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Abstract
Wear debris from ultra-high molecular weight polyethylene (UHMWPE) components used for joint replacement
prostheses can cause significant clinical complications, and it is essential to be able to predict implant wear accurately
in vitro to prevent unsafe implant designs continuing to clinical trials. The established method to predict wear is
simulator testing, but the significant equipment costs, experiment time and equipment availability can be prohibitive.
It is possible to predict implant wear using finite element methods, though those reported in the literature simplify
the material behaviour of polyethylene and typically use linear or elasto–plastic material models. Such models cannot
represent the creep or viscoelastic material behaviour and may introduce significant error. However, the magnitude
of this error and importance of this simplification has never been determined. This study compares the volume of
predicted wear from a standard elasto–plastic model, to a fractional viscoelastic material model. Both models have
been fitted to experimental data. Standard tensile tests in accordance with ISO 527-3 and tensile creep-recovery tests
were performed to experimentally characterise both (a) the elasto–plastic parameters and (b) creep and relaxation
behaviour of the ultra-high molecular weight polyethylene. Digital image correlation technique was used in order to
measure the strain field. The comparison of the predicted wear with the two models was performed on an explicit
finite element model of a mobile–bearing unicompartmental knee replacement, and wear predictions were then made
using Archard’s law. The fractional viscoelastic material model predicted almost ten times as much wear compared
to the elasto–plastic material representation. Furthermore, the viscoelastic model predicted sub–surface stresses in
the polyethylene which are observed clinically. This work quantifies for the first time the error introduced by use of a
simplified material model in polyethylene wear predictions, and shows the importance of representing the viscoelastic
behaviour of polyethylene for wear predictions.
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Introduction

Wear of ultra–high molecular weight polyethylene
(UHMWPE) components used for joint replacement
prosthesis can cause significant clinical complications, such
as: implant loosening, osteolysis, inflammatory responses
and post–operative pain ?. It is, therefore, essential to be able
to predict implant wear as accurately as possible in vitro, to
minimise the risk of unsafe implant designs continuing to
clinical trials. The established method to predict the wear
of an implant is with simulator testing. Wear simulator
tests have been well characterised and validated against
clinical data, and can predict implant wear to an acceptable
degree of accuracy so is regularly used for validaton of new
designs ?. However, wear simulator tests require significant
equipment costs, availability of equipment is limited, and
the experiments take a long time ?.

Numerical simulation provides an alternative method to
predict wear. Maxian et al. were the first researchers to
use discretisation ? to predict linear wear from a finite
element model of an UHMWPE hip replacement component
??. Maxian’s work was based on a study by Marshek and
Chen ? who proposed that by applying Archard’s wear
equation to discrete elements of the articulating surfaces,

non-uniform contact pressures and geometries could be taken
into account. Maxian et al. applied Marshek’s approach finite
element models of an UHMWPE acetabular cup. The linear
wear (δh) was calculated for each individual node on the
articulating surface for each time increment (∆ti) from the
contact stress (σ), the sliding distance (S) and the wear factor
(Kw) (Equation ??). Using this equation, the total wear
for one cycle of loading was calculated for each node. To
account for geometrical changes resulting from the wear, at
a chosen number of cycles, the node positions are displaced
by the calculated linear wear. Most reported studies apply
a constant wear factor, but it has been shown that the
wear factor of metal on UHMWPE varies depending on the
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contact stress. This limitation was addressed by Onişoru et
al. ?, who derived an equation to represent the relationship
between contact stress and the wear factor, and applied this to
their wear calculations, and reported an improved accuracy.
Lui et al. ?? used a similar approach but also took account
of cross-shearing effects to predict wear, based on work by
Kang et al. ?.

δhnode = Kw

n∑
i=1

σiSi∆ti (1)

The majority of reported numerical wear studies for
UHMWPE use linear isotropic material models to represent
the material behaviour (Table ??), which is a simplification
of the behaviour of the material. The first study to calculate
wear using a more complex material model for polyethylene
was Teoh et al. ?, who used a bilinear elastoplastic material
representation. The authors reported a significant increase
in contact stresses and wear with the elastoplastic model.
Although an improvement, elastoplastic material models
cannot represent material behaviour such as creep, stress–
relaxation, kinematic hardening or rate–dependence, all of
wihch are observed with polyethylene. Bevill et al. ?
included creep behaviour in their wear calculations which
enabled them to distinguish between linear wear and creep
deformation giving valuable insight into the clinical scenario,
and Lui et al. ?? used a similar approach. However, neither
study directly compared the difference the use of a more
representative material model for UHMWPE had on the
predicted wear rate.

Table 1. Ultra-high molecular weight polyethylene material
representation and wear calculations used in finite element wear
analyses reported in the literature, where K is the Wear Factor

Author Year Material model K (mm3N-1mm-1)

Maxian ?? 1996 Linear elastic 1.06 × 10−9

Brown ? 2002 Linear elastic 1.06 × 10−9

Teoh ? 2002 Elastoplastic 1.06 × 10−9

Wu ? 2003 Linear elastic 0.8 × 10−9

Bevill ? 2005 Creep 1.06 × 10−9

Onişoru ? 2006 Linear elastic 7.99σ−0.653 × 10−9

Fialho ? 2007 Linear elastic 1.06 × 10−9

Pal ? 2008 Elastoplastic 2.64 × 10−13

Kang ? 2009 Linear elastic 1.24 × 10−9

Lui ? 2012 Creep n/a
Innocenti ? 2014 Linear elastic 1.83 × 10−14

Netter ? 2015 Linear elastic 0.17 × 10−9

Viscoelastic material behaviour (creep, stress–relaxation,
as well as a ”fading” memory effect) can be represented
by a combination of elastic behaviour (springs) and viscous
behaviour (dashpots). The Maxwell or Kelvin–Voigt models
are examples of spring and dashpot models; these have
the advantage of fast impementation and can describe
time–dependent behaviour but cannot accurately represent
polyethylene. Increasing complexity, with multiple springs
and dashpots in different arrangements (such as Zener
models) can capture the creep and relaxation behaviour
but are computationally very demanding. An alternative
approach is the use of fractional viscoelastic material models,
which have been used successfully to represent very complex

material properties for both short and long term time
behaviour. A three dimensional fractional viscoelasticity
theory has been derived and discussed in ?. Furthermore,
the implementation in commercial FE software of a range of
fractional viscoelastic models including fractional Maxwell,
Kelvin- Voigt and Zener among others has been presented
in ?. The purpose of the present study was to investigate
whether the application of a viscoelastic material model to
represent UHMWPE alters the predicted wear from a finite
element model. A fractional viscoelastic material model was
fit to experimentally derived data (which have not been
presented elsewhere), and then applied to a finite element
model of a mobile unicompartmental knee replacement (The
Oxford Knee, Zimmer-Biomet) to examine the influence on
wear. We report differences in the predicted wear for a simple
ramp–loading scenario as a preliminary study, with a view to
increasing the model complexity as future work.

Materials and Methods

Development of the fractional viscoelastic
material model
In classical viscoelasticity the constitutive behaviour is
obtained by combining the feature of springs (elastic
elements) and dashpots (viscous elements). The mechanical
models obtained with this approach are characterized by
exponential relaxation and creep function. However, it was
first observed at the beginning of the twentieth century that
creep and relaxation test of many polymers is well fitted
by power law functions ? (with power lying in the range
0÷ 1). In the frame of linear viscoelasticity, the Boltzmann
superposition principle ? it is assumed to be valid. If power
law creep/relaxation functions of the type

R(t) =
Cᾱt

−ᾱ

Γ(1− ᾱ)
(2a)

C(t) =
tᾱ

CᾱΓ(1 + ᾱ)
(2b)

are assumed, the Boltzmann superposition principle leads
directly to constitutive law involving the so called fractional
operators. These are neither else than integro-differential
operators of real order defined as convolution integrals
with power law kernel ?; in viscoelasticity the order of
integrals/derivatives is in the range 0÷ 1. In Eqs. (??)
R(t) and C(t) denote the creep and relaxation function,
respectively, Cᾱ and ᾱ are parameters, with 0 ≤ ᾱ ≤ 1 and
correspondent with order of derivative (or integral), and Γ(·)
is the Euler gamma function.

The most simple model is the springpot, often represented
as a rhombus (see Fig. ??). The constitutive equation of this
model can be written as ??

σ(t) = Cᾱ
(
CDᾱε

)
(t) (3a)

ε(t) =
1

Cᾱ

(
I ᾱσ

)
(t) (3b)

where
(
CDᾱ·

)
and (I ᾱσ) are the Caputo’s fractional

derivative and the Riemann-Liouville fractional integral
?, respectively. For the simplicity of the notation, in the
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Figure 1. Schematic illustration of the fractional Maxwell model

following the Caputo’s fractional derivative will be denoted
simply by (Dᾱ·)

The main advantages of the springpot model are that
it is able to reproduce the power law behaviour observed
experimentally and that it has long fading memory in
agreement with the real behaviour of many materials.
Moreover, it has been demonstrated that the behaviour of the
springpot can be reproduced in classical viscoelasticity only
by means of infinite sequence of springs and dashpots ??.

It is to be noted that in Eq. (??) R(0) =∞ and R(∞) =
0, C(0) = 0 and C(∞) =∞. However, experimental tests
with many viscoelastic materials have revealed that often
the relaxation and creep functions exhibit an initial (t = 0)
and/or a long term (t→∞) finite value. For this reason the
springpot model is often used in combination with one or
more springs. Experimental tests on UHMWPE considered
in this work are well reproduce by a springpot in series with
a spring, namely a Fractional Maxwell model (depicted in
Fig. ??). This result has been obtained by the authors in the
experimental campaign described in the next section and is
also confirmed by previous works ?. The constitutive law of
the Fractional Maxwell model is written as follows.

(Dᾱσ)(t) +
E

Cᾱ
σ(t) = E(Dᾱε)(t) (4)

where E is the Young modulus related to the spring. The
relaxation and creep functions of the fractional Maxwell
model can be easily obtained as:

R(t) = EEᾱ

(
− E

Cᾱ
tᾱ
)

(5a)

C(t) =
1

E
+

tᾱ

CᾱΓ(1 + ᾱ)
(5b)

being Eᾱ(·) the one parameter Mittag-Leffler function
defined as [citare Podlubny]

Eᾱ(z) =

∞∑
k=0

zk

Γ(1 + ᾱk)
(6)

Eqs. (??) and (??) are related to an unidimensional model;
indeed, Eq. (??) has been assumed as a basis for the fitting of
the experimental test described in the next section. However,
for the finite element analysis a three dimensional model
has to be defined. Assuming that the material is isotropic,
only two relaxation or creep function are needed in order to
characterize the three dimensional behaviour of the material,
one describing the pure volumetric behaviour and the other
one describing the pure shear behaviour ???. In compact
form the terms of the relaxation matrix are written:

(7)Rijkh(t) =

(
KR(t)− 2

3
GR(t)

)
δijδkh

+GR(t) (δikδjh + δihδjk)

Figure 2. Experimental equipment used for the viscoelastic
characterisation of the UHMWPE material

where KR(t) and GR(t) are the relaxation functions of the
pure volumetric and pure shear components, respectively,
and δ is the Kronecker delta. Assuming that both the
components are well reproduced by Fractional Maxwell
models, the relaxation and creep functions are analogous to
Eqs. (??). The function related to the volumetric contribution
are obtained from Eqs. (??) by substituting E, Cᾱ and ᾱ
with K, Kβ and β, respectively. The function of the shear
contributions are obtained from Eqs. (??) by substituting E,
Cᾱ and ᾱ with G, Gα and α, respectively.

In agreement with experimental evidence, the volumetric
and shear time scales, which are determined by the
parameters α and β, are not assumed equal ???. This allow
the model to be very flexible and to reproduce also time
varying Poisson’s ratio ?.

Experimental determination of UHMWPE
viscoelastic parameters
Uniaxial Creep–recovery experimental tests were performed
to characterize the parameters to use for the viscoelastic
material model. Tensile test specimens were machined from
in–house sheet moulded UHMWPE, made from GUR 4150
resin (Celanese, Germany), which is the non–medical grade
equivalent of GUR 1050. The samples were machined to a
rectangular geometry of 180 mm by 20 mm by 1 mm. The
strain in the direction of the applied stress was measured by
means of the Digital Image Correlation technique.

Tensile tests were performed on an electromechanical test
machine (5582, Instron) (Figure ??).

Different magnitude of the constant applied stress σ0 load
have been applied: 1, 3 and 5 MPa (see Figure ??). The
parameters obtained by the fitting of experimental data at
different level of stress are homogeneous. For this reason
the material can be considered linearly viscoelastic at the
least up to 5 MPa of applied stress. This fact is confirmed
by results published in ? where it is shown that UHMWPE
may be considered linear up to 10 MPa.

The maximum tensile stress σ0 was reached after 4
minutes of ramp loading. The stress was maintained for 6
hours, after which the load was reduced to zero over a period
of 4 minutes, and the samples were left to recover for 6 hours
(see Figure ??).

The fitting of experimental data has taken into account the
exact history of stress describe above and to this purpose it is
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written as:

(8)σ(t) =
σ0

t0
{[t− (t− t0)U(t− t0)]

− [(t− t1)U(t− t1)− (t− t2)U(t− t2)]}

where t0 = 4 minutes is the time at the end of the loading
ramp, t1 = 364 minutes is the time at the end of the
creep phase, t2 = 368 minutes is the time at the end of
the unloading ramp and U(t) is the unit-step function. By
assuming the creep function of Eq. (??), the history of stress
of Eq. (??) generates the following theoretical history of
strain (see Figure ??) that was used to fit experimental test:

ε(t) =
σ0

Et0
{[t− (t− t0)U(t− t0)]

− [(t− t1)U(t− t1)− (t− t2)U(t− t2)]}
+

σ0

Cᾱt0

{[
t1+ᾱ − (t− t0)1+ᾱU(t− t0)

]
−
[
(t− t1)1+ᾱU(t− t1)− (t− t2)1+ᾱU(t− t2)

]}
(9)

The values of the obtained parameters E, Cᾱ and ᾱ
are reported in Table 3. The parameters related to the
three dimensional constitutive law (G, Gα, α, K, Kβ and
β) are reported in Table 4. These have been obtained
by considering a constant Poisson’s ratio ν = 0.46 (value
commonly considered for UHMWPE) and the following well
known relationships has been used:

G =
E

2(1 + ν)
(10a)

K =
E

3(1− 2ν)
(10b)

Analogous relationships have been used to obtain Gα and
Kβ from Cᾱ. The hypothesis of constant Poisson’s ratio
implies also that α = β = ᾱ; this means that the volumetric
and shear contribution evolve with the same time scale.
This fact is in disagreement with experimental results ??.
However, the direct determination of the two time scales
may be performed only if in the uniaxial creep test we are
able to measures correctly not only the longitudinal strain
but also the transverse strain. Another strategy is to perform
two different creep test, as an example the uniaxial creep test
and a torsion creep test. In this work it has not been possible
to perform a double measure in the uniaxial creep test.
Moreover, for the scope of the work, that is to compare the
predicted wear with a commonly used elasto-plastic model
and with a fractional viscoelastic model, this approximation
is acceptable. Of course, a more precise characterization of
the three dimensional constitutive behaviour is desirable in
order to predict with less approximation the response of the
UHMWPE bearing and the wear of its surface.

Finite element model definition
The finite element model consisted of an UHMWPE
unicompartmental knee bearing component (The Oxford
Partial Knee, Zimmer-Biomet), and an articulating femoral
component modelled as an analytical rigid body. Drawings
of both component geometries has been previously published
?. The femoral component was a sphere of radius 24 mm,

Figure 3. Illustration of the finite element model assembly,
where the meshed bearing and articulating femoral components
are shown in the context of the knee. The femur, tibia and tibial
component did not contribute to the model, but are included for
illustrative purposes.

cut to a width of 20 mm. The upper articulating surface
of the bearing conformed to the femoral component with a
clearance of 0.2 mm. The thickness of the bearing in the
centre was 3.5 mm, and the bearing was 34 mm long by
24 mm wide. Holes for marker wires were included and
positioned 3 mm from the base of the bearing, and the marker
wires themselves were represented as rigid cylinders of 1 mm
diameter.

The components were assembled as is shown in Figure ??;
the femur, tibia, and tibial component did not contribute to
the model but are included for illustrative purposes. The load
was applied axially to the femoral component, perpendicular
to the base of the bearing. The component was compressively
ramp loaded to 1200 N over a period of 0.2 s. The base of
the bearing was constrained in the axial direction. Contact
was defined between the femoral component and the upper
surface of the bearing, with penalty friction of 0.08 ?. Tie
contraints were used to fix the marker wires within the
bearing. The bearing was meshed with quadratic tetrahedral
element (C3D10M), and the converged mesh size was used,
the determination of which is described in Section ??.

The material properties defined to the metallic compo-
nents was limited to the density, as these were modelled
as rigid bodies. The femoral component was modelled with
a density of 8.387 g cm-3 to represent Cobalt-Chromium-
Molybdenum alloy ?, and the marker wires were assigned
a density of 4.42 g cm-3 for Titanium-6-Aluminium-4-
Vanadium alloy ?. A subroutine was created to apply the
fractional viscoelastic model described in Section ??. For the
elasto-plastic material model a modulus of 855.2 MPa was
used, a Poisson’s ratio of 0.46, and the plasticity parameters
are summarised in Table ??. These values were determined
after testing the sheet moulded GUR 4150 in accordance with
ISO 527-3 using Specimen Type 2 geometry.
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Table 2. Plastic material properties defined for the
elasto-plastic models

True stress (MPa) True plastic strain

2.8 0.00
9.2 0.01

13.5 0.02
16.4 0.03
18.3 0.04
21.7 0.07

All models were created, solved, and post-processed
using Abaqus finite element software (version 6.12, Dassault
Systémes, Paris, France). An explicit solver was used with
an imposed time increment of 4× 10−6.

Quantification of wear
Linear wear was calculated for the two different models
using Equation ??. A wear factor of 1.06× 10−9 mm3 N-1

mm-1 was used, as reported by Maxian et al. ??. The linear
wear for each time increment was the maximum linear wear
of all the nodes on the articulating surface. The volumetric
wear was the sum of the linear wear of all the nodes on
the articulating surface multiplied by the surface area (766.2
mm2).

The sliding distance (S) was calculated using the great-
circle distance equation (Equation ??), which assumed the
sliding occurred around the circumference of the femoral
component. The cartesian co-ordinates of the position of
the nodes at the start and the end of the increment
were converted to polar co-ordinates (φ1, λ1 and φ2, λ2,
respectively) relative to the centre of the femoral component,
and the femoral component radius (24 mm) was used as the
sphere radius (R).

(11)
S = 2.R.sin−1

[
sin2

(
φ2 − φ1

2

)
+ cos(φ1).cos(φ2).sin2

(
λ2 − λ1

2

)]0.5

Mesh convergence
The mesh convergence was performed for the linear wear
and volumetric wear output. The mesh seeding densities
examined were from 2.0 mm to 5.0 mm with 0.5 mm
intervals, which created between 115 and 526 nodes on the
articular surface. Both the linear wear and gravimetric result
converged at a mesh size of 3.5 mm (Figure ??).

Results

Definition of the fractional viscoelastic material
model
The results of the creep–recovery experimental tests were
fitted to the fractional viscoelastic Maxwell model as shown
in Figure ??. The fitted parameters are summarised in Table
??. It can be seen that the parameters were of a good fit to the
experimental data. These data were then converted into the
parameters necessary for the fractional viscoelastic model as
described in the previous section, and these are summarised
in Table ??.

Figure 4. Variation of the calculated linear wear for different
numbers of nodes on the contact surface. A mesh size of 3.5
mm was deemed convergenced (189 nodes).

Figure 5. Variation of the calculated volumetric wear for
different numbers of nodes on the contact surface. A mesh size
of 3.5 mm was deemed convergenced (189 nodes).

Table 3. Parameters determined from the creep–recovery test
results to represent GUR 4150 UHMWPE

Parameter Value

ᾱ 0.4
Cᾱ 24553 M Pasᾱ

E 561 MPa

Table 4. Input parameters for the fractional Maxwell model,
identified from the creep-recover test results

Parameter Value

K 2338 MPa
G 192 MPa
Kβ 102304 M Pa sβ

Gα 8404 M Pa sα

α 0.4
β 0.4
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Figure 6. Variation of stress with time during the creep
recovery test. Test results are shown in red, and the theoretical
curve with the fitted parameters is shown in black

Figure 7. Variation of strain with time during the creep recovery
test. Test results are shown in red, and the theoretical curve
with the fitted parameters is shown in black

Wear volume prediction
The wear prediction (for both linear and volumetric wear)
using the fractional viscoelastic material model to represent
UHMWPE was almost 10 times greater than that predicted
using an elasto-plastic material model (Figure ??). When the
wear factor was calculated using the Onişoru equation ?, this
difference was even greater but the overall predicted wear
was reduced.

The cumulative increase in wear (both linear and
volumetric) was approximately linear for the elasto–plastic
material model (coefficient of determination = 0.912 for
linear wear, and 0.834 for volumetric wear). Whereas
the viscoelastic model deviated from linearily at higher
loads(Figure ??).

Stress analysis
The overall stress within the bearing was increased when
the UHMWPE was represented as a viscoelastic material,
but in particular a difference was noticed in the stress on
the contact surface and in the contact region. Figure ??
illustrates a cross-section through the centre of the bearing
for the two different material models. It can be seen that in
the viscoelastic model the stress is more concentrated around
the articulating surface, whereas in the elastoplastic material
model the stress is evenly distributed through the thickness
of the bearing.

Figure 8. Calculated total linear wear for the elastoplastic
material model and the fractionalelastic material model. Results
using a constant wear factor of 1.06 x10-9 mm3 N-1 mm-1, and
the Onisoru wear factor which used a variable wear factor
calculated from the contact stress (7.99σ−0.653)

Figure 9. Calculated total volumetric wear for the elastoplastic
material model and the fractionalelastic material model. Results
using a constant wear factor of 1.06 x10-9 mm3 N-1 mm-1, and
the Onisoru wear factor which used a variable wear factor
calculated from the contact stress (7.99σ−0.653)

Discussion
The results of this study have demonstrated a clear difference
in the wear prediction from a finite element model of an
UHMWPE component when using a viscoelastic material
model definition compared with an elastoplastic model. It is
known that elasto–plastic material models will underestimate
stress due to the stress-relieving effect of plasticity. However,
numerous authors have used linear elastic material models
to predict wear and the results have correlated well with
with either experimental wear test data, or clinical data. It
is therefore unexpected that a more representative material
model can have such a large influence on the predicted wear.

One possible reason for this discrepancy could be the
wear factor. As shown in Table ??, a wide range of wear
coefficients are reported in the literature; values range from
0.00002 x 10-9 mm3 N-1 mm-1 to 1.2 x 10-9 mm3 N-1
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Figure 10. Cumulative linear wear during the loading step.
Results are shown for the Elastoplastic material model, and the
fractional viscoelastic material model, calculated using a
constant wear factor of 1.06 x10-9 mm3 N-1 mm-1.

Figure 11. Cumulative volumetric wear during the loading step.
Results are shown for the Elastoplastic material model, and the
fractional viscoelastic material model, calculated using a
constant wear factor of 1.06 x10-9 mm3 N-1 mm-1.

Figure 12. Cross–sectional view through centre of the
unicompartmental knee bearing in the sagittal plane. The von
Mises stress distribution within the bearing is illustrated for the
results using the elastoplastic material model

Figure 13. Cross–sectional view through centre of the
unicompartmental knee bearing in the sagittal plane. The von
Mises stress distribution within the bearing is illustrated for the
results using the fractional viscoelastic model

mm-1. The majority of wear factors are calculated from pin–
on–disk experiments which can have a simplified loading
scenario compared to in vivo loading, but some studies
have used simulator wear results, and clinically derived
data to calculate wear factors ? which are likely to be
more representative. Nevertheless, there is a need for more
research to accurately determine the wear factor of metal on
UHMWPE for different situations to ensure the accuracy of
numerical wear predictions.

Despite being a more accurate representation of the
material behaviour, it may be that the increased wear
predicted by the viscoelastic model is not representative of
reality. UHMWPE is known to harden due to alignment
of molecular chains under cyclic loading, and also due to
oxidation over time in vivo. Neither the viscoelastic model,
nor the elastoplastic model, takes into account the hardening.
Including hardening effects into the model would reduce the
wear rate. It could be that inclusion of kinematic hardening
into the material model, or alteration of the wear factor with
loading cycles could create a more realistic prediction of
wear. Use of the wear factor to represent so called ”running
in wear” was reported by Liu et al. ?, who examined wear
of metal–on–metal hip replacements using finite element
analysis. The wear was calculated by defining two wear
coefficients, one for short–term wear, and one for long–term
wear. It may be possible to use a similar methodology to
represent hardening and sub-surface oxidation of UHMWPE
with time while maintaining computational efficiency.

Another factor to consider in the wear calculation is
determination of the sliding distance. In the present study
the sliding distance was calculated using the great–circle
distance equation, which was possible due to the conforming
nature of the articulating surfaces and the spherical geometry.
In the design of the Oxford Unicompartmental Knee there
is a 0.2 mm clearance between the femoral component
and the bearing. In the present study, because the femoral
component was modelled as a rigid part, it was valid to
assume that where contact occurred on the bearing surface,
that this clearance must have been closed by deformation
of the bearing. However, if material properties had been
assigned to the femoral component use of the great–circle
distance equation could have introduced errors. Studies in
the literature often do not mention how sliding distance
has been calculated. Teoh et al mention using the great–
circle distance equation to calculate the sliding distance.
Other studies calculate the sliding distance based upon a
defined rotational or translational displacement ?, but these
assume no change in the component geometry. However, the
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influence of this assumption would be expected to be minor
in the case of large displacements and small wear.

Conclusions
In conclusion, this study has shown the use of simplified
material models to represent polyethylene to predict wear
introduces significant (up to 10 times) error in the calculated
wear volume. In contrast, the fractional viscoelastic material
model, which was defined from experimental data, predicted
concentrated stresses on the articulating surface, which
is matches well with sub–surfaces stresses reported from
retrieved components ?. Use of such accurate material
models in finite element models of joint replacements could
prove to be a cost-efficient, reliable way to predict wear and
aid optimal implant design.
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