
Meccanica manuscript No.
(will be inserted by the editor)

On the behavior of a three-dimensional fractional viscoelastic

constitutive model

Gioacchino Alotta · Olga Barrera · Alan C.F. Cocks · Mario Di Paola.

Received: date / Accepted: date

Abstract In this paper a three-dimensional isotropic frac-

tional viscoelastic model is examined. It is shown that if

different time scales for the volumetric and deviatoric com-

ponents are assumed, the Poisson ratio is time varying func-

tion; in particular viscoelastic Poisson ratio may be obtained

both increasing and decreasing with time . Moreover, it is

shown that, from a theoretical point of view, one-dimensional

fractional constitutive laws for normal stress and strain com-

ponents are not correct to fit uniaxial experimental test, un-

less the time scale of deviatoric and volumetric are equal.

Finally, the model is proved to satisfy correspondence prin-

ciples also for the viscoelastic Poisson’s ratio and some is-

sues about thermodynamic consistency of the model are ad-

dressed.

Keywords Fractional viscoelasticity · 3D Constitutive

models · Creep · Relaxation · Viscoelastic Poisson ratio

1 Introduction

Real viscoelastic materials, such as polymers ([1, 2]), bio-

logical tissues ([3–5]), asphalt mixtures, soils [6] and many

more exhibit power-law creep and relaxation behaviour. This

means that during a creep/relaxation test the stress/strain

response is characterized by a power law with respect to

time. The main issue is then how to model this behaviour
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in a robust and efficient way. In the classical modeling ap-

proach, relaxation and creep functions have been modeled,

mainly, by means of single and/or linear combinations of

exponential functions in an attempt to capture the contri-

bution of both solid and fluid phases. This approach does

not allow for a correct fit of experimental results. It has

been demonstrated that a power-law in the creep and re-

laxation responses leads to fractional viscoelastic constitu-

tive models that are characterized by the presence of so-

called fractional derivatives and integrals, namely deriva-

tives and integrals of non-integer order (see [7, 8]); when

the order of derivation (or integration) is integer, the frac-

tional operators reduce to the classical differential opera-

tors. The most interesting aspect of fractional operators is

that they have a long "fading" memory. In this context the

term "hereditariness" is usually used in the sense that the

actual response in terms of stress/displacement depends on

the previous stress/strain history. If a relaxation or creep test

is well fitted by a power-law decay, then the fractional con-

stitutive law is directly derived by simply applying Boltz-

mann’s superposition principle ([9, 10]). Such a constitutive

law is defined by a small number of parameters and avoids

the need to combine a number of simple models which de-

pend on several parameters to capture both the creep and re-

laxation behaviour. Although some aspects remain unclear,

for example how to distinguish between elastic and inelastic

strain, the use of this kind of model is attractive for many

researchers because of its ability to capture both creep and

relaxation behaviour and the effects of "fading" memory ob-

served experimentally. In the last decades, a lot of effort has

been devoted to theoretical aspects of 1D fractional con-

stitutive laws ([2, 11–13]) as well as experimental aspects

and parameters characterization [3, 14–16] of the constitu-

tive behavior and to numerical implementation in finite el-

ement codes ([5]); fractional viscoelastic beams have been

also studied, both from a deterministic and stochastic point
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of view [19]. However it is very important to properly define

multi-axial constitutive relationship in order to simulate the

viscoelastic behavior of complex shaped engineering com-

ponents. Some authors (see for example [4, 20–22]) have

proposed 3D formulations of fractional viscoelastic models

with both small strain and large strain formulations, but to

the best of authors’ knowledge only in one case [22] the

three-dimensional behavior of these models is investigated;

in particular in [22] the behaviour of the three-dimensional

fractional viscoelastic model is investigated in terms of stor-

age and loss moduli in the frequency domain and in terms

of Poisson’s ratio in the time domain; a generalized three-

dimensional fractional viscoelastic model is adopted in or-

der to reproduce the experimental behaviour of some poly-

mers in frequency domain.

For this reason, in this paper, some theoretical aspects about

three-dimensional fractional viscoelasticity are discussed. First

of all, a linear isotropic fractional viscoelastic model is de-

fined in terms of deviatoric and volumetric contributions; it

is shown that as soon as different time scales are assumed

for the two contributions, the interpretation of uniaxial test

(creep and relaxation) should be performed by means of two

power law and not only one as usual researchers of the field

do. Moreover, it is shown that time varying Poisson’s ra-

tio can be easily obtained by choosing different time scales

for the deviatoric and volumetric components; in particu-

lar increasing, decreasing or constant viscoelastic Poisson’s

ratios are determined by the order of the power law in the

deviatoric and volumetric contributions. This is a desirable

feature, since viscoelastic materials exhibit increasing and

decreasing viscoelastic Poisson’s ratio [23]. The influence

of the Poisson’s ratio behavior is also shown by monitoring

strain and stresses in creep and relaxation tests.

Finally, it is shown that the model satisfies correspondence

principles [24] hence can be accepted by the general theory

of viscoelasticity; moreover, by means of correspondence

principles it is proved that for fractional viscoelasticity that

the equivalent of the elastic Poisson’s ratio is the viscoelas-

tic Poisson’s ratio in relaxation conditions and not in creep.

This is an important result that confirms results by other au-

thors [25, 26] that have not referred to fractional viscoelas-

ticity. Some concepts about thermodynamic consistency of

the model are also discussed.

2 Preliminary concepts

In this section we introduce some preliminary concepts on

fractional viscoelasticity and fractional differentiation and

integration.

It is well known that a viscoelastic material can be charac-

terized, for one dimensional problems, by its Relaxation and

Creep functions GR(t) and GC(t) respectively. These func-

tions describe the behavior of the material when a constant

strain and a constant stress are applied, respectively. Classi-

cal models are characterized by exponential functions. This

happens when viscoelastic materials are modeled by differ-

ent combinations of elastic elements (springs) and viscous

elements (dashpots); the simplest models of this kind are

Maxwell and Kelvin-Voigt models in which a spring and

a dashpot are combined in series and in parallel, respec-

tively. Although these models are able to describe a kind

of time-dependent behavior of viscoelastic materials, they

fail to capture both the relaxation and the creep behavior

of real materials; for this reason more complicated models

with combinations of springs and dashpots are used (Zener

models), but this leads to complicated creep and relaxation

functions and governing equations; furthermore these clas-

sical models are not able to describe the long-time memory

of real viscoelastic materials. Creep and relaxation tests on

real viscoelastic materials, such as polymers, asphalt mix-

tures, biological tissues, have shown that creep and relax-

ation tests are well fitted by power laws of real order rather

than exponential functions. These functions can be written

as follows [1, 27]:

GR(t) =
Cρ t−ρ

Γ (1−ρ)
(1a)

GC(t) =
tρ

CρΓ (1+ρ)
(1b)

where Γ (·) is the Euler gamma function, ρ is a real number

0 ≤ ρ ≤ 1 and Cρ is a material parameter evaluated by fit-

ting creep or relaxation experimental curves; the subscripts

R and C stand for relaxation and creep, respectively. It is to

be noted that the coefficient Cρ has an anomalous dimen-

sion; indeed it depends on the value of ρ; if mega-Pascal

and minute seconds are used for the stress and the time, re-

spectively, then the coefficient Cρ has dimension [MPa sρ ].
As a consequence GR(t) and GC(t) have dimension [MPa]

and [MPa−1], respectively.

It is well known that, in the frame of linear viscoelasticity,

the Boltzmann superposition principle is valid; this princi-

ple allows us to obtain the response of a material when the

imposed stress or strain history is not constant and can be

expressed in two forms:

τ(t) =
∫ t

0
GR(t− t̄)γ̇(t̄)dt̄; γ(t) =

∫ t

0
GC(t− t̄)τ̇(t̄)dt̄ (2)

where τ(t) and γ(t) are tangential stress and the correspond-

ing strain, respectively. These integrals are often labeled as

“hereditary” integrals, because the actual value of τ(t) (or

γ(t)) depends on all previous history of γ(t) (or τ(t)). By
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Fig. 1 Spring, springpot and dashpot and related constitutive law

taking Laplace transforms of Eqs. (2) an interesting rela-

tionship between the relaxation and creep functions in the

Laplace domain is obtained:

τ̂(s)= ĜR(s)sγ̂(s); γ̂(s)= ĜC(s)sτ̂(s); ⇒ ĜR(s)ĜC(s)=
1

s2

(3)

where the superimposed hat means Laplace transform and

s∈C is the variable in the Laplace domain. This implies that

it is sufficient to perform a creep or relaxation test to deter-

mine all the relevant parameters of the viscoelastic model.

Substitution of Eqs. (1) in Eqs. (2) leads to constitutive laws

that involve fractional operators, namely derivatives and in-

tegrals of real order ([7], [8]):

τ(t) =
Cρ

Γ (1−ρ)

∫ t

0
(t − t̄)−ρ γ̇(t̄)dt̄ =Cρ

(

C
0 D

ρ
t γ

)

(t) (4a)

γ(t) =
1

CρΓ (1+ρ)

∫ t

0
(t − t̄)ρ τ̇(t̄)dt̄ =

1

CρΓ (ρ)

∫ t

0
(t − t̄)ρ−1τ(t̄)dt̄ =

1

Cρ

(

0I
ρ
t τ

)

(t) (4b)

where γ(0) = 0 and τ(0) = 0 has been assumed, respec-

tively. In Eq. (4a)
(

C
0 D

ρ
t ·
)

is the so called Caputo fractional

derivative ([7]) of order ρ . In Eq. (4b)
(

0I
ρ
t ·
)

is the Riemann-

Liouville fractional integral of order ρ . For brevity sake’s in

the remainder part of the paper we will refer to these as Dρ

and Iρ . Both the Caputo and the Riemann-Liouville opera-

tor are convolution integrals with power law kernel ([7]).

These constitutive laws represent the response of a springpot

element, introduced in [28]. It has been shown in [11, 29, 30]

that the behaviour of the springpot can be reproduced in a

classical viscoelasticity framework by an infinite sequence

of springs and dashpots linked in a hierarchical way. These

results are a confirmaton of the fact that fractional mod-

els can reproduce the viscoelastic behavior of real materials

with much less mechanical parameters than those needed in

classical viscoelasticity.

Caputo’s fractional derivative and the Riemann-Liouville frac-

tional integral are considered integro-differential operators

because all rules for derivatives and integrals of integer order

are still valid (Fourier and Laplace transforms of a derivative

or an integral, Leibniz rule, semi group rule, for more in-

formations see [7]). Moreover, when ρ reaches limit values

of 0 and 1, derivatives of order 0 and 1 are obtained. This

underlines a very important characteristic: when ρ → 0 the

fractional viscoelastic constitutive law of Eqs. (4) reduces

to the purely elastic (one-dimensional) Hooke law, while for

ρ → 1 the fractional constitutive law becomes the constitu-

tive law of a dashpot. For this reason, as the fractional op-

erators are generalizations of integro-differential operators

of integer order, the constitutive law of the springpot can be

seen as a generalization of the constitutive laws of springs

and dashpots. This concept is summarized in Fig. 1.

The main advantages of fractional viscoelastic models in

comparison with classical models are:

– The fitting of experimental tests is straightforward with

a power law type relaxation and creep functions and it

leads to very good results, both for the short and long

time behaviour; this is not true for classical viscoelas-

tic models that need a number of mechanical elements

(springs and dashpots) thus requiring many fitting pa-

rameters to capture the long time behaviour.

– Constitutive equations are derived consistently with the

Boltzmann superposition principle.

– Fractional viscoelastic models are characterized by long

fading memory because of the power law kernel and this

is in agreement with the time dependent behaviour of

real viscoelastic materials.
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– When the order of derivation reaches integer values, the

springpot reduces to one of the classical elements, spring

or dashpot; it can therefore be considered as an element

with intermediate behaviour between the two classical

elements.

– Viscoelastic models with fractional derivatives are linked

to molecular theories that describe the macroscopic be-

haviour of viscoelastic materials [31, 32].

– Fractional order viscoelasticity has proved to satisfy the

second law of thermodynamics and to predict elliptical

stress-strain hysteresis loop [31, 32].

Equations of this section are intentionally written referring

to shear stress and strain; usually the same form of creep

functions, relaxation functions and governing equations are

assumed also for normal stresses and strains. However, in

the next section it will be shown that the form of Eqs. (1),

(2) and (4) is not correct for the normal stresses and strains.

3 Three-dimensional fractional constitutive law

In this section we introduce the isotropic 3D fractional model

of the springpot; the model is intended to be isotropic through-

out the deformation, hence it is assumed that the effects due

to memory do not alter the material symmetries.

The constitutive model is obtained by means of a general-

ization of the elastic constitutive law (Hooke’s Law); in that

case only two parameters are required to define the whole

stiffness (or compliance) matrix of the material and these

two parameters can be chosen as Young’s modulus and Pois-

son’s ratio, or Young and shear modulus, or Bulk and shear

modulus, or Lamé constants. Hereinafter, we choose to write

the relaxation matrix in terms of the shear and Bulk (volu-

metric) contributions, for two main reasons: i) the terms of

the relaxation (or creep) matrix can be expressed as a sim-

ple summation of the relaxation (or creep) volumetric and

deviatoric functions, leading to simple and easy manageable

governing equations as it is shown later in this section; ii)

the volumetric and deviatoric contributions have clear phys-

ical meanings and the relative relaxation (or creep) functions

have to be measured experimentally. The relaxation matrix

can be easily obtained by substituting in the stiffness ma-

trix the shear modulus G = E
2(1+ν) and the Bulk modulus

K = E
3(1−2ν) , where E is the Young modulus and ν is the

Poisson’s ratio, with the deviatoric relaxation function G(t)
and the volumetric relaxation function K(t), respectively; in

this way the relaxation matrix is written as follows:

Ri jkh(t)=

(

KR(t)−
2

3
GR(t)

)

δi jδkh+GR(t)
(

δikδ jh +δihδ jk

)

(5)

where δi j is the Kronecker symbol and Ri jkh has dimension

[MPa] . For both deviatoric and volumetric relaxations func-

tions power law functions, analogous to the one dimensional

relaxation law of the springpot [27, 28], are selected:

GR(t) =
Gα t−α

Γ (1−α)
(6a)

KR(t) =
Kβ t−β

Γ (1−β )
(6b)

where Gα , α and Kβ , β are parameters of the deviatoric and

volumetric relaxation functions, respectively.

By assuming relaxation functions with the form of Eqs. (6),

a four parameters mechanical model is obtained. The strain-

stress relationship can be obtained simply by applying the

Boltzmann superposition principle:

σσσ(t) =
∫ t

0
RRR(t − τ)ε̇εεdτ (7)

where σσσ(t) = [σ11 σ22 σ33 τ12 τ13 τ23] and εεε(t) = [ε11 ε22 ε33

γ12 γ13 γ23] are the stress and strain vectors, respectively, and

RRR(t) is the relaxation matrix (5). Since RRR(t) contains power

law functions, the components of the stress vector σσσ(t) de-

pends on the fractional derivatives of the components of the

strain vector εεε(t):

σii(t) =
4

3
Gα

[

Dα

(

εii −
ε j j + εkk

2

)]

(t)+

Kβ

[

Dβ (εii + ε j j + εkk)
]

(t)

i, j,k = 1,2,3; i 6= j 6= k (8a)

τi j(t) = Gα (Dα γi j)(t); i, j = 1,2,3; i 6= j (8b)

The inverse relationship of Eq. (7) is obtained by applying

the dual form of Boltzmann’s superposition principle:

εεε(t) =
∫ t

0
CCC(t − τ)σ̇σσ(τ)dτ (9)

In order to use Eq. (9) we need to obtain the creep ma-

trix CCC(t) by using Eq. (3) (adapted for the 3D case). CCC(t)
is evaluated by performing a Laplace transformation of the

relaxation matrix and evaluating its inverse in the Laplace

domain:

ĈCC(s) =
R̂RR
−1
(s)

s2
(10)

By taking the inverse Laplace transform of ĈCC(s) in Eq. (10)

the creep matrix can be written as:

Ci jkh =

(

KC(t)

9
−

GC(t)

6

)

δi jδkh+GC(t)

(

δikδ jh −
δihδ jk

2

)

(11)
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where Ci jkh has dimension [MPa−1], KC(t) and GC(t) are

creep functions of the volumetric and deviatoric parts, re-

spectively, and are analogous to Eq. (1):

GC(t) =
tα

GαΓ (1+α)
(12a)

KC(t) =
tβ

Kβ Γ (1+β )
(12b)

Note that in both Eqs. (5) and (11) the shear strain is con-

sidered as the engineering shear strain, e.g. γ12 = 2ε12. By

substituting Eqs. (12) in Eq. (9), the components of the strain

vector εεε(t) depend on the fractional integrals of the compo-

nents of the stress vector σσσ(t):

εii(t) =
1

3Gα

[

Iα

(

σii −
σ j j +σkk

2

)]

(t)+

1

9Kβ

[

Iβ (σii +σ j j +σkk)
]

(t)

i, j,k = 1,2,3; i 6= j 6= k (13a)

γi j(t) =
1

Gα
(Iα τi j)(t); i, j = 1,2,3; i 6= j (13b)

Governing equations can be also obtained simply by writing

separately the volumetric and deviatoric contribution and

then summing them.

It is to be emphasized that as in the pure torsion case there is

a perfect duality between the direct and the inverse consti-

tutive laws (see Eqs. (4)), such a duality is preserved in the

three dimensional direct and inverse constitutive laws (see

Eqs. (8a) and (13a)).

In some applications it could be necessary to define anisotropic

viscoelastic models; this is for example the case of fiber rein-

forced composites with polymeric matrices, especially when

the fiber have a prevalent orientation (pultruded bars); for

this reason the mechanical properties are different between

the direction along the fibers and the directions orthogonal

to fibers hence anisotropic constitutive model are required.

As in elasticity the number of mechanical constant increases

with the increasing level of anisotropy, in viscoelasticity for

anisotropic models more than two relaxation (or creep) tests

have to be performed in order to define more than one vis-

coelastic Poisson’s ratio, however concepts discussed in this

paper remain valid with the correct adaptation for the level

of anisotropicity at hand. At this stage some remarks are

important for understanding the physics of the problem at

hand.

Remark 1

It is worth noticing that the three-dimensional fractional vis-

coelastic constitutive law of Eq. (7) can be obtained also by

using correspondence principles, also know as comparable

elasticity relations [24]. Based on these principles, consti-

tutive equations and relationships between different moduli

for a viscoelastic model can be found simply by substituting

in the correspondent elasticity relationship the s-multiplied

Laplace transform to the elastic quantity. For example since

in elasticity:

G =
E

2(1+ν)
(14)

in viscoelasticity the following relation holds:

sĜR(s) =
sÊR(s)

2(1+ sν̂(s))
(15)

Using the correspondence principles, the three-dimensional

fractional viscoelastic model in the Laplace domain is writ-

ten as:

sσ̂σσ(s) = sR̂RR(s)sε̂εε(s) (16)

or

σ̂σσ(s) = R̂RR(s)sε̂εε(s) (17)

Now since in Laplace domain multiplication for s corre-

sponds to derivation in time domain and the product between

two functions corresponds to convolution product in time

domain, inversion of Eq. (17) yields directly Eq. (7).

This means that the three-dimensional fractional viscoelas-

tic mechanical model satisfies correspondence principles and

then it may be included in the general framework of the the-

ory of viscoelasticity.

Remark 2

It is to be remarked that the choice of deviatoric and volu-

metric relaxation or creep leads to the most simple and cor-

rect choice for the direct derivaton of the three-dimensional

governing law. As soon as Eqs. (6) are assumed then in the

tensile creep test, in which a constant unitary stress is ap-

plied to the specimen, we obtain:

εL(t) =
tα

3GαΓ (1+α)
+

tβ

9Kβ Γ (1+β )
(18a)

εT (t) =−
tα

6GαΓ (1+α)
+

tβ

9Kβ Γ (1+β )
(18b)
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leading to the constitutive equations:

εL(t) =
(Iα σL)(t)

3Gα
+

(

Iβ σL

)

(t)

9Kβ

(19a)

εT (t) =−
(Iα σL)(t)

6Gα
+

(

Iβ σL

)

(t)

9Kβ

(19b)

where σL(t) and εL(t) are the longitudinal stress and strain,

respectively, while εT (t) is the transverse strain. From these

relations it is evident that, from a theoretical pint of view,

the constitutive laws expressed with the unique parameter ρ

defined in Eq. (4) is not correct for the normal components

of stress and strain. The reason is that the summation of two

power laws (see Eqs. (18) and (19)) cannot be expressed as

an unique power law, except if the two power laws are of the

same order. People working in experimental fractional vis-

coelasticity may be disconcerted for the previous statement

because the experimental tests (creep or relaxation) are usu-

ally performed with a uniaxial test; the best fitting procedure

of the data appears to be good and absolutely acceptable.

The same concept holds for the relaxation; however, in uni-

axial relaxation, while the superimposed longitudinal strain

is constant, the transverse strain is not constant and must

be evaluated in Laplace domain in order to obtain its con-

tribution to the longitudinal stress; this implies a number of

manipulations that for the sake of simplicity are not reported

here.

On the other hand, the use of the three-dimensional frac-

tional constitutive law confirms that the single power law

function and governing equation of Section 2 are correct for

the interpretation of pure shear or torsion tests. This may ex-

plains the reason that, in the uniaxial test, the parameter ρ

that fits very well the creep phase do not fits the recovery

phase. In conclusion the ideal tests in order to characterize

a viscoelastic material are shear and volumetric tests, since

only one component of stress and corresponding strain are

present (shear and hydrostatic). On the other hand the volu-

metric test (creep or relaxation) is not easy to perform since

the experimental machines are manufactured only for uni-

axial and torsion creep or relaxation test. It follows that, in

order to define the 3D constitutive laws, it may be performed

the torsion test and uniaxial test and by using Eqs. (18) and

(19) both deviatoric and volumetric components may be eas-

ily separated.

The concepts outlined in this remark may be readily applied

to the interpretation of experimental data. The one dimen-

sional creep of some polymers is well fitted, both in creep

and recovery phase, by a fractional Maxwell model consti-

tuted by a spring and a springpot connected in series; a prac-

tical example is the Ultra High Molecular Weight PolyEthy-

lene (UHMWPE) [16] commonly used for human joint re-

placements. The creep function in one dimensional condi-

tions EC(t) of the fractional Maxwell model reads as fol-

lows:

EC(t) =
1

E
+

tρ

CρΓ (1+ρ)
(20)

where E is the Young modulus of the spring and ρ and Cρ

are the mechanical parameters of the springpot. The same

creep function can be obtained from Eq. (18a) if α = ρ ,

3Gα =Cρ , β = 0 and 9Kβ = E is assumed. This means that

theoretically the three dimensional viscoelastic features of

the UHMWPE may be captured with the three-dimensional

fractional viscoelastic model discussed in this paper with

β = 0. Such a model is similar to elastically compressible

fractional viscoelastic model described in [22]; the differ-

ence is that the deviatoric behaviour here is described by a

spingpot model, while in [22] it is a fractional Kelvin-Voigt

model. This possibility cannot be completely verified only

by means of a uniaxial test, but it is necessary to perform at

least a uniaxial and a torsion test as explained above.

Remark 3

It is to be remarked that the volumetric component assumed

as in Eq. (12b) has an undesired physical inconsistence: as

t → ∞ a finite specimen will be collapsed in a single point.

In order to avoid this undesired feature some authors pro-

pose a modification on KC(t) (and as consequence on KR(t))
by simply adding a purely elastic contribution [4]. However

this way to enforce a constant contribution in Eq. (12b) is

meaningless. In the authors opinion the correct way is to

follow the path in large displacement theory. When the spec-

imen reduces in size the repulsive effects between adjacent

particles (coming from the Lennard-Jones potential) modify

the original constitutive law in a sensible manner since the

repulsive force between adjacent particles are strongly non

linear when their distance becomes smaller.

On the other hand the example of the UHMWPE described

at the end of Remark 2 reveals that potentially a special case

(β = 0) of the three-dimensional springpot model could be

already acceptable in order to reproduce the behaviour of

some materials. However the authors do not exclude that

some applications requires necessarily the adoption of mod-

els not simple as the springpot, as for example it has been

found in [22], at least for the interpretation of tests in fre-

quency domain.

4 The fractional viscoelastic Poisson’s ratio

One of the most important aspects of 3D viscoelastic models

is the behavior of the ratio between the lateral contraction

and the elongation, i.e. the viscoelastic Poisson ratio. It is

well known that during the infinitesimal deformation of any
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real viscoelastic material, the lateral contraction is a time-

dependent (or equivalently frequency-dependent) function.

Among all studies devoted to the viscoelastic Poisson’s ra-

tio, the works of Lakes and Tschoegl [23, 25, 26] are of

particular interest. In the paper [25] some concepts about

viscoelastic Poisson’s ratio are clarified: firstly, it is shown

that the viscoelastic Poisson’s ratio depends on the test per-

formed, then viscoelastic Poissson’s ratio is different in creep

and in relaxation test; secondly it is shown, by means of

correspondence principles [24], that the viscoelastic coun-

terpart of the elastic Poisson’s ratio is the viscoelastic Pois-

son’s ratio in relaxation and not in creep; finally, it is shown

how to switch between Poisson’s ratio in creep and in relax-

ation. In the paper [26] the same results are achieved. More-

over, in the papers [23, 26] it is shown that the viscoelastic

Poisson’s ratio can increase or decrease with time; indeed,

most polymers for example exhibit an increasing Poisson

ratio because of the fact that the volumetric part of stress re-

laxes much less than the deviatoric part, but materials with

a particular microstructure can behave in the opposite way.

Furthermore, in the paper [26] it is demonstrated that the vis-

coelastic Poisson’s ratio do not need to be monotonic with

time.

However in the aforementioned papers the authors do not

refer to Poisson’s ratio for fractional viscoelasticity. For this

reason in the following section results of papers [23, 25, 26]

are confirmed for fractional viscoelasticity. It will be shown

that the fractional viscoelastic Poisson’s ratio can be con-

stant, decreasing or decreasing depending only on the pa-

rameters α and β , demonstrating the great flexibility of the

3D fractional viscoelastic constitutive law.

4.1 Poisson’s ratio in creep

The Poisson ratio is evaluated in an ideal creep test on a

viscoelastic cube; only one face of the cube is fixed only

in the normal direction and in the opposite face the cube is

loaded by a constant normal stress σ0; using the springpot

model of Fig. 1 considering the creep functions specified

in Eqs. (12) the Poisson ratio in creep, denoted as νC(t), is

given as:

νC(t) =−
εT (t)

εL(t)
=−

(

KC(t)
9

− GC(t)
6

)

σ0U(t)
(

KC(t)
9

+ GC(t)
3

)

σ0U(t)
=

−

tβ

9Kβ Γ (1+β ) −
tα

6GαΓ (1+α)

tβ

9Kβ Γ (1+β ) +
tα

3GαΓ (1+α)

=
−2+3atα−β

2
(

1+3atα−β
)

(21)

where εL(t) =
(

KC(t)
9

+ GC(t)
3

)

U(t) and εT (t) =
(

KC(t)
9

+

− GC(t)
6

)

U(t) are the longitudinal and transverse strain, re-

spectively, U(t) is the unit step function and a=
Kβ Γ (1+β )

GαΓ (1+α) >

0. If α = β , the Poisson ratio is constant over time:

νC(t) = ν̄ =
−2Gα +3Kβ

2(Gα +3Kβ )
(22)

Note that Eq. (21) can be written in this form because, since

in creep all the components of the stress vector are unit step

functions (the longitudinal one is a unit step function, while

the others are zero), the convolution (9) reduces to a product

between CCC(t) and σσσ(t). Both εL(t) and εT (t) can then be

simply written in terms of volumetric and deviatoric creep

functions.

If α 6= β , the Poisson ratio varies in time and it has limit

values at t = 0 and t = ∞, as summarized in the Table 1.

t = 0 t = ∞

α > β ν =−1 ν = 1/2

α = β ν(t) =
−2Gα+3Kβ

2(Gα+3Kβ )

β > α ν = 1/2 ν =−1

Table 1 Limiting values for the Poisson ratio in a creep test.

Note that both the values have to be evaluated as a limit.

The main consequences of these results are:

– If α > β , the material exhibits a Poisson ratio of -1 at

t = 0, then its behavior gradually changes until it be-

comes incompressible for large values of t.The anoma-

lous behaviour at t = 0 has been already found for the

elastically compressible fractional viscoelastic material

described in [22].

– If β > α , the material is incompressible at t = 0, then its

behavior gradually changes until it exhibits a negative

Poisson ratio for large values of t.

It is to be emphasized, that although the coefficient Gα and

Kβ are dimensionally anomalous, the viscoelastic Poisson’s

ratio is non-dimensional as expected. Indeed, since the co-

efficients Gα and Kβ have dimension MPa sα and MPa sβ ,

the term a of Eq. (21) has dimension sβ−α ; since the term a

is multiplied for tα−β in Eq. (21) and the other terms of the

same equation are pure numbers, the viscoelastic Poisson’s

ratio in creep νC(t) is a non-dimensional quantity.

4.2 Poisson’s ratio in relaxation

The Poisson ratio can also be evaluated for an ideal relax-

ation test on a cube with the same boundary conditions of

the creep test; on the face opposite the fixed one, a normal

constant displacement is applied. In this case the longitudi-

nal strain is imposed while the transverse strain is unknown;

in order to obtain it we simply need to write Eq. (7) and as-

sume that the transverse components of the stress are both
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Fig. 2 Poisson’s ratio in relaxation test for the 3D springpot model for

Kβ = 1MPasβ , Gα = 1MPasα , α = 0.5 and different values of β .

zero. Since εT (t) is not constant as εL(t) = ε0U(t), relation-

ship (7) does not simplify in a simple product between RRR(t)

and εεε(t), then an expression of the Poisson ratio in relax-

ation in terms of the relaxation functions is not straightfor-

ward. In [33] a relationship between the two ratios has been

found:

νC(t) =

∫ t
0 νR(t − τ)Ċ11(τ)dτ

C11(t)
(23)

where C11(t) is the term that gives σ11(t) for an applied

ε11(t), that is C11(t) =
K̄(t)

9
+ Ḡ(t)

3
. In order to find νR(t)

Laplace transform can be used, but inversion of the Laplace

transform of νR(t) to the time domain is very difficult. Only

in the case when α = β the transverse strain εT (t) is con-

stant during the relaxation test and is equal to:

εT (t) =−
−2G(t)+3K(t)

2(G(t)+3K(t))
ε0U(t) (α = β ) (24)

where ε0 is the amplitude of the superimposed strain. Since

εL(t) = ε0U(t) the Poisson ratio is

νR(t) =
−2G(t)+3K(t)

2(G(t)+3K(t))
=

−2Gα +3Kβ

2(Gα +3Kβ )
(α = β ) (25)

The Poisson ratio in relaxation when α 6= β can be found

in another way. The longitudinal stress σL(t) can be decom-

posed into its deviatoric and volumetric components, labeled

as σd
L (t) and σ v

L(t), respectively; the volumetric component

of the longitudinal stress is

σ
(v)
L (t) =

I1

3
=

σL(t)

3
(26)

being I1 the first invariant of stress; the deviatoric compo-

nent of the stress is instead

σ
(d)
L (t) = σL(t)−σ

(v)
L (t) =

2

3
σL(t) (27)

On the other hand, by considering the constitutive law (7),

σ
(v)
L (t) and σ

(d)
L (t) are written as:

σ
(v)
L (t) = Kβ

(

D
β
0+

εV

)

(t) (28a)

σ
(d)
L (t) =

4

3
Gα

[

Dα
0+(εL − εT )

]

(t) (28b)

Since from Eqs. (26) and (27) descends that σ
(d)
L (t)= 2σ

(v)
L (t),

by considering Eqs. (28) the following equation is obtained:

4

3
Gα

[

Dα
0+(εL − εT )

]

(t) = 2Kβ

(

D
β
0+

εV

)

(t) (29)

This equation can be solved in the Laplace domain and gives

the following results for the Poisson’s ratio:

νR(t) =







1
2
− 3

2
Eα−β

(

−
3Kβ

Gα
tα−β

)

α > β

−1+ 3
2
Eβ−α

(

− Gα
3Kβ

tβ−α
)

β > α
(30)

where Eλ (·), with λ > 0, is the one parameter Mittag-Leffler

function defined as:

Eλ (atλ ) =
∞

∑
j=0

(atα) j

Γ (λ j+1)
(31)

As expected, the expression for ν(t) is not the same as for

the creep test; however since, for c > 0, Eλ (−ctλ )→ 1 for

t → 0 and Eλ (−ctλ ) → 0 for t → ∞, the general trend and

limiting values still hold, hence observations made above for

the creep test are still valid. In particular for α = β the Pois-

son ratio assumes the same constant value ν̄ of Eq. (22). As

noted for νC(t), the viscoelastic Poisso’s ratio in relaxation

νR(t) is non dimensional since the term
3Kβ

Gα
tα−β is non di-

mensional.

It is to be emphasized that Eq. (30) can be obtained directly

by using the three-dimensional constitutive law (7) partic-

ularized for the case in which a uniaxial relaxation test is

performed.

In Fig. 2 it is shown the viscoelastic Poisson ratio in a relax-

ation test for fixed α = 0.5 and different values of β ; from

this Figure it is possible to appreciate that the proposed 3D

model is able to produce different trends in the behavior of

the viscoelastic Poisson ratio; in creep conditions the vis-

coelastic Poisson’s ratio is only slight different from the be-

haviour described in Fig. 2 and is not reported for brevity.

In Fig. 3 the influence of the parameters Gα and Kβ on the

Poisson’s ratio is shown; Fig. 3(a) shows an increasing Pois-

son’s ratio (α > β ) for fixed Gα and different values of Kβ ;

the same is shown in Fig. 3(b) for a decreasing Poisson’s

ratio (α < β ). From this figures it is possible to appreciate

that the greater is Kβ than the faster the Poisson’s ratio ap-

proaches the limit value of ν = 0.5 for increasing Poisson’s

ratio, while for decreasing Poisson’s ratio the greater is Kβ
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(a) (b)

Fig. 3 Poisson’s ratio in relaxation test for the three-dimensional springpot model for Gα = 2MPasα , α = 0.5 and different values of Kβ : a)

increasing, b) decreasing.

than the slower the Poisson’s ratio reaches the limit value of

ν =−1. The parameters Gα affects the Poisson’s ratio in the

opposite way of the coefficient Kβ : for increasing Poisson’s

ratio, a greater Gα determines a slower increasing Poisson’s

ratio, while for decreasing Poisson’s ratio a greater Gα de-

termines a faster decreasing one.

It is theoretically possible to further manipulate the behavior

of the Poisson’s ratio; this can be done by using more com-

plex fractional viscoelastic models, as for example fractional

Kelvin-Voigt model, fractional Maxwell model or fractional

Standard Linear Solid model (see for example [3, 22]); in

particular the value in t = 0 and at t = ∞ can be modified by

the use of the aforementioned multi-element fractional mod-

els. However these fractional models are not investigated

here for brevity.

4.3 Poisson’s ratio from correspondence principles

The Poisson’s ratio can be evaluated also by means of cor-

respondence principles. In elasticity the Poisson’s ratio can

be evaluated from elastic constants as

ν =
−2G+3K

2(G+3K)
(32)

It follows from correspondence principles that

sν̂(s) =
−2sĜR(s)+3sK̂R(s)

2s(ĜR(s)+3K̂R(s))
(33)

or from the equivalences sĜR(s) = 1/sĜC(s) and sK̂R(s) =

1/sK̂C(s) (see Eqs. (3) and (10))

sν̂(s) =
−2K̂C(s)+3ĜC(s)

2(K̂C(s)+3ĜC(s))
(34)

Eq. (34) can be obtained by means of correspondence prin-

ciple. To this purpose, let us consider a relaxation test as in

Section 4.1.1; the correspondence principles allow to write

the Poisson ratio in Laplace domain as

sν̂(s)=−
sε̂T (s)

sε̂L(s)
=−

(

K̂C(s)
9

− ĜC(s)
6

)

(

K̂C(s)
9

+ ĜC(s)
3

) =
−2K̂C(s)+3ĜC(s)

2(K̂C(s)+3ĜC(s))

(35)

Substitution of the relaxation or creep functions in Eq. (33)

or in Eq. (34), respectively, gives the following:

ν̂(s) =
3Kβ sβ −2Gα sα

2s(Gα sα +3Kβ sβ )
(36)

Application of the inverse Laplace transform operator yields

exactly Eq. (30), that is the Poisson’s ratio in time domain

for the relaxation test and not for the creep test. This is

an important result because reveals that also for fractional

viscoelastic models the Poisson’s ratio in relaxation is the

equivalent of the Poisson’s ratio in elasticity, confirming re-

sults of other authors [25, 26] that were not devoted specifi-

cally to fractional viscoelasticity.

5 Influence of Poisson’s ratio on stress and strain time

evolution

The influence of the Poisson ratio, and then of the relative

values of α and β , can be analyzed also by monitoring the

normal components of stress and strain in ideal creep and

relaxation tests in 3D conditions.

To this purpose, two ideal tests, one in creep with recovery

and one in relaxation, are considered.

In the creep test, the boundary conditions are the same of

those considered for the evaluation of the Poisson’s ratio; in

this case the final value of the applied stress σ0 = 1 MPa is

reached with a linear ramp of duration t0; after a time t1 the

loading is removed with a linear ramp of duration t2−t1 = t0.
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Fig. 4 Applied strain (a) and stress (b) for the three-dimensional springpot model; t0 = 1 s, t1 = 10 s, t2 = 11 s.

(a) (b)

Fig. 5 Evolution of longitudinal (a) and transverse (b) strain for the three-dimensional springpot model in a creep test, with fixed α and various

values of β , for Kβ = 1 MPa sβ and Gα = 1 MPa sα .

(a) (b)

Fig. 6 Evolution of longitudinal (a) and transverse (b) stress for the three-dimensional springpot model in a relaxation test, with fixed α and

various values of β , for Kβ = 1 MPa sβ and Gα = 1 MPa sα .

The applied stress history σ(t) for the creep/recovery test

depicted in Fig. 4(a) can be written as following:

σ(t) =
σ0

t0
{[t − (t − t0)U(t − t0)]−

[(t − t1)U(t − t1)− (t − t2)U(t − t2)]} (37)

The value of α is fixed, while different β values are consid-

ered. The evolution of the longitudinal and transverse strain

is monitored and reported in Fig. 5. From these figures it is

clear that while the behavior of the longitudinal strain is af-

fected only in the amplitude, the transverse strain can even

radically change its behavior depending on the relative val-

ues of α and β ; indeed, if β > α the amplitude of the trans-

verse strain decrease even if the longitudinal one increase.
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The values of α and β affect also the stresses; in order to

analyze this influence, a relaxation behavior on a cube is

considered. The cube has all faces but one fixed in the nor-

mal direction and in the free face a normal displacement is

applied; with these boundary conditions the transverse strain

is zero, but the transverse stress is not zero. The free face is

strained reaching the final value of the strain ε0 = 1% by a

linear ramp, as depicted in Fig. 4(b) and written as follows:

ε(t) =
ε0

t0
[t − (t − t0)U(t − t0)] (38)

While the behavior of the longitudinal stress is slightly af-

fected by the relative values α and β and it is always de-

creasing with time, the transverse stress can increase or de-

crease with time, in particular if β < α the transverse stress

increases instead of decreasing as one expects.

The results of Figs. 5 and 6 have shown the flexibility of

the three-dimensional springpot model in which the order of

the power law for creep (and relaxation) volumetric and de-

viatoric functions can have different values. However these

are only theoretical behaviors and in some cases they can

be not so intuitive, as for example when β > α in creep

and for β < α in relaxation. In this light, it would be nec-

essary to apply the second principle of thermodynamics to

see if some restrictions apply to the mechanical parame-

ters of the mechanical model, especially regard the value

of α and β . Thermodynamic consistency of material with

memory have been widely investigated and demonstrated

(see e.g. [34, 35]). Some studies on the thermodynamics of

viscoelastic materials have been devoted to fractional vis-

coelasticity only. In particular, in [31] thermodynamics re-

strictions on the parameters of a one-dimensional fractional

Standard Linear Solid (FSLS) viscoelastic model have been

found; the model holds the second principle of thermody-

namics if all multiplicative mechanical parameters are pos-

itive and if the order of the power law is in the range 0÷1.

In [32], thermodynamic consistency of a one-dimensional

springpot model has been proved to be satisfied if the re-

laxation spectrum is positive, and this happens if the mul-

tiplicative coefficient is positive and if the order of power

law lays in the range 0 ÷ 1. Although the works [31, 32]

refer to one-dimensional models, i.e. with only one relax-

ation/creep function, their results can be extended to the

three-dimensional model studied in this paper. Indeed, for

the deviatoric and volumetric relaxations functions consid-

ered separately, results of [32] are valid. When both devi-

atoric and volumetric components are “activated” during a

loading process, in linear viscoelasticity their contributions

can be analyzed separately and then summed. For the sin-

gle relaxation function the thermodynamic restrictions on

parameters are known, the same restrictions apply to both

components, deviatoric and volumetric. The fact that the de-

viatoric and volumetric parts are both present does not imply

that the second principle of thermodynamics imposes more

restriction on the parameters α and β . Then we must con-

clude that all the behaviors described in this and in the previ-

ous section are thermodynamically consistent, the mechan-

ical model of the three-dimensional springpot satisfies the

second principle of thermodynamics whatever are the order

of power laws α and β in the range 0÷1. A further confir-

mation of the last statement is reported in the Appendix.

6 Conclusions and discussions

In this paper the 3D fractional constitutive model has been

presented for linear isotropic material. It has been shown

that as soon as the deviatoric and volumetric components of

the stress tensor are well fitted by the Nutting (1921) power

law for the creep (and/or relaxation) the constitutive laws are

ruled by fractional operators.

The Nutting experience was made on many materials like

rubber, steel and many others and at that time the test was

made in pure tension or compression. Many other experi-

mentalists in the last half century confirmed the Nutting ex-

periments. However usually the test is limited to the creep

phase. People working on this subject confirm the Nutting

results in the creep phase (by means of best fitting proce-

dure); the parameters obtained in such a phase do not fit

the recovery phase very well. Moreover the parameters ob-

tained by experimental data (by using the results in a short

time) have to be re-adapted when the duration of the test in-

creases. Another unsatisfactory result is that the parameters

obtained by a test with a sinusoidal input do not coincide

with those obtained by the creep test. These inconsistencies

are not explicitly claimed by the scientists working in this

field but it is in contrast with the linear theory of viscoelas-

ticity. In order to cover this lack of consistency many other

models have been proposed in the past by adding an elastic

or a viscous element to fractional one.

In the authors opinion all these modifications are artificious

and do not present a clear physical meaning. In this paper

we assume that the 3D costitutive law may be expressed as

a summation of two contributions: the first one is the volu-

metric and the second one is the deviatoric contribution. For

isotropic material the deviatoric and volumetric parts are to-

tally separated (as in elasticity) and involve only one stress

and corresponding strain. As soon as it is assumed that the

creep law for the volumetric component is ruled by a power

law (say tβ ) and the deviatoric one is ruled by a power law

(say tα ) then in the tensile test the creep law is ruled by a

linear combination of tα and tβ . A summation of two dis-

tinct fractional operators are present. Now since α 6= β an

unique power law of the kind tρ may not fit in a perfect way

creep or relaxation. This cause a dramatic withdraw from the

experimental result in the recovery phase. Once this aspect
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is clarified it maybe stated that in order to fully character-

ize the 3D constitutive law two tests have to be performed:

a creep test in pure torsion and a creep test in hydrostatic

regime. Since the test machine in hydrostatic regime is not

at the moment available, a pure tension may be performed.

The 3D equations can be then written for the pure tension

(or compression) in terms of both deviatoric and hydrostatic

parameters.

In this paper a wide discussion on the role played by the

Poisson ratio in creep and relaxation is presented. It has

been shown that if the exponent of the hydrostatic compo-

nent is greater than that of the deviatoric one then the model

exhibits a decreasing Poisson’s ratio both in creep and in

relaxation. If the exponent of the hydrostatic component is

smaller than that of the deviatoric one then the Poisson ra-

tio is increasing with time both in creep and in relaxation.

If the two exponent are equal the Poisson ratio is constant

over time. Moreover, it has been found that the equivalent

of elastic Poisson’s ratio is the fractional viscoelastic Pois-

son’s ratio in relaxation and not in creep; this result was al-

ready found in other works that however were not devoted

to fractional viscoelasticity. The influence of the Poisson ra-

tio on stress and strain components has also been analyzed

and the thermodynamic admissibility of the model has been

discussed.

Appendix

The thermodynamic consistency of fractional viscoelastic

model has been widely investigated and demonstrated by

several authors (see e.g. [31, 32, 34, 35]). In this Appendix

two cases are studied in order to further confirm the results

of other authors, a relaxation test and a dynamic test.

The thermodynamic consistency is usually investigated by

imposing non-negative internal work (elastic energy stored

in the solid) and non-negative rate of energy dissipation and

if these hold what restrictions apply to its parameters in or-

der to respect the conditions. In classical models the inter-

nal work is related to the stored energy in the solid, then

to the elastic part of strain; the dissipated energy is related

to the viscous part of the strain. However in fractional vis-

coelasticity is not possible to distinguish between elastic and

inelastic strain; this is due to the the fact that the springpot

model contains in itself the features of both spring and dash-

pot, as shown by the hierarchical or selfsimilar models that

are able to reproduce power law viscoelasticity [11, 29, 30].

To overcome this problem, it is possible to work with state

functions and in particular with the concept of free energy

(corresponding to the elastic energy) and dissipation rates;

indeed, in the paper [36] it has been found what is the right

definition of the free energy for the springpot model shown

in the following. In this way the free energy itself and the

dissipation rate can be evaluated.

The specific Helmotz free energy ψ is a thermodynamic

state function whose gradient with respect to the actual value

of strain ε gives the measured stress; it represents the en-

ergy stored in the solid, that is what in elasticity is defined

as elastic energy. The rate of free energy can be expressed

as follows:

ψ̇ = u̇−T ṡ (A1)

where u̇ is the rate of specific internal energy, T is the the

absolute temperature and ṡ is the entropy production. The

second principle of thermodynamics states that ṡ ≥ q̇/T , be-

ing q̇ the rate of change of specific thermal energy, or simply

the rate of thermal energy exchange. It is to be emphasized

that:

– The rate of change of specific internal energy is related

to the rate of the specific mechanical work done on the

system and on the thermal energy exchange, then u̇ =

ẇext + q̇.

– Introducing the entropy production rate due to irreversible

transformations labeled as ṡ(i) ≥ 0, that is related to the

dissipated energy, the second principle of thermodynam-

ics can be written as ṡ = q̇/T + ṡ(i).

By performing these two substitutions in Eq. (A1) we get:

ψ̇ = ẇext + q̇−T
(

q̇/T + ṡ(i)
)

= ẇext −D(t) (A2)

where D(t) = T ṡ denotes the dissipation rate. When we ap-

ply a strain or stress history to the viscoelastic solid, in Eq.

(A2) the external work rate is known and can be evaluated as

ẇext =σ(t)ε̇(t). If it is possible to define also the free energy

rate then also the dissipation rate can be evaluated from Eq.

(A2). Unfortunately the free energy is not uniquely defined

unless a rheological model with well defined and distinct

elastic and viscous phases is available, as it is in classical

viscoelasticity. In fractional viscoelasticity the only possi-

bility to distinguish between elastic and viscous phases is to

make use of hierarchical models [11, 29, 30] but the num-

ber of elements to be taken into account is significant and

depends also on the observation time and on the input on

the system; for these reasons this strategy is not applica-

ble. However, in the paper [36] the mechanical models of

fractional viscoelasticity have been used to prove that the

correct form of the free energy function for the fractional

viscoelastic material is the one proposed by Stavermann and

Schwartzl [37] and defined as:

ψSS =
1

2

∫ t

−∞

∫ t

−∞
R(2t − τ1 − τ2)ε

′(τ1)ε
′(τ2)dτ1dτ2 (A3)

where R(·) is the relaxation function as usual and the pedex

SS stands for Stavermann and Schwartzl. By using Eq. (A3)

in Eq. (A2), the following expression for the dissipation rate

is obtained:

D(t) =−
1

2

∫ t

−∞

∫ t

−∞
Ṙ(2t − τ1 − τ2)ε

′(τ1)ε
′(τ2)dτ1dτ2
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Fig. 7 Applied strain histories for the evaluation of free energy and dissipation rate with Eqs. (A5): sinusoidal (a) and constant with initial linear

ramp (b).

(a) (b)

Fig. 8 Dissipation rates for the applied strain of Fig. 7 evaluated with Eq. (A5b): sinusoidal (a) and constant with initial linear ramp (b).

(a) (b)

Fig. 9 Free energy for the applied strain of Fig. 7 evaluated with Eq. (A5a): sinusoidal (a) and constant with initial linear ramp (b).

(A4)

For the particular case of the springpot Eqs. (A3) and (A4)

read as follow:

ψSS =
Cα

2Γ (1−α)

∫ t

−∞

∫ t

−∞
(2t−τ1−τ2)

−α ε ′(τ1)ε
′(τ2)dτ1dτ2

(A5a)

D(t)=
Cα α

Γ (1−α)

∫ t

−∞

∫ t

−∞
(2t−τ1−τ2)

−α−1ε ′(τ1)ε
′(τ2)dτ1dτ2

(A5b)

Eqs. (A5) should be firstly applied to the one-dimensional

springpot model and then to the three-dimensional spring-
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pot model; however from a one-dimensional point of view

the thermodynamic consistency of the springpot has been

already proved. In this case in order to evaluate the free

energy and the dissipation rate it is needed to take all the

components of stress and strain into account from both the

volumetric and deviatoric contributions. Limitations on the

relationship between α and β can be found by enforcing

the condition that ψ(t) ≥ 0 ∀t and D(t) ≥ 0 ∀t. However

the analytical solution of the double integrals in Eqs. (A5)

is not straightforward hence numerical integration has been

performed. The analysis is performed for two cases: i) a si-

nusoidal hystory of strain is applied, but differently from the

paper [31], also transient conditions are examined; ii) a con-

stant strain, reached with a linear ramp, is applied.

Eqs. (A5) have been evaluated by considering a large range

of values of α and β ; the other mechanical parameters (Gα

and Kβ ) are chosen positive, because negative value of mul-

tiplicative parameters violate thermodynamic restrictions also

in one-dimensional conditions. For simplicity here we show

only results with the following values: 1) α = β = 0.5; 2)

α = 0.5, β = 0.25; 3) α = 0.5, β = 0.75. Fig. 8 shows the

specific dissipation rate (dissipation rate per unit volume),

while Fig. 9 show s the specific free energy function for the

two applied strain histories of Fig. 7.

Figs. 8 and 9 show that the dissipation rate and the free en-

ergy function are non-negative whatever the relationship be-

tween the values of α and β is. From this evidence it has

to be concluded that the 3D fractional viscoelastic models

are thermodynamically consistent independently of the rela-

tionship between α and β ; this means that both an increasing

and a decreasing viscoelastic Poisson’s ratio are possible for

3D fractional constitutive models that hence are suitable to

represent both behaviors.
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