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Abstract 

 

An innovative deterministic approach to the optimal power synthesis of 

mask-constrained shaped beams through concentric-ring isophoric sparse 

arrays is presented and tested. The design procedure exploits at best the state-

of-the-art techniques respectively available in the cases of circular-ring 

isophoric arrays radiating pencil beams and of linear isophoric arrays 

generating shaped beams. Moreover, it avoids the exploitation of global-

optimization algorithms (with the inherent advantages in terms of 

computational burden) and compares favorably to the (few) available 

procedures.  

The proposed deterministic design procedure starts from the definition 

of the power mask constraints for the radiation pattern for the overall 

azimuth cuts. After that, the workflow foresees the definition of the optimal 

continuous circular aperture (which acts as a reference and benchmark in the 

following step) able to meet the requirements for the far field. Finally, the 

arrays synthesis is performed by means of an optimal discretization of the 

reference source where, by minimizing the difference between the array’s and 

continuous source’s cumulative functions, an optimal isophoric sparse array 

arranged in circular rings is obtained.  

The optimal results achieved in the first part of the research activity 

suggested applying the proposed approach also to the optimal, mask-

constrained power synthesis of circular continuous aperture sources able to 

dynamically reconfigure their radiation behavior by just modifying their phase 

distribution. The design procedure relies on an effective a-priori exploration 

of the search space which guarantees the achievement of the globally-optimal 

solution. The synthesis is cast as a convex programming problem and can 

handle an arbitrary number of pencil and shaped beams. The achieved 

solutions are then exploited as reference and benchmark in order to design 

phase-only reconfigurable isophoric circular-ring sparse arrays. Numerical 

results concerning new-generation telecommunication systems are provided 

in support of the given theory. 
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1  

Introduction 
 

 

 

 

 

1.1 New antenna architecture and status of the arrays 
antenna synthesis 

The satellite communications in the last years have been the object of 

considerable changing in terms of performance and services offered to the 

customers. The new payloads require flexibility in terms of 

frequency/bandwidth or power allocation of coverage on the Earth surface, 

in order to have a product that satisfies the customers and the business needs. 

Flexible payload products are designed to reprogram a satellite mission when 

the spacecraft is already in orbit. 

A satellite, which can reconfigure its characteristics, frequencies, 

coverages and/or power allocation, will allow the operator to follow in a very 

quick manner the evolving market request or access new businesses. 

Moreover, a flexible satellite opens plenty of opportunities for operators in 

their fleet, frequency rights and orbital slots management as well as allowing 

for the progressive deployment of the associated ground segments and 

gateways. Beam reconfiguration permits satellite to track mobile terminals. 

For example, in the marine industry, a beam can be re-configured to 

seamlessly track the progress of a terminal across an ocean, without having to 

lease multiple beams to cover the relevant regions. 

Quantum satellite, manufactured by Airbus, will be the first generation 

of universal satellites able to serve any region of the world and adjust to new 

business needs without the user procures and launches a new satellite. 

Quantum will be able to adjust its coverage and capacity to suit customers’ 

needs as and when they change. In addition, the re-configurability is not only 

an essential feature in the new telecommunications satellite. Also in the radar 
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sector it is a crucial aspect to achieve a reconfiguration of the radiative 

properties in order to have a product which can be adapted to several cases. 

Regarding the request of flexibility (re-configurability in terms of spot 

beam shape, steerable antennas and high gain), the DRA (Direct Radiating 

Array, see Fig. 1.1-1) may represent an attractive alternative to the 

conventional well-known solution based on single or multi-reflector system. 

All the reflector solutions based on single feed per beam configuration or 

multiple feed per beam configuration are not able to meet the requested re-

configurability.  

 

Fig. 1.1-1: Active phased arrays in GIOVE-B satellite 

The main limitation for the classical architectures with single feed per 

beam is the impossibility to reconfigure the antenna during the lifetime of the 

satellite, in other words, to follow the changes of the user traffic request in 

terms of coverage footprint (beam pointing/steering), EIRP (beam power), 

and frequency plan (beam frequency). The second limitation is the fact that, 

for generating contiguous spot coverage, the satellite should embark more 

reflectors with large dimensions and consequently it has an impact on the 

overall mass and volume (critical aspect for the satellite). The alternative 

solution, multi-feed per beam that represents still the State of the Art, solves 
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the mass and volume issues but it is in any case not completely 

reconfigurable. In the multi feed per beam antenna more feeds participate for 

generating a spot beam on the Earth surface (see Fig. 1.1-2) 

 

Fig. 1.1-2: Multi-feed for beam concept 

The active antenna is the suitable candidate architecture to solve the 

mentioned problems and to design an antenna with maximum flexibility. 

Active antennas allow to re-configure the footprint coverage by the pointing 

capabilities, matching the possible modification of the SATCOM mission 

scenario due to longitude satellite position modification or to a new coverage 

shape or position, see Fig. 1.1-3. 

 

Fig. 1.1-3: Active antenna generating reconfigurable beam coverage 
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Active antennas allow setting the EIRP (Equivalent Isotropic Radiated 

Power) performance of each beam matching the user traffic request sharing 

the power available from the radiating elements amplifiers. Moreover, active 

antennas allow generating multiple beams coverage with continuous footprint 

by means of the same aperture minimizing the complexity of the satellite 

layout. 

 

Fig. 1.1-4: Active DRA generating multibeam coverage 

The active antenna family is constituted by several antenna 

architectures as: 

 Arrays Fed Reflector (AFR) – focused or defocused 

 Direct Radiating Arrays (DRA) 

 Imaging Confocal Arrays (ICA) 

 Active Discrete Lens (ADL) 

Tab. 1.1-1 and Tab. 1.1-2 resume shortly the main advantages and 

disadvantage between the main active antennas configuration which are under 

investigations by ESA in the last ten years.  

As it can be noted all these configurations are based on the use of a 

DRA integrated with a single o multi-reflector system or in stand-alone 

condition. The techniques for the design of arrays in regular o irregular lattice 

are shared from all the active antennas. 
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Tab. 1.1-1: Advantages of each active antenna configuration 

 
Tab. 1.1-2: Disadvantages of each active antenna configuration 
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In the family of the DRA one particular class of antenna is very 

appealable and promising for the new onboard missions: the isophoric sparse 

DRA, an arrays with an equal signal amplitude at each radiating element 

which are not accommodate in a periodic lattice. The isophoric sparse arrays 

permits to optimize the efficiency of the SSPAs (Solid State Power 

Amplifiers) allowing them to work at the same working point. In addition, 

this kind of antenna architecture guarantees the performance (bandwidth and 

SLL) which are comparable with the full populated periodic arrays by using a 

smaller number of elements. The reduction of active elements inside the 

antenna permits to reduce the complexity of the antenna, of the cost and of 

the overall weight.  

The mentioned above requests from the new business market give the 

opportunity to the scientific community to investigate new arrays antenna 

architectures and encouraging the development of new synthesis techniques 

as demonstrated by several publications on the subject.  

Considering the kind of radiated pattern which will be designed and the 

available degrees of freedom a very large number of synthesis problems can 

be identified. Executing an excursus of the literature on the arrays synthesis 

problems, a possible classification can be carried out as the one reported in 

Tab. 1.1-3 where the rows refer to the kind of radiated pattern (pencil beams, 

difference patterns, shaped patterns, steerable patterns, reconfigurable 

patterns), while the columns refer to the available degrees of freedom [just 

excitations, constrained excitations (binary or quantized), just locations, both 

excitations and locations, phase-only, combinations of the above]. 
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Tab. 1.1-3: Classification of the arrays antenna synthesis problems 

Due to intrinsic simplicity of the problems, a large number of contributions in 

the literature ensuring the achievement of an optimal solution is available for 

a fixed geometry and arbitrary excitation (corresponding the first column of 

Tab. 1.1-3 ).  

In particular, optimal solutions have been designed for the synthesis of 

pencil beams or difference beams subjected to full arbitrary bounds on the 

sidelobe level by means of arbitrary geometry arrays (including linear, planar, 

and conformal arrays, the only constraint being the fact that positions of the 

elements are fixed in advance).  

While previous analytical results exposed were limited to the case of an 

equal level of the sidelobes [5-7], the approach in [8-11] by Isernia et all 

suggests that the problems of maximizing the field (or its slope) in a given 

direction while keeping the field below given values can be conveniently 

reduced to Convex Programming [8-10] or even to Linear Programming [11] 

problems and therefore a unique global optimum exists for such a class of 

problems. In addition, this approach is applied to the maximization of 

directivity subject to given constraints for the sidelobes. As a consequence, 

these classes of canonical problems are solved. An important result achieved 

by these solutions is the absence of global optimization algorithm, 

characterized often by a very high computational cost.  

Optimal solution strategies have been designed for the optimal 

synthesis of shaped beams with uniformly-spaced one-dimensional arrays [12] 

(wherein an effective procedure for general arrays is also devised). 
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Unlike the previous cases, the literature presents much less theoretical 

results for the classes of arrays synthesis problems where the locations are the 

unknowns. In fact, in all cases wherein the locations of the radiating elements 

have to be determined the radiated field depends in a non-linear manner from 

the unknowns and therefore a more difficult relationship has to be considered 

in the synthesis.  

The interesting theoretical question arises of how to tackle these classes 

of problems in such a way to achieve a kind of optimal solution to the design 

problem at hand without exploiting global optimization procedures, wherein 

by ‘optimal’ it means 

“an arrays able to fulfill given design goals by exploiting the 

minimum number of elements (or the minimum aperture size, or the 

minimum number of other resources) or, equally, to optimize given 

performances for a fixed number of elements (or fixed aperture 

dimensions, or fixed other resources)”. 

It is worth noting that the need for using possibly deterministic 

procedures is due to a number of reasons. The main ones being that of 

avoiding the computational burden of the global optimization algorithms and 

the fact that local (or quasi-analytical) solution procedures allow one to better 

understand and check the expected properties of the different solutions 

which can be devised. In [17] and in [21] the deterministic procedures for the 

synthesis of uniform-amplitude linear sparse arrays radiating a pencil beam or 

a shaped beam are discussed. These approaches include the well know density 

taper procedure. These methods exploit an analytical formulation of the 

problem and the convex programming routine achieving the optimal solution 

without recurring to global optimization.  

A more general problem, with an increased number of degrees of 

freedom, is the case of the synthesis using both locations and excitations of 

the elements of the array. The goal is generally that of exploiting the 

additional degrees of freedom deriving from the possibility to choose 

locations in order to save a number of elements, thus saving costs. The 

problem, which is of interest in radar applications as well as in many other 
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cases, has attracted the interest of a number of researchers, giving rise to 

solution procedures ranging from global optimization, hybridization of global 

and local procedures, to the use of the so-called ‘Matrix Pencil Method’ [30] 

and its modifications [31-32], up to the exploitation of the theory of 

‘compressive sensing’ [33]. Hybridizations amongst all these different 

methods have also been considered.  

Another very interesting class of problem of large applicative interest is 

the one wherein one tries to synthesize two, or more, different patterns by 

means of excitations having a common amplitude distribution for the 

different modalities, so that reconfigurability is achieved by simply acting on 

phase distributions. In the last years several publications ([34-35]) appears for 

the case of linear arrays but a gap is presented for the case planar arrays able 

to be reconfigured in terms of radiation patterns (pencil and shaped beam). 

The few synthesis procedures for the reconfigurable planar are not completely 

deterministic or they are sub-optimal solution ([36]). In order to fill up this 

gap, this Ph.D. thesis introduces a deterministic procedure design instead of 

stochastic optimization to deal with the open problems for the synthesis of 

isophoric sparse arrays organized in concentric rings which are able to be 

reconfigurable acting only in the phase distribution.  

The next paragraph reports the novelty included in this thesis work and 

how the chapters are organized. 

1.2  Objective, motivation and outline of the thesis 

The aim of this thesis is to consider an open point in the array synthesis 

that concerns the optimal synthesis of reconfigurable isophoric sparse arrays 

organized in concentric rings. In order to fulfill this need a preliminary step is 

required in order to solve another open problem in the arrays synthesis that is 

related to the optimal synthesis of shaped beams radiated by a concentric ring 

isophoric sparse array architecture. These two array synthesis problems have a 

common kernel which is represented by the need to use a full deterministic 

procedure for the discretization of a reference complex source into an 

isophoric sparse array. 
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The sparse array antennas, arrays whose elements are located over an 

aperiodic layout such to fulfill given radiation requirements, represent an 

important topic for antenna designers. This is shown by a large number of 

both ‘classic’ ([2]-[4]) and more recent ([13]-[26]) contributions. 

Such a large interest is due to the advantages offered by these systems 

with respect to equispaced arrays. In fact, for a fixed aperture size, sparse 

arrays allow decreasing the number of elements without significantly affecting 

the beamwidth [19]. Such a lowering, in turn, mitigates mutual-coupling issues 

(due to the increased value of the average inter-element spacing) and it 

implies a reduced cost, weight, and complexity of the feeding network [2]. 

Moreover, the aperiodicity of the layout allows reducing grating lobes in the 

radiation pattern and hence an improvement of performance in terms of both 

sidelobes level (SLL) and bandwidth [17]. Finally, aperiodic arrays may allow a 

SLL reduction without resorting to an excitation-amplitude tapering [22]. The 

last advantages above led over the years to the large diffusion of a particular 

kind of sparse arrays: the so-called ‘Isophoric’ Sparse Arrays (ISA) [17]-[26], 

aperiodic arrays having a constant excitation amplitude over the whole 

aperture. This feature allows the feeding power amplifiers to operate at their 

point of maximum efficiency and it greatly simplifies the beam forming 

network [19],[22].  

Amongst all ISAs planar architectures, Concentric Ring Isophoric 

Sparse Arrays (CRISAs), isophoric sparse arrays whose elements are located 

onto concentric rings, appear being the most convenient ones due to their 

capability of uniformly spreading the antenna energy over all azimuth 

directions [18],[21]-[26]. In fact, CRISAs constitute one of the usual choices 

to realize the satellite multibeam coverage of Earth [18],[23],[24].  

Of course, isophoric sparse arrays configuration has also its 

disadvantages. The most critical drawback is related to the corresponding 

synthesis procedures. In fact, since the elements’ locations are an unknown of 

the design problem, the synthesis is unaffordable through Convex 

Programming (CP) procedures of the kind presented in [27]. Therefore, as 

done for instance in [13]-[16], the antenna designers often recur to Global 

Optimization (GO) procedures. However, due to their high computational 
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weight, GO techniques practically result unsuitable for the synthesis of 

isophoric sparse arrays composed by a very large number of elements. To 

overcome such difficulties, the following two-steps procedure has been 

recently  devised for the design of Linear Isophoric Sparse Arrays (LISA) and 

Concentric Ring Isophoric Sparse Arrays (CRISAs) [17]-[24]: 

1. Identify a Reference Continuous Aperture Source (RCAS) fulfilling 

‘at best’ the radiation requirements at hand; 

2. Derive the arrays layout as a discretization of the RCAS.  

This procedure allowed to outperform previous approaches [17]-[24]. In fact, 

a number of well-assessed methods already exist to perform step 1 ([28], [29]) 

and, only in the ‘pencil beams’ case, step 2 ([2], [17], [18], [22]-[24]). 

Unfortunately, much fewer alternatives to perform step 2 are available in the 

‘shaped beams’ case. The reason of such lack derives from a simple 

circumstance. The RCASs generating sufficiently narrow pencil beams are real 

functions [28], in the shaped beams case they result to be complex ones [29]. 

This issue, which drastically complicates step 2 [23], has been recently solved 

for the case of LISAs (Linear Isophoric Sparse Arrays) in [21] but still results 

unsolved for CRISAs. In fact, the unique approach currently available to 

perform step 2 in the CRISAs case is the ‘rough’ one in [23], which bypasses 

the problematic of the RCAS’s complexity by: 

a) Identifying the elements’ locations by applying the technique 

presented in [18] only to the RCAS’s amplitude; 

b) Assigning to each arrays element an excitation phase equal to value 

assumed in its location by RCAS’s phase. 

This procedure neglects the fact that, as discussed in [21], the arrays elements 

locations must be a function of both the RCAS’s amplitude and phase 

distributions, and hence its performance is considerably improvable. On the 

other side, beyond [23], the unique contribution addressing the synthesis of 

CRISAs in the shaped beams case is [16]. It relies on GO and hence it is 

exploitable only in case of CRISAs composed by a low number of elements. 

In the attempt of filling such a gap, this thesis proposes a new approach to 
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the mask-constrained power synthesis of shaped beams through CRISAs. The 

technique can be seen as the extension of the approach in [21] to the case of 

ring symmetric arrays layouts and it results fast and effective even in case of 

arrays composed by a large number of elements.  

After the definition of the deterministic procedure for the optimal 

synthesis of the isophoric sparse concentric ring arrays radiating a shaped 

beam, the introduced method can be used in the synthesis of only phase 

reconfigurable isophoric sparse concentric ring array. The only-phase 

isophoric sparse concentric ring arrays are a particular class of the 

reconfigurable antennas. In particular, the reconfigurability, i.e., the possibility 

to change the kind of radiating pattern (pencil beam, shaped beam, cosecant 

beam, fan beam, etc), is obtained only by changing the phase on the array 

while keeping the isophoricity requirement in terms of amplitude. This 

constraint permits to have several advantages at the satellite level. In facts, the 

reconfigurability permits to change the radiation modality in according to the 

load on the Earth surface (large beam in low-density traffic zone and small 

beams in the high-density traffic region). Moreover, the only-phase 

reconfigurability in active phased arrays can be implemented in very easy way 

without to increase the number of components and the complexity of the 

arrays (the same phase shifter of the phased arrays can be reprogrammable 

changing the phases on the antenna aperture). 

To perform the synthesis of an only-phase reconfigurable isophoric 

sparse concentric ring arrays the following steps are required: 

1. Identify a Reference Continuous Aperture Source that is an only-

phase reconfigurable continuous aperture.   

2. Derive the arrays layout as a discretization of the only-phase 

reconfigurable continuous aperture exploiting the synthesis 

procedure implemented for the shaped beam case. 

Regarding point 1 a new synthesis technique for continuous source aperture 

will be derived and presented in this thesis.  

The novelty of this thesis work respect to the state of the state-of-the art is 

the definition of a full deterministic and fast procedure that exploits at the 
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best the characteristic of a planar complex source used as reference for the 

array synthesis. The introduced method does not have any type of limitation 

in terms of array dimension and therefore in terms of variable that are to be 

addressed. The proposed method permits also to define a complete workflow 

for the synthesis of only-phase reconfigurable source and its optimal 

discretization to design the isophoric sparse array organized in concentric 

rings.    

In summary, in the thesis the following arguments will be dealt with: 

i. State-of-the-art on the power mask constrains synthesis of arrays 

radiating pencil beam, shaped beam and reconfigurable beams  

ii. Optimal synthesis of a continuous source for the synthesis of pencil 

beam, shaped beam and the introduction of the synthesis procedure 

of continuous source for the only-phase reconfigurable beams 

exploiting at the best the optimal synthesis of pencil and shaped 

beams.  

iii. Synthesis of isophoric sparse concentric ring arrays radiating pencil 

beam, shaped beam and reconfigurable beams. In this chapter the 

starting point will be the presentation of the results present in the 

literature for the case of pencil beam (1-D and 2-D problem) and 

shaped beam (only 1-D was literature) in order to derive the synthesis 

of shaped beam and only phase reconfigurable beams for the 2-D case 

(objective of the work).  

iv.  Conclusions and recommendations for further developments   
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2  

State-of-the-art on the power mask 
constraints deterministic synthesis 

 

 

 

 

 

2.1 Optimal synthesis of linear arrays with fixed geometry 
radiating pencil beam 

In this chapter a survey on the state of the art for the synthesis of linear 

and planar arrays with fixed geometry able to radiate pencil beam, shaped 

beam and/or reconfigurable beam is performed. As it just explained, this kind 

of synthesis problem is simpler than the other ones which were presented in 

the introduction of this thesis (i.e. where the location of the elements are the 

unknowns). This survey is carried out in order to acquire the methodologies 

used for the optimal research of the synthesis problem solutions and to well 

understand what is needed for the synthesis of isophoric sparse arrays 

radiating reconfigurable beam. 

In the case of linear uniformly spaced arrays with constant sidelobe 

levels globally optimal solutions to the pencil beam problem are obtained by 

exploiting the properties of the Chebyshev polynomials ([37], [38]). Once the 

number of elements, the uniform spacing, and the SLL have been fixed, these 

arrays exhibit a larger directivity than conventional Chebyshev arrays, 

provided the number of elements exceeds a minimum value depending on the 

SLL and element spacing. However, these “modified” Chebyshev 

polynomials also exhibit a larger beamwidth. The drawback associated to 

these approaches is that they are unable to deal with non-uniform, 

asymmetric, sidelobes pattern. In a few of words, they are not able to shape 

the sidelobes to reduce the arrays radiation on angle range where an undesired 

interference is present. A second important limitation in the modified 

Chebyshev approaches is that they can only work with arrays having a 
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uniform spacing (on a line or on a plane) and with identical radiating 

elements.  

In [9] Isernia et all provided an improvement and the problem of 

determining the excitations of a given set of arbitrarily positioned sources so 

as to produce a far-field intensity that is maximum in a prescribed direction 

and subjected to completely arbitrary upper bounds elsewhere was tackled. 

The formulation includes any kind of fixed geometry arrays and can be 

naturally applied to considering mutual coupling.  

In particular, considering a set of N radiating element, each characterized by a 

proper radiation behavior,𝑖(𝑟), the total radiation pattern of the array can 

be written as: 

𝐸(𝑟) =∑𝑎𝑖𝑖(𝑟)

𝑁

𝑖=1

               (1) 

where the 𝑎𝑖, 𝑖 = 1,… ,𝑁 are the complex excitations of the N radiating 

elements and they represent the unknowns of the problem. An important 

consideration is required. The expression (1) relates the desired far field with 

the unknown excitations in linear manner. This relationship permits to 

consider the synthesis problem with fixed geometry as the simpler one 

problem. 

Therefore, the synthesis problem can be formulated as follows: 

“Determine the set of complex excitations {𝑎𝑖, 𝑖 = 1,… .𝑁} such that 

|𝐸 (𝑟0)|
2

= |∑𝑎𝑖𝑖(𝑟0)

𝑁

𝑖=1

|

2

         (2) 

is maximum and respects the constraints 

|𝐸(𝑟)|
2
= |∑𝑎𝑖𝑖(𝑟)

𝑁

𝑖=1

|

2

≤ 𝑆𝐿𝐿(𝑟)      (3) 

where SLL(r) is the non-negative arbitrary function which defines the 

sidelobes level in the whole observation space and 𝑟0 is the antenna point 

direction.  
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Recurring to the bandlimitedness properties of the far field, considering 

a sufficiently dense distribution of sampling points over the observation 

domain S and without any loss of degrees of freedom, the problem can be 

formulated as: 

Determine the complex excitation (𝑎𝑖 = 𝑥𝑖 + 𝑗𝑦𝑖  , 𝑖 = 1…𝑁) such that 

−𝑅𝑒𝑎𝑙(𝐸 (𝑟0)) is minimum   (4) 

with the following constraints 

𝐼𝑚𝑎𝑔 (𝐸 (𝑟0)) = 0        (5) 

{
 

 |𝐸 (𝑟1)|
2

≤ 𝑆𝐿𝐿(𝑟1)

:

|𝐸 (𝑟𝐿)|
2

≤ 𝑆𝐿𝐿(𝑟𝐿)

      (6) 

where 𝐿 is the number of observation points of the dens grid in the domain. 

In equation (4) the sign minus is due to the fact that the reference phase of 

the field for direction 𝑟0 is . 

Since |𝐸 (𝑟1)|
2

is a positive semidefinite quadratic form (a 

hypercylinder) as a function of the complex excitations, each constraint in (6) 

define a convex set in the space of the unknowns. Moreover, the constraint of 

(5) is linear in terms of the excitation so that it also defines a convex set (an 

hyperplane) in the space of the unknowns. The intersection of convex sets in 

turn is a convex set, and therefore the (5) and (6) define a convex set. Finally, 

the objective function (4) is a linear function of the unknowns and 

consequently the overall problem is equivalent to the minimization of a linear 

function in a convex set C. This kind of optimization problem has been 

analyzed in operations research, and it can be demonstrated that it admits a 

unique minimum value, which is the global optimum, and it is achieved in a 

single point or in a connected (convex) subset of C. 

In order to assess this fast deterministic optimal procedure, a numerical 

example is proposed. A linear arrays radiating a pencil beam with a “null-to-

null” beamwidth of 29.5 degrees and a sidelobe level of -30 dB is designed 
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and verified by means of a virtual demonstrator in CST (Computer 

Simulation Technology). 

Performing the synthesis of the linear arrays with equally spaced elements, 

/2 at the frequency of 30 GHz, the following eleven normalized coefficients 

are obtained, see Tab. 2.1-1 and Fig. 2.1-1. 

Id element Amplitude [dB] Phase [deg] 

1 -7.38 0 

2 -4.42 0 

3 -2.39 0 

4 -1.02 0 

5 -0.26 0 

6 0 0 

7 -0.26 0 

8 -1.02 0 

9 -2.39 0 

10 -4.42 0 

11 -7.38 0 

Tab. 2.1-1: Antenna coefficients for the pencil beam 

 
Fig. 2.1-1: Amplitude distribution of the linear array 
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Fig. 2.1-2 reports the comparison of the radiation pattern between the 

theoretical pattern achieved implementing the deterministic procedure and 

the virtual demonstrator pattern achieved by means of a full wave simulation 

in CST. In order to have a more accurate synthesis, the mutual coupling effect 

between the radiating elements is considered including in the deterministic 

procedure the radiation pattern of the feed in embedded condition (the 

radiation pattern radiated by the only central element of the array constituted 

by 11 radiating feeds). As demonstrated by Fig. 2.1-2, the results of the 

optimal synthesis are confirmed by the full wave analysis in CST; a good 

agreement is obtained validating the design procedure. 

 

Fig. 2.1-2: Comparison between the theoretical pattern and the CST pattern 

 
Fig. 2.1-3 shows the linear arrays modeled for the full wave analysis. Eleven 

rectangular waveguides with an inner dimension of 8.36x4.132 mm are used. 

A ground plane is considered in order to avoid the appearance of the back 

lobe.   
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Fig. 2.1-3: Linear arrays with 11 radiating elements simulated in CST 

After the validation of the synthesis procedure for the case of uniform 

sidelobe level, a second example is carried out considering the case of 

radiation pattern with asymmetric sidelobes. Fig. 2.1-4 shows the normalized 

asymmetric power mask constraints for the synthesis. The “null-to-null” 

beamwidth is 12.5 degrees. Implementing the synthesis procedure, the 

minimum number of radiating elements to meet the requirements is 21. 

 

Fig. 2.1-4: Asymmetric power mask constraints 
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Fig. 2.1-5 reports the amplitudes and phases of the optimal linear arrays 

synthesized with the proposed deterministic procedure. 

 

Fig. 2.1-5: Amplitudes and phases of the optimal linear array 

Fig. 2.1-6 shows the radiation patterns of the theoretical optimal solution and 

the simulated pattern evaluated with CST. The agreement between the two 

patterns demonstrates, once again, the capability of the procedure to design in 

a fast and deterministic way the optimal solution for the assigned constraints. 

The CST simulation is performed considering as radiating element a 

rectangular waveguide working at 30 GHz. The arrays is composed of 21 

rectangular waveguides with an inter-element distance of /2. 

 

Fig. 2.1-6: Comparison between the theoretical pattern and the CST 
simulation pattern 
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2.2 Optimal synthesis of planar arrays with fixed geometry 
radiating pencil beam 

In an equivalent manner as the linear case introduced in the previous 

section, also for an arbitrary fixed planar arrays geometry the optimal 

synthesis of a pencil beam pattern with arbitrary sidelobe constraints can be 

dealt with a Convex Programming problem. In fact, all constraints on the 

sidelobes are convex in terms of the excitations, and the cost function to be 

optimized turns out to be convex in both cases where one wants to maximize 

the field in the target direction [9] as well as in the case one wants to optimize 

the directivity for a given peak Side Lobe Level (SLL) ( for an assigned 

minimum separation between the peak lobe and sidelobes [11]). As a 

consequence of convexity inside the problem definition, in both cases, the 

globally optimal solution can be determined without the need of global 

optimization techniques. 

2.3 Optimal synthesis of linear arrays with fixed geometry 
radiating shaped beam 

Differently from the pencil beam pattern described in the previous 

section, in the case of a shaped beam pattern the constraints for the power 

pattern are furnished in terms of lower bound (LB) and upper bound (UB). 

The UB and LB are functions of the observed angles, and they represent the 

functions where the power radiation pattern can lay. The upper and lower 

bound compose the mask power constraints for the desired radiation pattern.  

For a linear arrays with fixed geometry the synthesis problem for the 

shaped beam can be synthesized in the following sentence: 

“Define the set of 𝑁 complex excitations such that 

𝐿𝐵(𝜗) ≤ |𝐸(𝜗)|2 ≤ 𝑈𝐵(𝜗) ” 

In this case the problem of synthesis and optimization is more complex with 

respect to the pencil beam case. In fact, the problem is not a linear one in 

terms of the unknowns but, specifically, it requires to solve a set of non-linear 

inequalities.  
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In [12] Isernia and Bucci have defined a general criteria to establish a priori if 

a given antenna can radiate or not a pattern according to the assigned power 

mask. To ascertain a priori the feasibility of an assigned power synthesis 

problem, the mathematical characteristics of a squared amplitude radiated 

field distribution are exploited.  

As can be easy to demonstrate, for a linear arrays with N equispaced elements 

along the z-axis the arrays factor can be represented with the following square 

amplitude function: 

𝑃(𝑢) = 𝑐0 +∑[𝑐𝑝 cos(𝑝𝑢) + 𝑠𝑝 sin(𝑝𝑢)] =

𝑁−1

𝑝=1

∑ 𝑃(𝑢𝑝)𝐷2𝑁−1(𝑢 − 𝑢𝑝)

𝑁−1

𝑝=1−𝑁

     (7) 

where u = bdcos(ϑ), up =
2

2N−1
 and 𝑑 is the separation between adjacent 

antennas. The formula (7) can be generalized with the following expression: 

𝑃(𝜗, 𝜑) = ∑[𝐷𝑝𝑝(𝜗, 𝜑)]

𝑇

𝑝=1

                     (8) 

Due to the representation of the power pattern of a linear arrays with fixed 

geometry obtained in (8), it is easy to show which conditions have to be 

satisfied in order that the pattern respects the power mask constraints. In fact, 

equation (8) represents all possible patterns radiated from a given class of 

sources, a necessary condition for the existence of a pattern fulfilling the 

given constraints is that it satisfies the following system of functional linear 

inequalities expressed in the variable Dp: 

{
 
 

 
 ∑[𝐷𝑝𝑝(𝜗, 𝜑)]

𝑇

𝑝=1

≤ 𝑈𝐵(𝜗, 𝜑)

∑[𝐷𝑝𝑝(𝜗, 𝜑)]

𝑇

𝑝=1

≥ 𝐿𝐵(𝜗, 𝜑)

               (9) 

As demonstrated in [39] the function P(ϑ,φ) is a bandlimited function with a 

band of 2a and consequently the equation system (9) can be discretized in a 

suitable dense manner so that a simplification on the system is obtained: 
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{
 
 

 
 ∑[𝐷𝑝𝑝(𝜗𝑖 , 𝜑𝑗)]

𝑇

𝑝=1

≤ 𝑈𝐵(𝜗𝑖 , 𝜑𝑗)

∑[𝐷𝑝𝑝(𝜗𝑖, 𝜑𝑗)]

𝑇

𝑝=1

≥ 𝐿𝐵(𝜗𝑖 , 𝜑𝑗)

    (𝑖 = 1…𝑀1, 𝑗 = 1…𝑀2)           (10) 

The mathematical system (10) is a common linear inequality system expressed 

in the variable Dp. The solution of this class of problem is well known and it 

is equivalent to assess the existence of a feasible point for a linear 

programming problem. As demonstrated, this existence criterion requires the 

solution of a linear problem which is clearly simpler than the initial system of 

functional inequalities. It is obvious that solving a system of linear inequalities 

is faster than solving a system of functional inequalities with the same number 

of unknowns. Another aspect is that the existence criterion is able to work 

with any constraints if they are expressed in terms of linear functions of the 

squared amplitude distributions. Moreover, any type of constraints which is 

convex with respect to square amplitude distribution can be added at the 

initial equation system without affecting the possibility to find a solution and 

defining the feasibility point. Due to the fact that T ≥ 2C, where C is the 

number of complex degree of freedom of the field, the set of feasible pattern 

is a subset of the full space determined by (9) and therefore the fulfillment of 

(10) is usually necessary but not sufficient for the existence of a pattern 

satisfying the mask constraints. However, there is a special case where the 

existence criterion is well necessary and sufficient and it is the case of linear 

array.  

Regarding the linear arrays with fixed geometry, the equation (8) can be 

specialized in the following one: 

𝑃(𝑢) = ∑ [𝐷𝑝𝑒
𝑗𝑝𝑢]

𝑁−1

𝑝=−𝑁+1

      𝑤𝑖𝑡ℎ 𝐷𝑝 = 𝐷∗𝑝              (11) 

Where the power pattern is a real function and therefore being the 𝑃(𝑢) a 

non-negative trigonometric polynomial and, according to the Fejér-Riesez 

theorem [40], the 𝑃(𝑢), it can be factorized as 

𝑃(𝑢) = 𝐹(𝑢)𝐹∗(𝑢)                 (12) 
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Where 

𝐹(𝑢) = ∑[𝐹𝑝𝑒
𝑗𝑝𝑢]

𝑁−1

𝑝=0

                             (13) 

which can be considered as an arrays factor of a linear arrays with 𝑁 radiating 

elements. Therefore if exists a 𝑃(𝑢) as expressed in (11) which satisfies the 

power mask constraints assigned to the antenna designer, it certainly exists a 

set of coefficients able to radiate this pattern. An important aspect related to 

the factorization of the 𝑃(𝑢) need to be addressed. In particular, the 

factorization is not unique and the flipping of the zeros which lying outside 

the real axis of the complex u plane permits to identify 2𝑁0 (𝑁0 is the number 

of zeros not lying on the unit circle) distinct sets of coefficients able to radiate 

𝐹(𝑢).   

As described above the existence criterion, for the specific case of linear 

arrays with fixed geometry, is a necessary and sufficient criterion able to 

determine if a pattern lying in a specific power mask can be radiated by an 

arrays of a given size. The described synthesis method can be considered as a 

modified case of the classical pattern synthesis method based on the “zero 

location” (see [41]). 

The possibility to identify 2𝑁0 possible equivalent solutions gives the 

opportunity to select the most convenient solution according to some project 

constraints. 

To give a prove of the goodness of this synthesis procedure and to 

verify the performance an example is carried out.  

Fig. 2.3-1 reports the constrained power mask for the synthesis of a 

linear arrays with fixed geometry, in red the upper bound constraint and in 

blue the lower bound constraint. The power mask asks to synthesize a shaped 

beam with: 

 a ripple maximum of 1.5 dB,  

 a flat region in the angles −1 ≤ 𝑢 ≤ 1 

 -20 dB of SLL and a suppression region in |1.7≤ 𝑢 ≤ 2| with a SLL 

of -30 dB 

 Inter-element distance of 0.5  
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Fig. 2.3-1 Assigned constrained power mask 

Performing the existence criterion the power pattern which lying in this 

power mask is found as shown in Fig. 2.3-2. The criterion permits to define 

the minimum number of elements in order to satisfy the assigned power 

mask.  

 

Fig. 2.3-2: Theoretical power pattern satisfying the assigned power mask 

 

As described in the previous part of this section, the theoretical solution is 

not a unique solution but 2N0 possible equivalent ones are available. For this 

specific example N0 = 10 and therefore 1024 equivalent solutions are valid to 

satisfy the request of the problem in terms of square amplitude far field, see 

Fig. 2.3-3. 
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Fig. 2.3-3: Zeros distribution on the complex plane 

Tab 2.3-1 reports the set of the synthesized complex coefficients for the 

linear arrays able to fulfill the constraints. 

Id element Amplitude [dB] Phase [deg] 

1 -4.18 0 

2 -1.39 0 

3 -0.00 0 

4 -1.41 0 

5 -7.53 0 

6 -5.50 180 

7 -4.69 180 

8 -12.29 180 

9 -9.82 0 

10 -7.07 0 

11 -18.45 0 

Tab 2.3-1: Amplitude and phase of the designed arrays radiating a shaped 

beam 

Fig 2.3-4 reports the radiation pattern calculated by means of a full wave 

simulation in CST. It can be noted a good agreement between the pattern 

calculated with the existence criterion and the one calculated with the full 

wave simulation. 
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Fig 2.3-4: Radiation pattern of the synthesized array (blue line) and the 
comparison with the full wave analysis (black line) 

2.4 Optimal synthesis of planar arrays with fixed geometry 
radiating shaped beam 

In the previous paragraph the feasibility criterion is introduced for the 

synthesis of a linear arrays with fixed geometry able to radiate a shaped beam. 

As demonstrated for the one-dimensional case the feasibility criterion is at the 

same time necessary and sufficient. In fact the feasibility criterion permits to 

assess a linear arrays can satisfy the power mask constraints (necessary 

condition), or not, and then by means of the factorization, it permits to 

synthesize the complex coefficients (sufficient condition) of the arrays in 

order to radiate the desired far-field. For the two dimensional case there is an 

important difference respect the one-dimensional case. In fact for the two 

dimensional case a factorization rule analogous to the one for 1-D arrays does 

not exist.  

𝑃(𝑢, 𝑣) = ∑ ∑ 𝑃(𝑢𝑝)𝐷2𝑁−1(𝑢 − 𝑢𝑝)

𝑀−1

𝑝=1−𝑀

[𝐷2𝑀−1(v − 𝑣𝑝)]                (14)

𝑁−1

𝑞=1−𝑁

 

In fact, if the equation (14), which is an explicit form of equation (8) 

and it represents the power pattern of a NxM equispaced element array, 

satisfies the power mask constraints the feasibility criterion is necessary. But, 
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at the same time it is not possible to factorize the power patter and therefore 

a feasibility solution is not available and the criterion is not sufficient. 

However, there exists a particular exception: power pattern mask which 

can be factorized as product of two masks along the principal axis, Fig. 2.4-1. 

In this case, for each of the principal cuts the procedure presented for the 

linear case can be used. It has to be noted that in this cases the criterion is 

sufficient but not necessary. In fact, while it provides a solution to the 

synthesis, it looks for factorizable excitations, which represent a subset of all 

the possible ones. 

Nevertheless, wherein the sufficiency is not guaranteed, the criterion 

can be used to discard those problems which are certainly unfeasible.  

 

Fig. 2.4-1: Example of factorable pattern: flat-top pattern along u-axis and 
pencil beam pattern along v-axis 

In the "feasible" cases, the pattern furnished by the criterion will be quite 

certainly not factorizable. However, exploitation of representation (14) allows 

to state the power synthesis problem in a linear space as small as possible, 

thus drastically reducing the set of possible patterns with respect to the much 

larger set of all generic functions compatible with the constraints. In such a 

way, an effective synthesis procedure can be devised. 

To this end, let us note that the operator which relates the unknown 

excitations to the squared amplitude distribution of the radiated field can be 

regarded as a quadratic operator, Q, acting on the vector, a, of the real and 

imaginary parts of the excitations coefficients. Defining with 𝑃 the set of 

realizable power pattern furnished from the existence criterion. The synthesis 

procedure can be seen as the minimization of the distance between 𝑄(𝑎) and 

the convex set of patterns 𝑃 
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𝛩(𝑎, 𝐷) = ||𝑄(𝑎) − ∑𝐷𝑝

𝑇

𝑝=1

𝛹𝑝(𝜗, ) ||        14. 𝑐 

wherein 𝐷 is the vector of the 𝐷𝑝 coefficients. 

2.5 Linear arrays with fixed geometry synthesis radiating 
reconfigurable beam 

The design of a single antenna aperture able to radiate different kind of 

beams is a very interesting problem in the sector of the antenna synthesis due 

to the large number of application from remote sensing, radar antenna or 

satellite communications. The satellite communication is the principal field of 

application where the request of reconfigurable single aperture antenna is 

demanding. In fact, the satellite operators increase in the last years the request 

of reconfigurable beams in order to adapt the beam dimension in according 

to the traffic load in a specific area of the Earth as shown the Fig. 2.5-1 where 

large beam and very small beam are used in order to contrast the load traffic 

requests.  

As described in the introduction of this thesis, among the different kind 

of antenna technological solutions, the phased arrays antenna is the solution 

which permits to implement this kind of flexibility because they can be 

controlled by means of a completely electronic technique and in a very fast 

manner. The problems which affect the phased arrays is that regarding the 

complexity in the BFN (beam forming network) design. In order to maintain 

the cost and the complexity of the phased arrays architecture, a solution is to 

realize the reconfigurability acting only in the phase, the excitation sets 

corresponding to the various patterns differ only in their phase distributions. 

This has a great advantage because new hardware is not required and, 

moreover, using in the BFN a single power-divider network it makes the 

solution cheaper and more efficient than those which dynamically modify the 

amplitude of the weight coefficients. 
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Fig. 2.5-1: Multibeam coverage with reconfigurable beams 

 
The main drawback of the only-phase reconfigurability concerns the 

intrinsic difficulty in solving the corresponding synthesis problem in an 

optimal fashion, i.e., in fulfilling given design goals by exploiting the 

minimum number of elements or optimizing given performances for a fixed 

number of elements. Indeed, the ‘common amplitude’ requirement on the 

excitations results in non-linear and non-convex constraints, which implies 

considerable additional difficulties in the development of effective synthesis 

procedures. 

In the literature, the problem has been approached both using the so-

called ‘alternating projections’ technique [42]-[44] and exploiting global 

optimization strategies [45]- [49]. Because of the non-linear constraints and 

the arising non-convex sets involved in the alternating projection technique, 

the optimization procedure can be trapped into local minima far from the 

actual optimal solution. Differently, for ‘global optimization’ algorithm the 

computational cost increases with the problem size. 
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In the recent years A. F. Morabito et al. proposed in [50] an effective 

approach for the linear arrays only-phase reconfigurable antenna making use 

of only deterministic procedure. The approach benefits from theoretical 

results and optimal solutions available in the separate synthesis of pencil and 

shaped beams with fixed geometry introduced in the previous section of this 

chapter. This approach is very interesting to face in order to find a first 

deterministic valid strategy which will be modified to solve the problem of the 

synthesis of isophoric sparse only-phase reconfigurable array, which is the 

subject of this thesis work. 

Recalling some results for the synthesis of linear arrays radiating pencil 

beam or shaped beam with fixed geometry, it is important to underline that 

the optimal synthesis of a pencil beam subjected to arbitrary sidelobe 

constraints on the power pattern can be formulated as a Convex 

Programming problem. In fact, all constraints on the sidelobes are convex in 

terms of the excitation coefficients, and the cost function to be optimized is 

also convex in both cases where one wants to maximize the field in the target 

direction and in the case one wants to optimize the directivity for a given SLL 

peak. As a consequence of convexity, in both cases, the globally optimal 

solution can be determined without the need of global optimization 

techniques. 

For the shaped beams case where the power pattern distribution is 

subjected to both upper and lower bounds , the synthesis can be effectively 

performed in a globally optimal fashion by means of efficient local 

optimization strategies. Moreover an important aspect for the shaped beam is 

that the found excitation is not unique, and a number of different possible 

solutions as large as 2𝑁0, 𝑁0 is the number of zeroes of the Schelkunoff 

polynomial not lying on the unit circle, can be determined through the so 

called ‘zero-flipping’ procedure. As a consequence, the set of possible 

solutions to the synthesis problem is not constituted by a single point. After 

that a reference power pattern has been adopted, distinct solutions exist in 

terms of arrays excitations. 

According to this results the strategy proposed in [50] carries out the 

following steps: 
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 Perform the separated optimal synthesis of the required pencil beam 

which entails to find a unique set of antenna weights  

 Perform the separated optimal synthesis of the required shaped beam 

which implies to find a set of complex weights  

 Find from the set of complex excitations of the shaped beam the 

excitations such that the amplitude distribution is as near as possible 

to the one corresponding to the solution of the pencil beam synthesis 

problem 

The last step is the crucial and innovative part of this strategy. If 𝑎𝑆,𝑘 =

(𝑎0
𝑆,𝑘……𝑎𝑁−1

𝑆,𝑘)  and 𝑎𝑃 = (𝑎0
𝑃……𝑎𝑁−1

𝑃) define the k-th possible 

excitation set for the shaped beam pattern and the unique excitation 

coefficients for the pencil respectively, the approach is to minimize over the 

2𝑁0different possible values of k the possibly weighted distance amongst the 

excitation amplitudes of the pencil and shaped beam: 

𝛷(𝑘) = ‖|𝑎𝑆,𝑘| − |𝑎𝑃|‖                  (15) 

 The set of excitations which minimize (15) will the one more easily leading 

itself to be reconfigured from the shaped to the pencil beam (see Fig. 2.5-2 ).  

 

Fig. 2.5-2: Representation of the admissible solutions on space of all possible 
amplitude distributions 
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Once the minimum of (15) is determined, a local optimization technique can 

be used to perform the actual choice of the excitations common to both 

operative modes. One possible choice is to exploit an alternating projections 

procedure which acts here just as a final local optimizer. 

To understand better the second and third step of the procedure an example 

is furnished.  

Considering the only-phase reconfigurable fixed geometry arrays which 

radiates a pencil beam and a shaped beam. The shaped beam pattern, 

reported in Fig 2.5-3, is a cosecant power pattern. 

 

Fig 2.5-3: Shaped beam radiated by a fixed geometry array 

Applying the feasibility criterion first, the factorization and flipping of the 

zeros it is possible to define all the admissible excitation distributions in terms 

of amplitude and phase. For this specific example the complete set of 

complex distributions which permit to fit the assigned mask power pattern 

for the shaped beam are shown in Fig 2.5-4. 
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(a) 

 

(b) 

Fig 2.5-4: The complete set of admissible amplitude (a) and phase (b) 
distribution 

Regarding the pencil beam a unique real solution is admissible to fit the 

power mask constraints. Fig. 2.5-5 shows the starting point for the optimal 

choice of the only-phase reconfigurable distribution. From the complete set 

of the complex distributions of the shaped beam case only the one which is 

nearest to the amplitude of the pencil beam is selected. 
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Fig. 2.5-5: Complete set of complex distribution which fit the shaped beam 
power mask and the unique real solution for the pencil beam pattern 

 
Fig. 2.5-6 reports the two nearest amplitude distributions for the two 
operative modes: blue line is for the shaped beam and dark line for the pencil 
beam. 
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Fig. 2.5-6: The nearest amplitude distribution for the shaped operative mode 
(blue line) and the pencil beam (dark line) 

 

Acting a local optimization on the two selected amplitude distribution a final 

and unique amplitude distribution is used to find the excitations of the fixed 

geometry linear array. 

 
Fig. 2.5-7: Final amplitude distribution for the two operative modes 

After the definition of the amplitude distribution for the linear arrays 

the reconfigurability is obtained changing the phases in according to the 

operative mode desired by the operator. The two phase distributions are 

shown in Fig. 2.5-8 wherein blue there is the phase distribution for the 

shaped beam operative case while in red the phase for the pencil beam case 

(which is obliviously equal to zero).  
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Fig. 2.5-8: Final phase distribution for the two operative modes: blue the 

phase for the shaped beam and in red the phase for the pencil beam 

This technique is a general approach and it can be used in order to create 

several cases of reconfigurable beams; an antenna which radiates pencil beams 

and shaped beam, an antenna which radiates two different shaped beams or 

antenna which radiates more than two patterns of general shape (more details 

in [50]) 

 

2.6 Planar arrays with fixed geometry synthesis radiating 
reconfigurable beam 

As demonstrated in the previous paragraph a deterministic and fast 

approach for the synthesis of a linear array with fixed geometry radiating a 

reconfigurable beam exists. The fundamental aspect of the synthesis 

procedure is the possibility that the shaped beam pattern can have a 

multiplicity of solutions in terms of complex coefficients to radiate the same 

desired power pattern.  

In some particular cases this approach can be extended to the case of planar 

arrays, the circularly symmetric array, as demonstrated in [50]: 

i. Planar arrays with symmetries which can be dealt with as one-

dimensional polynomials  

ii. Planar arrays having a factorable pattern 
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If the planar array does not exhibit one of these two conditions, then 

the factorization and the relative flipping of the zeros are not applicable and 

the proposed approach cannot be used.  

The approach based on global optimization algorithm represents the 

solution for the general case of planar arrays with fixed geometry radiating a 

reconfigurable beam. 

 

2.7 Isophoric sparse direct radiating array 

In the first part of this chapter the deterministic synthesis for linear and 

planar arrays radiating pencil, shaped or reconfigurable beams when the 

geometry is fixed in advance is dealt with. As discussed in the first part of this 

thesis work, the deterministic power mask constrained synthesis of fixed-

geometry arrays is the more simple case to manage because the far field has a 

linear relationship with the unknowns, the excitation coefficients of the array. 

After the case of fixed geometry the problem is to consider if it is possible to 

define a deterministic strategy for the synthesis of an isophoric sparse array. 

The isophoric sparse arrays are a particular class of arrays which is very 

appealing in the satellite communications. 

Isophoric arrays mean that all the radiating elements of the arrays are 

fed with the same level of signal, see Fig. 2.7-1. This condition can introduce 

important advantages for an antenna which works in a hard environmental 

condition where the management of the resources, as the payload delivered 

power, is a critical aspect. In fact, in the isophoric arrays the same class of 

amplifiers is used and they work all at the same level of power and 

consequently there is an optimal DC to RF conversion. Moreover, the BFN 

which controls the array can be simplified because only simple equal 

amplitude T dividers are required. 
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Fig. 2.7-1: Representation of the isophoric sparse array 

Another important advantage for this class of arrays is the sparsity in 

the geometry architecture of the radiant panel. Sparsity means that radiating 

elements are not uniformly distributed on the antenna aperture, regular lattice, 

but they are non-equally spaced creating an aperiodicity on the distribution, 

irregular lattice. The use of sparse arrays introduces some important 

consequences. At the first the number of radiating elements is smaller than 

the uniform equally-spaced arrays and therefore the number of active control 

points is reduced. This aspect entails a reduction of the manufacturing costs, 

of the mutual coupling inside the antenna aperture ( due to the increase of the 

inter-element distances) and a reduction of the antenna weight and mass. 

Another important advantage of the sparse arrays is the capability to avoid 

the appearance of grating lobes which are present in the uniform array with 

an inter-element distance greater than /2 (see Fig. 2.7-2).  
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Fig. 2.7-2: Gratin lobes for an array with regular lattice and an inter-element 
distance greater than half wavelength   

The sparsity introduces also some drawbacks as the reduction of the antenna 

aperture efficiency and consequently the reduction of maximum achievable 

directivity([51]-[56]). In some cases this drawback can be mitigated using the 

sub-arrays or element size taper techniques ([57], [58]). 

Nevertheless, the synthesis of isophoric sparse arrays is much more 

difficult than the synthesis of periodic arrays or not isophoric ones. The 

difficulty of this synthesis is related to the non-linear dependency of the 

power pattern with the locations of each radiating element which are the 

unknowns of the synthesis problem as demonstrated by the following 

formula of the square amplitude of the arrays factor. 

|𝐴𝐹(𝜗)|2 = |∑𝑤𝑖𝑒
−𝑖𝑘∗𝑟𝑖

𝑁

𝑖=1

|

2

 

Moreover the set of the constraints of the synthesis problem represent 

a non-convex set (when a lower bound is applied to the gain) and therefore 

the problem is a non-linear one in a non-convex set of constraints. Another 

difficulty of this synthesis is due to the dimension of the array; large arrays 

involve a higher number of unknown. To overcome this aspect local 

optimization cannot be used because they may be trapped in a local minimum 



2 State-of- the art on the power mask constrains deterministic synthesis 

  

which is far from the optimal one, and the global optimization suffer the high 

computational cost.  

To tackle these difficulties a deterministic approach constituted by two 

distinct steps is introduced. This method permits to reach the optimal 

solution in a deterministic manner and consequently it outperforms the global 

optimization approaches ([15], [62]-[64 ]) in terms of computational cost.  

This dual step approach takes advantage of the density taper technique 

proposed by Doyle in [59], reported in [2] and optimized in [60]. The two 

steps of this technique are: 

 Definition of an optimal continuous source able to fulfill the 

constraints in terms of power mask 

 Definition of a fast and deterministic method to discretize the optimal 

continuous source found in the previous step. 

This deterministic procedure permits to circumvent the non-linear 

problem for the synthesis of a uniform excited sparse array and it is 

characterized by several advantages. At first, the synthesis of a continuous 

source without the excitation constraints is simpler than that of a sparse 

isophoric arrays, in fact, in this circumstance there is a linear dependency 

between the radiated far field and the aperture distribution. At second, if 

lower bound on the gain constraints are imposed, for a sufficiently narrow 

beam, as that of the satellite communication case, the synthesis of the 

corresponding continuous source can be carried out by means of the 

minimization of a closely convex functional under convex constraints.  

This procedure works with the linear isophoric sparse arrays but also 

with the isophoric planar arrays. The extension to the planar ring is due, at 

first, to Milligan in [65] where the density taper is carried out along the radial 

direction using the Doyle approach which allows locating a number of fixed 

a-priori ring. In [18], Bucci developed a deterministic new approach that 

permits to exploit a Doyle-based rationale for determining the entire 

concentric circular ring geometry. All the above-mentioned approaches are 

able to work with continuous sources which are real (i.e only for the pencil 

beam pattern at the boresight), but are not able to perform the deterministic 

optimal discretization of a complex continuous source(i.e. optimal design of 
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shaped beam). The aim of this thesis is to cover gap. As described in the 

introduction, this thesis introduces a deterministic optimal design of shaped beams by 

means a discretization of the complex continuous source. Moreover, also the 

reconfigurability in a fast and deterministic way can be achieved exploiting this 

discretization method.  

To fulfill these objectives, the following chapter of this work foreseen 

to give attention to the design of the optimal continuous sources able to 

radiate pencil beams, shaped beams and reconfigurable beams (the last one is 

an innovative contribution of the thesis). In the fourth chapter the optimal 

synthesis of isophoric sparse arrays (ISA) by means of a discretization of the 

continuous source is treated in an exhaustive manner. The philosophy of the 

next two chapters is to introduce at first the literature results (which are the 

bases for the novelty of the thesis) and then to refer to the results carried out 

in this PhD research activity. Several numerical examples are furnished to 

support the theoretical aspects. 
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3  

Synthesis of circularly symmetric continuous 
sources radiating pencil beams, shaped 
beam and only-phase reconfigurable beams 
 

 

 

 

 

3.1 Introduction to the synthesis of circularly symmetric 
continuous sources 

The problem of the synthesis of circularly symmetric continuous 

sources able to fulfill the prescribed constraints is a topic argument in the 

antenna theory as demonstrated by [66] and [67]. In fact, as discussed in the 

previous chapter, the design of continuous source has practical utility as to 

state about the maximum performance of an antenna aperture with a given 

size and, moreover, the continuous source can act as a reference for the 

synthesis of the arrays antennas. 

In the past, the Taylor continuous distribution was the principal 

reference for the antenna synthesis despite some limitations. In fact, it is not 

able to take into account possible notches in the far field mask, or aperture 

fields wherein a hole has to be present at the center of the structure. To 

overcome these issues and to have the desired flexibility in the continuous 

source, Bucci – Isernia – Morabito ([68],[69]) introduced in the last years a full 

theory for the optimal deterministic synthesis of circular symmetric 

continuous source able to radiate a pencil beam or a shaped beam. Exploiting 

these results, the thesis will expand the theory of the concentric symmetric 

continuous source to the case of antenna aperture able to reconfigure the 

radiation pattern by means of the only-phase reconfigurability.  

The chapter is organized as follows. The first part is dedicated to the 

optimal synthesis of circularly symmetric source able to radiate the pencil 

beam; the second one is dedicated to the synthesis of continuous aperture 
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radiating  the prescribed shaped beam and the last part is concerned to the 

synthesis of a circularly symmetric source able to perform the only-phase 

reconfigurability of the radiation pattern. 

3.2 Optimal synthesis of a circularly symmetric source 
radiating pencil beam: statement of the problem and 
design procedure 

In this section the focus is on the optimal synthesis of circularly 

symmetric source radiating a pencil beam, a pattern able to guarantee a 

minimum level of directivity in an angular sector (spot beam) and to ensure a 

sufficiently low directivity level in any other directions. The problem can be 

considered as to find an aperture distribution with a circular symmetry able to 

maximize the minimum directivity inside a fixed angular sector and, at the 

same time, ensuring elsewhere a prescribed upper mask for the sidelobes 

level. The problem, which will be dealt with, concerns to the case of pencil 

beam pointing in the boresight direction.  

Assuming ϑ as the spanning angular variable from the boresight, let 𝜗0 be the 

angle corresponding to the edge of the coverage (EOC), the sector where the 

directivity must not to be lower than a desired value, and 𝜗1 (> 𝜗0 ) the angle 

such that for any 𝜗 > 𝜗1the pattern will be constrained to be lower than a 

desired value (see Fig. 3.2-1). 
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Fig. 3.2-1: Example of pencil beam power mask with a sidelobe of -20 dB 

Denoting with 𝑅 the maximum aperture radius, with 𝑓(),  is the 

normalized radial coordinate, the aperture distribution function and with  

𝐸(𝜗) =  ∫ 𝑓()𝐽0(𝑅𝑠𝑖𝑛(𝜗))𝑑            (15)
1

0

 

the associated far-field where 𝐽0 is the Bessel function of the first kind order 

zero, and  the free-space propagation constant. The problem of the 

synthesis can be formulated in the following manner: 

Find an aperture distribution 𝑓() such that the associated radiating power pattern 

∫ |𝐸(𝜗)|2

2

0

𝑠𝑖𝑛(𝜗) 𝑑𝜗                        (16) 

Is minimized, while the field satisfies the constraints 

{
|𝐸(𝜗)|2 > 1     𝑓𝑜𝑟 𝜗 ≤ 𝜗0                   (17)

  |𝐸(𝜗)|2 ≤ 𝑐(𝜗)     𝑓𝑜𝑟 𝜗 ≥ 𝜗1              (18)
     

where c(ϑ) denotes the sidelobes upper mask normalized to the value of the EOC directivity. 

In the previous formulation the problem is ill-posed due to the compactness 

of the radiation operator of (15) and therefore a regularization is required. In 
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this case the SVD (Singular Value Decomposition) is the technique of 

regularization which permits to remove the ill-posed condition([70]). 

However, in this case of interest regarding large focusing aperture, the 

approach of reaching a minimal norm solution, a distribution fulfilling the 

constraints (17) and (18) and minimizing the functional: 

∫ |𝑓()|2
1

0

𝑑                   (19) 

instead of the radiation power (16) can be adopted. In fact, for focusing 

sources of large size and directivity, even a small increase of the directivity 

with respect to that of the minimal norm solution leads to a dramatically 

large, not physical, increase of the amplitude and variation of the aperture 

distribution. Accordingly, looking for nonsuperdirective sources, the problem 

becomes that of minimizing the squared norm (19), which is a strong convex 

functional, under constraints (17) and (18). The constraint (18) defines a 

convex set, while constraint (17) is a non-convex one. However, if it assumes 

that in such an interval the minimum of the field intensity occurs at the EOC, 

and taking into account that one is minimizing (19) and that a multiplication 

of the field by an arbitrary complex constant does not affect the 

requirements, constraint (17) can be replaced by the convex condition 

𝐸(𝜗0) = 1             (20) 

and the problem turns in a Convex Programming (CP) one. Now, being (19) 

strictly convex, it admits a unique solution (unless the constraints are so strict 

to prevent the existence of a solution). Also, because functional (19) and 

conditions (20) and (18) are invariant under conjugation and the kernel of (15) 

is real, it is easy to verify that the unique optimal aperture and far field must 

be real. If such a solution satisfies also the original constraint, it is clearly that 

it is the desired solution, otherwise condition (17) needs to be enforced. In 

this last case, if the solution is forced to be real, the problem remains convex, 

but the solution is not optimal. In this case, it can be looked for the real 

solution of the ‘relaxed’ problem, which is a simple quadratic programming 

one, verifying a posteriori the fulfillment of constraint (17). 
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Fig. 3.2-2: Synthesis procedure of the continuous source radiating pencil 
beam 

It can be concluded that in the case of high directivity pencil beams, the 

optimal synthesis problem can be reduced to a convex optimization problem, 

which admits a unique, real optimal solution. The same conclusion stays valid 

if further convex constraints are enforced besides (20) and (18) as for 

example constraint in the dynamics in the aperture field. 

Fig. 3.2-2 shows the synthesis procedure in a build box diagram where the 

input are the radius of the desired aperture, the minimum directivity inside the 

spot and maximum sidelobes level. Others convex constraints can be 

included according to the desired design of the antenna engineer. 

3.3 Optimal synthesis of a circularly symmetric source 
radiating shaped beam. The proposed procedure 

As previously described, the synthesis of circularly symmetric aperture 

continuous sources able to radiate far fields fulfilling given constraints is a 

typical inverse problem in antenna theory. The identification of such aperture 

fields furnishes an assessment of the possible performance achievable by an 

aperture antenna of given size and at the same time it is a reference 

distribution for the synthesis of arrays antennas ([65-68] and [71-72]). A 

deterministic approach to the optimal synthesis of continuous aperture 

sources for the pencil beam case has been proposed in the previous paragraph 

taking inspiration from [68]. Convex Programming (CP) has been exploited to 

define circularly symmetric aperture distributions such to maximize the 

corresponding minimum directivities in the spot beam, while ensuring the 

fulfilling of the prescribed upper masks for the sidelobes. 
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In this paragraph the attention is focused on the optimal synthesis of 

circularly symmetric aperture able to radiate a shaped beam, that is, a pattern 

lying in a given power pattern mask constituted by two distinct arbitrary 

functions, one for the upper bound and the other one for the lower bound, in 

all the visible domain. Moreover, in order to guarantee both the physical 

feasibility of the source, as well as bandwidth and gain performances, it is 

required that the spectral content of the source is negligible in the invisible 

part of the spectrum. Note this requirement automatically excludes the 

occurrence of the so-called ‘super-directive’ sources. 

Shaped patterns are required in many applications, from 

telecommunications to remote sensing, for satellite antennas, WLAN and 

radar applications, or even base transceiver stations for mobile 

communications. In the most part of the available literature, the power 

synthesis of this kind of patterns is carried out by looking for a nominal far 

field pattern or by means of global optimization schemes. The global 

optimization algorithm are extremely heavy from the computational point of 

view, so that they can not be applied in case of a large number of degrees of 

freedom. 

In order to take profit from ‘ideal’ continuous sources to design 

‘optimal’ arrays, Bucci-Isernia-Morabito ([69]) proposed a deterministic and 

straightforward solution strategy.  This solution does not require the 

exploitation of global optimization techniques, and,  also allows one to 

ascertain a priori, excluding superdirective sources, the feasibility of given 

mask constrained power pattern synthesis problems (for given dimensions) 

and it guarantees the identification of the globally optimal solutions (if a 

solution exists at all). The proposed synthesis procedure is able to give several 

alternative optimal solutions to the same problem, so that one can adopt 

additional performance parameters in order to choose the most convenient 

one. 

In order to synthesize shaped power patterns by means of circularly 

symmetric continuous aperture distributions of minimum size, the effective 

and convenient procedure can be summarized in the two main steps below: 
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1. Once an arbitrary power pattern mask has been assigned, find the 

minimum aperture radius which is needed for the existence of a 

continuous aperture source able to fulfill the requirements. Moreover, 

determine the slice (i.e., the elevation cut) of (one of) the power 

patterns fulfilling constraints; 

2. perform a suitable factorization of the above one-dimensional power 

pattern (i.e., of the power pattern along the slice), and determine the 

corresponding aperture field distribution by applying the inverse zero-

order Hankel transform [73] to the resulting far field (so that one goes 

back from the slice to the overall circle). 

The whole design procedure consists in a Linear Programming (LP) [74] 

algorithm and in a number of analytical transformations exploiting Abel and 

Fourier transforms [73] and both space-band limitedness [75] and polynomial 

representations [12, 40] of the square amplitude radiated fields. 

The two design steps are discussed in the following. At the first, the Q ratio 

factor is needed to be introduced in order to control the feasibility of the 

solution, and it is defined as the ratio between the reactive power (𝑃𝑟) and 

active power (𝑃𝑎) associated respectively to the invisible spectrum and the 

effective radiated power: 

𝑃𝑟 = ∫ 𝑃(𝑢)𝑢𝑑𝑢                 (21. 𝑎)
∞

1

 

𝑃𝑎 = ∫ 𝑃(𝑢)𝑢𝑑𝑢                  (21. 𝑏)
1

0

 

𝑄 =
𝑃𝑟 

𝑃𝑎  
                                   (22) 

A Q factor with a value more than 1 corresponds to a super-directivity 

source, and therefore during the design of the aperture source the scope is to 

reduce the amount of power associated to 𝑃𝑟 in order to maximize the 

directivity of the continuous aperture. 

Defined the maximum value of 𝑄𝑚𝑎𝑥 (the maximum allowable Q factor ), the 

first step of the above mentioned synthesis consists of find the minimum 

aperture diameter for which a pattern fulfilling the mask does exist. To 

perform this task the problem for the synthesis of the shaped beam reported 
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in section 2.3 needed to be solved iteratively increasing the dimension of the 

source until a solution is found, therefore: 

Minimize  

∫ 𝑃0(𝑢)𝑢𝑑𝑢                    (23)
1

0

 

Subject to  

𝐿𝐵(𝑢) ≤ 𝑃0(𝑢) ≤ 𝑈𝐵(𝑢)     𝑓𝑜𝑟 0 ≤ 𝑢 ≤ 1        (24. 𝑎) 

∑ 𝑝𝑛𝑥
𝑛 ≥ 0                      𝑓𝑜𝑟 − 1 ≤ 𝑥 ≤ 1     (24. 𝑏)

𝑁0

𝑛=−𝑁0

 

∫ 𝑃0(𝑢)𝑢𝑑𝑢    ≤  𝑄𝑚𝑎𝑥   ≤  ∫ 𝑃0(𝑢)𝑢𝑑𝑢          (24. 𝑐)
1

0

𝑢0

0

  

Where 𝑃𝑜 is the power pattern of a virtual linear arrays with equispaced 𝑁0 +

1 elements which acts as the power of the continuous source, 𝑃𝑜 is the 

discretized version of the ideal power pattern 𝑃 (detailed information in [69]). 

The 𝑝𝑛 coefficient are the auxiliary unknown of the problem that permits to 

consider the problem as a linear programming one. 

An important aspect in the synthesis of circularly symmetric continuous 

aperture source is that the maximum achievable directivity is not only 

dependent on the aperture size but also on the beam shape. The scope of the 

synthesis is to find a trade-off between the minimum size and maximum 

achievable directivity. In order to have a full comprehension of the role of the 

Q factor and of the antenna size an example is carried out in the following. It 

is required to design a circularly symmetric continuous aperture source 

radiating a shaped beam with the following characteristics: 

 Flat top beam shape 

 Maximum allowable ripple ±0.25 dB in the region -0.25≤u≤0.25 deg 

 Maximum sidelobe level -35 dB for |𝑢| ≥ 0.35 𝑑𝑒𝑔 

Fig. 3.3-1 shows the constraints in terms of power pattern mask for the 

synthesis of the required shaped beam. In this figure the upper and lower 

bound functions and the visible space limit are reported.  
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Fig. 3.3-1: Power mask for the synthesis of the continuous source 

Solving iteratively the optimization problems reported in equations (23)-(24), 

it means to change the dimension of the antenna aperture, and calculating for 

each case the Q factor, the following results are collected, see Fig. 3.3-2. 

As it can be noted the Q factor decreases exponentially with the 

diameter D, about 40 dB per wavelength, and therefore the transition 

between unfeasibility and feasibility is very sharp, and it has a minimum value 

in the range of D/ equal to 14. For a value of D/ greater than 14 an 

oscillating behavior is observed. 

 

Fig. 3.3-2: Q factor as a function of the antenna aperture diameter 
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The influence of the source size on the directivity is very modest and it is also 

demonstrated by the following figure, see Fig 3.3-3 where the Within Beam 

Directivity (WBD), i.e., minimum directivity in the main beam angular region, 

is reported as a function of the aperture diameter. 

 

Fig 3.3-3: WBD as a function of the source diameter 

As demonstrated by the dependency of the WBD with the antenna size, an 

high increase of the aperture source diameter does not entail an high increase 

of the directivity. In particular, doubling the aperture source the directivity 

increases only by quite 0.5 dB. 

After the definition of the minimum continuous aperture size exploiting 

the virtual linear arrays technique and the optimal factorization of the 𝑃0 is 

performed (see equation 24.b) the second step foresees the reconstruction of 

the continuous source by means a sequence of transformations. A Fast 

Fourier Transform of the 𝑃0 gives the coefficient of the following polynomial 

𝑃0(𝑧) = ∑ 𝑝𝑛𝑧
𝑛

𝑁0

𝑛=−𝑁0

             (25) 

whose zeros can be found using a simple roots-finding algorithm allowing the 

factorization. As already described, by coupling in different ways the complex 

zeros couples outside the unit circumference, 2𝑁different field cuts of 𝐸0(𝑢), 

all having the same power pattern are obtained. This fact can be exploited to 
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select one of the solutions according to some further convenient criterion as, 

for example, source dynamical range and/or phase variation across the 

aperture. Once 𝐸0(𝑢) has been chosen, the aperture distribution 𝑓() can be 

recovered ensuring that the corresponding field slice 𝐸 is the same from 𝐸0 in 

the visible spectrum. 

Due to the Fourier-Bessel relationship between f and E ( 𝐸(𝜗) =

 ∫ 𝑓()𝐽0(𝑅𝑠𝑖𝑛(𝜗))𝑑 
1

0
 ) the best estimation of 𝐸(𝑢) in terms of mean 

square norm is obtained by: 

1. performing an inverse Hankel transformation of 𝐸0(𝑢) truncated to 

𝑢0 

2. truncating the Hankel transform to 𝑎, which gives the optimal 

source 𝑓() 

3. performing a final Hankel transform of 𝑓() 

Fig. 3.3-4 reports the flow chart of the overall synthesis procedure for the 

definition of the circularly symmetric continuous source able to fulfill the 

assigned constraints.  
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Fig. 3.3-4: Flow chart concerning the different steps of the overall synthesis 
procedure 

Fig. 3.3-5 shows the shaped beam radiated by a circularly symmetric 

continuous aperture and three different distributions, amplitude and phase, 

given the same radiation pattern. The requirements for the pattern are: 

 SLL ≤ -40 dB  

 Ripple +/- 0.5 dB for |𝜗| ≤ 20° 
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The final aperture has a radius of 9.0  and the total possible aperture 

solutions are 212 . For example, only three solutions are reported in the 

figure below. 
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Fig. 3.3-5: Different amplitude and phase continuous aperture distribution 
given the same shaped beam 

3.4 Optimal synthesis of a circularly symmetric only-phase 
reconfigurable aperture source  

The capability of easily reconfiguring the radiation behaviour of a 

direct-radiating arrays antenna is crucial in several applications, including 

radar and satellite telecommunications ([20], [27], [35], [42], [43], [45], [76]-

[81]). Amongst the different kinds of reconfigurability, a very effective one is 

undoubtedly represented by phase-only control, as it allows both a 

simplification of the beam forming network and an increase of the amplifiers’ 

efficiency. This paragraph is focused on the synthesis of a circularly 

symmetric continuous source able to be phase-only reconfigurable in order to 

use it as a reference in the synthesis of phase-only reconfigurable isophoric 

arrays. 

An innovative and general approach is proposed to the optimal mask-

constrained power synthesis of circular continuous aperture sources able to 

dynamically reconfigure their radiation behavior by just modifying their phase 

distribution. As shown in Fig. 3.4-1 acting on the phase distribution on the 

antenna aperture different kind of radiation patterns are achievable.  
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Fig. 3.4-1: Only-phase reconfigurable source concept. Acting on the phase 
distribution different radiation patterns are available 

The design procedure relies on an effective a-priori exploration of the 

search space which guarantees the achievement of the globally-optimal 

solution. The synthesis is cast as a convex programming problem and can 

handle an arbitrary number of pencil and shaped beams. The achieved 

solutions are then exploited as reference and benchmark in order to design 

phase-only reconfigurable isophoric circular-ring sparse arrays. 

The approach takes decisive advantage from the circumstance that, in 

the power synthesis of a shaped beam, a multiplicity of equivalent source 

distributions can be identified. This holds true not only in the case of 

equispaced 1-D arrays [12], but also in the case of circularly symmetric 

continuous sources as described in the previous section [69]. 

To describe the approach, let us focus on the general case wherein the 

power pattern must be phase-only reconfigured between a desired pencil 

beam 𝐸1(𝜗) and a desired shaped beam 𝐸2(𝜗), 𝜗 denoting the observation 

angle with respect to the boresight. Concerning the radiation constraints, 
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according to canonical definitions used in the previous sections of this thesis,  

the pencil beam is conceived as a far field whose square amplitude must be 

equal to a fixed value 𝐴2in a target direction 𝜃𝑇 and, at the same time, lower 

than an upper-bound function 𝑈𝐵1 in the sidelobes region (say Ω). 

Moreover, the shaped beam is conceived as a far field whose square 

amplitude must lie in a prescribed mask, 𝐿𝐵2(𝜗) ≤ |𝐸(𝜗)2|
2 ≤ 𝑈𝐵(𝜗)2, 

𝐿𝐵2 and 𝑈𝐵2 respectively denoting the upper and lower bound functions 

pertaining to the technical requirements. 

Under these hypotheses, the proposed procedure for the synthesis of a 

phase-only reconfigurable circularly symmetric continuous aperture source is 

as follows: 

1. identify the optimal (real and non-negative) source generating the 

desired pencil beam; 

2. identify the multiplicity of optimal (complex) sources generating the 

desired shaped beam; 

3. select, amongst all the source distributions coming out from step 2, 

the closest, in terms of amplitude, to the one coming out from step 1; 

4. set the source coming out from step 3 as the final aperture field 

pertaining to the ‘shaped beam’ radiation modality, say 𝑓2(), with 

𝑓2() = |𝑓2()|𝑒
𝑖𝜑(), φ and  respectively denoting the source’s 

phase and the radial coordinate spanning the aperture; 

5. set the amplitude of the source coming out from step 3 as the 

aperture field pertaining to the ‘pencil beam’ radiation modality, say 

𝑓1(), with 𝑓1() = |𝑓2()|. 

A number of comments are given in the following concerning the above 

procedure. 

Steps 1 and 2 can be performed through the techniques respectively 

developed from Bucci and co-workers in [28] (pencil beam case) and [29] 

(shaped beam case). These approaches guarantee the global optimality of 

the solutions achieved in the two separate synthesis problems. 

Step 3 derives from the general philosophy in [50] and allows identifying 

the shaped beam’s source which most easily lends itself to be 
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reconfigured into the other radiation modality. In order to gain a better 

understanding of the aim of this step (as well as of the way in which it is 

fulfilled), Fig. 3.4-2 is provided where the following case is represented. It 

is requested to design an antenna aperture able to be reconfigured in three 

different manners: 

 one pencil beam 𝑃1 (green point in the space of the amplitude) 

 one shaped beam 𝑆1 (red points in the space of amplitude) 

 one shaped beam 𝑆2 (blue points in the space of amplitude) 

As it is demonstrated in the previous chapter of this thesis, the pencil beam is 

represented by a unique real solution in the space of the amplitude, while the 

shaped beam can give different solutions in terms of amplitude and phase 

distribution actin in the zero flipping procedure. For this example it is 

supposed that the shaped beam 𝑆1 and shaped beam 𝑆2 have three different 

solutions. Representing them in the space of the amplitude distribution, each 

solution is represented by a specific point. The solution which are ‘more 

easily’ lends itself to be reconfigured are closed in an hypersphere having the 

minimum radius and containing at least one sample for each pattern. 
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Fig. 3.4-2: Representation of the solutions in the space of source amplitude 

Finally, step 4 guarantees that the reconfigurable source radiates a shaped 

beam fulfilling the given mask, while step 5 is expected to provide a pencil 

beam very close to the optimal one given by step 1 (and hence fulfilling the 

initial constraints as well). In fact, the source radiating the shaped beam 

comes in a straightforward fashion from step 2, while (due to step 3) the 

pencil beam’s source just consists in a ‘slight’ modification of the optimal one 

coming out by step 1. 

Summarizing, at the end of the overall procedure no radiation-performance 

losses will be experienced by the shaped beam, and the only price to be paid 

in order to achieve the phase-only reconfigurability will consist in slight losses 

on the pencil beam’s performances. 

These losses will be proportional to the difference (in terms of amplitude 

distribution) between the source coming out by step 1 and the one coming 

out by step 4, whose extent will be expressed by the radius of the hypersphere 

depicted in Fig. 3.4-2. 

It is worth noting that, whatever the mission scenario at hand, the 

overall five-steps procedure above essentially consists in the solution of 
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Convex Programming problems plus a number of spectral factorizations 

(each one being an instant operation [12],[69]), with the inherent advantages 

in terms of solutions’ optimality and computational time. 

Notably, the approach can be exploited also in the cases where the amplitudes 

of the sources pertaining to the two radiation modalities must be equal to 

each other over only a limited portion of the aperture. This special condition 

permits to recover the losses in the pencil beam radiation modality. 

In particular, once 𝑓2(),  is determined, ‘common core’ or ‘common tail’ [27] 

architectures can be achieved by substituting the above step 5 with the 

following CP optimization [in the unknown𝑓1(),]: 

min
𝑓1()

∫ |𝑓1()|
2

𝑎

0

𝑑                 (26) 

Subject to 

{

|𝐸1(𝜗)|
2 ≤ 𝑈𝐵1(𝜗)              (27)

  𝐸1(𝜗𝑇) = |𝐴|                        (28)

𝑓1() = |𝑓2()|  ∀ ∈        (29)

 

Where 

𝐸1(𝜗) = ∫ 𝑓1()𝐽0(
2



𝑎

0

sin (𝜗))𝑑           (30) 

Denoting with a and  the aperture radius and the wavelength. In fact, 

problem (26)-(28) is equivalent to the one in section 3.2, wherein the 

minimization of the aperture power (26) allows to maximize the directivity 

without incurring into super-directive solution, while the linear constraint (29) 

enforce the desired common core or common tail behavior as long as the  

region denotes the central or outlying area within the aperture. 
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3.4.1 Numerical assessment of the only-phase 
reconfigurable circular symmetric continuous aperture 
source 

In order to assess the proposed design technique, in the following the 

outcomes achieved in the synthesis of a phase-only reconfigurable circularly 

symmetric continuous aperture source providing, from a geostationary 

satellite, an uniform coverage of both the Europe (in the pencil-beam 

modality) and the Earth (in the shaped-beam modality) are shown, see Fig. 

3.4.1-1. 

 

Fig. 3.4.1-1: Only-phase reconfigurable source covering the Earth surface with 
a different kind of radiation pattern 

The constraints in the radiation pattern are derived from a recent ESA 

ITT [82] which requested two radiating operation modality: 

 the pencil beam has a Peak Sidelobe Level (PSL) equal to -26.2 dB for 

|θ|≥3.5°; 

 the shaped beam has a maximum ripple not larger than ±0.5 dB for 

|θ|≤9°, and a maximum PSL lower than -20 dB for |θ|≥14°. 

The power patterns coming out from steps 1-3 for a=11λ are shown in 

Fig. 3.4.1-2. 
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Fig. 3.4.1-2: Power patterns coming out from the steps 1-3 of the procedure 

Fig. 3.4.1-3 shows the amplitude of the 1024 equivalent sources generating 

the shaped beam depicted in Fig. 3.4.1-2. 

 

Fig. 3.4.1-3: 1024 equivalent sources generating the desired shaped beam 
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The source pertaining to the pencil beam modality as well as the one 

coming out from step 3 are shown in Fig. 3.4.1-4. Notably, despite they are 

able to fulfill quite different radiation constraints, the two sources have a very 

similar amplitude distribution. This circumstance attests that, in the space of 

the sources’ amplitude (see Fig. 3.4-2), the minimal hypersphere containing at 

least one solution for each desired beam has indeed a small radius. 

 

Fig. 3.4.1-4: Amplitude distribution for the pencil beam (red curve) and 
shaped beam (blue curve) 

The final phase-only reconfigurable power patterns are shown in Fig. 3.4.1-5 

while the final circularly symmetric continuous aperture source coming out 

from steps 4 and 5 of the procedure are shown in Fig. 3.4.1-6 and Fig. 3.4.1-7, 

respectively. As expected, the shaped beam is identical to the reference one 

shown in Fig. 3.4.1-2 while, as a proof of the high effectiveness of the overall 

approach, the only effect induced on the pencil beam by reconfiguration is a 

slight beamwidth increase while SSL performance results even better than the 

reference ones. 
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Fig. 3.4.1-5: Final phase-only reconfigurable power patterns 

 

Fig. 3.4.1-6: Common amplitude distribution for the only-phase 
reconfigurable circularly symmetric continuous aperture source 
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Fig. 3.4.1-7: Phases distribution for the only-phase reconfigurable circularly 
symmetric continuous aperture source 

As a second test case, formulation (1)-(4) has been assessed. In 

particular, the previous experiment has been repeated by also enforcing a 

‘common core’ behavior of the sources, by setting Γ as the region [0, 6λ].  

The achieved power patterns for the shaped and pencil beam radiation 

modality are shown in Fig. 3.4.1-8 and Fig. 3.4.1-9, where a comparison with 

the reference field is carried out. The relative amplitude and phase 

distribution for this kind of reconfigurable aperture source are reported in 

Fig. 3.4.1-10 and Fig. 3.4.1-11. 

This kind of circularly symmetric continuous aperture source is useful 

in those cases where it is allowed to generate the reconfigurable fields by 

varying not only the excitation phases but also the outer part of the circular 

ring isophoric sparse arrays layout (see Fig. 3.4.1-12). 
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Fig. 3.4.1-8: Comparison between the reference and final reconfigurable 
power patterns achieved for the shaped beam 

 

Fig. 3.4.1-9: Comparison between the reference and final reconfigurable 
power patterns achieved for the pencil beam 
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Fig. 3.4.1-10: Amplitude distribution with common core 

 
Fig. 3.4.1-11: Phases distribution with common core 
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Fig. 3.4.1-12: Sketch of Circular ring isophoric sparse arrays layouts derivable 
from ‘common core’ reconfigurable sources 

The proposed technique is able to deal with an arbitrary number of 

shaped and pencil beams, and it exploits at best all the knowledge available in 

the separate synthesis of the different patterns. The engine of the procedure is 

based on convex programming optimizations and fast spectral factorizations, 

guaranteeing at the same time a low computational burden and the 

achievement of globally-optimal solutions.  
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4  

Optimal deterministic discretization of the 
continuous source aperture into isophoric 
sparse array 
 

 

 

 

 

4.1 Introduction to the optimal and deterministic 
discretization of a continuous source 

Sparse arrays antennas, i.e., arrays whose equi-amplitude excited 

elements are properly located onto a non-regular grid, represent a suitable 

architecture able to address the problem of flexible and reconfigurable 

antennas achieving a directive behaviour of the overall arrays while reducing 

as much as possible the number of control points (i.e., amplifiers and phase 

shifters). 

In such an architectural solution, the amplitude tapering which is 

required on the source in order to get the required far field shaping in terms 

of sidelobes level is realized by means of a proper choice of the locations of 

the equally-excited radiating elements, thus coming to a density taper [2] over 

the arrays aperture. Two possible draw-backs in this kind of antenna solution 

need to be addressed. First, a too large spacing amongst the elements can 

induce pseudo-grating lobes. Second, a large spacing can imply a poor overall 

aperture efficiency if a single kind of radiating element is adopted (which is 

the usual case in order to reduce the complexity of the overall antenna 

architecture). Both circumstances affect the possibility of actually fulfilling the 

required constraints. 

An additional, important difficulty to overcome to get effective 

solutions is the strong non-linearity and non-convexity of the optimization 

problem to be faced, as the radiated pattern and locations of the different 

array elements are related by means of complex exponential dependencies. As 
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a consequence, in the case of large antennas, local optimization algorithms are 

likely to be trapped in false solutions, whereas global ones can become 

ineffective and/or computationally prohibitive [83]. 

A large part of the work presented in the following has been devoted to 

discuss a possible strategy to overcome these difficulties.  

In particular, starting from the simple observation that the synthesis of 

a continuous source is much more simple than that of an isophoric sparse 

arrays ([17],[84-85]), the following two-steps strategy for an effective design 

procedure has been devised:  

First, identify a continuous source fulfilling ‘at best’ the required 

specifications; 

Second, by using a fast and effective analytical ‘density taper’ technique 

synthesize the layout of the array 

While in the previous Chapters a general and effective approach to the 

optimal synthesis of two dimensional circularly symmetric continuous 

aperture sources is discussed, this Chapter aims to show how the knowledge 

of this kind of sources can be exploited in order to perform the power pattern 

synthesis of uniformly-excited sparse circular ring arrays, from one side, and 

to present a completely new DRA architecture guaranteeing the achievement 

of the optimal radiation performance.  

Notably, as it will be shown in the following, the overall synthesis 

procedure is fully based on analytical calculations, and it allows one to solve 

the overall synthesis problem with a negligible computational burden. 

The chapter is organized as follows. At the first the Density Taper 

approach for isophoric linear arrays emulating a real source (i.e. pencil beam 

pointing at the boresight) is presented. After that the extension to the planar 

case will be addressed ([87], [88]). These two arguments represent the 

theoretical basis for the extrapolation of the density taper approach to the 

case of the complex source. In particular, at the first the isophoric linear 

arrays able to emulate a complex source is presented and discussed ([90]). 

This is a well-known result in the antenna synthesis literature but will be 

discussed in order to understand the difficulties of the 2D case. The novelty, 

and objective, of this thesis will be the introduction of a deterministic, 
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optimal and fast procedure for the discretization of the complex source in the 

2D case starting from the results of the 1D synthesis problem. The new 

procedure permits to achieve an important step in the full deterministic 

synthesis of isophoric sparse arrays closing the gap in the synthesis of 

isophoric arrays emulating the behavior of a complex source. This new 

effective strategy will outperform the results presented in the literature which 

do not use an optimal deterministic procedure and therefore they are not able 

to discretize in an optimal and analytical way the complex source ([86], [91]) 

as the one proposed. 

Moreover, this approach can be used in the design of the reconfigurable 

isophoric sparse arrays where a discretization of a complex source is required 

in order to achieve the maximum flexibility. Several numeric examples are 

exposed in order to validate the design procedure. 

4.2 Density taper for the discretization of a real continuous 
source into isophoric sparse linear arrays 

The density taper technique for the discretization of a real continuous 

aperture source into an isophoric sparse arrays was introduced for the first 

time in the antenna literature by Doyle-Skolnik in [2, 59] and it was revisited 

in the recent past in [17]. The principal idea of this kind of design is to use the 

density taper of the uniformly excited elements to emulate the behavior of a 

properly chosen continuous source acting as a reference. In particular, as 

some kind of tapering is required on the continuous source to get the control 

of the sidelobes, this results in a density taper of the elements of the array in a 

manner such that the elements of the arrays will be more densely 

accommodated where the continuous source is higher. Therein, one starts 

from the idea of approximating a given real and positive continuous aperture 

current density with an array of equal amplitude non-uniform spaced 

elements. As the optimal synthesis of pencil beam generally implies real and 

positive aperture function when the beam is at boresight, the method is of 

interest any time one has to deal with the synthesis of pencil beams. 

If ℎ(𝑥) is the ideal current distribution and 𝐼𝐶(𝑥) is the cumulative 

current distribution defined as: 
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𝐼𝐶(𝑥) = ∫ ℎ()𝑑
𝑥

−𝑎

                        (31) 

where 2𝑎 is the aperture diameter normalized to the wavelength, the idea 

consists in matching the ideal cumulative current distribution with the actual 

cumulative distribution generated from the sparse array. Assuming that ℎ(𝑥) 

has an unitary integral over the source extension, and N is the number of 

elements array, the following procedure is foreseen: 

1. Calculate the ideal cumulative current distribution by means of (31) 

2. Divide the interval (-a, a) into N intervals each having the same area 

1/𝑁. This division identifies N+1 points {�̂�0, … . . �̂�𝑁}, such that 

𝐼𝐶(�̂�𝑛) − 𝐼𝐶(�̂�𝑛−1) =
1

𝑁
                      (32) 

 

Fig. 4.2-1: Cumulative distribution divided in N equal intervals 

3. For each interval select on the ordinate axis the point corresponding 

to 

[𝐼𝐶(�̂�𝑛−1) + 𝐼𝐶(�̂�𝑛)]/2 = 𝐼𝐶(𝑥𝑛)      (33) 
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4. Determine the corresponding abscissa 𝑥𝑛, see Fig. 4.2-2. 

 

Fig. 4.2-2: Location of the radiating element according to the amplitude 
current distribution 

As indicated in [2] and [59], the synthesis procedure is equivalent to 

minimize a weighted difference between the desired far-field pattern: 

𝑓0(𝑢) = ∫ ℎ(𝑥)𝑒𝑗2𝑥𝑢𝑑𝑥
𝑎

−𝑎

    (34) 

and the synthesized one, 

𝑓𝑎(𝑢) =
1

𝑁
 ∑𝑒𝑗2𝑥𝑛𝑢
𝑁

𝑛=1

          (35) 

Where 𝑥𝑛 is the algebraic distance of the n-th element from the center of the 

antenna and 𝑢 = sin(𝜗), see Fig. 4.2-3. 

 

Fig. 4.2-3: Reference linear arrays with density taper approach 

More precisely, the technique is equivalent to minimize the following 

functional: 
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𝛩(𝑥1, 𝑥2… . . 𝑥𝑛) = ∫ |𝑓𝑜(𝑢) − 𝑓𝑎(𝑢)|
2𝑊(𝑢

∞

−∞

) 𝑑𝑢          (36) 

Where 𝑊(𝑢) = 1/𝑢2 is a weighting function depending on the spectral 

variable u. Also, it corresponds to well defined optimization criteria, as the 

procedure gives back an actual pattern which is the best approximation to the 

ideal pattern in an 𝐿2 sense (see [2] and [59]for more details). 

The Doyle-Skolnik procedure design for discretizing a continuous real 

source is very simple and permits to obtain an isophoric sparse arrays 

emulating the desired aperture distribution. This method contains some 

drawback as: 

 The adopted functional is not the most suitable for several practical 

applications; 

 Considering that the element factor can limit the pattern close to the 

endifire direction, it could be interesting in realizing a fitting over a 

reduced angular zone. Besides, it could be interesting to consider a 

uniform norm rather than an L2 one; 

 This method cannot deal, in an actually globally optimal way, with the 

case wherein the reference source is by itself a regular, uniformly 

spaced, array. 

In order to overcome this drawback in [17] the functional for the 

optimization is reformulated in the following manner: 

𝛩(𝑥1, 𝑥2… . . 𝑥𝑛) = ‖𝑓0(𝑢) −
1

𝑁
∑𝑒𝑗2𝑥𝑛𝑢
𝑁

𝑛=1

‖          (37) 

Where ‖‖ denotes either the 𝐿2 or the uniform norm (𝐿∞) in the generic 

interval (𝑢𝑚, 𝑢𝑀) where the matching between the reference pattern and the 

actual pattern is desired. Performing some mathematician manipulation of 

equation (37) it is possible to demonstrate that the solution of the 

minimization problem is 

𝑥𝑛 = 𝑁∫ 𝑥ℎ(𝑥)𝑑𝑥
�̂�𝑛

�̂�𝑛−1

               (38) 
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which represents, in a geometrical sense, the barycenter of ℎ(𝑥) in each 

interval (𝑥𝑛−1, 𝑥𝑛). In order to obtain a solution of the minimization problem 

in a closed formula, a condition in the calculation is imposed 

2(𝑥 − 𝑥𝑛)𝑢 ≪ 1                          (39) 

This limitation reported in (39) entails that the quantity 2(𝑥 − 𝑥𝑛)𝑢 is 

sufficiently small and it depends on: 

 Maximum observation angle 

 Extension of the different intervals in terms of wavelength  

 The desired degree of accuracy on final patterns 

Therefore, for a given pattern, the analytical solution of equation (38) will 

guarantee very good results if the spacing in the aperiodic arrays is sufficiently 

small, and/or when the angular sector of interest is sufficiently small. 

4.3 Two-dimensional density taper approach for the 
discretization of a real continuous source into 
isophoric sparse arrays 

In this paragraph a deterministic approach for the synthesis of planar 

aperiodic arrays able to exploit continuous reference planar sources is 

presented, see [87]. Rotationally symmetric beams are considered extending 

the density taper approach proposed by linear source by Doyle-Skolnik. 

Concentric ring arrays, which approximate the circular field symmetry, are 

considered. Differently from other 2-D deterministic technique working with 

concentric ring arrays ([65]), the proposed approach exploits a Doyle-based 

rationale for determining the whole arrays geometry, minimizing the properly 

weighted mean square difference between the patterns produced by the arrays 

and the continuous reference source. In order to perform the extension in the 

2D case of the 1D Doyle approach, the following key concept substitutions 

are required: 

“linear subinterval and equal area will be replaced with angular sector and equal volumes” . 

It is needed to stress that the reference continuous source is still a real and 

nonnegative function, it means that the pencil beam pointing at the boresight 

is the synthesized pattern. Given the 2D circularly symmetric continuous 
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reference source, in analogy with the 1D case, the first step of the procedure 

is an appropriate subdivision of the available circle in concentric ring, and of 

each ring into equal angular sector. In this way, the counterpart of the linear 

subinterval introduced by Doyle-Skolnik for the 1D were identified in the 2D 

case. Now it needs to be shown that if all these sectors are forced to subtend 

the same volume of the 2D reference source, then it can be minimized the 

properly weighted mean square difference between the patterns of the 

continuous source and the concentric ring arrays containing one element per 

each sector. 

 

Fig. 4.3-1: Geometry of the problem considering the k-th ring 

Considering the geometry of Fig. 4.3-1, the couple (ϑ,φ) define the 

angular position of a generic observation point in the far field. The antenna 

pattern radiated by a circular aperture with a radius R fed by a circularly 

symmetric continuous amplitude current i(), where  is the radial 

coordinate, is  

f(u) = ∫ î()J0(u)d         (40)
R

0
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Where J0() is the zero-order of Bessel function of first kind,  =
2


  with  

the wavelength, u = sin(ϑ), and î() is the source i() scaled by a constant 

factor.  

At the same time, the arrays factor of an isophoric concentric ring 

arrays with arbitrary spaced rings is expressed by  

f̃a(u, φ) = ∑ ∑ e[jRkucos(φ−φn
k)]    

vk−1

n=0

         (41)

𝐾𝑟𝑖𝑛𝑔

k=1

 

where Kring is the total number of rings, vk is the number of elements of the 

k-th ring, φn
k and Rk represent the azimuth and radial coordinates of the 

n+1-th arrays element of the k-th ring. Using the following discrete arrays 

illumination function: 

𝑖̃𝑎(, 𝜑) = ∑ ∑
1


 (− 𝑅𝑘)(− 𝜑𝑛

𝑘)

vk−1

n=0

         (42)

𝐾𝑟𝑖𝑛𝑔

k=1

 

where (.) is the delta of Dirac, inside the equation (41) it is obtained the 

following arrays factor: 

f̃a(u, φ) = ∫ ∫ 𝑖̃𝑎(, 𝜑)
2

0

𝑅

0

e[jucos(φ−)]      (43) 

It has to be noted that the pattern of the azimuthally symmetric continuous 

source 𝑖() is circularly symmetric as well, whereas the arrays pattern f̃a(u, φ) 

is not (see [3]). But for the case of interest of the satellite communication 

where high directivity antennas are designed, such dependence is negligible in 

the angular sector wherein the radiated field is high concentrated. Thus, only 

the zero harmonics of the arrays pattern can be retained  

𝑓𝑎(𝑢) = 〈f̃a(u, φ)〉 = ∫ 𝑖𝑎()𝐽0(𝑢)𝑑          (44)
𝑅

0

 

where 

𝑖𝑎() = ∫ 𝑖̃𝑎(, )𝑑
2

0

                (45) 
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Using the equation (44) and equation (40) the following difference can be 

computed 

𝑓(𝑢) − 𝑓𝑎(𝑢) = ∫ [𝑖̃
𝑅

0

() − 𝑖𝑎()]𝐽0(𝑢) 𝑑       (46) 

Applying the integration by part on the integral of equation (46) and 

introducing the following cumulative distribution functions: 

𝐼() = ∫ 𝑖̂()  𝑑


0

             (47) 

𝐼𝑎() = ∫ 𝑖𝑎()  𝑑


0

            (48) 

and imposing that 𝐼(𝑅) = 𝐼𝑎(𝑅), it turns out that 

𝑓(𝑢) − 𝑓𝑎(𝑢)

𝑢
= ∫ [𝐼

𝑅

0

() − 𝐼𝑎()]𝐽1(𝑢) 𝑑       (49) 

Equation (49) represents a generalized Hankel transform relationship 

between the weighted pattern difference and the cumulative distribution 

difference. Applying the Parseval’s theorem (see [92]) the following 

relationship is possible: 

∫ |
𝑓(𝑢) − 𝑓𝑎(𝑢)

𝑢
|

2+∞

0

𝑑𝑢 = 2∫ |𝐼() − 𝐼𝑎()|
2
𝑑           (50)

𝑅

0

 

Minimizing the mean square difference of the patterns with 1/𝑢2 weighting, 

it is equivalent to minimizing the mean square difference between the 

cumulative distributions in (47) and (48), provided that these latter 

distributions satisfy the constraint 𝐼(𝑅) = 𝐼𝑎(𝑅). 

Considering the equation (42), (45) and (48) it seems clear to verify that 

𝐼𝑎() is a sum of discretized step with an height of 𝑣𝑘 with 𝑘 = 1… . 𝐾𝑟𝑖𝑛𝑔𝑠. 

In particular, 𝐼𝑎(0) = 0 and  

𝐼𝑎(𝑅) = ∑ 𝑣𝑘 = 𝑁

𝐾𝑟𝑖𝑛𝑔𝑠

𝑘=1

               (51) 
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where N is the total number of the array elements. From (51), enforcement of 

𝐼(𝑅) = 𝐼𝑎(𝑅) requires the scaling: 

𝑖̂() = 𝑁
𝑖()

∫ 𝑖() 𝑑
𝑅

0

       (52) 

To be applied to 𝑖(), which is equivalent to let 

𝐼() = 𝑁𝐼()           (53) 

where the function  

𝐼() = 𝑁
∫ 𝑖() 𝑑


0

∫ 𝑖() 𝑑
𝑅

0

          (54) 

represents the volume of the 2D reference source 𝑖() subtended by the 

circle of radius , normalized to that subtended by the whole circle of radius 

R. Use of (16) allows rigorously deriving the 2D counterpart of the equal 

areas concept used in [2], [59] for the 1D case. It has to be noted that to 

minimize the right side of (50), the function 𝐼() scaled as reported in (53) 

should pass through each step of 𝐼𝑎().  

Considering Fig. 4.3-2, the k-th ring arrays with 𝑣𝑘elements should be 

located at a radial coordinate 𝑅𝑘 belonging to the interval [𝑟𝑘−1, 𝑟𝑘], where  

{
𝐼(𝑟𝑘−1) = 𝑣1 +⋯+ 𝑣𝑘−1

𝐼(𝑟) = 𝑣1 +⋯+ 𝑣𝑘−1 + 𝑣𝑘 = 𝐼(𝑟𝑘−1) + 𝑣𝑘
             (55) 

To locate the 𝑣𝑘 elements of the k-th ring arrays it is needed to subdivide the 

ring delimited by the radii 𝑟𝑘−1 and 𝑟𝑘 onto 𝑣𝑘 adjacent angular sector, and 

consequently locate one element per each angular sector. 

 



4 Optimal deterministic discretization of the continuous source aperture into isophoric sparse array 

  

 

Fig. 4.3-2: Representation of cumulative discretization of the 2D density taper 
approach  

Considering equation (54) and using the relationship (53) and (55), each of 

the 𝑣𝑘 adjacent angular sector subtends the following normalized volume of 

the reference current source 

𝐼(𝑟𝑘) − 𝐼(𝑟𝑘−1)

(𝑣𝑘)
=
1

𝑁

𝐼(𝑟𝑘) − 𝐼(𝑟𝑘−1)

𝑣𝑘
=
1

𝑁
          (56) 

An important aspect is that the volume expressed in (56) is independent of k, 

therefore, the application of the same procedure for all the rings leads to a 

total number N of angular sector, each of one subtending the same portion of 

volume of the reference current source, that is a fraction 1/N of the volume 

subtended by the whole available circular area of radius R. With this 

procedure the iso-volume sectors are defined and therefore the similar iso-

area concept of the1D is achieved. 

At the end of this step, one can summarize that, in the 2D case, to 

minimize the mean square difference of the pattern originated by the 
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continuous reference source and the concentric ring arrays containing one 

element for each angular sector, the equal areas concept, derived by Doyle-

Skolnik work is substituted by the concept of equal volumes. Thus, at the end 

of the first step, the procedure permits to find the radii of the different k-

rings({𝑟1, …… 𝑟2, …… 𝑟𝐾𝑟𝑖𝑛𝑔𝑠}), the number of element for each ring and 

consequently the N iso-volume angular sector. 

To find numerically the iso-volume angular sector, the scaled 

cumulative distribution is divided into N equal increments in the ordinate axis 

and these points are projected onto the  axis. This is equivalent to compute 

the following set of radii: 

{
1
, …… 

2
, ……

𝑁
}                  (57) 

in such a way that 

𝐼(
𝑛
) = 𝑛       𝑤ℎ𝑒𝑟𝑒 𝑛 = 1,2,3……𝑁            (58) 

By extracting the searched set {𝑟1, …… 𝑟2, ……𝑟𝐾𝑟𝑖𝑛𝑔𝑠} from the set (57) and 

enforcing for each k the following condition: 

𝑣𝑘 = 𝐼(𝑟𝑘) − 𝐼(𝑟𝑘−1)              (59) 

Then a number of 𝐾𝑟𝑖𝑛𝑔𝑠 rings and N iso-volume sectors are achieved. 

However, at this stage several sets of {𝑟1, …… 𝑟2, ……𝑟𝐾𝑟𝑖𝑛𝑔𝑠} may be 

extracted from the origin set (57) and therefore a definition of suitable 

criterion is needed. To this aim, it can be enforced the quite natural 

requirement that all the isovolume sectors should be as “square” as possible, 

in other words, with equal radial and azimuth extensions. Of course, such a 

solution is particularly appropriate for arrays elements having the same 

dimensions along two orthogonal coordinates. This entails that the following 

iterative rule can be used : 

(𝑟𝑘+1 + 𝑟𝑘)

𝑟𝑘+1 − 𝑟𝑘
= 𝐼(𝑟𝑘+1) − 𝐼(𝑟𝑘)                  (60) 

Subject to the constraints: 

(𝑟𝑘+1 + 𝑟𝑘)

𝑣𝑘
≥ 𝑑;   𝑟𝑘+1 − 𝑟𝑘 ≥ 𝑑       (61)  
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where d is the dimension of the feed in the array. 

Applying iterative the equation (60) with constraints (61) it is possible 

to define in a deterministic way the radius 𝑟𝑘+1 once the radius 𝑟𝑘 is well 

known. Consequently, the use of equation (59) permits to define the number 

of adjacent angular sector for each ring.  

This proposed method permits to outperform similar method reported 

in [65] and [93] where the minimization of the mean square difference of 

continuous and sampled source pattern is not assured as in the proposed 

method. 

After the numerical definition of the K rings and of the number of 

angular sectors, the positions of each radiating element inside the angular 

sector need to be defined. In order to define the position of each element 

inside each angular sector two parameters have to define: 

 𝜑𝑛
𝑘 with 𝑛 ∈ {0,1…… . . 𝑣𝑘 − 1} 

 𝑅𝑘  ∈ [𝑟𝑘−1, 𝑟𝑘] 

Due to the azimuth symmetry of the pattern, azimuth distance between 

adjacent elements of the same ring is kept constant and so 𝜑𝑛
𝑘 =

2𝑛

𝑣𝑘
+ 𝜑𝑘, 

where the reference angle 𝜑𝑘 determines in practise the angular positions of 

all the adjacent sector of the k-th ring and it can be set randomly. Regarding 

the parameter 𝑅𝑘, in a similar way as in the Doyle procedure, it is chosen in 

order to enforce the minimization of the right-hand side in equation (50) and 

therefore it can be set in order to satisfy the following relationship: 

𝐼(𝑅𝑘) =
𝐼(𝑟𝑘−1) − 𝐼(𝑟𝑘)

2
        (62) 

At the conclusion of this paragraph, a full deterministic procedure for 

the discretization of a circularly symmetric continuous real (nonnegative) 

source in an isophoric planar arrays organized in the concentric ring is 

exposed. This method is a rigorous extension of the Doyle procedure for the 

1D case where the two steps are carried out. The first one for the definition 

of the concentric rings and their subdivision in angular sectors subtended the 
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same volume, and the second one for the definition of the positions of each 

radiating element inside each angular sector.  

The presented procedure is investigated in a very deep way because it 

represents an important step for the development of a new full deterministic 

and fast method for the discretization of a circularly symmetric continuous 

complex source. 

4.4 Density taper for the discretization of a complex 
continuous source into isophoric sparse linear arrays 

As described in the previous two sections, in the case of isophoric 

sparse arrays radiating pencil beams, the approaches exploiting a real and 

positive continuous source acting as a reference and benchmark in the arrays 

layout design is explored in an accurate manner. In particular, the following 

two-steps strategy has been proposed for the generation of linear or 

concentric ring layouts: 

1. identify the optimal real and positive continuous source fulfilling  the 

required specifications; 

2. determine the arrays layout by applying a ‘density taper’ technique to 

the continuous source. 

Notably, as both steps may be carried out by means of procedures having a 

linear or quadratic complexity in the unknowns, this strategy gives advantages 

in terms of effectiveness and computational burden. 

The previous approach for the synthesis problem of isophoric sparse 

arrays radiating shaped beams, power patterns lying in a mask specified by 

two ‘upper’ and ‘lower’ bound functions, is not fully applicable due to the fact 

that the ‘classical’ density taper techniques do not work with complex sources. 

It has to be stressed that it exists a deterministic approach to deal with the 

step one (see paragraph 3.3 of chapter 3 of this thesis) of the procedure. 

Before considering the case of shaped beams radiated by a concentric ring 

isophoric sparse arrays the attention will be given to the case of linear 

isophoric sparse arrays radiating shaped beam in order to acquire in a simple 
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way some key concepts which will be used in the definition of a procedure for 

the 2D case. 

The procedure for the synthesis of linear isophoric sparse arrays 

radiating shaped beam is reported in [90] and it foresaw two separate steps: 

1. determination of a continuous complex reference source fulfill the 

requirements in terms of power mask; 

2. determination of the arrays layout and of the elements excitation 

phases, using the reference source 

Regarding the first step it is performed exploiting at the best the 

procedure reported in [12] for the linear case. It must be stressed that, in the 

case of shaped beams, the first step provides not one but a set of sources 

giving rise to the same power pattern [20]. Accordingly, we need some 

criterion to select a reference solution in such a set. This is a relevant and 

non-trivial point, as the criterion adopted to select the reference function of 

the sparse arrays synthesis can significantly affect the final results. In turn, the 

“goodness” of the reference source depends on the way the sparse array is 

generated, so that the two problems are indeed related. 

Once the first step is performed, it is needed the second step is 

addressed. The procedure reported in [12] wants to generalize the Doyle 

procedure used for a continuous real source which ensures the minimization 

of the weighted mean square difference between the patterns radiated by the 

reference source and by the isophoric sparse array. This is equivalent to 

require that both sources radiate the same field in the boresight direction, and 

to minimize the mean square difference between the corresponding 

cumulative distributions.  

Such minimization is achieved by: 

 subdividing the line source into a number of sub-intervals equal to the 

number of arrays elements, in such a way that the field radiated by 

each sub-interval in the boresight direction is equal to that of the 

isophoric array; 

 locating the element of the array in each sub-interval in such a way 

that the mean square difference between the cumulative distributions 

of the continuous source and of the arrays is minimized. 
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In order to generalize such procedure to the case of complex continuous 

sources, the cumulative distribution of the reference function 𝑖(𝑥), with 𝑥 ∈

[0, 𝐿], where L is the maximum linear source define at the first step, is 

considered: 

𝐼(𝑥) = ∫ 𝑖(𝑥′)𝑑𝑥′
𝑥

0

               (63) 

The behaviour of 𝐼(𝑥) respect the coordinate x can be represented by a curve 

in a complex plane or as a curve in a three-dimensional space where the third 

coordinate is the position on the line source while the other two represent the 

real and imaginary part of the complex cumulative function (see Fig. 4.4-1) 

 

Fig. 4.4-1: 3D representation of the cumulative function, blue and green curve 

In the complex plane representation, the boresight contribution of any sub-

interval of the source is clearly represented by the segment joining the 

extremes of the corresponding section of I(x). The isophoricity requirement 
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entails that the lengths of all the segments joining the points of 

I(x)corresponding to the extremes of the sub-intervals must be equal. This 

implies that the source subdivision has to be obtained by inscribing in the 

curve representing I(x) in the complex plane an equilateral polygonal (red 

curve in Fig. 4.4-2). 

 

Fig. 4.4-2: Geometrical representation of a segment of the equilateral polygon 
dividing the continuous source 

Once the sub-intervals of the line source have been identified, the locations 

and excitation phases of the isophoric sparse arrays elements have to be 

determined as follows. 

The extremes of each sub-interval will be denoted with x0, … . . xN 

(x0 = 0 and xN = L with N the number of elements). Denoting with x̂k the 

locations of the array elements accommodated in the k.th sub-interval, the 

cumulative distribution of the arrays will be given by  

IA(x) =∑u(x − x̂k)[I(

N

k=1

xk) − I(xk−1)]         (64) 

where u()  is the step function. 

To determine the radiating elements positions, it has to minimize 

the mean square norm of the difference between 𝐼(𝑥) and IA(x), 
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‖𝐹 − 𝐹𝐴‖
2 =∑∫ |𝐼(𝑥) − IA(x)|

2 𝑑𝑥       (65)
𝑥𝑘

𝑥𝑘−1

N

k=1

 

The equation (65) after several mathematician operations can be written as 

‖𝐹 − 𝐹𝐴‖
2 =∑{∫ |𝐼(𝑥) − 𝐼(𝑥𝑘−1)|

2 𝑑𝑥
�̂�𝑘

𝑥𝑘−1

N

k=1

+ ∫ |[𝐼(𝑥) − 𝐼(𝑥𝑘−1)] − [𝐼(𝑥𝑘)
𝑥𝑘−1

�̂�𝑘

− 𝐼(𝑥𝑘−1)]|
2 𝑑𝑥}      (66) 

Equating to zero the derivative of equation (66) respect x̂k the following 

relationship is obtained 

𝑅𝑒𝑎𝑙 [
𝐼(�̂�𝑘−1) − 𝐼(𝑥𝑘−1)

𝐼(𝑥𝑘) − 𝐼(𝑥𝑘−1)
] =

1

2
       (67) 

which provides the position of the array element in each sub-interval. 

The geometrical meaning of the equation (67) is reported in Fig. 4.4-2. 

In the complex 𝐼(𝑥) plane, the orthogonal projection of 𝐼(�̂�𝑘) onto the 

corresponding side of the polygon must be its middle point. Projecting the 

middle points of the polygonal onto 𝐼(𝑥), and reading the corresponding 

abscissae the element position is obtained. After the definition of the position 

of the element inside each sub-interval of the continuous source, the 

excitation phase of each radiating element has to be defined. In according to 

the procedure the excitation phase of each element is represented by the angle 

in the complex 𝐼(𝑥) plane between the real axis and the polygonal. 

Such design technique extends to complex electromagnetic sources the 

Doyle approach, exactly solving a strongly nonlinear problem and providing a 

completely deterministic synthesis procedure having a negligible 

computational burden. 

The design technique is depicted in Fig. 4.4-3, wherein the isophoric 

sparse array’s element locations are represented by the black points in the 

“normalized length” axis, which are the projections (through the cumulative 

distribution in blue color) onto the spatial axis of the green points defined in 

the complex plane by condition (67). 
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Fig. 4.4-3: Representation of the synthesis procedure for isophoric sparse 
arrays radiating shaped beam 

A last important aspect which needs to be addressed is related to the 

choice of the reference source due to the multiplicity of complex source 

radiating the same shaped beam. In the light of the above results, it is clear 

that we must avoid sources whose cumulative distribution has a spiral-like 

shape. As a matter of fact, such a shape would require either the use of 

polygonal with a small side (and hence a huge number of arrays elements) or 

the acceptance of intersections between the reference cumulative distribution 

and the polygonal itself.  

Such circumstance not only would make the solution of (67) not unique, but 

would also imply a large discretization error in the high-frequency part of the 

source’s spectrum. 
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4.5 Optimal Synthesis of Shaped beam through concentric 
ring isophoric sparse array.  

An innovative deterministic approach to the optimal power synthesis of 

mask-constrained shaped beams through concentric-ring isophoric sparse 

arrays is presented in this section. The design procedure exploits at best the 

state-of-the-art techniques respectively available in the cases of circular-ring 

isophoric arrays radiating pencil beams and of linear isophoric arrays 

generating shaped beams presented in the first part of this chapter. The 

technique avoids exploitation of global-optimization algorithms and it allows 

to significantly outperform all the (few) available procedures. At the end of 

the section, numerical examples are furnished to validate the complete design 

procedure.  

Amongst all isophoric sparse arrays planar architectures, Concentric 

Ring Isophoric Sparse Arrays (CRSAs), i.e.,  Isophoric Sparse Arrays  whose 

elements are disposed onto concentric rings, appear being the most 

convenient ones due to their capability of uniformly spreading the antenna 

energy over all azimuth directions [18],[22]-[26]. In fact, CRSAs constitute 

one of the usual ESA’s choices to realize the satellite multibeam coverage of 

Earth [18],[25],[26]. 

Of course, isophoric sparse arrays adoption has also its disadvantages, 

the most critical one being related to the corresponding synthesis procedures. 

In fact, since the elements’ locations are the unknowns of the design problem, 

the synthesis is unaffordable through Convex Programming (CP) procedures 

of the kind presented in [27]. Therefore, as done for instance in [13]-[16], the 

antenna designers often recur to Global Optimization (GO) procedures. 

However, due to their high computational weight, GO techniques practically 

result unsuitable for the synthesis of isophoric sparse arrays composed by a 

large number of elements. 

To overcome such difficulties, the following two-steps procedure has 

been recently devised for the design of Linear Isophoric Sparse Arrays 

(LISAs) and CRISAs [17]-[24] as demonstrated in the previous section of this 

chapter: 
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1. identify a Reference Continuous Aperture Source (RCAS) fulfilling ‘at 

best’ the radiation requirements at hand; 

2. derive the arrays layout as a discretization of the RCAS. 

This procedure allowed to outperform previous approaches [17]-[24]. In fact, 

a number of well-assessed methods already exist to perform step 1 (e.g., 

[28],[29]) and, only in the ‘pencil beams’ case, step 2 (e.g., [2],[17],[18],[22]-

[24]). 

Unfortunately, much fewer alternatives to perform step 2 are available 

in the ‘shaped beams’ case. The reason for such lack derives from a simple 

circumstance: while the RCASs required to generate sufficiently-narrow pencil 

beams are real functions [28], in the shaped beams case they result complex 

[29]. This issue, which drastically complicates step 2 [23], has been recently 

solved for the case of LISAs in [21] but still results unsolved for CRISAs. In 

fact, the unique approach currently available to perform step 2 in the CRISAs 

case is the ‘rough’ one in [23], which bypasses the problematic of the RCAS’s 

complexity by: 

a) identifying the elements’ locations by applying the technique 

presented in [18] only to the RCAS’s amplitude; 

b) assigning to each array’s element an excitation phase equal to value 

assumed in its location by RCAS’s phase. 

This procedure neglects the fact that, as discussed in [21], the arrays elements 

locations must be a function of both the RCAS’s amplitude and phase 

distributions, and hence its performance is considerably improvable. On the 

other side, beyond [23], the unique contribution addressing the synthesis of 

CRISAs in the shaped beams case is [16] which, however, relies on GO and 

hence is exploitable only in case of CRISAs composed by a low number of 

elements. 

In the attempt of filling such a gap, in this section a new approach to the 

mask-constrained power synthesis of shaped beams through CRISAs is 

introduced. The technique can be seen as the extension of the approach in 

[21] to the case of ring symmetric arrays layouts, and results fast and effective 

even in case of arrays composed by a large number of elements. 
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4.5.1 Rationale of the design procedure 

The proposed approach consists in synthesizing the CRISA by 

performing a discretization of a RCAS which optimally fulfills a given 

circularly-symmetric power mask. Denoting with ( ) such a RCAS, having a 

circularly-symmetric distribution and covering a disk of radius R over the x-y 

plane. Moreover, N denotes the overall number of CRISA elements and ϕ the 

aperture azimuth coordinate. 

The CRISA is conceived as the union of M concentric rings on which a given 

number of radiating elements is located with a uniform angular spacing, see 

Fig. 4.5.1-1 

 

Fig. 4.5.1-1: Pictorial view of the m-th ring of a generic CRISA 

The unknowns are the elements’ locations and excitation phases and the aim 

is to determine them in such a way to minimize the mean square difference 

between the far-field distributions respectively corresponding to the RCAS 

(FRCAS(u) ) and the CRISA (FCRISA(u)). Apart from inessential constants, 

these two fields can be written as: 

𝐹𝑅𝐶𝐴𝑆(𝑢) = ∫ 𝑠()𝐽0(𝑢)𝑑           (68)
𝑅

0
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𝐹𝐶𝑅𝐼𝑆𝐴(𝑢) = ∫ 𝑠𝐴()𝐽0(𝑢)𝑑           (69)
𝑅

0

 

Where 

𝑠𝐴() = ∫ ∑∑ (− 𝑟𝑚)(− 𝜑𝑘,𝑚

𝑁𝑚

𝑘=1

𝑀

𝑚=1

2

0

) (
1


) 𝑑        (70) 

Wherein u = sin(ϑ) (ϑ denoting the elevation angle with respect to 

boresight),  = 2/ ( denoting the wavelength), rm and Nm respectively 

are the radius of the m-th CRISA’s ring and the number of elements located 

over it, and φk,m is the azimuth coordinate of the k-th element belonging to 

the m-th ring. It must be noted that differently from the RCAS’s far field, the 

CRISA’s arrays factor depends also on the azimuth angle. However, as shown 

in [9], such dependence is negligible for u<<Nmλ/(2πrm), m=1,…,M. In all 

examples of the next sections, as well as in very many applications, these 

angular sectors cover the whole region wherein the power pattern is 

significant, and hence the circularly symmetric representation (69) can be 

exploited. 

Under these assumptions, it will be: 

∫ |
𝐹𝑅𝐶𝐴𝑆(𝑢) − 𝐹𝐶𝑅𝐼𝑆𝐴(𝑢)

𝑢
|

2

𝑑𝑢 =  ∫ |𝑆() − 𝑆𝐴()|2𝑑        (71)
𝑅

0

∞

0

 

Wherein 𝑆() and 𝑆𝐴() represent the cumulative distributions associated to 

the function 𝑠() and 𝑠𝐴(): 

𝑆() = ∫ 𝑠() 𝑑


0

           (72) 

𝑆𝐴() = ∫ 𝑠𝐴() 𝑑


0

         (73) 

Therefore, minimizing the mean square difference between 𝐹𝑅𝐶𝐴𝑆(𝑢)and 

𝐹𝐶𝑅𝐼𝑆𝐴(𝑢) with 
1

𝑢2
 weighting is equivalent to minimize the mean square 

difference between the functions (72) and (73). This can be done, once M and 

N have been chosen, by means of the following procedure: 
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1. represent S() as a curve in a three-dimensional space where the first 

and second coordinates are its real and imaginary parts, respectively, 

and the third coordinate is  (see Fig. 4.5.1-2). Then inscribe in this 

curve an equilateral polygonal composed by N segments; 

2. for m=1,..,M, determine the value of 𝑁𝑚 in such a way that the N 

segments above can be grouped into M contiguous subintervals, the 

m-th of which is composed by 𝑁𝑚 segments and guarantees that the 

following ratio: 

𝑉𝑚 = |
𝑆(

𝑚+1
) − 𝑆(

𝑚
)

𝑁𝑚
|        (74) 

is constant (wherein 
𝑚

 and 
𝑚+1

 denote the endpoints of the m-th 

subinterval, with 
1
= 0 and 

𝑀+1
= 𝑅); 

3. for 𝑚 = 1… . .𝑀, determine 𝑟𝑚 in such a way to fulfil the following 

equation: 

𝑅𝑒 [
𝑆(𝑟𝑚) − 𝑆(𝑚)

𝑆(
𝑚+1

) −  𝑆(
𝑚
)
] =

1

2
         (75) 

4. assign to all the elements belonging to the m-th ring, for 𝑚 =

1… . .𝑀, an excitation phase equal to the angle subtended in the 

complex plane by the real axis and the segment connecting 𝑆(
𝑚
) 

and 𝑆(
𝑚+1

). 

The motivations underlying the procedure are in the following.  

Concerning step 1, it derives from a simple principle: the fact that the 

CRISA must be composed by N isophoric elements entails that 𝑆() 

must be partitioned in N segments having the same length. 

As far as step 2 is concerned, it must be noted that 𝑆() represents the 

volume subtended by the RCAS over the circle of radius . Therefore, this 

step allows to subdivide the aperture into M concentric annular sectors, the 

m-th of which contains 𝑁𝑚 ‘iso-volume’ sectors (see Fig. 4.5.1-2). This 

operation can be performed by exploiting the fast iterative procedure in [18], 

which  
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Fig. 4.5.1-2: Representation of S() in the complex plane (green color: 
reference function; red color: discretized function) and as a curve in a three-
dimensional space where the first and second coordinates are its real and 
imaginary parts, respectively, and the third coordinate is the radial coordinate 
(blue curve) 

exploits an equation analogous to (74) and provide an analytic way to 

determine the optimal 𝑉𝑚 value. On the other side, it should be noted that 

[18] addresses only the synthesis of pencil beams through real and positive 

RCASs, so that the additional steps 3 and 4 are necessary herein. 

Step 3 allows identifying, for 𝑚 = 1… . .𝑀, the optimal radius the m-th 

CRISA’s ring inside the interval [
𝑚
, 
𝑚+1

]. In fact, by virtue of steps 1 and 

2 above, it will be: 

𝑆𝐴() = ∑ 𝐻(− 𝑟𝑚)[𝑆(𝑚+1) −  𝑆(𝑚)]         (76)

𝑀

𝑚=1

 

Where H is the step function. By substituting (76) in (71) it can be achieved: 
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∫ |𝑆() − 𝑆𝐴()|2𝑑 
𝑅

0

= ∑ ∫ |𝑆() − 𝑆𝐴()|2𝑑 
𝑚+1

𝑚

𝑀

𝑚=1

=∑[∫ |𝑆() − 𝑆(
𝑚
)|
2
𝑑

𝑟𝑚

𝑚

𝑀

𝑚=1

+∫ |𝑆() − 𝑆(
𝑚+1

)|
2
𝑑 

𝑚+1

𝑟𝑚

]         (77) 

With 𝑆(0) = 𝑆𝐴(0) = 0. By equating to zero the derivative of (77) with 

respect to 𝑟𝑚 the equation (75) is exactly obtained. Therefore, the radius of 

the m-th CRISA ring must be determined by projecting the midpoint of the 

m-th polygonal segment onto 𝑆() and then reading the corresponding  

value. 

Finally, step 4 is perfectly coherent with the previous steps and allows to 

assign to the CRISA’s elements the required circularly-symmetric excitation-

phase distribution. 

4.5.2 A numeric example of the deterministic synthesis of 
the shaped beam 

In this paragraph a numeric example is carried out in order to validate 

the complete design procedure reported in the previous sections of this 

chapter regarding the optimal synthesis of shaped beams through circular ring 

isophoric sparse array.  

The scope is to start from the power mask constraints and to design a 

circularly symmetric isophoric sparse array able to radiate a desired shaped 

beam. The unknowns of the problem are the number of radiating elements, 

their location on the plane, and their phase excitation. 

At the first, it is needed to define the power mask constraints for the desired 

radiation power pattern: 

 Pattern shape: Flat top beam 

 Ripple : ± 0.5 𝑑𝐵 

 Flat region: ± 3 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 
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 Sidelobes level ≤ −20 𝑑𝐵 𝑓𝑜𝑟 5 ≤ |𝜗| ≤ 15 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 and 

−15 𝑑𝐵 𝑓𝑜𝑟 |𝜗| > 15 degrees 

The constraints are reported in the below power mask which has a circular 

symmetry in the azimuth plane. 

 

Fig. 4.5.2-1: Power mask constraints for the desired flat top beam 

Assigned the designed constraints in terms of desired power pattern, the first 

step of the proposed procedure foreseen the definition of the continuous 

complex source able to meet the exposed requirements. 

Performing the design procedure for the synthesis of continuous source able 

to radiate a shaped beam reported in section 3.3 of this thesis the  complex 

source shown in Fig. 4.5.2-2 is obtained. The minimum radius for the 

theoretical source is 25 . 

After that the first step of the procedure is performed, in order to discretize 

the continuous source in a concentric ring isophoric sparse array, the optimal 

fast and deterministic procedure reported in section 4.5.1 is exploited.  

According to the equation (72) the cumulative function of the complex 

continuous source is calculated and its 3D representation is shown in Fig. 

4.5.2-3 and Fig. 4.5.2-4.   
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(a)  

 
(b) 

 
(c) 

Fig. 4.5.2-2: Amplitude (a) and phase (b) distribution of the optimal 
continuous source and (c) relative radiation pattern  
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Defined the cumulative complex source, the procedure foresaw the 

subdivision of the cumulative function in the complex plane in N equal length 

segment where N is the number of isophoric elements in the final array. The 

N elements are organized in M subinterval in a such way that each subinterval 

has Nm element in order to satisfy the equal-volume ratio as reported in 

equation (74). In a few words, this step allows to subdivide the aperture into 

M concentric annular sectors, the m-th of which contains 𝑁𝑚 ‘iso-volume’ 

sectors, see Fig. 4.5.2-5. 

 

Fig. 4.5.2-3: 3D cumulative function (CDF) of the complex source reported in 
Fig. 4.5.2-2  
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Fig. 4.5.2-4: 2D cumulative function (CDF) of the complex source reported in 
Fig. 4.5.2-2 

 

Fig. 4.5.2-5: 2D cumulative function (CDF) of the complex divided in M equal 
volume sectors 

At this stage of the procedure, the M adjacent equal volumes are defined, in 

particular 12 angular sectors are obtained. The next step is to identify the 

optimal radius the m-th CRISA’s ring and it is carried out using the equation 

(75) which entails to select the middle point inside each singular sector., see 

Fig. 4.5.2-6  
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Fig. 4.5.2-6: 2D cumulative function (CDF) of the complex divided in M equal 
volume sectors and the middle point identifying the radius of each ring  

At this stage pf the procedure the M rings, their radius and number of 

elements for ring are calculated. The last step of the procedure is regarding 

the definition of the phase coefficient for each radiating element. Each 

excitation phase is equal to the angle subtended in the complex plane by the 

real axis and the segment connecting S(
m
) and S(

m+1
) (red curves in Fig. 

4.5.2-6). 

ID Ring Radius () Excitation phase [deg] 
Nr. of 

element 

1 0.8113 -146.5567 5 

2 1.6916 -144.4003 12 

3 2.5992 -138.8694 19 

4 3.7671 -126.3216 28 

5 5.3018 -93.7088 38 

6 7.1569 -47.4123 48 

7 8.7691 -21.7821 56 

8 10.1747 -7.4379 62 

9 11.6732 6.0835 68 

10 13.5025 30.4134 74 

11 16.4066 99.1314 81 

12 19.1401 142.2006 87 
Tab 4.5.2-1: Radii and excitation phase of the isophoric sparse array 
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Tab 4.5.2-1 reports the geometrical information (radii and number of 

elements for each radius) and excitation phase of the isophoric sparse arrays 

calculated with the proposed procedure. 

 

Fig. 4.5.2-7: Final optimal phase distribution on the arrays aperture 

 

Fig. 4.5.2-8: Final Optimal concentric ring isophoric arrays layout 
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Fig. 4.5.2-8 shows the final optimal concentric ring isophoric arrays layout 

obtained with the new proposed full deterministic procedure and Fig. 4.5.2-7 

shows the optimal phase distribution on the arrays aperture.  

 

Fig. 4.5.2-9: UV radiation pattern of the concentric ring isophoric arrays 
layout 

  
Fig. 4.5.2-10: Superposition of the -cuts of the achieved radiation pattern 
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Finally the radiation pattern is reported in Fig. 4.5.2-9 in the UV plane 

representation while the superimposition of all the φ cuts is shown in Fig. 

4.5.2-10 where the circular symmetric is observed. From the concentric ring 

isophoric sparse radiation pattern it can be noted that the far field constraints 

are respected for all the phi cuts.  

The problem of the optimal synthesis of shaped beams in the presence of 

completely-arbitrary lower and upper bounds on the power distribution has 

been solved by exploiting ring symmetric isophoric sparse arrays. 

4.5.3 Comparison with the recent literature results 

The aim of this paragraph is to compare the new approach for the synthesis 

of isophoric sparse arrays radiating shaped beam organized in concentric rings 

with the other approaches presented in the literature. At the first the 

comparison will be made considering the results reported in [23] where the 

general procedure for the synthesis of isophoric sparse arrays is exploited. As 

described in [23] the two-steps procedure consisting in finding the optimal 

continuous source and then discretizing it into isophoric sparse arrays. The 

deterministic method reported in [23] is synthesized in the following: 

 Calculate the optimal non-superdirective source able to meets the 

requirements; 

 Use the deterministic density taper technique reported in [18] to 

discretize the amplitude of the complex source; 

 Assign to each radiating element, obtained in the previous step, the 

phase excitation picking in the theoretical phase distribution of the 

complex source. 

The above-mentioned technique is a full deterministic method but 

represents a suboptimal solution respect the one reported in this thesis 

because it does not deal with complex sources but only with the amplitude 

distribution while the proposed method of this thesis considers the entire 

complex source in the discretization process.   

In the following two examples involving constraints of possible interest 

for communication from geostationary satellites are reported.  
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In the first example, the goal is that of generating a circularly symmetric 

flat top having a beam width of 3.25 degrees ensuring a coverage of the 

Europe. Design specification also included a sidelobe level at least 20 dB 

below the flat top level in the region corresponding to the earth cone as seen 

from a geostationary satellite and an allowed ripple in the shaped zone equal 

to ±0.5 dB. The arrays layout and the radiation pattern reported in [23] are 

shown in Fig. 4.5.3-1. 

 
Fig. 4.5.3-1: Arrays layout and radiation pattern of [23] 

The maximum achieved directivity is 28.9 dBi using a total number of 295 

radiating elements with a radius of 1. 

In contrast with the arrays layout of [23], Fig. 4.5.3-2 shows the arrays 

layout obtained exploiting the new CRISA synthesis presented in this thesis.  
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The total number of elements is 289 with a saving of quite 3% respect to the 

solution in [23]. The two solutions use the same radiating element with a 

diameter of 1  

 
Fig. 4.5.3-2: Arrays layout and radiation pattern of the proposed method 

 

Fig. 4.5.3-3: UV pattern of the shaped beam calculated with the CRASA 
reported in Fig. 4.5.3-2 
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The antenna directivity is the same as the one reported in [23] and all the φ 

cuts of the radiation pattern are reported in Fig. 4.5.3-4 where it can be noted 

a good circular symmetry and the mask is respected for all the phi cuts. 

 
Fig. 4.5.3-4: Superimposition of all phi cuts of the designed isophoric sparse 
array 

Comparing the results of [23] with the one obtained with the proposed 

method, it can be observed that the results are quite similar. In facts, only a 

saving of quite 3% in terms of radiating elements is achieved. The similarity in 

the two solutions has a justification and it is due to the fact that the power 

mask has a flat zone very tight and the optimal reference source which has 

been identified is very close to being real. In this condition the method of [23] 

exploiting only the amplitude of aperture distribution gives good results. 

In the second example, extrapolated from [23] conceived by a specific 

mission scenario of the ESA ITT [94], the power pattern mask has a flat top 

zone covering almost all of the Earth disc as seen from a geostationary 

satellite A maximum sidelobe level of -20 dB and an allowed ripple of ± 0.5 

dB have been enforced. 

The arrays layout and the radiation pattern achieved in the article [23] 

are depicted in Fig. 4.5.3-5. The array is composed by a total number of 966 

elements on an antenna aperture of 42  and the minimum antenna directivity 

is 18.3 dB in the flat zone. The radiating element has a radius of 0.8. 
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Fig. 4.5.3-5: Arrays layout and radiation pattern of [23] 

Using the fast and deterministic method for the synthesis of CRISAs 

exposed in this thesis, the arrays layout reported in Fig. 4.5.3-6 is designed. 

The array is composed of 460 radiating elements with a radius of 0.5 on an 

antenna aperture of 22 . The maximum antenna directivity is 20.8 dB as 

demonstrated in Fig. 4.5.3-7. Comparing the proposed arrays layout and the 

one reported in the article [23] a saving of quite 50% is achieved. The great 

difference in terms of number of radiating elements is due to the fact that, in 

this time, the initial requirements lead to a reference source exhibiting 

nonnegligible oscillations in both amplitude and phase distribution. The 

proposed method, considering the amplitude and the phase of the complex 

source during the discretization process, is able to outperform the 

performance achieved in [23], which has a discretization method based on the 

amplitude distribution. 
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Fig. 4.5.3-6: Optimal arrays solution achieved using the proposed method 

 
Fig. 4.5.3-7: Directivity pattern in the uv-plane 
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Fig. 4.5.3-8 depicted the radiation pattern of the optimal solution achieved by 

means the use of the proposed method. The several φ cuts are 

indistinguishable in the graphical representation demonstrating the perfect 

symmetry obtained by the optimal arrays layout. 

 
Fig. 4.5.3-8: Superimposition of the phi cuts of the radiated far field of the 

optimal solution 

The last example used to validate the proposed method for discretizing 

a complex source and obtained the optimal concentric ring isophoric sparse 

arrays is taken from the article [16]. In this case the desired beam pattern is a 

flat top beam with a very large flat zone, an Half Power Beamwidth (HPBW) 

equal to 31.2 degrees, and a maximum ripple equal to ±0.41 dB for θ≤13.4 

degrees.and SLL equal to -12.18 dB for 19.6≤θ≤90 degrees. The radiation 

pattern proposed in [16] is reported in Fig. 4.5.3-9 and it is obtained by an 

array constituted by 220 radiating elements distributed on an aperture of 10. 

The results of [16] are achieved by means a hybrid method based on the 

simulated annealing optimization algorithm aimed at jointly minimizing the 

maximum ripple and the maximum SLL. The best proposed solution by the 

authors is represented by the continuous line in Fig. 4.5.3-9. 



4 Optimal deterministic discretization of the continuous source aperture into isophoric sparse array 

  

 
Fig. 4.5.3-9: Proposed radiation pattern in [16] 

Applying the new method based in the deterministic discretization of a 

continuous complex source in an isophoric sparse arrays the following 

antenna layout is designed, see Fig. 4.5.3-10. 

 
Fig. 4.5.3-10: Optimal arrays layout with isotropic elements 

The deterministic proposed method is able to fulfill the same mask of [16] by 

exploiting a CRISA composed of 163 isotropic elements located over an 
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aperture of diameter 5.86λ. Therefore, the presented approach allowed a 26% 

reduction in the elements’ number without experiencing any radiation loss. 

Fig. 4.5.3-11 shows the superimposition of all φ cuts radiated by the optimal 

arrays layout. 

 

Fig. 4.5.3-11: Superimposition of the phi cuts of the square amplitude arrays 
factor 

The CRISA guarantees in the flat zone a minimum directivity of 15.98 dBi 

and a maximum directivity of 16.8 dBi (see Fig. 4.5.3-12) which is just 1.87 

dBi lower than the directivity pertaining to a theoretical power pattern being 

constant in the region θ≤13.4° and zero elsewhere. 
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Fig. 4.5.3-12: Contour plot of the optimal square amplitude arrays factor 

The problem of the optimal synthesis of shaped beams in the presence 

of completely-arbitrary lower and upper bounds on the power distribution 

has been solved by exploiting ring symmetric isophoric sparse arrays. The 

proposed technique allowed to considerably improve the performance 

achievable through previous approaches. In particular, for equal power 

pattern masks, the required number of arrays elements has been significantly 

reduced. 

The approach can be used in conjunction with the techniques in 

[22],[24],[26] in such a way to exploit also the feeds’ shape and size as a degree 

of freedom of the design and hence to get a further enhancement of 

performance.  

In the previous test cases, the synthesis of the RCAS has been 

performed through the method in [29], and  the  subsequent  discretization  

steps  respectively  required 1.0, 1.16 and 1.04 seconds to be performed by a  

calculator having an Intel Core i7 2.50 GHz CPU and a 10 GB RAM. The 
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algorithms are developed in Matlab environmental and a verification by 

means the GRASP Ticra software is carried out.  

4.5.4 Phase-Only reconfigurable circular continuous sources 
discretized into isophoric sparse ring arrays 

One of the aims of this thesis work is to deal with the very important 

topic on the synthesis of isophoric sparse arrays which are able to be 

reconfigured acting only in the phase distribution. In particular, in section 3.4 

of this thesis a new approach to the optimal, mask-constrained power-pattern 

synthesis of Circularly Symmetric Continuous Aperture Sources (CSCASs) 

[18] able to dynamically reconfigure their radiation behavior by just modifying 

their phase distribution is proposed. The achieved solutions are used as a 

reference in the optimal synthesis of phase-only reconfigurable Circular Ring 

Isophoric Sparse Arrays (CRISAs) for applications of high interest including 

the multibeam satellite coverage of Earth. 

As a distinguishing feature, despite the strong non-linearity of the 

problem (which is a power-pattern, mask constrained synthesis wherein both 

the arrays locations and excitation phases are unknowns), the proposed 

solution procedure has been conceived as a Convex Programming (CP) 

optimization plus a couple of deterministic steps. This has been possible by 

virtue of the joint, optimal exploitation of the techniques respectively 

published in [50] (for an optimal exploration of the search space), [69] (for the 

optimal synthesis of CSCASs), and of the fast deterministic discretization of 

CSCASs into CRISAs which is one of the object of this thesis. 

Being able to address the synthesis of isophoric planar arrays by 

exploiting only CP algorithms, the proposed approach represents a 

remarkable novelty with respect to the available methods. In fact, it is 

innovative with respect to the method published in [20] (which avoids global 

optimization but only applies to 1-D arrays) as well as to the one presented in 

[79] (which applies to 2-D arrays but resorts to global optimization).  

In order to validate the full procedure, a numerical example is carried 

out. In particular, the only-phase continuous source presented in the section 
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3.4.1 is used as a reference for the synthesis of an only-phase reconfigurable 

isophoric sparse array, see Fig. 4.5.4-1.  

 

 

Fig. 4.5.4-1: Final phase-only reconfigurable power patterns synthesized in 

section 3.4.1 

Applying the optimal deterministic technique for discretizing a complex 

source to the source pertaining to the shaped beam modality, the blue curve 
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of Fig. 4.5.4-1,  which led to the arrays layout and excitation phases shown in 

Fig. 4.5.4-2 and Fig. 4.5.4-3(b), respectively 

 
Fig. 4.5.4-2: Synthesized isophoric sparse ring arrays layout (isotropic element 

pattern embedded). 
 

 

(a)                                                   (b) 

Fig. 4.5.4-3: Excitation phase distribution (in degrees) synthesized for 
the pencil beam [subplot (a)] and the shaped beam [subplot (b)] 

The synthesized CRISA is composed by 567 isotropic elements and hence 

allows a reduction of roughly the 20% of elements with respect to a fully-

populated array covering the same aperture (i.e., a circular region of radius 7.5 

λ) with a constant λ/2 inter-element spacing. By using a uniform excitation 

amplitude, this arrays is able to generate: 
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 the pencil beam depicted in Fig. 14, as long as all excitation phases 

are set to zero as shown in Fig. 13(a); 

 the shaped beam depicted in Fig. 15, as long as the excitation phases 

of Fig. 13(b)are adopted. 

 

Fig. 4.5.4-4: Pencil beam radiation modality: comparison between the 

power patterns radiated by the reference continuous source and the 

synthesized isophoric arrays shown in Fig. 4.5.4-2 and excited with the phase 

distribution shown in Fig. 4.5.4-3(a). 

Notably, in order to effectively evaluate the achieved radiation 

performances, in both Fig. 4.5.4-4 and Fig. 4.5.4-5 the reconfigurable array’s 

power patterns are compared with the ones corresponding to the reference 

continuous source. As it can be seen, despite the adoption of isotropic feeds 

and the reduction of the overall number of elements with respect to a 

‘classical’ λ/2-equispaced array, a good fitting of performances is experienced. 

This circumstance confirms not only the validity of the proposed approach 

from the theoretical point of view, but also its profitable applicability to the 

realization of antennas for applications of high interest. 
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Fig. 4.5.4-5: Shaped beam radiation modality: comparison between the 

power patterns radiated by the reference continuous source and the 

synthesized isophoric arrays shown in Fig. 4.5.4-2 and excited with the phase 

distribution shown in Fig. 4.5.4-3(b). 

A new approach to the synthesis of phase-only reconfigurable 

continuous circular sources and isophoric sparse ring arrays has been 

presented and assessed. 

The proposed technique is able to deal with an arbitrary number of 

shaped and pencil beams, and exploits at best all the knowledge available in 

the separate synthesis of the different patterns. The engine of the procedure is 

based on convex programming optimizations and fast spectral factorizations, 

guaranteeing at the same time a low computational burden and the 

achievement of globally-optimal solutions. 

The method for the synthesis of only-phase reconfigurable isophoric 

sparse arrays uses the two-steps procedure starting from the synthesis of the 

optimal reference source able to be phase-only reconfigured which is a 

novelty introduced in this thesis and exposed in section 3.4. The second step 

concerned the use of the proposed method for the optimal deterministic 

discretization of the reference complex source in order to define the 

concentric ring isophoric arrays layout. 
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5  

Conclusion and future development 
 

 

 

 

 

The present thesis work deals with the problem to design isophoric 

sparse arrays arranged in concentric ring able to radiate a shaped beam where 

the radiations constraints are expressed by means a power mask. As described 

in this work, the synthesis of isophoric sparse arrays is one of the most critical 

synthesis problems in terms of an analytical solution.  

The proposed solution is concerned with a full deterministic procedure 

constituted by two distinct steps. At the first, a continuous reference source is 

found in order to find the optimal theoretical solution. This step is carried out 

exploiting at the best the available methods in the literature for the 

deterministic design of continuous source able to radiate a pencil beam or a 

shaped beam. After the continuous source is found, the second step of the 

procedure performs the reference continuous source discretization avoiding 

any kind of global optimization algorithm.  

The novelty exposed in this work is not related to the introduction of 

the two-steps procedure, which is a well-known procedure in the antenna 

synthesis problem, but it is relative to the deterministic discretization of the 

2D complex source (typical source for shaped beam) in an isophoric sparse 

arrays. This aspect was an open point in the scientific community. Several 

approaches concerning the solution of this problem were found but none of 

them are based on a full deterministic procedure or they are not obtained by 

means a true rigorous method.  

To reach the aim of this thesis a deep investigation of the literature is 

performed in order to exploit at the best what is just done in the antenna 

synthesis. In particular an investigation of the synthesis of continuous sources 

radiating pencil and shaped beam and reconfigurable patterns is carried out. 



5 Conclusion and future development 

  

In addition, the generic approach for discretizing a continuous source in 

isophoric sparse array is assessed. 

Taking advantage of all these deterministic methods, the effort 

produced in this thesis work was oriented to finalize the last open point in the 

synthesis of isophoric 2D arrays concerning the case of shaped beams. A full 

deterministic and rigorous method is presented and several examples are 

furnished providing the goodness of the proposed solution. The goodness of 

this method is also justified by a recent scientific publication ([95]) where a 

comparison between the proposed deterministic method and a hybrid 

approach (using deterministic and optimal optimization techniques) is 

described. The comparison underlines that the proposed method is able to 

reach the optimal solution in a fast manner respect to the hybrid approach 

which is based on the Simulated Annealing global optimization. 

Another novelty introduced in this thesis is the capability to design a 

concentric ring isophoric sparse arrays able to be reconfigured acting only in 

changing the phase distribution on the antenna aperture. This kind of 

reconfigurability is suitable for the satellite communication, in fact the 

operator can have the opportunity to change the multibeam coverage on the 

Earth in according to the traffic density without modifying the hardware on 

the satellite and without increasing the complexity of the antenna. In the 

thesis a new deterministic method is introduced for the definition of a 

reconfigurable continuous source able to be an only phase reconfigurable. 

Applying at this source the deterministic and fast procedure for the synthesis 

of circular ring isophoric sparse arrays, it is possible to perform the complete 

synthesis starting from the definition of the power mask and ending with the 

optimal arrays layout. The synthesis is cast as a convex programming problem 

and can handle an arbitrary number of pencil and shaped beams. 

The synthesis procedure reported in this thesis permits to define the 

array layout for an isophoric sparse array arrange in concentric ring able to 

meet the desired electrical performance. Considering a real working case, 

during the synthesis process additional constraints need to be considered 

taking in account not only the electrical requirements but also some 

mechanical ones. In particular, some constraints can be due to the need to 
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accommodate the thermal control system to avoid the damage of the active 

components inside the array. The well know thermal control system based on 

the use of the heat pipes, which is used in the on board antenna, foreseen the 

accommodation of the system very near to the active components. This 

aspect can influence the location of the active elements inside the array. 

Others constraints can be due to the minimum size of the radiating element 

which can be manufactured. In fact very small radiating elements cause the 

increase of the manufacturing complexity with an increase of the overall 

antenna costs. 

Considering all these aspects, future development can be done introducing 

some real constraints in the overall synthesis procedure in order to have an 

array architecture which meets at the best the operative condition in the 

satellite environmental.  
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