect of the fractional non-local Hagen-Poiseuille model.

In the frame of a mesoscale approach of this work, it is easy to hypothesize a quali-1

tative mechanism that, as a consequence of RBC deformability, is responsible of the2

shear thinning when blood viscosity is measured in a coaxial cylinder viscometer.3

Indeed in such a kind of viscometer the (apparent) shear rate is directly proportional4

to the angular velocity of the moving cylinder; the shear rate is apparent because no5

assumption has been made on the rheological behavior of blood, then the velocity6

profile is implicitly assumed linear and the apparent (constant) shear rate γ̇a is evalu-7

ated simply as:8

γ̇a =
ωRi

Re−Ri
(31)

where ω is the angular velocity of the internal cylinder, Re and Ri are the external9

and internal radius of the chamber where the blood is placed for the measurement,10

respectively; in Eq. (31) the external cylinder is not rotating. As a consequence of the11

fact that the shear rate is apparent, the viscosity values reported in [34] are apparent12

as well.13

The role played by the deformability of RBCs is clearly illustrated in Fig. 10; as14

ω increases, the inertial forces increase and as results RBCs migrate to the external15

cylinder surface; moreover, as they aggregate to the internal surface of the external16

cylinder, they are flattened by inertial forces. The distribution and shape of RBCs are17

sensibly different from one value of ω to another and as a consequence macroscopic18

rheologic behavior of blood is changed.19

For these reasons, in the following we reinterpreted the data published in [34] by20

using the proposed rheological model. In a coaxial cylinder viscometer the tangential21

stress measurement is obtained indirectly from the measure of the torque MT applied22

by the blood to the rotating (internal) cylinder:23

τ =
MT

2πR2
i H

(32)
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Fig. 10 Mesoscale explanation of the shear thinning of blood in the double cylinder rheometer as a con-
sequence of deformability of RBC.

being H the height of the internal cylinder. The apparent viscosity is then evaluated1

simply as:2

µa =
τ
γ̇a

(33)

The parameters of the nonlocal model proposed here have been optimized for sev-3

eral couples of values of shear rate and viscosity deducted from [34]; the parameters4

have been tuned in such way that for each apparent shear rate value γ̇a the tangen-5

tial stress obtained with the proposed model is equal to the tangential stress obtained6

by multiplying the value of shear rate and viscosity in [34]; to this purpose the data7

related to normal RBC in plasma have been considered. In Fig. 11 the shear stress8

versus the apparent shear strain, obtained from data in [34] is depicted. In order to9

optimize the parameters of the proposed nonlocal model, numerical simulations of10
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Fig. 12 Local and nonlocal viscosity parameters µ and µNL as a function of apparent shear rate for the
proposed nonlocal model.

the conditions inside the coaxial cylinder viscometer have been performed. To this1

purpose, the geometry of the viscometer has been considered equal to that of a com-2

mercial viscometer, that is Ri = 17.245 mm ad Re = 18.415 mm. In the optimization3

procedure, only the parameters µ and µNL have been calibrated, while the parameter4

α has been assumed equal to the value obtained by the best fitting procedure based5

on the velocity profile data and described in the previous section. For each experi-6

mental value coming form the rotating viscometer, the parameters µ and µNL have7

been calibrated iteratively as done in Section 3.3 for the Poiseuille flow. By means8

of this optimization procedure, we have been able to reproduce the experimental data9

obtained in [34] in terms of apparent shear rate and apparent viscosity, as shown in10

Fig. 11. In order to obtain these results, the coefficients µ and µNL varies with the11

apparent viscosity with the same trend of the apparent viscosity, as shown in Fig. 1212

(continuous thick line). From the values of Fig. 11 the curve of the shear stress vs the13

apparent shear rate have been obtained. Indeed in Fig. 13 the shear stress-apparent14
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shear rate curve obtained for the blood have been contrasted with a linear behavior1

tangent to the blood curve at its lowest shear rate value. It is clear that, especially for2

low values of the apparent shear rate, the behavior of blood is nonlinear, indeed as3

the apparent shear rate increases the shear stress grows less than linearly. In order to4

show the capability of the proposed model, in Fig. 13 it is also shown a curve related5

to a hypothetical fluid with a shear thickening behavior, that is a behavior opposite to6

that of blood.7

5 Conclusion8

In this paper a nonlocal model for the blood behavior in small arterial vessels has9

been introduced. The model is based on a mesoscale approach in which the presence10

of RBCs and other cells dispersed in the blood plasma is neglected but taken into11

account in the rheological behavior of blood by adding long-range interactions be-12

tween non-adjacent fluid elements in the equilibrium equations. The use of a power13

law attenuation function leads to governing equations involving fractional derivatives14

in case of unbounded domains or operator closely related to the fractional ones in15

case of bounded domains. The model has proved to be very efficient in reproducing16

experimental velocity profiles without the need of nonlinearity in the rheological be-17

havior. In comparison with existing non local models one important property of the18

proposed nonlocal model is that boundary conditions may be enforced as in a local19

model. To this stage, the only negative aspect of the proposed formulation is that it20

has not been possible to obtain an analytical solution for the considered application21

that would be desirable for a straightforward tuning of the mechanical parameters.22

However, despite this undesirable feature, in the future the model maybe applied to23

more complicated problems and implemented in a CFD context, where the knowl-24

edge of analytical solutions is not required.25
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Fig. 13 Shear thinning of blood and hypothetical shear thickening behavior obtained with the proposed
model.
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Appendix - Fractional calculus1

In this section, a brief introduction to the fundamentals of fractional calculus will be2

given.3

Consider the function f (x), x ∈ R, the left and the right Riemann-Liouville (RL)4

fractional integral are defined as [25]:5

(
Iα
+ f
)
(x) =

1
Γ (α)

∫ x

−∞

f (ξ )
(x−ξ )1−α dξ (34a)

6 (
Iα
− f
)
(x) =

1
Γ (α)

∫
∞

x

f (ξ )
(ξ − x)1−α dξ (34b)

while the RL fractional derivative are defined as:7

(
Dα
+ f
)
(x) =

1
Γ (1−α)

d
dx

∫ x

−∞

f (ξ )
(x−ξ )α dξ (35a)

8 (
Dα
− f
)
(x) =− 1

Γ (1−α)

d
dx

∫
∞

x

f (ξ )
(ξ − x)α dξ (35b)

where α ∈R, 0≤α ≤ 1 and Γ (·) is the Euler gamma function. If f (x) is a continuous9

function with continuous first derivative, the left and right RL fractional derivatives10

are coincident with the Marchaud fractional derivatives, that may be written as fol-11

lows:12 (
Dα
+ f
)
(x) =

α
Γ (1−α)

∫ x

−∞

f (x)− f (ξ )
(x−ξ )α dξ (36a)

13 (
Dα
− f
)
(x) =

α
Γ (1−α)

∫
∞

x

f (x)− f (ξ )
(ξ − x)α dξ (36b)

The Marchaud fractional derivatives may be defined also for a bounded domain14

0≤ x≤ L as:15

(
Dα

0+ f
)
(x) =

α
Γ (1−α)

∫ x

0

f (x)− f (ξ )
(x−ξ )1+α dξ +

f (x)
Γ (1−α)x1+α (37a)

16 (
Dα

L− f
)
(x) =

α
Γ (1−α)

∫ L

x

f (x)− f (ξ )
(ξ − x)1+α dξ +

f (x)
Γ (1−α)(L− x)1+α (37b)

The definitions of Marchaud fractional derivatives related to a single-variable scalar17

function may be extended to a multi-variable scalar function. The extension is more18

readable if referred to the Riesz fractional operators. Then it is necessary to introduce19

Riesz fractional integral (Īα f )(x) and derivative (D̄α f )(x):20

(Īα f )(x) = ν(α)
∫

∞

−∞

f (ξ )
|x−ξ |1−α dξ = ν(α)

[(
Iα
+ f
)
(x)+

(
Iα
− f
)
(x)
]

(38a)

(D̄α f )(x) = ν(−α)
∫

∞

−∞

f (x−ξ )− f (x)
|ξ |1+α dξ =

= Γ (1−α)ν(−α)
[(

Dα
+ f
)
(x)+

(
Dα
− f
)
(x)
]

(38b)
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where ν(±α) = [2cos(απ/2)Γ (±α)]−1. The Riesz fractional operator may be gen-1

eralized to multivariate scalar function f (x), with x ∈ Rn:2

(D̄α f )(x) =
1

dn,l̄(ᾱ)

∫

Rn

f (ξξξ )− f (x)
||ξξξ −x||n+α dξξξ =

χ(ᾱ)

dn,l̄(ᾱ)

[(
Dα
+ f
)
(x)+

(
Dα
− f
)
(xxx)
]

(39)

where:3

dn,l(α) = βn(α)
Al(α)

sin(απ/2)
(40a)

4

βn(α) =
π1+n/2

2αΓ (1+α/2)Γ (n+α/2)
(40b)

5

Al(α) =
l

∑
k=0

(−1)k−1
(

l
k

)
kα (40c)

and χl(α) = −Al(α)Γ (α), ᾱ = n− 1+α , l̄ = n− 1+ l, l = {α}+ 1 and {α} is6

the integer part of α . The complete demonstration of Eq. (39) is omitted here for the7

sake of brevity; more information can be found in [26].8

Finally, we briefly introduce the n-dimensional Central Marchaud Fractional Deriva-9

tive (CMFD) as:10

(
Dα
− f
)
(xxx) =

α
Γ (1−α)

∫

Rn

f (xxx)− f (ξξξ )
(ξξξ − xxx)n+α JJJk jdξξξ (41)

where JJJk j = iiikiii j is a Jacoby directional tensor, being iiik the unit vector associated with11

the direction xxx−ξξξ . In the specific problem treated in this paper (the Poiseuille flow),12

the governing equation written in polar coordinates and in axisymmetric conditions13

is basically a scalar governing equation, then the Jacoby tensor reduce to unity. This14

means that the power law attenuation function, responsible for the appearance of15

fractional operator, reduces in this case to a scalar function. As a consequence, in the16

governing equation in Eq. (29), the integral term may be recognized as the integral17

part of the Marchaud fractional derivative defined in bounded domain and reported18

in Eq. (37). More details can be found in [31].19
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