
DOCTORAL SCHOOL
MEDITERRANEA UNIVERSITY OF REGGIO CALABRIA

DEPARTMENT OF INFORMATION ENGINEERING, INFRASTRUCTURES
AND SUSTAINABLE ENERGY

(DIIES)

PHD IN
INFORMATION ENGINEERING

S.S.D. ING-ING/05
XXIX CYCLE

ORGANIZATIONS AND
COMMUNITIES: TRUST,

SECURITY, AND PRIVACY ISSUES

CANDIDATE
SERENA NICOLAZZO

ADVISOR
Prof. Francesco BUCCAFURRI

COORDINATOR
Prof. Claudio DE CAPUA

REGGIO CALABRIA, FEBRUARY 2017

Finito di stampare nel mese di Aprile 2017

Edizione

Collana Quaderni del Dottorato di Ricerca in Ingegneria dell’Informazione
Curatore Prof. Claudio De Capua

ISBN 978-88-99352-22-6

Università degli Studi Mediterranea di Reggio Calabria
Salita Melissari Feo di Vito. Reggio Calabria

SERENA NICOLAZZO

ORGANIZATIONS AND
COMMUNITIES: TRUST,

SECURITY, AND PRIVACY ISSUES

The Teaching Staff of the PhD course in

INFORMATION ENGINEERING
consists of:

Claudio DE CAPUA (coordinator)

Francesco BUCCAFURRI

Francesco DELLA CORTE

Antonio IERA

Tommaso ISERNIA

Riccardo CAROTENUTO

Antonella MOLINARO

Domenico URSINO

Rosario CARBONE

Salvatore COCO

Giovanna IDONE

Giacomo MESSINA

Domenico ROSACI

Giuseppe ARANITI

Andrea Francesco MORABITO

Aime’ LAY EKUAKILLE

Giovanni ANGIULLI

Mariantonia COTRONEI

Pasquale FILIANOTI

Giuliana FAGGIO

Sofia GIUFFRÈ

Gianluca LAX

Fortunato PEZZIMENTI

Francesco D’Assisi RICCIARDELLI

Giuseppe RUGGERI

Valerio SCORDAMAGLIA

Claudia CAMPOLO

Rosario MORELLO

Leonardo MILITANO

Sandro RAO

Discere ne cesses; cura sapientia crescit;

Rara datur longo prudentia temporis usu.
(Disticha catonis 4,27)

Preface

This book is my PhD thesis and presents the research work I did at the DIIES depart-

ment of the University Mediterranea of Reggio Calabria during the XXIX PhD course

cycle from 2013 to 2016, under the supervision of Prof. Francesco Buccafurri.

My research activities were carried out, and are currently carried out, in cooper-

ation with high experienced and professional researchers such as Francesco Bucca-

furri himself, Gianluca Lax and Antonino Nocera from whom I had the opportunity

to learn everything I needed to complete the research work described in this thesis.

My research is based on the observation that, in this era of great technological

evolution, the notion of physical space is growing complex by including also the vir-

tual dimension. As a consequence, human interactions with other humans and the

surrounding environment are changing strengthening the impact of virtual commu-

nities over those that meet physically.

This scenario opens new opportunities for both research and business. Indeed,

the knowledge coming from the study of virtual communities along with informa-

tion about community members themselves, can feed advanced analysis, whose re-

sults are extremely valuable for a number of applications for physical communities.

However, as the use of this knowledge becomes pervasive, an always increasing num-

ber of security and privacy aspects must be taken into account. Access policies, data

storage, and security of data transfer, are prominent examples in this setting. There-

fore, in such a complex scenario, an integrated vision and cross dimension analyses

become mandatory.

This thesis follows the above reasoning, by addressing some important trust,

security, and privacy issues in both dimensions: online communities and physical

organizations. According to this choice, it can be organized into two main macro-

areas. The former covers our attempts to investigate the aspects related to privacy,

security and trust in online communities. The latter macro-area presents models

and approaches to handle privacy and security on both public and private physical

organizations.

II

It is a pleasure to thank the people who have helped me during this work. Firstly,

I would like to express my gratitude to my advisor Prof. Francesco Buccafurri for the

support of my PhD studies and related researches. His guidance helped me in my

research activity during my PhD course and in writing this thesis.

Besides my advisor, I would like to thank the rest of the computer engineering

group of the DIIES department who supported me during these years: Prof.Gianluca

Lax, Dr. Antonino Nocera, especially for their insightful comments, encouragements

and the time spent together.

February 2017 Serena Nicolazzo

III

To my family, especially to my aunt Giusy

Alla mia famiglia, a mia zia Giusy

Contents

Preface . I

1 Introduction . 1

1.1 Premise . 1

1.2 Online Communities . 2

1.3 Physical Organizations . 7

1.4 Plan of the Thesis . 15

Part I Online communities

2 Online communities: Social Networks . 21

2.1 Background. 21

2.2 Design specification . 24

2.2.1 Profile . 25

2.2.2 Links to external social networks . 26

2.2.3 Friendship . 26

2.2.4 Resources . 27

2.2.5 Actions on resources . 28

2.3 The conceptual model . 30

2.4 Building the model . 32

2.5 Case studies . 42

2.5.1 Information extraction . 42

2.5.2 Matching accounts on social networks . 46

2.6 Related work . 49

3 Privacy in Social Networks: a crucial issue . 53

3.1 Materials and Methods . 53

3.2 Results . 57

3.2.1 Privacy setting . 57

3.2.2 Friend overlap . 58

VI Contents

3.2.3 Friend distribution . 59

3.2.4 User Activity . 61

3.3 Discussion . 62

3.4 Limitations . 64

3.5 A threat to privacy in Facebook: a case study . 65

3.5.1 Approach formalization . 65

3.5.2 Preliminary evaluation . 72

3.6 Related Work . 73

4 A security problem: Social Network Mobile Apps . 75

4.1 Background. 75

4.2 Problem formulation and desiderata . 77

4.2.1 Motivations . 77

4.2.2 Solution Requirements . 78

4.3 System Architecture . 78

4.3.1 The Android service . 79

4.3.2 The middleware service . 80

4.3.3 Protocol . 82

4.4 Related work . 83

5 Trust and Online Communities: the case of TripAdvisor 85

5.1 Background. 85

5.2 The Reputation Model . 86

5.3 Application to TripAdvisor . 87

5.4 Implementation Issues and Validation . 89

5.5 Related Work . 92

Part II Private and Public Physical Organizations

6 Security of Transactions in E-government: A Social-Network-Based

Advanced Electronic Signature . 99

6.1 Background. 99

6.2 The Social-Network-Based Signature Model . 101

6.3 Security Model . 106

6.3.1 Assumptions, Security Properties, and Attacks 106

6.3.2 Security Analysis . 108

6.4 A Twitter-Based Instantiation of our Model . 114

6.4.1 Twitter Specifics . 114

6.4.2 T2S: Tweet to Sign . 115

6.5 Implementation of the proposal . 116

Contents VII

6.6 Performance Evaluation . 120

6.7 Discussion . 121

6.8 Related Work . 123

7 Anonymous Authentication for Delivery of Cloud Services 125

7.1 Overview of the Proposal . 125

7.2 The service delivery protocol . 127

7.3 Security Analysis . 129

7.4 Discussion . 131

7.5 Related work . 132

8 Security of Transactions: Tweetchain . 135

8.1 Background. 135

8.2 The Tweetchain Model . 137

8.3 Basic Approach . 137

8.4 Security analysis . 142

8.5 Discussion . 146

8.6 Related work . 147

9 Urban Security and Third-Party Cloud: the case of Video Surveillance . . 149

9.1 Background. 149

9.2 Scenario and Problem Formulation . 150

9.3 Basic Approach . 151

9.3.1 Database population protocol . 153

9.3.2 Database pruning protocol . 155

9.3.3 Integrity verification protocol . 156

9.4 Performance Comparison . 156

9.5 Security analysis . 158

9.6 Related work . 159

10 A Distributed Methodology and its Implementation for Privacy-

Preserving Access Accountability in Critical Environments 163

10.1 Problem formulation and solution sketch . 163

10.2 System architecture and implementation . 164

10.3 qID generation . 166

10.4 Log Analysis . 169

10.5 Validation . 170

10.5.1 Setting the system parameter . 171

10.5.2 Impact of d . 173

10.5.3 Impact of the number of monitored zones 173

VIII Contents

10.5.4 Impact of time . 174

10.6 Related work . 175

11 A Privacy-Preserving Localization Service for Assisted Living Facilities . 177

11.0.1 Motivation . 177

11.1 Privacy-preserving localization . 178

11.1.1 Running Example . 180

11.2 Case study . 182

11.3 Security Model . 183

11.3.1 Attack Model . 183

11.3.2 Security Analysis . 184

11.4 Discussion . 193

11.5 Related Work . 194

Part III Final Issues

12 Future Directions . 199

12.1 Online Communities . 199

12.2 Physical Organizations . 200

13 Conclusions . 203

References . 207

List of Figures

2.1 An example of a multiple social network scenario. 24

2.2 An example of the output of the Facebook Graph API 33

2.3 An XML-serialized FOAF document . 34

2.4 An example of a me edge using XFN. 35

2.5 An example of the output of the LinkedIn Job Lookup API. 35

2.6 An example of the output of the API method user_timeline. 37

2.7 An example of the output of the API method view. 38

2.8 The mind map of our XML Schema. 39

2.9 A portion of our XML Schema. 40

2.10 An example of an XML document. 41

3.1 A fragment of our dataset. 56

3.2 Private account distribution on the basis of their degree. 58

3.3 The scatter plot showing the relation between number of friends in

Twitter and Facebook. 61

3.4 The frequency distribution of the normalized activity coefficient for

the different types of user. 62

3.5 Graphical representation of the approach. 66

4.1 Deployment diagram of the proposed framework. 79

4.2 Android application execution representation. 80

4.3 A communication diagram of the entities involved in our system. 83

6.1 An example of a linked message. 103

6.2 An example of a k-linked message. 103

6.3 The deployment diagram of the T2S Service. 119

6.4 Generic timeline of T2S actions. 120

7.1 A user accessing the cloud to have information about an hospital and

to make a flight reservation. 126

X List of Figures

7.2 The identification phase. 128

7.3 The Service Request phase. 129

8.1 A scheme representing the Blockchain structure. 136

8.2 A scheme representing the registration procedure. 139

8.3 A scheme representing the transaction generation. 141

8.4 A fragment of the grid structure created by our protocol. 145

9.1 An example of Merkle Hask Tree. 150

9.2 A representation of the considered scenario. 151

9.3 An example of the chain of a single device image sequence. 153

9.4 An example of multiple device chains. 153

9.5 The initial state of m_tab with markers positioned at every hour. 154

9.6 An example of si_tab. 155

10.1 The BeagleBone with the RFID Adaptor Board and the Texas

Instrument’s TRF7970ATB RFID module . 165

10.2 The BeagleBone and the Logitech C920 webcam . 165

10.3 The deployment diagram of our system. 166

10.4 A sketch of our system architecture. 167

10.5 A partial representation of a log. 169

10.6 The planimetry of the environment considered. 172

10.7 Greatest value of d guaranteeing k-anonymity. 172

10.8 Violations versus size of qID domain. 173

10.9 Violations versus number of critical zones. 174

10.10Percentage of people versus time for different values of P B. 175

11.1 An example of protocol instantiation. 182

11.2 Number of residents with the same QID versus dC for different values

of a. 188

11.3 Number of residents with the same QID versus dC for different values

of d. 188

11.4 Number of residents with the same QID versus dC for different

number of residents (d = 83). 189

11.5 Number of residents with the same QID versus dC for different

number of residents (d = 62). 190

11.6 Number of residents with the same QID versus dC for the two

techniques. 190

11.7 Number of residents with the same QID inside a coverage area versus

time (seconds). 191

List of Figures XI

11.8 Number of residents with the same QID inside the coverage area

versus the percentage of involved users. 192

List of Tables

2.1 Dataset composition: number of data per feature and social network

(N.A. indicates that a feature is not available for that social network). . 45

2.2 The attributes compared to verify the correctness of the extracted

information. 46

2.3 Comparison among our approach and the state of the art. 48

2.4 A comparative analysis of our model. 51

3.1 Some statistics of our dataset. 57

3.2 The logarithmic binning function used to discretize degree. 58

3.3 Computing the friend overlap in Twitter and Facebook. 59

3.4 Average number of Twitter and Facebook friends. 60

3.5 The median of indegree and outdegree for the four sets of users. 60

3.6 The frequency distribution of the normalized activity coefficient for

the different types of user. 62

6.1 Time overhead of T2S actions. 121

7.1 Notations. 127

7.2 The messages exchanged in the protocol. 129

10.1 An example of the transformation of 6 EPCs. 168

11.1 Notations . 179

11.2 System parameter settings for the running example 181

11.3 An example of the transformation of 4 tag identifiers. 182

1

Introduction

This chapter is devoted to describe the framework in which this thesis lies and to introduce

the issues here faced. The chapter is divided into four main parts. The first gives a brief

premise, the second part introduces the aspects related to privacy, security and trust in

online communities. The third part presents the results achieved in the fields of privacy

and security on both public and private physical organizations. Finally, in the last section,

we provide an overview of the thesis organization.

1.1 Premise

In this era of disruptive technological evolution, the environment around us is be-

coming something that spans multiple dimensions, expanding beyond the notion of

physical space. Accordingly, also human interactions (both among humans and with

the environment) are changing. Virtual communities are as real as communities that

meet physically and, in most cases, the edge of the virtual and the real is blurred.

This scenario opens new opportunities for both research and business. As a mat-

ter of fact, virtual communities are places where people with common interests share

knowledge. This knowledge, along with information about community members

themselves, can be extremely valuable to perform analysis, whose results can pro-

vide many benefits for a number of applications built on top of physical communi-

ties. Some interesting and up-to-date examples can be the physical access control to

critical environments, and the formalization of tools to provide secure and traceable

transactions among people. However, there are a number of security and privacy im-

plications to take into account, including data access policies, data storage, security

of data transfer, and so on. As a consequence, an integrated vision is needed, and

cross dimension analyses are welcome.

This thesis follows the above trace, by addressing some basic yet important trust,

security, and privacy issues in both dimensions: online communities and physical

2 1 Introduction

organizations. This leads to divide the thesis into two main macro-areas, which are

introduced in the following two sections.

1.2 Online Communities

Online Social Networks (OSNs, for short), such as Twitter or Facebook, have expe-

rienced exponential growth in the last decade. Although these social systems of-

fer powerful means for interaction and communication and attracted the interest of

many researchers from disparate fields, they also give raise to privacy and security

concerns. The objective of the first part of this thesis is to deeply study some aspects

related to privacy and security of online communities by using OSNs as reference

models for this investigation.

However, because nowadays users spread their contents throughout several so-

cial systems, the power of OSNs can be fully exploited only if we move from a single-

social-network to a multi-social network perspective, still keeping a user-centered

vision. Indeed, despite the conceptual uniformity of the social-network universe in

terms of structure, basic mechanisms, main features, etc., each social network has, in

practice, its own terms, resources, and actions. This is a strong handicap for the de-

sign and implementation of applications aiming at analysing different aspects of on-

line communities. As a matter of fact, little exists in terms of models and languages

to support social-network-based programming in large, according to software engi-

neering principles of genericity and polymorphism.

For this reason, a first goal of this thesis is the implementation of a model to

generalize and match concepts, actions and relationships of existing social networks

[40, 52]. Clearly, our aim is not just the development of some APIs working over all

social networks, but of an approach allowing us to keep the typical semantics struc-

ture of a social network in this new multi-social network perspective. From this point

of view, a user-centered vision assumes a crucial role because, besides maintaining

all entities and relationships of single social networks, allows us to transparently

associate with a user all the information coming from the set of social networks he

belongs to.

This model is used throughout this thesis as an important tool to uniformly han-

dle social network data and as a mean to accomplish the crucial task of extracting

data from a multi-social network scenario to retrieve all the information needed for

our study on privacy and security on OSNs [46].

Specifically, concerning our investigations on privacy, we focus on two important

aspects: (i) the analysis of user behavior when it comes of privacy and disclosure

of personal information w.r.t. friendship and user activity; (ii) the robustness of so-

1.2 Online Communities 3

cial network privacy settings. This investigation can bring significant results useful

for different entities: for Internet and OSN providers to guide infrastructural and

application-level actions, for users themselves to enhance awareness in this poten-

tially insecure world, for companies and government institutions to make better use

of this huge network of people for their finalities, for scientists to better understand

individuals and communities.

Clearly, in this case, the trivial comparison of the behavior of (different) users on

different social networks does not give correct information, so we cannot just elabo-

rate results obtained in the literature in the different social networks. To give a trivial

example, if we want to study how the behavior of drivers change in cars A and B, we

should study a sample of people driving both the cars, and observe the differences

in the two experiences. We cannot simply study the expected behavior of drivers of

car A and the expected behavior of drivers of car B and compare them, because the

result would be affected by those traits that, for example, pushed people to use car A

instead of car B. The same happens for comparative studies on behavioral aspects of

online social networks, leading to the necessity of considering membership overlap

(i.e., users belonging to all the studied OSNs) as the right perspective from which

drawing meaningful and well-founded results. Therefore, we focus on the activities

of the same user in different social networks by following the above multi-social net-

work perspective. Our aim is to study a number of behavioral aspects of people in

social networks and to use this knowledge to further investigate privacy concerns

and user habits in term of disclosure of personal information. We perform this study

on the two most popular social networks in the current Web scenario, which are

Facebook and Twitter.

We start this analysis by studying friendship relationships. Indeed, OSNs are im-

portant for maintaining social relations and previous studies have found that friend-

ship in such systems is positively correlated with many other aspect of both virtual

and real life. As for this aspect, we study what is the attitude of users to have friend-

ship relations overlapping between Facebook and Twitter and if a correlation be-

tween the number of friends in Twitter and Facebook exists.

Then, we move our focus to the analysis of the activity level of users belong-

ing to both Twitter and Facebook. [193] found that the prime goal of user activity

on Facebook is to self-promote or to maintain relationships, whereas other studies

showed that some types of activity are a sign of narcissism [203]. Our study aims to

answer the question “What about user activity and how the prevalence of activity on

Facebook or Twitter is correlated to membership overlap?”.

The knowledge derived by the former study is then used to investigate privacy

concerns and the disclosure of personal information in relation to the user activity

4 1 Introduction

level and the membership to more social systems. Indeed, recent research results

on Facebook have shown that both a strong association between low engagement

and privacy concern [220] and a significant relationship between privacy awareness

and privacy concerns/self-disclosure [255] exist. Our study aims at answering the

question “Is there a connection between user awareness about privacy threats, user

activity level and the membership overlap between Twitter and Facebook?”.

The answers to all these questions are interesting and sometimes surprising,

however a basic conclusion of this study is that there is an always increasing number

of active users having more online privacy literacy and that the use of privacy tools

provided by social networks will be more and more widespread and critical in the

next future. This consideration is the motivation of a subsequent investigation focus-

ing on security in OSNs and, specifically, on the robustness of the privacy protection

feature of Facebook.

Facebook’s privacy setting gives users the possibility to choose who is allowed to

see their profile information. Hence, a user who does not want to reveal his friend

list information to everyone can specify to hide such an information in the privacy

setting page. By default, everyone can see the friends of a user. However, there are

many Facebook users having a private list of friends, meaning that this information

is often (reasonably) perceived as sensible. We show that this privacy protection fea-

ture can be broken even in the least advantageous conditions for the adversary [49].

Obviously, if the adversary knows the victim in the real life or has information

about the contexts in which the victim lives, he can easily guess some Facebook pro-

files owned by real-life friends of the victim whose friend list is public. It is rather

intuitive that only few seeds are enough to discover incrementally large portions of

private friends, as usually friends form highly connected clusters. Therefore, this

case is trivial. But we want to consider the most difficult case. The adversary has

only the name of the victim and the link to his Facebook profile, he can guess only

some general information about him (nationality, for example), but has no informa-

tion about his real life, his job, his interests, etc. This case, for example, may occur in

preliminary cyber investigations, if the Web intelligence does not have the complete

access to Facebook database. Again, the privacy of the list of friends can be broken

once only a few friends (even one) are found with public profiles. But, how to find

them? Since guessable general information selects a very large portion of Facebook

users, it would seem that the only way for the adversary is to try an infeasible guess-

and-check attack. However, once again, we adopt a multi-social network view and

we leverage a new social property, called “Interest Assortativity”, to build a much

more efficient attack allowing the adversary to break the privacy of the victim in

most of the cases. The “Interest Assortativity” property is also described in this the-

1.2 Online Communities 5

sis and is another interesting output of this work that can find application in a lot of

desperate scenarios [51].

From what has been stated before, since their development, OSNs have played a

continuous role in how people interact with each other. Moreover, they contribute

to how companies interact with potential customers as well. This is even more true

when it comes of mobile applications based on social network services. Indeed, the

diffusion of smartphones has rapidly modified people habits, by allowing people to

be always connected via social networks, but also by enabling ubiquitous and per-

vasive applications. This has dramatically enlarged the attack surface making each

user of mobile applications a potential victim of cyber-attacks. Users can be affected

in several ways, including data theft or corruption, annoyance, device damage or

location tracking.

Among mobile applications, social network applications have a great potential

for development, because they use social networks as a platform for information

sharing, user-centered content production, and interoperability. Activities and in-

terests can be shared among people, making applications aware of the social factor,

which is often determinant for the success and the effectiveness of an application.

However, one of the problems that can limit the full diffusion of social network

applications is that, in the current real-life scenario, most of social network providers

do not support a fine-grained control when an application uses APIs of social net-

works to access a profile. This is the case of Twitter, in which the supported access

control policy is roughly on/off. For instance, if an application needs the right to

tweet within a given user profile, the user is enforced to grant to the application

the right to modify (even to delete) any information included in his profile with no

restriction. This enables a large set of security threats because users cannot fully

control what their applications do in their Twitter profile, so they cannot block their

potential malicious behavior.

We can argue that the effect of the above policy may strongly limit the growth

and the diffusion of social network applications, despite their strategic utility. For

instance, even for an inexpert user, it can appear inopportune to run an application

asking for a complete control of his Twitter profile.

To overcome this problem, we propose an effective solution working for An-

droid Twitter applications based on a middleware approach [47]. This middleware

is spread-out between the smartphone operating system and a server-side platform,

and allows the definition of a fine-grained access control model to protect end-users.

The client-side middleware is thought as an application that hijacks Twitter API calls

to the server-side middleware, where calls are implemented according to the access

control rules. However, a large-scale adoption of our solution could be implemented

6 1 Introduction

as an extension of Android itself. Interestingly, our solution enables other possible

benefits, as anomaly-based malware detection leveraging API-call patterns. More-

over, by using the aforementioned model thoroughly described in this thesis, it can

be extended to a multi-social network scenario.

The last topic we deal with in the context of online communities is related to

trust and reputation. The use of trust-based approaches in real-life systems has been

widely recognized as a promising solution to improve the dependability of these

systems. The term reputation is used to measure the indirect trust perceived by a

community with respect to a given service provider. Reputation has thus a crucial

role when a user u does not have sufficient knowledge about a service provider s

because of the lack of past experience. Then, u can use the reputation of s to decide

whether to use services provided by s.

There are various models to represent reputation (often combined with reliability,

which is a measure based on direct past experiences). However, there are many open

problems mainly related to the issue of feedback trustworthiness. As a matter of fact,

the reputation measure suffers from an intrinsic weakness related to the competitive

nature of systems where it is used, so that a user cannot always assume that other

users will behave honestly. Some actions could be done with the goal of deceiving

the community to obtain some advantage. Trust-based approaches tend to keep the

system dependable also in this case.

In the literature, the notion of certified reputation has been introduced in the con-

text of open Multi-Agent Systems (MAS) [123]. However, the translation of the gen-

eral concept into concrete models is a challenging and still open issue.

This part of this thesis gives a contribution in this research field, by proposing

a reputation model that abstractly considers service providers, users and feedbacks,

and implements the theoretical notion of certified reputation to concretely define a

strategy to normalize feedback scores towards reliable values [42, 44].

We apply this model to the case of TripAdvisor, which is a very famous travel

website collecting reviews of travel-related contents. On the basis of these reviews,

an aggregative score of each content is shown. Our approach can be profitability ap-

plied to TripAdvisor, as we cannot assume that all its actors behave honestly and thus

the difference between user evaluations derives not only from physiological subjec-

tivity. Instead, there are many users who try to jeopardize the reputation system by

means of malicious behavior for vandalism or, more likely, to obtain advantages. On

the other hand, TripAvisor (as other similar services) is becoming more and more a

system with critical impact, as from it may depend the success or the end of busi-

ness as hotels and restaurants. Therefore, improving its dependability is certainly a

relevant challenge.

1.3 Physical Organizations 7

We propose a solution to the above problem not increasing invasiveness nor re-

ducing usability of the system. Moreover, our approach fully guarantees backward

compatibility, which is an essential requirement in solutions aimed at a real utiliza-

tion.

1.3 Physical Organizations

The second part of this thesis focuses on strategies assessing privacy and security on

both public and private physical organizations.

Nowadays, the digitalization of the public sector and its services is increasing.

This trend, known as e-government, leads to changes in the way communications

between people and the public sector happen, and it has impact also on the way the

public sector is governed and on how public services are delivered.

Clearly, these changes give raise to a number of challenges in term of security

and privacy. Indeed, a basic level of confidence and security must be established in

order for people to trust and use digital public services.

One of the main problems in this context is the authentication of transactions.

The typical signature formats adopted for qualified electronic signatures are CADES

and XADES signatures [1]. Qualified electronic signature has become the basic tool

of any digitalization process, where exchanging documents with full legal validity

has a significant role. In general, we expect that both in e-government applications

and in transactions between citizens and companies, the use of qualified electronic

signature will always be increasing in the next future.

However, in this process, there are some aspects to take into account. These as-

pects are of two types: related to the cost and related to the usability of qualified

electronic signature. Indeed, the cost of qualified signature creation devices (smart

cards or HSM-services) is certainly not negligible. Moreover, the invasiveness of the

operations related to signature creation, signature verification, user registration, and

certificate management is relevant. These aspects are under the attention of legisla-

tors. For instance, the European Union has recently adopted an act [19] which pro-

motes the use of the advanced electronic signature, for which no qualification of

certificates and devices is required. The new regulatory framework allows the le-

gal enforceability of advanced electronic signature, for which advanced electronic

signature has automatic legal value if applied to closed domains, such as document

exchange between municipal public offices and registered citizens, university and

its students, or private company and employees.

This framework gives a strong motivation to design new protocols that, besides

the specific features of qualified electronic signature, relax also the use of public-

8 1 Introduction

key encryption. As a matter of fact, advanced electronic signature does not require

a specific technological solution too, even though no concrete solutions not using

public-key encryption are currently adopted.

In this context, we propose a new advanced electronic signature protocol not us-

ing neither public-key encryption nor qualified signature creation devices nor qual-

ified certificates [38, 59, 39]. The basic idea underlying our solution is to leverage

the following properties: (1) the power of online social network to share information

among people, (2) the plausibility of a number of assumptions concerning the de-

pendability of services provided by online social networks, (3) the trustworthiness

of social network providers, and (4) the level of assurance of the accountability as-

sociated with the interactions between users and their social network profile. The

signature functions are spread out over social-network profiles, by giving to posting

and searching operations a central role in both signature generation and signature

verification processes in a very usable and scalable fashion. This makes our signa-

ture strongly oriented to cooperative work and information-sharing-based applica-

tions. To be realistic and effective, we implement our solution on the popular social

network Twitter without assuming any change of its features and through a deep

security analysis, we prove its resistance to known attacks in the context of qualified

electronic signature.

Always in the context of e-government, another critical aspect is related to the

authentication of users in scenarios where their privacy is threatened by honest-but-

curious providers. This aspect is extremely timely in the context of cloud computing,

in which the knowledge available to providers about services accessed by their users

may be an important mean of privacy leakage.

Cloud computing is recently receiving a lot of attention from both research and

industrial worlds. The cloud paradigm allows a user to transparently move his stor-

age and computation to servers distributed all over the Internet (i.e., cloud) that im-

plement services on-demand. Cloud provides its customers with reliable, efficient,

and low cost computing services such as e-mail, instant messaging, storage systems,

etc. However, such an outsourcing paradigm introduces new security and privacy

threats, mainly related to the fact that cloud providers become owner of (even sen-

sitive) information regarding their customers. In application contexts linked to e-

government, privacy requirements become crucial, indeed sensitive information can

be drawn by just observing which services a user is accessing to, even though we as-

sume that contents are fully obscured. Indeed, it is widely accepted that the adoption

of an honest-but-curious adversary assumption can be realistically done in the context

of cloud providers. In fact, information regarding customers may give these parties

1.3 Physical Organizations 9

strong strategic advantages. Thus, even if we could assume that cloud providers exe-

cute services correctly, they might look at the information exchange between entities.

While the aspect of data confidentiality and the related issue of key management

have received a lot of attention in the recent scientific literature, the problem of

information leakage arising from the observation of user requests (i.e., accesses to

cloud services) has been much less investigated. Although a number of proposal

leveraging anonymous authentication schemes, group signatures, zero knowledge

protocols exist [72, 169], a number of challenging problems should be completely

addressed to make these solutions really applicable.

Consider, for example, the case in which a government party has the role of end-

service provider offered to citizens through non-government cloud providers. This

is an emergent scenario, due to the general difficulty of governments to adopt na-

tional clouds. In this case, customers of a cloud can operate promiscuously, both

for e-government and private services. Here, an opportunity arises. A trusted third

party exists for free (e.g., some e-government entity), which can play a role in the

authentication process (consider that we are assisting to a rapid evolution of EU

Countries towards digital identity systems [13]), and we may assume that no collu-

sion with cloud providers exists. At the same time, besides the strong requirement

of privacy against cloud providers, a specific issue appears. A full accountability of

all user activity is necessary if we consider both the responsibilities coming from law

requirements and the general need of security.

In this reference scenario, we propose a solution providing anonymous access to

cloud services yet preserving full user accountability and showing nice characteris-

tics of computational cheapness [45]. With no collusion of the involved parties, no

information about the identity of the user accessing the cloud is obtainable. Account-

ability is guaranteed, in case of need, by merging information coming from multiple

parties.

Importantly, anonymity of user activity is reached by guaranteeing both the

anonymous authentication and the unlinkability of user requests. To do this, we

combine a multi-party cryptographic protocol with a cooperative P2P-based ap-

proach. We believe that this new way to integrate P2P and cloud computing, in

which the customers of the cloud cooperate with each other to obtain privacy fea-

tures and increased efficiency, is sustainable also from a business point of view, due

to the reciprocal advantage obtained by users. Conversely, a solution based on Tor

[139], appears not realistic due to legal problems which the subscription to such

anonymization system may result in.

Another interesting and new aspect we focus on is Blockchain technology, that al-

lows mutually distrustful parties to transact safely without trusted third parties and

10 1 Introduction

avoiding high legal and transactional cost. Coordination, record keeping, and irre-

vocability of transactions are features that make Blockchain technology exploitable

not just for crypto-currencies. Indeed, a variety of applications can be built on top of

this technology, making Blockchain a registry and inventory system for the record-

ing, tracking, monitoring, and transacting of all assets.

Despite the power of Blockchain whose charm is recently attracting the interest

of many companies and researches throughout the world, it is well-known that the

concrete implementation of the protocol is not free from weaknesses. The first is that

the real Blockchain nodes are only full nodes, the other nodes must trust (some) full

nodes. Thus, the full P2P-like decentralization is only theoretical. Coherently, sybil

attacks on non-full nodes could be performed to deceive them in the verification

step. Another serious problem of Blockchain is that its security is based on the proof

of work, which is very expensive from a computational point of view and then also

from a global energy consumption point of view. Consider that the proof of work

results in a highly duplicated computational efforts, of which only a small fraction

is useful for the protocol. In other words, the protocol determines a huge quantity

of work, and thus energy lost. The last unpleasant feature of Blockchain is that any

participant in the Blockchain system, even a user, must enter in a P2P network, and

this is not well-accepted from many people, even for the perception of low security.

Starting from the above observations, we address the following question. Is there

an alternative to Blockchain? We found an answer in the extraordinary power of

OSNs in sharing information among people. Having in mind that this power should

be exploited in a richer and more complex way than the state of the art, we propose

a fully decentralized protocol that mimics Blockchain transactions by simple tweets,

thus solving natively the problem of agreeing a common transaction sequence, from

which the need of the proof of work arises in Blockchain. We call this protocol

Tweetchain [56, 57]. The transaction tweets, together with a sufficient number of

confirmation tweets given by the community, form a meshed chain making impos-

sible for anyone, including Twitter itself, to alter, delete or forge valid transactions.

All nodes participate in the same way, so that from a conceptual point of view, the

protocol is truly decentralized. No P2P feature must be enabled on the client ma-

chine, but only an application working on the Twitter profile of the corresponding

user. The role of Twitter is not that of a trusted third party. Not even a provider of

some part of the protocol. It just continues to publish tweets, as before. Importantly,

Twitter cannot selectively omit the collaboration on some transaction, some user,

some period, etc. It could only block the whole Tweetchain community. This is very

little plausible and is similar to the event that Blockchain is stopped by the enti-

ties providing the Internet. Anyway, to prevent this possibility, we could extend our

1.3 Physical Organizations 11

protocol to involve multi-social networks by using, once again, the model described

above.

In the context of physical organization, besides investigating approaches related

to e-government, another fundamental activity concerns the definition of strategies

to improve the security of physical environments. Therefore, this part of the thesis

deals also with issues related to the field of urban and homeland security.

Specifically, urban and homeland security are settings in which monitoring sys-

tems produce a huge amount of data, and where the integrated vision mentioned

earlier is more and more important. An emblematic case is that of video surveil-

lance, especially if a capillary solution is adopted. Since, as stated before, more and

more often, both private and public organizations rely on cloud-based services sup-

plied by third parties, it is plausible that the municipality finds convenient to move

video surveillance data to a third-party cloud. In this case, the trustworthiness of the

cloud provider becomes a critical point. Among other threats, the possibility that the

cloud does not return intact responses to queries has to be considered. In order to

solve this issue, we propose an approach to allow the verification of the complete-

ness, freshness and correctness of cloud query results.

This is a very important feature as, nowadays, a user has often the (legal) neces-

sity of proving that query results are not compromised.

This problem is well known in the literature, under the name of query integrity,

and the increasing attention towards the cloud has also renewed the interest in this

issue [209]). Solving this problem means to allow users to verify that query results

are complete (i.e., no qualifying tuples are omitted), fresh (i.e., the newest version of

the results are returned), and correct (i.e., the result values are not corrupted).

In our scenario of video surveillance data streams, append operations and range

queries are dominant, and the efficiency is a critical factor. Our focus is mainly about

the high frequency of the insert operation (which is, in this case, an append opera-

tion), and about the limited resources in terms of both computation and power of

devices responsible of insertions in a distributed environment.

In a similar scenario, classical general-purpose deterministic techniques for

query integrity appear little suitable, as the computation required to update the

extra data structures could become a bottleneck. To overcome this drawback we pro-

pose a new deterministic technique, which is proved to be more efficient on inser-

tions than state-of-the art techniques, and also efficiently supporting range queries,

which are the relevant queries in this setting (a user typically looks for video tempo-

ral intervals) [50, 53, 54, 55]. Therefore, our ambition is certainly not to invalidate

the state of the art on the general-purpose deterministic techniques for query in-

tegrity, but just to address this problem in an emergent application and very timely

12 1 Introduction

in the context of urban security (we are more and more moving towards distributed

sensing low-power-device architectures) and to find a suitable solution to enable

query integrity verification.

Clearly, monitoring systems based on video surveillance could be little suitable

in contexts where people privacy could be violated by the continuous recording of

their movements and, in most of these cases, such a solution could not be compliant

with law requirements. As a consequence, finding the right trade-off between people

privacy and security/safety requirements is an important challenge.

Therefore, another interesting aspect in the context of urban security we deal

with in this thesis is the design of a complex system based on a probabilistic

framework which supports a re-interpretation of the classical k-anonymity notion

[48, 41, 43, 39]. To implement this model allowing us to guess patient location with

probability k−1, we leverage an infrastructure of RFID readers covering an areas of

the monitored environment, in which people are equipped with suitable designed

RFID tags. RFID tags periodically send a (PRNG-based) dynamic ID that does not

disclose patient’s identity because it is always guaranteed that at least other k − 1

patients send the same ID at the same stage. This probabilistic framework allows us

to tune the parameters of the proposed strategy to solve the trade-off between local-

ization precision and privacy level. Obviously, whenever k = 1, our model reduces to

existing people’ localization systems from the side of precision, but maintains pri-

vacy guaranteed against both malicious access of an intruder to location data and

eavesdropping attacks.

We study two application scenarios leveraging this framework: the first is related

to critical infrastructures, whereas the second deals with Assistive Living Facilities

(ALFs).

The first application deals with critical infrastructure. The problem of account-

ability of people’s access to physical environments is receiving great attention in

recent times, also because of the emergent risks related to terrorism. Specifically, in-

door tracking to allow a-posteriori identification of the authors of an illegal action

is an important issue. Consider, for example, a security/safety incident occurred in

a museum, which hosts thousands of visitors per day. Besides video surveillance, an

effective possibility for tracking people is based on the use of RFIDs, in such a way

as to have logs reporting people localization at any time, allowing us to restore pre-

cise and decisive information in a faster way than video surveillance. This kind of

solution requires that people entrance in the surveillance environment is registered.

Anyway, this is an acceptable requirement (often already adopted) in case of crit-

ical environments (government buildings, museums, safety-critical environments,

tribunals, etc.) and high-level attention.

1.3 Physical Organizations 13

Clearly, in this scenario the application of the probabilistic framework based on

the k-anonymity scheme described above may be suitable. Indeed, the requirement

of storing a continuous log on the accesses to all the physical entrance in a building

gives rise to other security challenges.

To solve this issue, we propose an RFID/BeagleBone-based system leveraging

our k-anonymity-based framework to generate logs in which events are stored in

such a way that the association with people is possible with a suitable degree of un-

certainty. More in details, generated logs fulfill the k-anonymity property for which

we are able to guess who accessed a place (for example, a room of a museum), at a

given time, with probability k−1. Indeed, the server receives k-anonymous logs and no

party knows detailed information. It is worth noting that this concept of k-anonymity

meets the security requirement of identifying the person who was present in a given

location at a given time, with uncertainty equal to k. This means for example that,

in case of a security/safety incident (e.g., an explosion caused by an act of terrorism)

we can restrict the pool of suspects from the whole (potentially huge) population to

a few (i.e., k) people.

The above goal is obtained by running a distributed algorithm over the nodes of

the network (i.e., the “smart” RFID readers) in such a way that they independently

generate quasi-IDs guaranteeing the above privacy property. We remark that the

distributed fashion of our methodology is the basis of its effectiveness from the point

of view of privacy. Indeed, any centralized solution would not be able to protect data

from attacks in which we assume that the adversary accesses the central server. In

contrast, in our solution, only a simultaneous (unrealistic) access of the adversary to

all the nodes of the network would allow him to break privacy.

As an evolution of the approach described above the second solution deals with

Assisted Living Facilities. In health assistive environments the possibility of know-

ing patient’s position can be very important, since may represent a valid support

to medical activities and assistance strategies. Obviously, location data are strongly

sensitive, especially in the context we are considering, so that we have to adopt suit-

able strategies in order to avoid that such an information can be maliciously used by

unauthorized third parties. In some cases, an assistive environment includes regions

so sensitive that it is questionable that even a trusted party has full control on pa-

tients’ location data. Besides standard hospitals, this is the case, for example, of car-

ing assistive living units, drug rehabilitation or alcoholism treatment centers, hos-

pices and elderly care institutions, institutions for mental disorders, etc. As a matter

of fact, a large effort is required by standards and norms to enforce the prevention of

health privacy violations also by abuse of authorized parties. But, where is the exact

border between utility of having precise information about patients’ location and

14 1 Introduction

the right of keeping private the exact movements of patients is unclear. Thus, the

solution of the above trade-off merits great attention from the scientific community.

Indeed, commercial and research solutions, even based on past patents such as [3],

exist aimed at positioning patients in health assistive environments. However, none

of them stops misuse and curtails privacy violations also from the provider of the

localization service (even due to data loss or theft). We argue that more advanced so-

lutions of the above trade-off are desiderable, to make localization systems resistant

to threats to patients’ privacy which can prejudice human dignity and fundamen-

tal rights. Clearly, the solution to this problem is intrinsically very different with

respect to that adopted for the access monitoring to critical areas. Indeed, here the

system should be able to provide patients’ location in every moment inside a given

environment. It is worth noting that our contribution has some merits also from a

theoretic point of view, as it introduce a novel perspective in the field of k-anonymity

in location-aware applications. Indeed, while the classical k-anonymity localization

aims to satisfy privacy requirements by changing or extending the exact user posi-

tions in such a way that k users are confused each other, our approach returns for

each location a number of k possible users, with no detectable correlation. This new

concept of k-anonymity, not only preserves privacy like in the classical case, fully

meets the requirement of finding a user with a small number of attempts. This is

an indefeasible feature in an assistive environment, in which a number of events re-

quiring a rapid localization of a patient may occur. For example, knowing anytime

just a small number of possible positions of a given patient living in a nursing home

for elder adults or in a mental hospital, does not give us the possibility to infer his

real position, but allows us to reach the patient through some additional informa-

tion (like that obtained from the medical staff belonging to the candidate places, or

by means of a physical search). Thus, the application of k-anonymous localization to

the context of assistive environments does not regard the possibility of monitoring

patients’ moving behavior, but just the possibility of leaving the (critical) patient

free of moving in a possibly huge environment without the risk of not to be able to

quickly find him when needed (security reasons, therapy actions, assistive requests,

behavior checks, emergency, etc.). A typical case when the above conditions fully

occur is for patients with Alzheimer’s. Observe that a malicious usage of localiza-

tion queries aimed to track patients’ moving behavior is contrasted in our approach

simply by inhibiting continuous querying in such a way that two successive location

queries cannot be related through the distance of the corresponding replies.

1.4 Plan of the Thesis 15

1.4 Plan of the Thesis

This thesis studies a number of problems related to trust, security and privacy within

both virtual and physical communities. The structure of this thesis is composed of

three parts. The first deals with the aspects related to privacy, security and trust

in online communities and provides all details on tools and models built to carry

out such investigation. The second part focuses on strategies assessing privacy and

security on both public and private physical organizations. Finally, the third part

presents the conclusions and future research directions.

More in detail, Chapter 2 deals with the crucial aspect of extracting data from a

multi-social network scenario. To solve this task a model to match concepts in social

networks and a framework providing support meta-APIs are presented. This model

will be exploited throughout this thesis as a fundamental tool to manage data and

information coming from this multi-social network environment.

Chapter 3 describes a comparative study on the behavior of users in two very

popular social networks. The aim of this investigation is to understand how users

deals with privacy and disclosure of personal information in relation to some mea-

sures based on user activity and friendship relationships. Moreover, this chapter fo-

cuses on the robustness of Facebook privacy settings and describes a potential threat

to such a system.

Chapter 4 focuses on the security of social-network-mobile apps and, here, a mid-

dleware approach is proposed to allow the implementation of fine-grained access

control rules to Application Programming Interfaces provided by social networks.

The last chapter of the first part, Chapter 5, discusses the topic of trust in online

communities. It describes a reputation model abstractly implementing the theoret-

ical notion of certified reputation by leveraging a large set of information (service

providers, users and feedbacks) available in social networks. This model is, then,

applied to a real case-study, i.e. to the TripAdvisor tourism platform.

The second part of this thesis, instead, deals with some strategies for privacy

and security on both public and private physical organizations. The first three ap-

proaches described in this part lie in the field of e-governement. In particular, Chap-

ter 6 presents a new electronic signature protocol, which does not use public-key en-

cryption, qualified signature creation devices or qualified certificates. This approach

leverages the power of online social networks and spreads out signature functions

over social-network profiles.

In Chapter 7 we propose an authentication scheme supporting full anonymity

of users and unlinkability of service requests in a cloud computing environment.

Whereas, in Chapter 8 we present an alternative to Blockchain that leverages the

16 1 Introduction

popular social network Twitter, and ensures the security of transactions by building

a meshed chain of tweets. The last three chapters of the second part of this thesis de-

scribe issues related to the field of urban security. In particular, Chapter 9 proposes

an approach to allow the verification of the integrity of range queries in an envi-

ronment with high constraints in terms of insertion computational costs. Chapter

10 and Chapter 11 present the application of a framework that allows the moni-

toring of people movements using a privacy-preserving identification technique, to

two scenarios: Critical infrastructures (Chapter 10) and Assistive Living Facilities

(Chapter 11).

Finally, in the third part of this thesis, Chapter 12 sketches some future develop-

ments of our research, whereas in Chapter 13 we draw our conclusions. The bibliog-

raphy closes this part of the thesis.

Part I

Online communities

19

The role of Online Social Networks (OSNs, for short) is becoming increasingly

important in everyday life. This is also true for research scenarios, where OSNs are

considered as reference models to analyse communities.

This part is devoted to deeply study social networks as representation of online

communities. It focuses on four main aspects: data extraction, privacy, security and

trust. In particular, Chapter 2 deals with the crucial aspect of extracting data from

a multi-social network scenario. The output of this research is a model to generalize

concepts, actions and relationships of existing social networks.This can be used to

produce meta-APIs for data extraction. The system implementing this model relies

on technologies such as FOAF, XFN and the APIs provided by the OSN. This system

is used throughout the whole thesis as a mean for dealing with the of multi-social

network paradigm described above.

Concerning the studies on privacy issues, Chapter 3 aims at analyzing two key

aspects: (i) the behavior of users belonging to both Facebook and Twitter especially

focusing on privacy and disclosure of personal information, friendship and user ac-

tivity; (ii) user perception of privacy and the robustness of Facebook privacy set-

tings. This chapter ends with the presentation of a possible attack to the mechanism

adopted by Facebook to keep users’ friend list private.

The investigation related to the field of security is presented in Chapter 4. In

particular, it focuses on security issues for social network mobile apps. Nowadays,

mobile applications security is one of the most important topics in the field of in-

formation security, due to their pervasiveness in people’s life. Among mobile appli-

cations, those that interact with social network profiles, have a great potential for

development, as they intercept another powerful asset of today cyberspace. Hence,

in this scenario the lack of fine-grained control when an application uses the APIs

of a social network to access a profile may lead to security threats. To overcome this

problem, Chapter 4 describes an effective solution to these issues for Android appli-

cations.

20

Finally, Chapter 5 discusses the topics of trust inside online communities. Many

real-life reputation models show several drawbacks making the systems adopting

them vulnerable to users’ misbehavior. Therefore, this Chapter proposes a reputa-

tion model abstractly considering service providers, users and feedbacks, and imple-

menting the theoretical notion of certified reputation to concretely define a strategy

to normalize feedback scores towards reliable values. This model is then applied to

the case of TripAdvisor, by proposing a solution to improve its dependability neither

increasing invasiveness nor reducing usability of the system.

2

Online communities: Social Networks

Online Social Networks have become so pervasive in people’s lives that they can play a

crucial role in the design and the development process of applications. Moreover, from

a research point of view, OSNs can be considered as reference models for the analysis of

online communities. At this moment, standard networking programming is not adequate

to support social-network-based programming in large, according to software engineering

principles of genericity and polymorphism. This drawback is evident when applications

should be built on top of multiple social networks still keeping a user-centered vision. In-

deed, the heterogeneity of social networks does not allow the development of software with

a suitable abstraction level. In this chapter, we cover the above gap by defining and im-

plementing a model aimed at generalizing concepts, actions and relationships of existing

social networks. We will leverage this model for all the approaches based on the multi-

social network paradigm described above.

2.1 Background

This section provides the background necessary to fully understand the concepts

presented in this chapter. First, it discusses the main features that differentiate a

social network from a regular website, then it lists the social networks we analyze

to build our model and, finally, it describes the reference scenario of this chapter,

which involves social networks altogether.

Online social networks (OSNs) provide powerful technical features to make com-

munication among users easy. Their backbone consists of public profiles, which col-

lect personal information and interests, and an articulated list of friends who are

other users of the system. When a user joins a social network, usually he has to fill

his own profile with descriptors, such as age, location, interests, photos and mul-

timedia contents. Moreover, an OSN models entities and connections among them.

Entities are often individuals who connected to each other by personal relationships,

interactions, or information flows. The collection of friends is not simply a list of

22 2 Online communities: Social Networks

close profiles. It represents a microcosm inside the social network, where each user

can interact with others. Because a friend list is visible to everyone, users can trace

friend links. A new participant can find and add a new friend using the friend lists

of the other users.

Profiles and friend lists are only two key features of social networks. The third

feature allows users to write comments, which are prominently displayed and are

visible to anyone accesses the profile of the user who generates it.

The three features (profiles, friends lists and comments) represent the basic

structure of a social network. Moreover, all social networks can have a set of basic

functionalities which are considered essential to qualify them as a social networking

service. These functionalities are:

• the ability to set up and customize a personal profile by simple forms;

• an utility that allows members to reference other users in their posts;

• a feature allowing users to make a granular control of shared information (pri-

vacy settings);

• the ability to block an unwanted member in order to exclude him from the friend

list;

• a homepage containing personal information, notes and individual picture al-

bums.

Most of the OSNs include also many other proprietary functionalities, such as

instantaneous messages, photo tagging tools, notifications, photo and video sharing,

the ability to own, form or be member of a group or a community within the net-

work, and to include new “social applications” or gadgets.

In our article, we focus on some specific social sites chosen according to their

popularity and specificities. However, most of the other social networks not men-

tioned here, have functionalities similar to that described below. The social network

data are referred to [222].

Twitter is a microblogging and an online social networking service that allows

users to exchange short (140-character) messages called tweets. We choose it because

it currently ranks as one of the leading social networks worldwide based on active

users. As of the fourth quarter of 2014, Twitter has 288 million monthly active

users. The peculiarity of Twitter lies in its efficiency to spread out information in-

stantaneously: it allows one person to inform millions of people in seconds, and

suddenly to see responses and direct replies.

Facebook is the biggest social network in the world and allows people to connect

to each other, upload an unlimited number of photos, post links and videos. At the

end of 2014, it has more than 1.39 billion global monthly active users. One of the

2.1 Background 23

winning factor of Facebook is its user centric vision, as it is the first social network

to literally focus all of the attention on the user and what he wants to express and

portray about himself.

LinkedIn is a business-oriented social networking service. With close to 347 mil-

lion members worldwide in December 2014, it is one of the most popular social net-

work in terms of active users and the most trustworthy source of professional con-

tent according to UK business professionals. Available in more than 200 countries,

its website focuses on business connections and industry contacts for employers and

working professionals, allowing companies to present themselves and users to find

job listings, to build their career and to stay in touch with their connections in their

area of expertise.

Flickr is an image hosting and video hosting website and an online community

and a multimedia networks. The main aim of Flickr is to allow users to upload their

photos as well as organize and share them with other users. We choose it because

it is one of the most used online photo management and sharing application in the

world. It provides users with a massive online photo storage allotment of a whole

terabyte.

Google+ is a social networking and identity service owned and operated by

Google. Its 359 millions of active users make it a leading social networks worldwide.

It is intended to integrate all Google services (Gmail, Google Maps, search, Google

Calendar, etc.) into one cohesive network, incorporating everything that searchers

use at Google into a comprehensive social and content dashboard.

LiveJournal is a community publishing platform and a social networking ser-

vice where users can keep a blog, journal or diary. It has more than 50 million jour-

nals on different topics like politics, entertainment, fashion, literature and design.

We choose LiveJournal because it has been well studied by social network analyz-

ers in the past.

Advogato is an online community and social networking site dedicated to the

development of free software. It represents a resource for free software develop-

ers because it provides a research testbed for group trust metrics and other social

networking technologies. This site is mentioned for its early adoption of the FOAF

ontology as an alternative method for showing user information.

about.me is a personal web hosting service that ties together users of other social-

networking sites. It also includes analytics that let users track things like how many

people viewed their about.me page and which other social-networking profiles they

viewed from there. We choose it because of its main feature of linking together in

the user profile relevant external sites and multiple social networking websites such

as Facebook, Flickr, Google+, LinkedIn, Twitter, Tumblr and YouTube.

24 2 Online communities: Social Networks

Fig. 2.1: An example of a multiple social network scenario.

Social networks altogether form a more complex scenario in which users interac-

tion assumes a relevant importance. This interaction is enabled by the presence of

users who have multiple profiles in different social networks and adopt particular

kind of edges, called me edges, to link them [63]. Figure 2.1 shows a graphical rep-

resentation of a possible scenario involving three social networks, namely Twitter,

Facebook, and LinkedIn. In this example, we have that nodes from 1 to 6 are Twit-

ter accounts, nodes from 7 to 12 are Facebook accounts and, finally, nodes from

13 to 18 are LinkedIn accounts. As for edges, they represent friendship relation-

ships among users. However, while edges among Facebook and LinkedIn actors are

bidirectional, those among Twitter users are directed, according to the typology of

relationship allowed by the social network. Finally, edges (14,3), (12,15) and (7,6)

represent me edges and connect accounts of the same user on different OSN.

2.2 Design specification

In Section 2.1, we focused on the general services provided by the most popular

OSNs. Their study is one of the targets of our work. As it can be recognized by an-

alyzing the technical details described in the sequel of the section, there is strong

heterogeneity in the representation of concepts among different social networks.

For instance, contacts are represented by friends in Facebook and the relationship

is symmetric, while they are represented by followers and followings in Twitter and

the corresponding relationship is not symmetric. Again, the concept of appreciation

becomes +1 in Google+ and endorsement in about.me. Importantly, similar concepts

can mapped to each other but they have in general different features. Thus, an inte-

gration step is necessary for our purpose. In this section, we prepare this integration

step by grouping the main technical entities into a number of categories to which the

2.2 Design specification 25

formal model presented in the next section maps. In particular, we aim at modeling

the following entities.

2.2.1 Profile

Social network sites are built around user profiles, a form of individual (or group)

homepage, which provides a description of each registered user. Profiles are con-

structed by filling out forms on the site.

As for Twitter, at the moment of registration, a user can create his profile typ-

ing his name, username, password and email address in the registration form. Peo-

ple often use their real name without the spaces as username. After typing in the

CAPTCHA words from the image, a user can create his account. When a user is

logged in, he can upload a profile picture and start following other people. Moreover

he can complete his profile adding a short biography, a position (the place where he

lives) and a link to his website or to one of his account on other social networks.

Similarly, if a user wants to sign up for Facebook he has to enter in the suit-

able page his full name, a valid email address, a password, his gender and birthday.

As a second step, the user can complete his timeline, which is his personal profile.

Timeline includes everything from uploading a profile picture and cover photo to

outlining user employment history, determining his relationship status, declaring

web link toward the profile of the same user in other social networks.

To join LinkedIn, a user has to fill out his biography with information, such as

past and present employment, education, skills and web links. It is also possible to

add a user profile photo. The “Headline” and the “Professional Summary” section of

the profile are useful to highlight user experiences.

Whereas if a user wants to register a Flickr account, first he has to create a

Yahoo! Mail account. Then the user has to choose his Flickr screen name that will be

the user name for the site. After the first access, a user can fill out his profile adding

some personal information as gender, birthday, web link, occupation, hometown,

relationship status, interests.

As for Google+, a user with a gmail account can automatically sign in, otherwise,

he has to create it filling in his name, preferred username, password, birthday, gen-

der, mobile Phone and other email address. Once the user logs in, he can choose his

username, upload a picture and complete further information about himself, such

as where he went to school or where he works.

A user can sign in LiveJournal platform via one of his account (Facebook,

Google+, Twitter, etc.). After this step, he has to complete his profile adding a pro-

file picture, username, gender, birthday, education, web links, interests, biography

and position.

26 2 Online communities: Social Networks

Advogato allows users to create a profile page and a blog. At the moment of

the registration, the user has to provide a valid email address, a username and a

password. The rest of information (such as name, surname, notes) is optional, but is

useful in order to be certified by other Advogato users.

Finally, about.me is characterized by its one-page user profiles, each with a large

background image and short biography. At the moment of registration a user has to

fill the suitable form with his username, email, password for the site and at a second

step short biography, a short description, a profile image and a background image.

2.2.2 Links to external social networks

An important feature provided by all the social networks considered in this chapter

is the possibility for a user to add in his profile a link toward one of his accounts in

another social site or external website. This feature is typically enabled during the

creation of the user profile. It is of particular interest because it encodes the basic

information allowing the possibility of seeing different social sites as members of a

Multiple-Social-Network environment.

2.2.3 Friendship

After creating a profile, participants are asked to invite their friends to the site or to

look at others’ profiles and add those people to their list of friends.

In Twitter, a user can follow another user, becoming his follower. Only if this

user follows him back the relationship is bidirectional.

Differently from Twitter, Facebook requires approval for two people to be

linked as friends. When someone links another as a friend, the recipient receives

a message asking for confirmation. Indeed, Facebook friendship is bidirectional,

hence, once a user accepts a friendship request of another user they become mu-

tual friends.

LinkedIn allows registered users to maintain a list of contact details of people

with whom they have some level of work relationship, called connections. When a

user establishes a relationship with another user, he declares a sort of mutual friend-

ship and, from this moment on, he will see all the updates of this new connection in

his homepage.

Flickr follows a strategy similar to that of Twitter about contacts. These social

ties may or may not be reciprocated. Only users who include each other as contact

have a reciprocal relationship. Once a user adds another user as contact, he can fur-

ther distinguish the relationship with this user by labeling him as friend and/ or

member of his family or just keeping him only as a following contact.

2.2 Design specification 27

Among the functionalities of Google+ there is the possibility of adding users in

a friend list. In particular, a user can assign his contacts to one or more “circles”

(such as friends, colleagues or acquaintances), which is a way of categorizing and

organizing people.

In LiveJournal two users can list each other as friends mutually, or one of them

can follow the other without reciprocation, like in Facebook.

Finally, neither Advogato nor about.me provide the user with the possibility to

create any list of friends.

2.2.4 Resources

A Social network resource is a Web asset such as a status update, a photo, a web link

or a video created and loaded by a user in his profile.

Twitter resources can be shared only inside a tweet. They can be photos, videos,

web links or comments. Once a user generates a tweet, it is publicly posted on his

Twitter profile. Moreover, each tweet can be associated with one or more hashtags

describing it, and/or some references to other user profiles. The stream of tweets of

a user is called timeline.

Concerning Facebook, a user can publish one or more resources in a post in his

timeline. The post can contain photos, videos, comments, resources coming from

other social platforms, hashtags and references to other users. A user can also add in

his “diary” (his Facebook profile) notes, photos or videos without publishing them

in a post. Photos and videos can be uploaded in specific albums.

As for LinkedIn, a user can add a resource like a new item or a new file in his

profile. He can also embed a comment, a photo, a web link or a video in a new

status update. Also skills representing specific technical expertise can be seen as a

typology of resource, which are posted by users to describe their ability. This way,

his connections can like it, comment it and share it on their “wall”.

In Flickr, when a user upload an image or a video he can optionally add a text

description to the resource. The images a Flickr photographer uploads are stored

into his sequential “photostream”, which is the basis of a Flickr account.

As far as Google+ is concerned, a user can share messages, links, photos or videos

with everyone or only with those within designated circles, but he can also create his

own photo albums and add his photos or videos inside them.

In LiveJournal, examples of resources are images, videos and audio files. Re-

sources can be uploaded by users in their blog post.

In Advogato, once a user account has been certified by other trusted users, he

will be able to post to the news flow, create projects, or syndicate his blog to the Ad-

28 2 Online communities: Social Networks

vogato recentlog from his existing blogging site. The only form of resource available

in Advogato is the article.

Finally, in about.me there is not an explicit concept of resource. Indeed com-

ments and appreciations are allowed directly on the user profile and users cannot

upload any photos or videos, except for the profile and background picture.

2.2.5 Actions on resources

So far, we stated that in addition to the content that members add when they create

their own profiles, social network sites typically provide the possibility to share re-

sources. After a resource is published by a user, several actions can be performed on

this resource: other users can appreciate it, or re-share it, or it can be associated with

a user through a mention on his profile.

Hereafter, we list the main possible actions a user can do on a resource according

to the different social networks analyzed in this chapter.

Once a user write a tweet in Twitter, it will appear on the homepage of all his

followers, who can reply to it, make it one of their favourites or retweet it (that is,

forwarding it again on their own timeline). A tweet can contain also a user mention. It

can be done using the symbol @ followed by the referenced username. To categorize

tweets by keyword, people use the hashtag symbol # before a relevant keyword or

phrase (no spaces) in their tweets. Hashtags are indexed to make it easier to find

conversations about that topic.

As for Facebook, when a resource is posted, a user can comment it and/or give

a positive feedback through the like button. Users can like all types of resources,

such as: status updates, comments, photos, other user profiles, links posted by their

friends and adverts by clicking the like button at the bottom of the content. This

makes the content appear in their friends’ “News Feeds”. Moreover, users who are

interested in or agree to a post, can share it again in their timeline (re-post). This

allows a very fast propagation of posts inside Facebook.

The concept of referencing users in status updates has been introduced as an

attempt to imitate Twitter. This means putting the name of a user, a brand, an

event or a group in a post in such a way that it is linked to the wall of the Facebook

page being tagged. Thus, the post appears in news feeds for that page, as well as

those of selected friends. This is done by using the @ symbol followed by a person’s

name.

The same symbol allows users to tag people in photos or videos taken of them.

This functionality is a peculiar feature of Facebook. Whereas using the # symbol

followed by a tag word in a status allows a user to create a hashtag. As explained

before, this metadata tag allows grouping of similarly tagged messages and support

2.2 Design specification 29

the search for messages referring to a specific topic represented by that hashtag.

Every hashtag on Facebook has its own unique URL and this allows to search for

specific topics from the Facebook search bar.

Clicking on like option on LinkedIn presents some differences w.r.t. the Facebook

like function. Indeed, on LinkedIn, when users click on the like link underneath the

various updates, this immediately forwards that particular update out to all of the

user first level connections. The share option, instead, allows users to either redis-

tribute the article (and partially modify it) as an update to their connections, post it

to a group (or multiple groups), or forward it in a private message. The comment link

allows users to comment on someone’s update.

Similarly to what happens in Twitter, also in LinkedIn while a user publishes a

resource he can mention one of his connections with the @ symbol. He can also use a

keyword as hashtag using the # symbol.

Furthermore, companies can post information about themselves, list jobs and

search for potential candidates. Finally, LinkedIn allows users to endorse each

other’s skills.

As for Flickr, by clicking on a photostream image, it is possible to open it in the

interactive photopage, thus allowing users to comment it and to embed it on external

websites. Moreover, images can be added to a user favourite list or to user galleries.

Users may label their uploaded images with titles and descriptions, and images

may be tagged either by the uploader or by other users, if the uploader permits it.

The main Google+ page consists of a “stream” of updates, conversations and

shared content. A user can make comments underneath content shared by other

users, and he can appreciate contents clicking “+1” on it. A user can also re-share

contents within his circles. Google+ provides the referencing functionality in its

posts. A user can mention another user using the + or @ signs.

Moreover, a user can insert some hashtag in his comments similarly to what hap-

pens for Twitter. The main differences with the hashtag of Twitter is that here the

system automatically adds hashtags (recognizable by different colors), too.

As for LiveJournal, users can interact with resources in different ways. For in-

stance, a user can leave a comment on a post of another user or share it in his blog.

He can also add to “Memories” a post. The Memories feature on LiveJournal allows

the organization of favorite resources with a keyword-based archive system. Thanks

to this functionality, a user can also add tags, or descriptive keywords, to his own

resources.

As far as about.me is concerned, an interesting characteristic is the possibility to

make compliments, which is a form of like made on user pages. There are different

kinds of compliments a user can do and about.me let users choose among them,

30 2 Online communities: Social Networks

whether it was a professional compliment or a more personal one. The company

provides also a service called collections: a user can organize various profiles into

public or private collections. In order to bring collections and compliments together,

about.me introduced the Dashboard, which included “PeopleFeed”. This let users

see activities on their page, including views, who visited and complimented their

page. Replies, instead, let users respond to activity on their page.

All the features of the OSNs described in this section are mapped by our model,

which is formalized in the next section.

2.3 The conceptual model

In the previous section, we have identified eleven technical entities, of which three

concepts and eight relationships. Now, we want to formalize the so described en-

vironment into an abstract multiple-social-network model. To do this, we adopt a

direct graph G = 〈N,E〉, in which nodes represent the concepts and edges encode the

relationships. Therefore, the set of nodes is partitioned into three disjoint sets P , R,

and B, which correspond to the set of social profiles, the set of resources, and the set

of bundles (which are resource containers), respectively. Further, the set of edges is

partitioned into eight disjoint sets F, M, P u, S, T , Re, L, and Co, each corresponding

to one of the eight relationships identified in Section 2.2.

Let us start with the description of nodes. An element of P models the profile of

a user on a social network and consists in the tuple 〈url, socialNetwork, screen-

name, [personalInformation], [picture]〉. In this tuple url is the Web address

that identifies and localizes the profile, and socialNetwork is the commercial name

of the social network which the profile belongs to, screen-name is the name chosen

by the user who registered the profile to appear in the home-page of the profile or

when posting a resource, and, finally, personalInformation and picture are the

information and the image which the user inserted as related to the profile. The two

last elements of the tuple are optional (i.e., they can be null).

The set R models resources of the Web or created by users. A resource is rep-

resented by a tuple 〈url, type, [description], [date]〉, where url is the Web

address to access the resource, type indicates the type of the resource content, and

finally, description and date, which are optional, represent the string, inserted by

the who published the resource, describing the resource itself and the publishing

date, respectively. For example, the most viewed video on YouTube is a resource rep-

resented as 〈’https://www.youtube.com/watch?v=9bZkp7q19f0’, ’video/mp4’,

’PSY - GANGNAM STYLE’, ’07/15/2012’〉.

2.3 The conceptual model 31

Our model includes the bundle set B. Indeed, commonly users do not handle

a single resource, but most of the actions they do (e.g., publishing or sharing) in-

volve more resources simultaneously. For example, a user can publish more photos

or videos, can include a comment, and so on. In our model, we include all resources

handled simultaneously by a user in a bundle. A bundle is represented by a tu-

ple 〈uri, [description], [date]〉, where uri is the identifier of the bundle, de-

scription, which is optional, is the string chosen by the user to be shown with those

resources and, finally, date represents the publishing date. As we will see next, we

represent the inclusion of a resource into a bundle by means of containing edges.

Relationships among profiles, resources and bundles are represented by direct

edges of a graph. As already stated earlier, the set E of edges is partitioned into eight

disjoint sets, named F, M, P u, S, T , Re, L, and Co, each corresponding to one of the

eight relationships identified in Section 2.2.

The follow edge set F ⊆ E = {ps,pt | ps,pt ∈ P } models the fact that in the (source)

profile ps, it has been declared a certain type of relationship towards the (target) pro-

file pt . This kind of edge models different relationships. For example, on Facebook or

Flickr, it models friendships, on LinkedIn, job contacts, and, on Twitter, followers.

Observe that, typically, this kind of relationship occurs between users of the same

social network, because it is presumable that a social network does not have interest

in promoting links to profiles of another (competitor) social network.

The me edge set M ⊆ E = {ps,pt | ps,pt ∈ P } denotes that the user with profile ps

has declared in this profile to have a second profile pt . This edge allows a user to

provide a link to its profile (typically) on a different social network or (sometimes)

on the same social network (as a sort of alias).

The publishing edge set P u ⊆ E = {ps,bt | ps ∈ P ,bt ∈ B} indicates that the user

with profile ps has published in this profile a bundle bt . This edge models one of the

typical actions a user does when enriches his/her profile by publishing resources.

The shared edge set S ⊆ E = {bs,bt | bs,bt ∈ B} specifies that the bundle bs (pub-

lished by a user) is derived from an already published bundle bt . This type of edge

is used when a user shares an existing bundle. Indeed, this action is represented by

two edges: a publishing edge (as described before) and a shared edge from the new

bundle to the existing one.

The tagging edge set T ⊆ E = {ps,brt ,w | ps ∈ P ,brt ∈ B ∪ R and w is a word},

denotes that the user with profile ps assigned the word w to describe a bundle or a

resource br. By means of the tag mechanism, users contribute to resource labelling,

which is necessary to carry out several actions on resources, such as searching or

classification.

32 2 Online communities: Social Networks

The referencing edge set Re ⊆ E = {bs,pt | bs ∈ B,pt ∈ P } models the fact that a

bundle bs includes a reference to the profile pt . For example, this occurs when a

tweet includes a user account name.

The like edge set L ⊆ E = {ps,pbrt | ps ∈ P ,pbrt ∈ B∪R∪P } describes the information

that a user with the profile ps expressed a preference/appreciation for a bundle, a

resource or another user profile pbrt .

The containing edge set Co ⊆ E = {bs, rt | bs ∈ B,rt ∈ R} indicates that a bundle bs

contains the resource rt . For example, when a user publishes a photo p and includes

a comment c, this action is modeled by creating a bundle b with a description c, a

resource p, and finally, a containing edge from b to p.

The model defined above is able to represent data coming from multiple social

networks. As a consequence, this model may appears more complex than those typ-

ically adopted in Social Network Analysis. However, it is worth noting that some

measures used in this field can be still calculated in a easy way by suitably prun-

ing the graph G = 〈N,E〉 underlying the model. For example, the friendship degree

distribution of social network users has to be computed on the graph G′ = 〈N ′ ,E′〉,

in which N ′ = P and E′ = F, that is, the subgraph obtained from G by maintaining

only Profile nodes and Follow edges. Analogously, other topological features, such

as clustering coefficient and assortative coefficient, are computed also on the same

subgraph G′ .

After defining the conceptual model, we will show how to practically map real-

life data from social networks to each component of the model, in such a way to build

a data structure that can be used at application level (as we will show in Section 2.5).

2.4 Building the model

Information necessary to build the model can be extracted from social networks via

four technologies: (i) APIs provided by the social network; (ii) FOAF datasets; (iii)

XFN microformat; and (iv) HTML parsing.

As for the first technology, social network APIs are a platform available for de-

velopers which allow the access to social-networks data so as to create applications

on top of them. Usually, there are different kinds of APIs each providing specific

services. Among them, the most commons are the REST API, the Search API and

the Streaming API. Specifically, the REST APIs allow operations such as insert, up-

date or deletion to be performed. The Search APIs, instead, are useful to query the

database and, finally, the Streaming APIs are conceived for applications that need to

receive real-time updates (such as, new posts or feeds).

2.4 Building the model 33�
1 {

2 "id": "1587099156",

3 "first_name": "Serena",

4 "gender": "female",

5 "last_name": "Nicolazzo",

6 "locale": "en_GB",

7 "name": "Serena�Nicolazzo",

8 "username": "serena.nicolazzo"

9 } � �
Fig. 2.2: An example of the output of the Facebook Graph API

The second possible strategy to extract information from social network relies

on FOAF datasets. The FOAF project focuses on the creation of a machine-readable

ontology describing friendship relationships among users. FOAF data sources al-

low the representation of a whole social network without the need of a centralized

database. As a matter of fact, by relying on this technology, it is possible to represent

the information concerning a user account, along with the corresponding contacts

and activities, through an RDF graph serialized as an XML document, according to

the W3C RDF/XML syntax.

The third option makes use of XFN microformat. It allows for the representation

of the kind of relationship existing between two user accounts. This is obtained by

empowering the set of values that the rel attribute of the HTML tag <a> (which

represents a link) can assume. In our case, we focus on the value “me” (rel=‘me’)

which indicates that the corresponding link represents a me edge.

The last data extraction strategy leverages on HMTL parsing. Processing HTML

to obtain social data is the most intricate procedure. Parsing requires much time

because it needs to analyze all context information from the page source code. It is

a low-level way of dealing with social data. Because the code written depends on

the HTML page structure, it is not stable (due to the frequent graphical changes).

For this reason, this strategy needs continue maintenances. However, it remains a

valid alternative when other more practical solutions (like APIs, for instance) are

not available.

Now we will show some significant examples on how the information repre-

sented by our model are extracted from social networks.

As for the user profile P described in Section 2.3, we recall that it consists in a

tuple 〈url, socialNetwork, screen-name, personalInformation, picture〉. For example,

to extract the information to build the profile of a Facebook user, we use the Graph

APIs, accessible through the url http://graph.facebook.com/{user-id} or http:

//graph.facebook.com/{screen-name}. The output of this API is a JSON file (see,

for instance, Figure 2.2).

34 2 Online communities: Social Networks�
1 <?xml version=’1.0’?>

2 <rdf:RDF

3 xml:lang="en"

4 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

5 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

6 xmlns:foaf="http://xmlns.com/foaf/0.1/"

7 xmlns:ya="http://blogs.yandex.ru/schema/foaf/"

8 xmlns:lj="http://www.livejournal.org/rss/lj/1.0/"

9 xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#"

10 xmlns:dc="http://purl.org/dc/elements/1.1/">

11 <foaf:Person>

12 <foaf:nick>antoninonocera</foaf:nick>

13 <foaf:name>real_name</foaf:name>

14 <foaf:openid rdf:resource="http://antoninonocera.livejournal.com/"/>

15 <foaf:weblog rdf:resource="http://antoninonocera.livejournal.com/"/>

16 <foaf:homepage rdf:resource="*****" dc:title=""/>

17 ...

18 <foaf:knows>

19 <foaf:Person>

20 <foaf:nick>contact1</foaf:nick>

21 <foaf:member_name>contact_real_name</foaf:member_name>

22 <foaf:tagLine></foaf:tagLine>

23 <foaf:image>http://l-userpic.livejournal.com/****/****</foaf:image>

24 <rdfs:seeAlso rdf:resource="http://contact1.livejournal.com/data/foaf"/>

25 <foaf:weblog rdf:resource="http://contact1.livejournal.com/"/>

26 </foaf:Person>

27 </foaf:knows>

28 ...

29 </foaf:Person>

30 </rdf:RDF> � �
Fig. 2.3: An XML-serialized FOAF document

We can extract from this JSON the user id, his username (which correspond to

our notion of screen-name) and his personal information like: first name, last name,

gender, locale (chosen language). The field url available in our social profile object

can be obtained as http://www.facebook.com/{screen-name}, whereas the field

picture can be obtained by another call to the Graph APIs, specifically by accessing

the url http://graph.facebook.com/{user-id}/picture.

Many social networks are equipped also with FOAF datasets. As an example,

we show how follow edges can be obtained for the social networks LiveJournal

and Advogato. The FOAF datasets for both social networks are reachable through

the specific URLs http://{screen-name}.livejournal.com/data/foaf (for Live-

Journal) and http://www.advogato.org/person/{screen-name}/foaf.rdf (for

Advogato). An example of an XML serialization of a FOAF document is shown in

Figure 2.3. In this document, the information needed to build an edge of the set fol-

low can be extracted from lines 11 to 29. Specifically, the element <foaf:Person>

indicates the beginning of the portion of the document where information about a

user, his contacts and, often, his activities are reported. The information about each

contact is encoded as a <foaf:Person> nested inside a tag <foaf:knows>.

Concerning the information about me edges, it can often be extracted through the

XFN microformat. Some examples of social networks adopting this standard to rep-

2.4 Building the model 35�
1 <a class="OLa�url�Xvc" href="http://www.youtube.com/channel/UCIUcwh3yFufPSnCbyrUyTBQ"

2 rel="me" target="_blank" title="UCIUcwh3yFufPSnCbyrUyTBQ">YouTube Channel of Antonino Nocera � �
Fig. 2.4: An example of a me edge using XFN.

�
1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <job>

3 <id>1511685</id>

4 <expiration-timestamp>1304030488000</expiration-timestamp>

5 <company>

6 <id>229433</id>

7 <name>Cloudera</name>

8 </company>

9 <position>

10 <title>Technical Writer</title>

11 <location>

12 <name>San Francisco Bay Area</name>

13 <country>

14 <code>us</code>

15 </country>

16 </location>

17 </position>

18 <location-description>San Francisco or Palo Alto,CA</location-description>

19 <job-poster>

20 <id>hQ4ruu3J2q</id>

21 <first-name>Paul</first-name>

22 <last-name>Battaglia</last-name>

23 <headline>Technical Writer at Cloudera</headline>

24 </job-poster>

25 </job> � �
Fig. 2.5: An example of the output of the LinkedIn Job Lookup API.

resent me edges are about.me, Advogato, Facebook, Flickr, Google+, and Twitter.

Figure 2.4 shows the code representing a me edge in the social network Google+. The

code at line 2 represents the explicit declaration that the corresponding link encodes

a relationship of type me.

Another interesting example regards the extraction of the information needed to

build a publishing edge. Consider the social network LinkedIn. It provides a search

API, called Job Lookup API, to obtain information about jobs that can be accessed at

the address api.linkedin.com/v1/jobs/{job_id}:(id,company,posting-date).

The XML output produced by the call to this API is reported in Figure 2.5. In this

case, when a company proposes a new job position (publishing), we model this event

by adding two objects: (i) a bundle and (ii) a publishing edge between the profile

of the company and the bundle just created (see Section 2.3). As for the bundle,

the field uri is mapped to the element <id> (line 3), whereas the field descrip-

tion is obtained from the elements <company> (lines 5-8), <position> (lines 9-17),

and <localition-description> (line 18). The publishing edge is associated with the

user profile whose identifier is specified by the element <job-poster> (lines 19-24)

and has the new created bundle as target.

36 2 Online communities: Social Networks

Now, consider the case of the publishing of a new tweet containing a resource and

referencing another user in the Twitter social network. Our model represents this

action by adding the following objects: (i) a bundle, (ii) a resource, (iii) a publishing

edge, (iv) a containing edge, and (v) a referencing edge. In this case, all information

required by our model is extracted from Twitter by means of the method GET sta-

tuses/user_timeline of the Twitter APIs. Figure 2.6 shows an example of the output

of this API. Specifically, line 6 is the tweet identifier and is mapped to the field uri

of the bundle. The bundle field description is obtained by suitably parsing lines

24-30. The bundle is linked to the publisher user by means of a publishing edge. As

mentioned above, a new resource is added and associated with the bundle by means

of a containing edge. Information needed to create the resource is extracted from

lines 11-23. In particular, the field url is obtained from line 15, the field type from

line 20, and, finally, the field description is extracted from lines 19, 20 and 21. The

tweet in the example references another user and this action is modeled by adding a

referencing from the bundle to the user specified on lines 9 and 10.

An important feature, common to almost all social networks, is the possibil-

ity to appreciate a resource or another user profile. In our model, this concept

is represented by means of the like edge. Consider the social network about.me,

in which a user is allowed to favor another user profile, thus making an “en-

dorsement”. Information about this action is obtained by calling the method http:

//api.about.me/api/v2/json/user/view/ of the about.me API followed by the

desired user screen_name. Figure 2.7 reports an example of the output of this method

called on the profile of the author of this thesis. The returned information has to be

seen from the “caller” point of view (i.e., the authenticated user), therefore the line

21 indicates that the user snicolazzo is in the favourite list of the user calling this

API method. According to our model, a like edge from the authenticated user to the

user with the given snicolazzo is created. A similar reasoning can be applied also for

“g+1” of Google+ and “Like” of Facebook.

So far, we have seen how to extract information from different social networks

and how to map them to the concepts defined in our model. Once this mapping has

been done, a data-structure is obtained. It can be serialized using the XML language.

In the following, we will show some details about the XML schema designed for our

model.

Figures 2.8 shows the mind map of this XML schema [30]. The root element is

SocialGraph and contains two unbounded sets of elements, namely SocialNode and

SocialEdge. An element SocialNode is specialized in one of the following complex

types: SocialProfile, Resource, or Bundle. The element SocialEdge is specialized in one

of the following complex types: Follow, Me, Publishing, Tagging, Shared, or Referenc-

2.4 Building the model 37�
1 {

2 "coordinates": null,

3 "favorited": false,

4 "truncated": false,

5 "created_at": "Wed�Aug�29�17:12:58�+0000�2012",

6 "id_str": "240859602684612608",

7 "entities": {

8 "hashtags": [],

9 "user_mentions":[{"indices": [3, 10],"id_str": "<user_id>","screen_name":

10 "<user_screen_name>","name": "<user_real_name>", "id": <user_id>}]

11 "media": [{

12 "id": 266031293949698048,

13 "id_str": "266031293949698048",

14 "indices": [17, 37],

15 "media_url": "http://pbs.twimg.com/media/A7EiDWcCYAAZT1D.jpg",

16 "media_url_https": "https://pbs.twimg.com/media/A7EiDWcCYAAZT1D.jpg",

17 "url": "http://t.co/bAJE6Vom",

18 "display_url": "pic.twitter.com/bAJE6Vom",

19 "expanded_url":"http://twitter.com/BarackObama/status/266031293945503744/photo/1",

20 "type": "photo",

21 "sizes": {...}

22 }]

23 },

24 "in_reply_to_user_id_str": null,

25 "contributors": null,

26 "text": "Introducing�the�Twitter�Certified�Products�Program:�https://t.co/MjJ8xAnT",

27 "retweet_count": 121,

28 "in_reply_to_status_id_str": null,

29 "id": 240859602684612608,

30 "geo": null,

31 "retweeted": false,

32 "possibly_sensitive": false,

33 "in_reply_to_user_id": null,

34 "place": null,

35 "user": {...},

36 "in_reply_to_screen_name": null,

37 "source": "<a�href=\"http://sites.google.com/site/yorufukurou/\"�rel=\"nofollow\">YoruFukurou",

38 "in_reply_to_status_id": null

39 } � �
Fig. 2.6: An example of the output of the API method user_timeline.

ing. Each complex-type in this XML Schema is defined according to the correspond-

ing objects defined in Section 2.3. Figure 2.9 reports a fragment of the XML schema

allowing the serialization of our model. The complete XML Schema is available at

http://www.infolab.unirc.it/OSNmodel.html.

We conclude this section by showing in Figure 2.10 an example of a fragment of

an XML document derived from the XML Schema described above.

38 2 Online communities: Social Networks�
1 {

2 "status": 200,

3 "profile": "http://about.me/snicolazzo",

4 "user_name": "test�account",

5 "first_name": "test22",

6 "last_name": "tester",

7 "display_name": "test22�tester",

8 "header": "my�headline",

9 "bio": "test�this�is�one!!!!",

10 "background": "http://about.me/.../snicolazzo_1326415784_79.jpg",

11 "mobile_background": "",

12 "email_searchable": true,

13 "email_public": false,

14 "avatar": "http://about.me/.../snicolazzo_1325746595_83.jpg",

15 "img_base_url": "http://about.me/.../thumbnail",

16 "thumbnail_291x187": "http://about.me/.../291x187/snicolazzo.jpg",

17 "thumbnail1": "http://about.me/.../803x408/snicolazzo.jpg",

18 "thumbnail2": "http://about.me/.../260x176/snicolazzo.jpg",

19 "thumbnail3": "http://about.me/.../198x134/snicolazzo.jpg",

20 "thumbnail4": "http://about.me/.../161x109/snicolazzo.jpg",

21 "is_fav": true

22 } � �
Fig. 2.7: An example of the output of the API method view.

2.4 Building the model 39

Fig. 2.8: The mind map of our XML Schema.

40 2 Online communities: Social Networks�
1 ...

2 <element name="SocialGraph">

3 <complexType>

4 <sequence>

5 <element ref="tns:SocialNode" minOccurs="0" maxOccurs="unbounded" />

6 <element ref="tns:SocialEdge" minOccurs="0" maxOccurs="unbounded" />

7 </sequence>

8 </complexType>

9 </element>

10

11 <element name="SocialNode">

12 <complexType>

13 <choice>

14 <element ref="tns:SocialProfile" />

15 <element ref="tns:Resource" />

16 <element ref="tns:Bundle" />

17 </choice>

18 </complexType>

19 </element>

20

21 <element name="SocialProfile">

22 <complexType>

23 <sequence>

24 <element name="URL" type="string" />

25 <element name="SocialNetwork" type="string" minOccurs="0" />

26 <element name="Screen-name" type="string" />

27 <element name="PersonalInformation" type="string" minOccurs="0" />

28 <element name="Picture" type="string" minOccurs="0" />

29 </sequence>

30 </complexType>

31 <xs:key name="spkey">

32 <xs:selector xpath="SocialGraph/SocialNode/SocialProfile" />

33 <xs:field xpath="@URL" />

34 </xs:key>

35 </element>

...

43 <element name="SocialEdge">

44 <complexType>

45 <choice>

46 <element ref="tns:Containing" />

47 <element ref="tns:Follow" />

48 <element ref="tns:Like" />

49 <element ref="tns:Me" />

50 <element ref="tns:Publishing" />

51 <element ref="tns:Referencing" />

52 <element ref="tns:Shared" />

53 <element ref="tns:Tagging" />

54 </choice>

55 </complexType>

56 </element>

... � �
Fig. 2.9: A portion of our XML Schema.

2.4 Building the model 41�
1 <?xml version="1.0" encoding="UTF-8"?>

2 <tns:SocialGraph xmlns:tns="http://www.unirc.it/SocialGraph"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://www.unirc.it/SocialGraph.xsd">

5

6 <tns:SocialNode>

7 <tns:SocialProfile>

8 <tns:URL>twitter.com/antoninonocera</tns:URL>

9 <tns:SocialNetwork>Twitter</tns:SocialNetwork>

10 <tns:Screen-name>AntoninoNocera</tns:Screen-name>

11 </tns:SocialProfile>

12 </tns:SocialNode>

13

14 <tns:SocialNode>

15 <tns:SocialProfile>

16 <tns:URL>twitter.com/serenanicolazzo</tns:URL>

17 <tns:SocialNetwork>Twitter</tns:SocialNetwork>

18 <tns:Screen-name>serenanicolazzo</tns:Screen-name>

19 </tns:SocialProfile>

20 </tns:SocialNode>

21

22 <tns:SocialNode>

23 <tns:Bundle>

24 <tns:URI>240859602684612608</tns:URI>

25 <tns:Description>beautiful photo :-)</tns:Description>

26 <tns:CreationDate>2014-12-29</tns:CreationDate>

27 </tns:Bundle>

28 </tns:SocialNode>

29

30 <tns:SocialNode>

31 <tns:Resource>

32 <tns:URI>http://pbs.twimg.com/media/A7EZT1D.jpg</tns:URI>

33 <tns:Type>photo</tns:Type>

34 <tns:Description>A pic of us</tns:Description>

35 <tns:CreationDate>2014-12-29</tns:CreationDate>

36 </tns:Resource>

37 </tns:SocialNode>

38

39 <tns:SocialEdge>

40 <tns:Follow type="F">

41 <tns:p_s>twitter.com/antoninonocera</tns:p_s>

42 <tns:p_t>twitter.com/serenanicolazzo</tns:p_t>

43 </tns:Follow>

44 </tns:SocialEdge>

45

46 <tns:SocialEdge>

47 <tns:Publishing type="Pu">

48 <tns:p_s>twitter.com/antoninonocera</tns:p_s>

49 <tns:b_t>240859602684612608</tns:b_t>

50 </tns:Publishing>

51 </tns:SocialEdge>

52

53 <tns:SocialEdge>

54 <tns:Containing type="Co">

55 <tns:b_s>240859602684612608</tns:b_s>

56 <tns:r_t>http://pbs.twimg.com/media/A7EiDT1D.jpg</tns:r_t>

57 </tns:Containing>

58 </tns:SocialEdge>

59 <tns:SocialNode>

60 <tns:SocialProfile>

61 <tns:URL>www.facebook.com/antonino.nocera.35</tns:URL>

62 <tns:SocialNetwork>Facebook</tns:SocialNetwork>

63 <tns:Screen-name>Antonino Nocera</tns:Screen-name>

64 <tns:PersonalInformation>Male</tns:PersonalInformation>

65 </tns:SocialProfile>

66 </tns:SocialNode>

67 <tns:SocialEdge>

68 <tns:Me>

69 <tns:p_s>twitter.com/antoninonocera</tns:p_s>

70 <tns:p_t>www.facebook.com/antonino.nocera.35</tns:p_t>

71 </tns:Me>

72 </tns:SocialEdge>

73 ...

74 </tns:SocialGraph> � �
Fig. 2.10: An example of an XML document.

42 2 Online communities: Social Networks

Lines 6-20 show the definition of the Twitter profiles of two persons. Lines 22-

37 represent the definition of a new bundle and a new resource of type “photo” (line

33). In lines 39-44, a follow edge among the two Twitter profiles is defined. The

bundle described in lines 22-28 is published by a profile and the publishing action is

encoded in lines 46-51. The resource is contained in the bundle as shown in lines 53-

58 with the definition of a containing edge. Finally, the second account in Facebook

of one of the authors is modeled in lines 59-66 and the information that this account

and that of Twitter belong to the same person is encoded in lines 67-72.

2.5 Case studies

Evaluating the accuracy of a model is a difficult task because often a golden standard

misses [35]. In these cases, evaluation can be done by humans (e.g., [175, 165]) or

by applying the model to an application and evaluating the results (e.g., [196]). In

this section, following the latter approach, we describe how our model has been

profitably applied to two applications very relevant in the context of social network

analysis. The first application regards the extraction of information from a multiple-

social-network scenario, the second one concerns a particular analysis done on social

network data.

2.5.1 Information extraction

It is well known that any analysis activity on social network users needs a prelim-

inary task implementing the extraction of data from social networks. In the past,

several crawler-based strategies have been adopted to extract data, such as Breadth

First Search [247], Random Walk [164] or Metropolis- Hastings Random Walk [225].

A crawling task should implement the following steps.

1. Selecting the starting account (seed). This step is very important to provide data

useful to the specified application. Usually, the starting account is randomly se-

lected from an available pool of accounts. For particular analysis, the seed can

be selected from those accounts having some characteristics, for example, being

a power user (i.e., they have a number of contacts much higher than the average

user [162]).

2. Building the sub-graph. In this step, the information about this account is cre-

ated: it includes the user account, contacts, published resources, and so on. This

step is strongly dependent on the data model used.

3. Selecting the next account. There exist several strategies to implement this step.

A first possibility is to randomly select another profile (uniform sampling), and

2.5 Case studies 43

Algorithm 1 BFS
Input p0: a seed profile

Variable ProfileQueue: a FIFO queue of profiles

1: ProfileQueue:=∅

2: insert p0 into ProfileQueue

3: while ProfileQueue !=∅ do

4: poll a profile ps from the ProfileQueue

5: store ps

6: store follow edges of (ps ,pt)

7: for each follow edge (ps ,pt) do

8: insert pt into ProfileQueue

9: store pt

10: end for

11: store me edges of (ps ,pt)

12: for each me edge (ps ,pt) do

13: insert pt into ProfileQueue

14: store pt

15: end for

16: store resources rs of ps

17: store bundles bs of ps

18: store containing edges (bs , rs)

19: store publishing edges (ps ,bs)

20: store shared edges (bs ,bt)

21: store tagging edges (ps ,brs)

22: store referencing edges (bs ,pt)

23: store like edges (ps ,pbrt)

24: end while

this is feasible whenever a social network uses an identifier for accounts and the

domain of identifiers is known and limited. This occurs for example for Face-

book and Twitter [109]. Another possibility consists in selecting one profile (i.e.,

a node of the graph) connected with the last visited profile by a follow edge or

a me edge (see, for example, [164, 225]). Again, it is also possible to select more

than one (even all) among the profiles referred above, as done for example in

[247]. Once one or more profiles have been selected, Steps 2 and 3 are iterated

until the desired amount of data have been extracted or a stop condition has

been reached.

As it emerges from the previous description of the crawling task, data extraction

is not simple to be performed because there is the problem of receiving data from

different sources. In this case, we need a model that is able to handle indifferently

data from different social networks.

For instance, if we need a Breadth First Search crawler operating over multiple

social networks, our model allows us to implement the solution described by Algo-

rithm 1.

The algorithm performs a Breadth First Search over user profiles and gathers

all the information related to each profile visited. Specifically, it starts by adding

44 2 Online communities: Social Networks

the seed profile p0 to the FIFO queue and executes a loop until the queue has any

element. At each iteration, first, it extracts a profile from the queue (Line 4), and

all its information are gathered from its social network (Line 5). Then, according

to the Breadth First Search logic, the visit continues by considering the neighbors

of the currently visited profile. For this purpose, all current-profile neighbors (i.e.,

the profiles linked by means of a follow edge) are stored and added to the FIFO

queue (Lines 6-10). Moreover, because we are operating in a multiple social network

scenario, also the other profiles of the considered user in other social networks are

visited. This is obtained by storing and adding all the profiles linked by means of

a me edge to the FIFO queue (Lines 11-15). Finally, all the information related to

the actions performed by the current account (i.e., profile) are also stored (Line 16-

23). The store operations are implemented according to the technicalities presented

in Section 2.4, which regards how information is extracted from social networks.

For the sake of presentation, such technicalities are not explicitly reported in the

algorithm.

Observe that the algorithm presented above can be simplified: indeed, it is pos-

sible to set the maximum number of iterations performed by the algorithm and to

reduce the information gathered for a profile on the basis of that strictly requested

by the application built on top of the crawler. The former goal can be obtained by

modifying the loop-stop condition at Line 3 of the previous algorithm, whereas the

latter goal can be fulfilled by removing the unnecessary instructions at Lines 16-23.

It is worth mentioning that a solution very close to the one described above has

been implemented in the SNAKE system [64], a tool supporting the extraction of

data from social network accounts. In this system, our model has been successfully

used to allow the extraction and storage of the information about the neighborhood

and the alternative accounts in other social networks of a seed profile.

In order to test the correctness and effectiveness of the data extraction procedure

above, we designed a prototype implementing the techniques described in Section

2.4. After the prototype implementation phase, in which we fixed several errors in

data extraction, we performed a final prototype validation step1. For this purpose,

we gathered a controlled dataset from real-life social network accounts. We run a

social network crawler (as described in Section 2.5.1) starting from a randomly se-

lected seed. As for seed selection, we observe that many social networks, such as

Facebook and Twitter, associate each account with an incremental integer (specifi-

cally, a 64-bit number). Thanks to this feature, to obtain a random seed it suffices to

generate numbers uniformly at random in a suitable interval and, for each number,

1 Clearly, changes in the technologies used by the social networks (e.g., API) should need

suitable adaptations of the prototype.

2.5 Case studies 45

User Profiles Resources Tags Comments Friendships me edges Likes Posts

Twitter 12 22 41 28 81 35 15 31

Facebook 14 26 35 23 78 29 11 18

LinkedIn 11 21 34 17 54 24 13 21

Flickr 9 28 39 19 42 18 9 23

Google+ 13 29 40 31 80 31 18 28

LiveJournal 9 14 21 14 36 16 N.A. 14

Advogato 8 11 N.A. 12 N.A. 11 N.A. 12

about.me 8 N.A. 11 N.A. N.A. 9 6 10

Table 2.1: Dataset composition: number of data per feature and social network (N.A.

indicates that a feature is not available for that social network).

to verify whether it corresponds to an existing account (because an account could

have been deleted). Fortunately, the most of the identifiers are associated with active

accounts, so that few attempts are enough to find a valid seed. In the implementa-

tion of the crawler, to have a feasible stop condition, we slightly modified Algorithm

1 by enforcing that when the ProfileQueue (see variable of contains Algorithm 1)

contains 200 profiles, no more profile is inserted, so that the crawler ends by visiting

such profiles.

At the end of the crawling activity, we obtained a dataset containing informa-

tion (concerning profiles, resources, friendship, etc.) coming from several social net-

works. Observe that not all profiles included in the ProfileQueue appear in the

dataset because some of them were private or inactive. Specifically, the dataset is

composed of 265 data from Twitter, 234 from Facebook, 195 from LinkedIn, 196

from Flickr, 270 from Google+, 124 from LiveJournal, 54 from Advogato, and 44

from about.me. Table 2.1 reports the number of data extracted for each feature sub-

divided by social network.

We analyzed this dataset to find possible extraction faults, due to many practical

issues in processing the social network data. We manually verified that the informa-

tion extracted in the dataset corresponded to the actual online data. In Table 2.2,

we explicit the checked attributes for each type of data. We considered correct the

operation of extraction of a profile, a resource, and so on, if and only if the value of

the extracted attributes matched that actually reported on the Web. In particular:

• a profile is considered correctly extracted if the data about the url, the belong-

ing social network, and the screen-name match the corresponding values on the

Web;

• for resources, the verification test regards the url and the resource type;

• the correctness of a tag is verified by checking the source profile, the target re-

source or bundle, and the label itself;

46 2 Online communities: Social Networks

Type of data User Profiles Resources Tags Comments

Checked Screen name url source profile source profile

Attributes OSN name resource type target resource uri

url label

Type of data Friendships me edges Likes Posts

Checked source profile source profile source profile source profile

Attributes target profile target profile entity referred resource

Table 2.2: The attributes compared to verify the correctness of the extracted infor-

mation.

• a comment is considered correct if the source profile and the content (i.e., the

bundle uri) match the online ones;

• the correctness of friendship and me edges involves the target and the source

profiles;

• to assess if a like is correct, we checked the source profile and the entity (i.e., a

resource, a bundle, or a profile) to which the like referred to;

• and, finally, we verified the correctness of a post by analyzing the source profile

and the bundle or the resource which it refers to.

The evaluation showed that the whole dataset has been extracted with no error:

therefore, the number of successful tests reached 100% at the final stage of the pro-

totype development.

Finally, we recall that the comparison among our model and the state of the art

approaches on the basis of the concepts and relationships to extract has been dis-

cussed in Section 2.6 (see, in particular, Table 2.4).

2.5.2 Matching accounts on social networks

The problem of matching user accounts is receiving a great attention in several ap-

plication scenarios, such as personalization [69, 128, 248]. Indeed, people have ac-

counts on diverse social networks, where they disseminate several traits of their per-

sonality. Gathering these traits in a unique profile is extremely useful in disparate

application contexts. Unfortunately, automatically connecting the different social-

network identities of users is not a trivial task due to the heterogeneity of the users’

information representation in different social networks.

A common approach to address this problem utilizes profile matching tech-

niques typically based on a set of identification properties, such as username, to

find correspondences between user identities. For instance, the authors of [128] de-

scribe a technique relying on usernames and tags used in three collaborative tagging

2.5 Case studies 47

systems: Flickr, Delicious and StumbleUpon. In particular, for the identification of

candidate users to be matched across social systems, the authors extract information

about tagging activities to measure the frequency of use of each tag. Then, they com-

pare tagging behavior in the different social networks to identify candidates. Finally,

they extract information about the usernames of these candidates and use popular

string similarity functions to match them. Another approach is that of [235], which

makes use of machine learning classification techniques to match user profiles on

the basis of user real name, birthday, interests, attended high school, job, and so

forth, extracted from social networks. Moreover, they consolidate their results by

analyzing the structural properties of the direct-friend network. Another approach

is described in [248], in which the authors infer 7 hypotheses on the relationships

among the usernames chosen by a single person in different communities, starting

from the observation of data in BlogCatalog. They propose an approach that, given

a username u suitably extracted from a source community, and a target community

c, generates a set of candidate usernames in c corresponding to u. The approach first

generates a set of usernames from u by adding and removing suitable prefixes and

suffixes. Then, it exploits the information extracted through a Web search on Google

aimed at checking for the existence of each candidate username in such a way as to

reduce the returned set of usernames. Also the approach of [180] can be collocated

in this context, even if its purpose is little different. Indeed, in this paper the authors

focus on the de-anonymization of a network by using auxiliary information from

a different social site on the basis of membership overlap and structural similarity.

The authors give a demonstration of their solution on Flickr and Twitter. For this

purpose, first, they extract and anonymize information from Twitter. After this, they

extract information from Flickr and use it to apply their de-anonymization strategy

on the modified Twitter graph.

All the above approaches require the comparison of profile information coming

from different social networks, which could be quite heterogeneous. Handling such

an heterogeneity is a very hard task and requires a pre-phase in which data extrac-

tion and concept-matching have to be performed. In this context, the adoption of

our model can be very useful because it avoids this preliminary step.

Observe that, in the context of identity matching, our model has been success-

fully adopted in [63]. The approach proposed computes the similarity between two

accounts belonging to two different social networks by combining two contributions:

a string similarity between the usernames of the two accounts and a contribution

based on a suitable notion of common-neighbors similarity. The latter component

leads to a recursive definition of the overall inter-social-network similarity. Indeed,

the common-neighbors notion has to rely on the same notion because neighbors be-

48 2 Online communities: Social Networks

Name Sensitivity

Salton Index [207] 0.01

Jaccard Index [129] 0.01

Sorensen Index [218] 0.01

Hub Promoted Index [199] 0.00

Hub Depressed Index [166] 0.01

Leicht-Holme-Newman Index [154] 0.01

Resource Allocation Index [253] 0.01

Local Path Index [253] 0.03

Our model applied to [63] 0.87

Table 2.3: Comparison among our approach and the state of the art.

long to different social networks, and, hence, common nodes have to be detected

too.

The identification of matching accounts can be seen from two different points

of view leading to the formulation of two sub-problems. The former concerns the

identification of accounts of the same user in different social networks starting from

a seed account. This is an intrinsically-hard task due to the wideness of the search

space, which could potentially involve the entire social Web. The latter, instead, re-

ceives two accounts and aims at verifying whether these belong to the same user.

The use of our model allowed us to simplify these issues and to handle all profiles

in a uniform way. We carried out an analysis of the performance of the identity

matching approach in [63] adopting our model: concerning the first sub-problem,

starting from a seed account of a user in a social network, the approach was able to

find, among all the user accounts of the other covered social networks (which is a

set of more than 109, i.e., almost all Web users), the alternative accounts of the same

user in 57% of cases in a time interval ranging from 1 to 2.1 seconds.

As for the second sub-problem, we compared the identity matching approach

in [63] adopting our model with the most meaningful local and quasi-local simi-

larity indices (namely, Salton Index, Jaccard Index, Sorensen Index, Hub Promoted

Index, Hub Depressed Index, Leicht-Holme-Newman Index, Resource Allocation In-

dex, and Local Path Index). In our evaluation, we preliminarily extracted informa-

tion about a setM of 100 social accounts, each having a secondary account in another

social network. Then, we run each of the above techniques and obtained a set M ′ of

the accounts that the technique detected as matching accounts. Clearly, M ′ repre-

sents a set of true positives. Finally, we measured the sensitivity of the techniques as

the ratio |M
′ |

|M | . Table 2.3 summarizes the results of this comparison.

The results of Table 2.3 show that, when applied to our application domain, our

approach outperforms classical state-of-the-art approaches based on common neigh-

2.6 Related work 49

bors techniques. Indeed, while those approaches have a sensitivity less than or equal

to 0.03, our approach reaches a sensitivity of 0.87.

It is worth noting that the low performance of common-neighbors-based ap-

proaches can be justified by the fact that they detect as similar only accounts having

exactly the same information. However, in the considered scenario, typically users

create accounts on social networks for different purposes and, thus, they can share

different contents. Due to this reason, the intersection of neighbors can be low. As

discussed previously, to overcome this problem, our approach does not rely on syn-

tactic intersection but on similarity-based intersection. For the interested reader,

further and deepened details on these experiments and comparisons are available

in [63].

In summary, we can state that the success of this technique strongly relies on the

model described in this chapter.

2.6 Related work

Traditionally, social networks have been mainly represented through two kinds of

mathematical tools: matrices and graphs. These structures allow the modeling of

information about tie patterns among social actors.

The approaches that adopt matrices representation to model social networks

[153, 223] belong to the second group. Specifically, the approach of [153] incorpo-

rates social influence processes in the specification of a weight matrix W , whereas

the approach of [223] uses a tensor to model the interaction between resources and

users.

Examples of the second group are: Kronecker graphs model [155]; the class of

model networks presented in [182], which are generalizations of the much-studied

random graph of Erdös and Rényi [95] to model social networks; the approach of

[204], which tries to model users interests through an interest map obtained by parti-

tioning an individual’s social graph and others, such as [68, 239], which model their

application scenarios with graphs.

The hypergraph theory [137] allows a hyperedge to connect an arbitrary number

of vertices instead of two in regular graphs. For instance, Ghoshal et al. [108] intro-

duce a random hypergraph model to describe the ternary relationship among one

user, one resource and one tag, thus making the model more flexible in the repre-

sentation of many peculiar properties of folksonomies.

Other approaches adopt suitable models with the purpose of creating global user

profiles by means of deep analyses of their behavior accessing multiple social net-

50 2 Online communities: Social Networks

works. Often, the application scenarios of these approaches are those of ontologies

and folksonomies.

Still in the field of ontologies, [88, 175] present ontology-based applications con-

cerning social aspects. In particular, [88] deals with team building, whereas the au-

thor of [175] formulates an abstract model of semantic-social networks, in the form

of a tripartite graph of persons, concepts and instances. Hence, incorporating actors

in this model, he extends the traditional concept of ontologies (composed by con-

cepts and instances). Because the referring scenario of [175] is that of folksonomies,

the adopted model represents only one action (i.e., tagging). It is defined as a ternary

association between user, concept and object. More in detail, the set of shared ob-

ject and the set of keywords defined by users themselves are extracted from social

networks. These collections are, then, used to obtain the emergence of a community-

based ontologies.

Other interesting approaches in this context are [223, 103]. For instance, [223]

proposes a cross-tagging approach, whose goal is to create a system capable of im-

proving the set of tags of a social site with the tags used in the other sites. The

enriched set of tags allows two main applications: the automatic annotation of re-

sources, which were not originally labelled and the enrichment of user profiles. As a

side effect, the more refined profiles introduce an higher precision in the computa-

tion of user similarities.

Some studies focus on the problem of integrating data of different social sites

[186] and [111]. In [186], the authors propose an approach that gathers data about

user activities on social sites. Suitable ontologies are used both to analyze these data

and model user interests. In [111] the authors provide an unsupervised method for

integrating multiple data views of a user in a single social network to produce a

unified graph. They carry out this task using a form of rank aggregation applied to

nearest neighbor sets.

Other recent works take advantage of social network modeling like [106, 25]. In

[106], the authors try to find a method to model and simulate interactive behavior

in OSNs. Their aim is to predict what users post or reply with regard to sentiments

and to analyze how information spreads across the network. Finally, a comparative

analysis of four mining tools based on social network graphs is presented in [25].

These tools can easily model the structure of social networks.

The system proposed in [192] has some relation with our own, as a set of meta-

APIs working on social networks is provided. However, while the approach of [192]

aims at creating external web services allowing the retrieval of information coming

from different social networks via a unique and comprehensive platform, our ap-

proach, instead, provides a framework focused on social network users (thus, with a

2.6 Related work 51

User ResourceTag CommentsFriendship
Multi

Networks
Like Post

[155]
√

– – –
√

– – –

[250]
√ √ √

–
√

– – –

[223]
√ √ √ √

–
√

–
√

[219]
√ √ √

– –
√

–
√

Our approach
√ √ √ √ √ √ √ √

Table 2.4: A comparative analysis of our model.

user-centered vision) allowing the aggregation of the information concerning a user

coming from all the social networks he belongs to. The technical counterpart of the

above feature is that our approach, besides APIs used also in [192], relies on further

technologies, such as FOAF, XFN and HTML parsing. Moreover, new (user-centered)

entities are considered, like me edges, which link two accounts belonging to a single

physical person. As a consequence, differently from [192], the aim of our chapter

is to support the development of models and languages for user-centered social-

network-based programming in large, according to software engineering principles

of genericity and polymorphism.

Our approach has some common aspects with these proposals. However, none of

them consider the possibility of integrating information coming from different and

heterogeneous social networks. This additional feature makes our model strongly

different from the approaches presented above, because the uniform representation

of all the peculiarities of different social networks is a non-trivial task and needs

ad-hoc solutions to be pursued. Indeed, the solution adopted by our approach is to

build a suitable middleware on top of social networks to support internetworking

applications. To accomplish this task, we create a complete XML model, mapping

all social network actions with abstract concepts. Therefore, the approach followed

in this chapter is practical, as we solve the trade-off between complexity/expressive-

ness of the conceptual model and implementation issues in favor of the latter. The

resulting benefits from the implementation perspective appears considerable.

To show the significance of our contribution, we pose this question. To reach the

goal of this chapter, could one of the models proposed in the literature be used, even

though it is defined for different purposes? Obviously, if the answer is yes the signifi-

cance of our proposal is compromised. Among the models proposed in the literature

analyzed to answer the above question, we choose [155] and [250], which are the

most recent and representative models using graphs and hypergraphs, respectively.

52 2 Online communities: Social Networks

In addition, we consider [223] and [219] because they are the most suitable models

based on matrices and ontologies, respectively.

We compare our model with those mentioned above with respect to the following

functionalities:

1. modeling of user accounts and/or profile information (e.g., screen name, user

picture, etc.);

2. representing Web assets such as photos, external links, videos, etc.;

3. supporting the labeling of social entities (user profiles, resources, and so on) with

tags;

4. modeling the comments expressed by users on social entities;

5. storing information about user relationships (e.g., friendship);

6. distinguishing information coming from different social networks (multiple so-

cial networks);

7. supporting the I Like it, by means of which users express that they like, enjoy or

support a given content;

8. storing information about who posts what.

3

Privacy in Social Networks: a crucial issue

Understanding user behavior in Online Social Networks (OSNs) is an important chal-

lenge in the field of social network analysis, especially when it comes to privacy. So far,

many studies considering only one OSN or, at most, comparing results obtained for a sin-

gle OSN, have been provided. Nowadays, users typically join more OSNs and this is an

important aspect that should be taken into account. In this chapter, we give a relevant

contribution in this direction, by analyzing the behavior of users having accounts on both

Facebook and Twitter. This way, the analysis is well-founded because it is conducted

on a common set of users and, further, a number of specific investigations become possible

(as studies on common friendship). Our research is carried out on data extracted from the

Web, and allows us to find important specificities of these kind of users concerning their

privacy setting, the choice of friends and their activity in general. Then we focus on the ro-

bustness of social network privacy settings and describe an interesting case study inherent

to a possible attack to Facebook privacy mechanism.

3.1 Materials and Methods

We aim to compare people’s behavior in the two most popular social networks, which

are Facebook and Twitter. We base our analysis on the concept of membership over-

lap, to study a number of behavioral aspects.

The first one is about privacy and disclosure of personal information. Recent

studies on Facebook have shown that both a strong association between low engage-

ment and privacy concern and a significant relationship between privacy awareness

and privacy concerns/self-disclosure [255] exist. Our study aims to answer the ques-

tion “Is there a connection between user awareness about privacy threats and mem-

bership overlap between Twitter and Facebook?”.

The second aspect we study is about friendship. OSNs are important for main-

taining social relations and previous studies have found that friendship is positively

correlated with bridging social capital. As for this aspect, we study what is the atti-

54 3 Privacy in Social Networks: a crucial issue

tude of users to have friendship relations overlapping between Facebook and Twit-

ter and if a correlation between number of friends in Twitter and Facebook exists.

The last issue we deal with concerns the activity of users belonging to both Twit-

ter and Facebook. [193] found that the prime goal of user activity on Facebook is to

self-promote or to maintain relationships, whereas other studies showed that some

types of activity are a sign of narcissism [203]. Our study aims to answer the ques-

tion “What about user activity and how the prevalence of activity on Facebook or

Twitter is correlated to membership overlap?”.

Observe that, the specificity of our analysis is to consider accounts of the same

person in Twitter and Facebook in order to draw conclusions on the use of the

two social networks by highlighting similarities and differences. In the following,

we provide the detail to allow full reproducibility of all experiments.

Data Extraction. Information necessary for our analysis has been extracted from

Twitter and Facebook from January to May 2014, adopting the model presented in

Chapter 2.

An important issue in the extraction of our data is the need to detect whether two

accounts belong to the same person. Fortunately, users can explicitly declare connec-

tions from the profile of a social network to another by means of special links, called

me edges. From a technological points of view, there exist several ways to extract this

information from the account of a user in a social network. The most common lever-

ages on XFN (XHTML Friends Network) which is an HTML microformat allowing for

the representation of the kind of relationship existing between two user accounts.

This is obtained by empowering the set of values that the rel attribute of the HTML

tag <a> (which represents a link) can assume. In our case, we focus on the value

“me” (rel=‘me’) which indicates that the corresponding link represents a me edge.

Another common way for extracting information on me edges relies, once again, on

the use of social network APIs already mentioned above.

Data Sampling. The major problem in this task was the need of collecting data

about user accounts that have a me edge from a social network to the other. To do this,

visiting a social graph by any existing crawling technique results in biased data, thus

it is not suitable. Indeed, it has been deeply studied that classical techniques for

sampling a social graph, such as Breadth First Search and Random Walk, produce

samples biased in the node degree distribution and newest sampling strategies, such

as Metropolis-Hasting random walk and re-weighted random walk, solve the above

problem of node degree distribution but still produce samples with very few me

edges, as proved in [62].

As a consequence, we decided to perform uniform sampling, as it has been re-

ferred as the ground truth technique for obtaining unbiased social network datasets

3.1 Materials and Methods 55

[110]. Uniform sampling is not a trivial task in general. However, for Facebook

and Twitter, this activity is facilitated by how user identifiers are defined. Indeed,

both adopt 64-bit identifiers for user accounts. In particular, the URL address of the

profile page of a Facebook (resp. Twitter) user is http://www.facebook.com/YYY

(resp., http://twitter.com/account/redirect_by_id?id=YYY), where YYY is a

64-bit positive integer. Thus, to obtain a uniform sample, it suffices to generate

numbers uniformly at random in a suitable interval and, for each number, to ver-

ify whether it corresponds to an existing account (because an account could have

been deleted).

Extraction, Transformation and Loading of data. As we were interested in data

about users who have accounts in both social networks, uniform sampling has been

executed as follows. We started by uniformly sampling Twitter to collect a set of

875 Twitter users declaring (by a me edge) an account also in Facebook. Then, we

proceeded by visiting their Facebook accounts and we found that 118 of them were

not valid URLs, therefore we cleaned up our dataset by removing these nodes. For

the 757 remaining Twitter bridges, we gathered information about their alterna-

tive accounts on Facebook and about their direct neighbors. The dataset obtained is

composed by the following tables: user, friend and me. The first table contains the

fields: screen-name, indegree, outdegree, sn_id, social network, visited, pub-

lic. The first attribute screen-name is the account name chosen by the user at the

moment of the registration; indegree represents the number of followers of the user;

outdegree, instead, is the number of followings of the user1; sn_id is the original

social network identification for the user; the field social network can assume two

values, namely Facebook or Twitter, specifying the referring social network; finally,

the attributes visited, public are two binary values indicating whether the profile

has been directly visited or if it has been found as friend of a visited profile, and

whether the profile has accessible information (public) or not. The table friend rep-

resents the social graph, i.e. maps the friendships of the accounts sampled, whereas

table me contains information about me edges. After the collection of rough data from

the previous steps, we need to preprocess data by removing duplicates and accounts

with not valid URLs and by generating tables indexes and keys. To support our anal-

ysis, in a second round, we added two additional fields at the table users, namely

tweet count and creation date. These new attributes have not null values only

for Twitter users.

Observe that, in a previous study, [61] showed that, due to disparate reasons,

users often do not declare me edges explicitly and proposed an algorithm to infer

1 Due to the symmetric nature of the friendship relationship in Facebook, indegree and

outdegree have the same value for Facebook users.

56 3 Privacy in Social Networks: a crucial issue

hidden me edges between two accounts. Hence, we built a further table, namely hid-

den me with the results of the application of the technique described by [61], to find

further pairs of accounts associated with the same user.

Dataset Description. In order to better understand the aspects described above

(e.g., me edges, hidden me edges, etc.), a portion of our dataset related to a user is

sketched in Figure 3.1: black and gray nodes are user accounts of Twitter and Face-

book, respectively, and the real name of the account is also reported2. Specifically,

we consider a user having an account on Twitter (node 3) who declared a me edge

to his Facebook account (node 6) and his social network friends (neighborhoods). In

this case, also some neighbor accounts are overlapping: in particular, nodes 12 and

10, nodes 5 and 8, belong to the same user because it is explicitly declared by means

of me edges; whereas, nodes 4 and 7, nodes 2 and 11, nodes 15 and 14, have been

found to be of the same user by the algorithm proposed by [61], and, therefore, are

labeled as hidden me edges (i.e., not explicitly declared).

Id Screen-name

1 tatahsantana

2 neltonpyter

3 Pedao_Vini

4 denioneto

5 Raafinha_mlk

6 pedro.vinicios.372

7 denio.neto

8 Raafinha.S

9 TwitPic

10 carlos.junior.50767

11 neltonpyter2

12 Carlos_Juniiior

13 instagrao

14 gabrielabritto1

15 Gabrielabritto1

16 monalisa.carla

Fig. 3.1: A fragment of our dataset.

The whole dataset is available at the address http://www.infolab.unirc.it/

cihb2014.html (for the Reviewers: the password to open the archive is 081733849)

and some statistics are reported in Table 3.1.

2 Data were not anonymized at this stage to preserve full reproducibility of experiments. In

case of publication, we will do this.

3.2 Results 57

Table 3.1: Some statistics of our dataset.

Seen Nodes ∼ 4 · 106

Visited Nodes 304,715

Twitter Nodes 158,755

Facebook Nodes 145,960

Visited Edges 368,314

Bridges 910

Twitter Id Range [1 - 359999]

Indegree Range [0 - 52,295,363]

Outdegree Range [0 - 2,436,264]

Bridge Indegree Range [1 - 238,523]

Outdegree Range [1 - 99,843]

3.2 Results

In this section, we perform a number of experiments on the collected sample to

answer the questions presented in the introduction.

3.2.1 Privacy setting

The first analysis concerns the choice users about the privacy level in Facebook. We

investigate if users who have two accounts (in Twitter and Facebook) show the same

behavior as other users when it comes of privacy concerns. Therefore, in this exper-

iment the control variable is the user having two accounts, whereas the dependent

variable is the privacy setting. We count how many users of the sample with two

accounts choose to disclose their Facebook information on the social network, thus

making their Facebook account public3. We obtain that about 87% users kept their

Facebook account private, and this result is statistically valid with a 95% confidence

level and 2.25% margin of error.

Moreover, we analyze if there are some differences, in terms of privacy setting,

among users with different number of friends (i.e., degree). In this case, we consider

also the degree as independent variable. To perform this analysis, we discretize de-

gree by applying the logarithmic binning function reported in Table 3.2. The choice

of the logarithmic binning function allows us to obtain almost equal-width bins due

to the well-known power law distribution of node degree.

In Figure 3.2, we report the distribution of the users with private account ac-

cording to their discretized degree (indegree and outdegree in Figure 3.2.(a) and

3 This analysis is limited to Facebook because Twitter accounts cannot be private.

58 3 Privacy in Social Networks: a crucial issue

Table 3.2: The logarithmic binning function used to discretize degree.

Value Bin

x < 10 1

10 ≤ x < 100 2

100 ≤ x < 1000 3

1000 ≤ x < 10,000 4

x ≥ 10,000 5

(a) Indegree (b) Outdegree

Fig. 3.2: Private account distribution on the basis of their degree.

(b), respectively). We observe that there are no significant differences among the five

degree intervals considered in our experiment: indeed, about one fifth of private ac-

counts are in each of the five bins. We can conclude that the number of friends (i.e.,

the node degree) does not seem to affect the choice of having a private account.

3.2.2 Friend overlap

In this section, we study the attitude of users to have overlapping friendship rela-

tions. In particular, we analyze if users with account both in Twitter and Facebook

have overlapping neighborhoods in these two social networks (i.e., how often they

add the same person as friend both in Twitter and Facebook).

In this experiment, given a user u with account in both Twitter and Facebook,

we define the metric CFFT (Common Twitter Friend Fraction), which measures the

fraction of the friends of u in Twitter who are also friends of u in Facebook. Anal-

ogously, we define CFFF4, which considers Facebook instead of Twitter. To detect

if a friend is the same in the two social networks, we check for the presence of a me

edge between these two accounts, as described in Section 3.1. Observe that it could

occur that a friend has not explicitly declared the me edge and this could lead to

4 Clearly, CFFT , CFFF because the initial user set from which the fraction is computed is

different.

3.2 Results 59

Table 3.3: Computing the friend overlap in Twitter and Facebook.

M SD

CFFT 0.028 0.048

CFFF 0.007 0.015

CFF∗T 0.075 0.074

CFF∗F 0.029 0.049

underestimate the friend overlap. To overcome this problem, we use the approach

proposed by [61] for discovering not declared me edges, which allows us to detect

(with a good approximation) also these overlapping friends. We denote by CFF∗ the

results of the computation of friend overlapping obtained by extending the set of

common accounts with the approach proposed by [61]. Therefore, in this experiment

we consider the user with two accounts and the social network as control variables;

whereas Common Friend Fraction is the dependent variable.

The result of this analysis is reported in Table 3.3, in which the metrics defined

above were summed and averaged and the standard deviation is also computed.

This experiment shows that there is no significant overlap among the friends of the

two accounts of a user in Twitter and Facebook. Indeed, the overlap is only about

7% in Twitter on average, and the overlap measured on Twitter is higher than on

Facebook.

3.2.3 Friend distribution

The aim of this section is to study the relation between number of friends and mem-

bership overlap between Twitter and Facebook, by means of three experiments.

In the first experiment, we consider each user with account both in Facebook

and Twitter and compare the number of friends he has in Twitter and Facebook.

Therefore, the control variables of this study are the user with two accounts and the

social network, whereas the dependent variables are the indegree and outdegree of

users. The result of this measure is reported in Table 3.4, which shows the average

value of indegree and outdegree of Twitter accounts versus the degree of Facebook

accounts of the same users. Observe that, for Facebook, indegree and outdegree coin-

cide because of the symmetric friendship relation. This table shows that the average

degree of Twitter accounts is much higher than that of Facebook. However, because

it is well-know that degree in social networks follows a power law distribution [37],

we need to better investigate this results.

For this purpose, in the second experiment, we compute the median value (i.e.,

the central value separating the higher half of degree values from the lower half)

60 3 Privacy in Social Networks: a crucial issue

Table 3.4: Average number of Twitter and Facebook friends.

Twitter Facebook

Indegree 1626.92 133.71

Outdegree 587.43 133.71

Table 3.5: The median of indegree and outdegree for the four sets of users.

indegree outdegree

declaredT 61 114

otherT 53 108

declaredF 726 726

otherF 679 679

instead of the average degree, as the former is a more meaningful indicator of the

trend of degree in case of power law distribution. We partition the users of our sam-

ple into the following four sets, and for each of them we compute the median value

of degree:

1. declaredT, composed of the Twitter users who declared to have an account also

in Facebook;

2. otherT, the remaining Twitter users;

3. declaredF, composed of the Facebook users who declared to have an account

also in Twitter;

4. otherF, the remaining Facebook users;

The results of this experiment are shown in Table 3.5. Combining these results

with those of the previous experiment, we find that, while most of the users of Twit-

ter have a degree lower than the users of Facebook (see Table 3.5), Twitter power

users (i.e., the users with a very large number of friends) have a degree much higher

than power users of Facebook (Table 3.4).

In the last experiment, we consider again a user with account both in Twitter

and Facebook, and we study a possible relation between the number of friends he

has in each social network. For this purpose, we discretize the indegree and outde-

gree in 5 equal-width bins by applying the logarithmic binning function reported in

Table 3.2 and we build two dispersion matrices having the indegree (resp., outde-

gree) level of Twitter as Y-axis and the degree of Facebook as a X-axis. This way, we

can observe if a relation between degrees of the same user in the two social networks

exists. Figure 3.3 shows the graphical representation of the two dispersion matrices:

3.2 Results 61

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6
T

w
itt

er
Facebook

(a) Indegree Twitter vs Degree Facebook.

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

T
w

itt
er

Facebook

(b) Outdegree Twitter vs Degree Face-

book.

Fig. 3.3: The scatter plot showing the relation between number of friends in Twitter

and Facebook.

the more the points are next to the bisecting line, the higher the relation between

the degrees. Moreover, the size of the points represents the number of occurrences

of that degree combination.

From the analysis of this figure, we observe that the bigger points are in the area

under the bisector, meaning that there is a slight anti-correlation between Facebook

and Twitter degrees (i.e., the higher the degree of a user in Facebook, the lower the

corresponding degree in Twitter).

3.2.4 User Activity

Through the experiments described in this section, we study the relation about mem-

bership overlap and user activity. Specifically, the purpose of this analysis is to in-

vestigate the behavior of three different typologies of users: (1) declared, which are

users who have an account both in Facebook and Twitter and explicitly declared

this, (2) hidden, which are users who have an account both in Facebook and Twit-

ter but did not declare this5, (3) other, which are the remaining users.

For this analysis, we define the normalized activity coefficient NAC of a Twitter

account as tc/ya, where tc is the number of tweet posted and ya is the number of

years since the account has been created. As done for degree in Section 3.2.1, we

discretize NAC by applying the logarithmic binning function reported in Table 3.2

and we compute its value for each typology of users. In this study, the user typology

is our control variable, whereas the activity coefficient is the dependent variable. The

obtained results are reported in Table 3.6, in which the first row represents the mode

(i.e., the bin which most of the users fall in) for the specific type of user. From these

results, we find that users who have more accounts are less active than the others

5 As done in Section 3.2.1, such users are detected by using the approach defined by [61].

62 3 Privacy in Social Networks: a crucial issue

Table 3.6: The frequency distribution of the normalized activity coefficient for the

different types of user.

(a) Declared

users.

NAC bin %

3 32.4

1 27.5

2 24.9

4 13.8

5 1.3

(b) Hidden users.

NAC bin %

1 91.3

3 3.8

4 3.6

2 0.7

5 0.3

(c) Other users.

NAC bin %

4 46.1

3 34.0

5 9.0

2 7.2

1 3.4

who have account only in Twitter. By looking at Figure 3.4, which shows a different

view of the results, we conclude that, among users with more accounts, those who

have a not declared Facebook account are very inactive.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7

F
re

qu
en

cy
(%

)

ACd

meUsers
hiddenUsers
normalUsers

Fig. 3.4: The frequency distribution of the normalized activity coefficient for the

different types of user.

3.3 Discussion

The goal of our work is to analyze the behavior of users belonging to more social net-

works. The chosen setting refers to the two most popular social networks, which are

3.3 Discussion 63

Facebook and Twitter. In this section, we highlight and discuss our major findings

and issues.

The first analysis we have carried out concerns privacy awareness. We have found

that 87% users with account in Facebook and Twitter chose to keep their Facebook

information private (i.e., they have a private accounts and their information are ac-

cessible only to their friends). Moreover, we observed that this percentage is not

significantly affected by the number of friends they have. As precedent studies have

shown that only 52% Facebook users have private accounts [87], we conclude that

the users declaring to have an account both on Facebook and Twitter pay more at-

tention to privacy issues. These users are able to declare a secondary account (i.e.,

by a me edge), know technological aspects of the social network, and are aware of

privacy setting. As a consequence, they may be more accurate in the definition of

the privacy policy for their accounts. The first important result of our study is that

privacy awareness has a positive impact on privacy value.

The second result we found is that there is no significant overlap among the

friends of a user in Twitter and Facebook. This behavior can be explained by consid-

ering that, in general, users create multiple accounts in social networks for different

purposes (e.g., sport profiles, music profile, job profiles, etc.). Thus, each account is

associated with a specific interest or part of the user life and the friends they add

comprise people related to the specific context which the profile refers to. A recent

study by [122] showed that personality differences between Facebook and Twitter

users exist, such that more sociable individuals gravitate towards Facebook, while

less sociable ones gravitate towards Twitter, thus making friendship overlap less

likely. Our result confirms the study done by [190] according to which Facebook

users tend to add as friend people they know in real life in order to transform latent

to weak ties [93], whereas Twitter use is driven primarily by interest for entertain-

ment news, celebrity news, and sports news [115]. Moreover, our findings confirm

also the hypothesis that the notion of online friend can comprise different kinds of

friendship.

The third analysis concerned the number of friends of Twitter and Facebook

users. The result obtained about the median and average number of friends in Face-

book is consistent with that reported in the study of [32] and confirms that the num-

ber of (stable) friends is bounded (around 150) due to limitations of the human brain

[90]. We found that, while most of the users of Twitter have a degree lower than the

users of Facebook, Twitter power users have a degree much higher than power users

of Facebook (Table 3.4). This can be explained according to the theory that follow

relationships in Twitter are typically towards important and famous people who

act as power users [115], so that there are few users but with a very large degree. In

64 3 Privacy in Social Networks: a crucial issue

contrast, in Facebook, friends are often personally known [93] so that their number

is limited. Finally, our result about anti-correlation between degree in Twitter and

Facebook allows us to conclude that a user joining both Twitter and Facebook does

not equally subdivide his activity between the two social networks, but has a pref-

erence for one. From the analysis of our sample, we observed that such users prefer

Facebook as main platform.

The findings of the last experiment is that users who have more accounts are less

active than the others who have account only in Twitter. This can be explained by

considering that the latter users may focus their attention only in one social network,

thus directing all their posting activities on it. Vice versa, the users posting contents

in at least two social networks (i.e., Twitter and Facebook), concentrate the total

amount of posts in one of them. Moreover, we found that users who do not declare

to have more accounts are the least active and appear “lazy”. The importance of this

result is related to several aspects of user behavior: it has been found that people

who are active on social networks are more likely to feel connected [232], that they

are high in ICT innovativeness [252] and that social activity may enhance social

presence and increase social influence [74].

3.4 Limitations

Social network analysis has assumed an extraordinary importance since the birth

of online social networks, because they target and record social relationships in the

most complete and detailed way among all digital services. As a consequence, they

are a huge source of information about people, whose analysis may result in strate-

gic and useful knowledge. The multiple-social-network perspective is a promising

approach compliant with the evolution of social web. We have addressed the prob-

lem of comparing the behavior of a user in Twitter and Facebook, believing that the

multiplicity of social networks is an important aspect to take into strict considera-

tion when studying the complex phenomenon of OSNs. The novelty of our work is

to have approached the comparison from a truly multiple-social-network perspec-

tive, according to which users with profiles in both OSNs have been considered as

object of study, to have meaningful and well-founded results. This study has some

limitations. First, it considers only Facebook and Twitter among the numerous on-

line social networks, so that our results can not be generalized to other or all social

networks. However, we chose the two most popular ones, thus ensuring the validity

of results for a very large part of social network users. The next limitation concerns

the extraction of the sample from the Web, because only public information can be

retrieved, and the limited size of the sample. Another limitation is that, like many

3.5 A threat to privacy in Facebook: a case study 65

other observational studies, we cannot draw causal conclusions. To overcome these

limitations, future work could extend the sample size both considering other OSNs

and using other extraction techniques, such as surveys, yet taking into account that

this method results in a strong sampling bias and makes it difficult to acquire large

samples. Moreover, because some results could be explained by other latent vari-

ables, such as age, location, sex, these should be incorporate in the future analysis.

3.5 A threat to privacy in Facebook: a case study

As stated before, the rapid growth of social networks, primarily Facebook, has co-

incided with an increasing concern over personal privacy. This explains why more

and more users personalize their Facebook privacy settings. As a matter of fact, the

list of friends is often one of the profile sections kept private, meaning that this in-

formation is perceived as sensible. In this section, we study the robustness of this

Facebook privacy protection feature, showing that it can be broken even in the less

advantageous conditions for the adversary. To do this, we exploit both the poten-

tial information extracted from user alter accounts in Twitter and a social network

property, recently demonstrated for Twitter, called interest assortativity.

The preliminary experimental results reported in this section, give a first evi-

dence of the effectiveness of our attack, which succeeds even in the most difficult

case that is when the information about the victim are minimum.

3.5.1 Approach formalization

In this section, we describe the technique we propose to discover (at least a part of)

friends of a social network user who decided to make private his friend list. First,

we observe that our approach works for social networks, such as Facebook, in which

friendship relations are symmetric (that is, if the user u1 is friend of u2, then also u2

is friend of u1).

The intuition underlying our approach is that privacy setting of an account is

indicated by the account owner, meaning that u1 can choose to make private his

friendship with u2, whereas u2 can choose to make public his friendship with u1.

Consequently, by looking at u2’s account, the friendship between u1 and u2 can be

inferred even thought u1 tries to hide it. It is worth noting that the mere execution

of the strategy sketched above has a strong limitation that makes this trivial search

unfeasible. Indeed, due to the huge number of social network accounts, the search

space of possible friends is limitless. Moreover, this strategy returns at most one

friend for each possible friend analyzed.

66 3 Privacy in Social Networks: a crucial issue

Fig. 3.5: Graphical representation of the approach.

To overcome these drawbacks, we designed a technique more sophisticated than

the above one to reach two important advantages. The first one is to provide a rel-

atively limited number of accounts to analyze (say candidates), thus reducing the

search space and making this solution feasible. The second advantage is that, thanks

to a suitable selection of each candidate, the processing of each candidate account is

able to return more friends of the initial account u1 (to obtain this, we exploit the

mechanism of friend community present in social networks).

The technique used to discover private friends basically relies on three proce-

dures, find alter accounts, select candidates, and find common friends. For the sake of

presentation, we describe at high level how our proposal works, whereas the detailed

implementations of the above three procedures are provided in Sections 3.5.1, 3.5.1,

and 3.5.1, respectively.

The input of our technique is uF , which is the account of the user u in a social

network F that supports symmetric friendship relations. In the follow, we instantiate

F with Facebook, the most popular social network. Clearly, the friend list of uF is

private. The output of our technique is a set of accounts fiuF that are friends of uF

in Facebook. Our approach is schematized in Figure 3.5 and consists of 4 steps.

1. In order to discover private friends of uF , the first step we run is finding alter

accounts of uF . This step aims to identify a secondary account of u in another

social network (how to perform this task is described in Section 3.5.1).

It is well know that users register account on different social networks and use

them for different purposes. Among all the social networks in which u has regis-

tered an account, we are interested in his secondary account in Twitter: indeed,

Twitter is a very famous and common social networks, which is used to exchange

3.5 A threat to privacy in Facebook: a case study 67

very short messages. At the end of this step, we obtain uT , which is the account

of the user u in Twitter.

2. Now, we run the second step of our technique, that is select candidates. This steps

aims to identify Twitter accounts that are in the same community of u and that

can lead to discover the private friends of uF . Among the three steps, this is

the core one and is deeply explained in Section 3.5.1. Let cT1 , . . . , c
T
n be the set of

candidates outputted at this step.

3. In this step, we run the procedure finding alter accounts for each candidate cTj , in

order to discover his/her account on Facebook, say cFj . At the end of this step, we

have found some accounts on Facebook that hopefully are in the same Facebook

community of uF (because they are alter accounts of users in the same commu-

nity of u in Twitter).

4. In the last step, for each cFj , we run the procedure finding common friends in order

to find the list of friends in common between cFj and uF . This procedure, which

can appear magic, is instead provided by many social networks in order to give

members the opportunity to find new friends. The detail on the implementation

of this step is given in Section 3.5.1 At the end of this step, we obtain the set fiuF

containing some (hopefully all) private friends of uF .

From the high-level description of how our technique works, it is clear we cannot

guarantee that this approach is always able to break the privateness of friend list:

indeed, it is necessary that alter accounts are found and friend community exists.

However, as we will show in Section 3.5.2, we experimented that for many real-life

accounts, the execution of this technique is able to discover at least a portion of

private friend list.

In the next sections, we will describe the implementation of the three procedures

used in our technique.

Finding alter accounts

Many social networks provide their users with the possibility to add in their own

profiles a link toward one of their accounts in another social site or external website.

This feature is typically enabled during the creation of the user profile. This infor-

mation is extremely useful in our approach because it allows the identification of the

accounts belonging to the same person in a multi-social network scenario.

Technically speaking, users who explicitly declare their alter accounts via social

network tools (also known as me edges), physically create special links among so-

cial networks. The basic strategy leverages the use of social network APIs, a set of

methods and services, typically available for social network developers, allowing the

68 3 Privacy in Social Networks: a crucial issue

interaction with social-network data and functionalities to create new software on

top of them.

However, not all social networks provides APIs to extract this information.

Therefore, another possibility to extract alter accounts relies on the XFN (XHTML

Friends Network) standard, an HTML microformat to represent relationship among

user accounts. This is obtained by empowering the set of values that the rel attribute

of the HTML tag <a> (which represents a link) can assume. In particular, the value

“me” (i.e., rel=‘me’) is used to indicate that the corresponding <a> link represents

a me edge.

Finally, in cases in which users do not declare explicitly their alter accounts, sev-

eral approaches proposed by the scientific community can be applied to detect miss-

ing me edges.

For instance, the approach of [61] makes use of account similarity to detect a

missing me edge in case a suitable threshold is exceeded. The similarity between

two accounts is obtained by combining two contributions: one computed as string

similarity between the account usernames, and one based on a suitable recursive

notion of common-neighbor similarity. By leveraging this technique, we are able to

extend our solution also to the cases in which users do not declare their me edge

explicitly.

In summary, alter accounts can be retrieved by using social network APIs, XFN,

or techniques such as those defined in [61, 142]. Observe that, in the case of Facebook

and Twitter, XFN is adopted for declaring alter accounts.

Selecting Candidates

Once we have collected a set of nodes holding both a Facebook and a Twitter profile,

for each of this users, say u, we focus on his Twitter friend list. As explained in

Section 3.5.1, the next step that our algorithm performs is the selection of some

suitable nodes, whose neighbors can be potentially friends of u in Facebook.

The approach we follow to obtain the set of candidates leverages the concept

of assortativity in social networks. Assortativity is an empirical measure describing

a positive correlation in personal attributes of people socially connected with each

other [183]. Hence, if a network is assortative with respect to a given attribute, it

means that the majority of its users tend to act as their friends when it comes of the

aspect expressed by that particular attribute.

It is proved that Twitter shows assortative behavior with respect to user interests

[60], where interest assortativity is defined as the preference for friends to share the

same interest (e.g., sport, music). Indeed, in Twitter there exist accounts belonging

to public figures, which, due to their influence w.r.t. a specific topic, act as a sort of

3.5 A threat to privacy in Facebook: a case study 69

representative for that topic. This way, the abstract concept of interest (or topic) can

be mapped to the concrete entity of a public figure.

Thus assortativity is quantified as the difference between the measure of the stud-

ied trait in the observed network and that computed in the corresponding random

graph of the network [183]. Therefore, we need to measure these two quantities. Let

us start from the observed network.

Definition 3.1. Given a social network G, an interest I , a positive integer t, and a node

n ∈Nt,I , we define the Interest Friend Fraction towards n of I as:

IFFn,I =

∣∣∣{a ∈ Γin(n) | ∃ b ∈ Γin(n) ∧ b ∈ Γout(n)}
∣∣∣∣∣∣Γin(n)

∣∣∣
In words, given a node n belonging to the category of the interest I , IFF measures

the fraction of the nodes followers of n having at least one friend b that is follower

of n too.

Definition 3.2. Given a social network G, an interest I and a positive integer t, we

define the General Interest Friend Fraction towards the most t nodes of I as

GIFFt,I =

∣∣∣{a ∈N | ∃ b ∈ Γout(n), n1,n2 ∈Nt,I ∧ a ∈
←−−−−−
Γ (n1) ∧ b ∈

←−−−−−
Γ (n2) }

∣∣∣∣∣∣∪ n∈Nt,I Γin(n)
∣∣∣

In this case, we have n nodes in the category of the interest, and GIFF measures

the fraction of the nodes interested in any of the t nodes that have at least one edge

towards another node b that is interested in any of the t nodes too.

After measuring the phenomenon in the observed network by IFF, we need to

characterize the random graph of the network, commonly denoted as null model

[183]. This graph models the case in which no assortativity occurs.

Definition 3.3. The null model of G is the random graph Ĝ = 〈N,Ê〉 such that for each

v ∈N , it holds that:

1) |{(x,w) ∈ E | x = v}| = |{(x,w) ∈ Ê | x = v}|;

and

2) |{(w,x) ∈ E | x = v}| = |{(w,x) ∈ Ê | x = v}|;

70 3 Privacy in Social Networks: a crucial issue

In words, it is obtained by maintaining the nodes of G and by replacing the deter-

ministic occurrence of edges by a random variable in such a way that in-degree and

out-degree of nodes is maintained.

Now, we define how to measure IFF in the null model.

Definition 3.4. Given an interest I , a node n ∈Nt,I for any t, IFF in Ĝ is computed as:

̂IFFn,I = P
(
y ∈ Γin(n) | x ∈ Γin(n)∧ y ∈ Γout(x)

)
where P (X) stands for probability of X.

The following theorem allows us to compute this probability.

Theorem 3.5. Given an interest I , and a node n ∈Nt,I for any t, then:

̂IFFn,I =
u∑
d=1

|Nd |
|N |
·
1−P

(
|N | − 2,d − 1, |Γin(n)| − 1

) (3.1)

where:

P (c,a,b) =
∏b
k=0

c−a−k
c−k

and N is the number of nodes, Nd is the number of nodes with degree d, and Γin(n)

is the set of followers of n.

Proof (sketch). ̂IFFn,I is obtained as the sum for any degree 1 ≤ d ≤ u of the product

of two factors: the probability of having a node with degree d, and the probability

that this node and at least one of its friend follow the same public figure. The second

factor is computed knowing that the probability that a node with degree a does not

have as friend one of b nodes selected inN (i.e., P (|N |, a,b)) follows a hypergeometric

distribution and, thus:

P (c,a,b) =

 b0
 ·

 c − ba
 ca

=

∏
k=0..b

c − a− k
c − k

�

Now we are ready to give the formal definition of Interest Assortativity.

Definition 3.6. Given an interest I and a node n ∈ Nt,I for any t, we define the Interest

Assortativity towards n of I as:

3.5 A threat to privacy in Facebook: a case study 71

IAn,I = IFFn,I − ̂IFFn,I

This measure gives us an index of how much a social network is biased w.r.t.

the null model in terms of probability of finding friends sharing the same interest.

The higher the value of assortativity, the higher the correlation in being friends and

sharing the same interest.

Thanks to the assortative behavior of Twitter users, we can find people belonging

to his clique by searching on the neighbors of a public figure of interest for a given

user, obtaining a set of suitable candidates for our technique.

Finding common friends

By following the reasoning described in Section 3.5.1, we can extract a set of Twit-

ter accounts, which are potentially “close” to the user, say u, for whom we want to

reconstruct the friend list. Now, for each of the candidates obtained we can adopt

the strategy described in Section 3.5.1 to find their alter-accounts in Facebook, thus

obtaining a set of Facebook-candidate accounts.

At this point, if these candidates have a public friend list, we can verify whether

u is present in any of these lists. Each time we find an account in any of these lists,

due to the bidirectional nature of Facebook friendships, we have discovered an ele-

ment of the friend list of u. Because the set of candidates may be very big, it is very

likely that we can reconstruct the entire friend list of u. However, this strategy would

require a very large number of checks to verify the membership of u in any of the

friend list of the candidates.

Fortunately, Facebook provides a very powerfull set of APIs, namely Graph API

[14], that can give us some advantages in our objective. Graph APIs are a low-level

HTTP-based APIs useful to retrieve data from Facebook.

Specifically, it is possible to discover the mutual friends between two Facebook

users by performing an HTTPS request at the following link:

https://www.facebook.com/friendship/<screen-name1>/<screen-name2>

where the parameters <screen-name1> and <screen-name2> represent the string ids used to

univocally identify the two users in Facebook. Interestingly, this API method works also if one

of the two accounts (that of u in our case) has the friend list private. Due to the tendency of

Facebook users to form cliques [233] the above API method allows us to discover a very large

set of items of the friend list of u with a single call. This reduces the number of operations

required to reconstruct the entire friend list.

72 3 Privacy in Social Networks: a crucial issue

3.5.2 Preliminary evaluation

Our experiments were performed on a machine equipped with a 2 Quad-Core E5440 proces-

sor and 16 GB of RAM. The operating system was Linux Ubuntu Server 14.04.4 LTS, with

kernel version 4.2.0-35, Java Virtual Machine version 1.8.0 45 (64-Bit) and Twitter4J as exter-

nal library for Twitter API support. We wrote our implementations in Java.

To obtain the initial set of Facebook profiles to test our approach performance, we could

not rely on existing datasets as they do not provide information about me edges. To extract

necessary data, we exploited the SNAKE system [64] which allows the extraction of profile

contact information from a very large set of social networks. One of the main issues in this ac-

tivity was the detection of the profiles showing the right features for our investigation (i.e., an

alter account in Twitter and a private friend list). However, using one of the classical crawling

technique is not suitable for two main reasons:

1. First, the percentage of accounts with a me edge is very low [62], so it is extremely diffi-

cult to find these particular users. This implies that an almost complete visit should be

performed to obtain necessary information. However, full structural information of the

network is not needed, because we are interested only in Facebook users with an alter

account in Twitter.

2. Secondly, a crawling technique may privilege the visit of some nodes with particular

structural properties (i.e., very high degree) introducing some biases in our results.

As a consequence, we decided to perform uniform sampling. Although, uniform sampling

is not a trivial task in general, for Facebook and Twitter, it is facilitated by how user identi-

fiers are organized. Indeed, both social networks adopt 64-bit identifiers for user accounts.

However, because we are looking for private Facebook accounts, we cannot start our sampling

from Facebook. We started by uniformly sampling Twitter to collect accounts having a me edge

towards Facebook6. In particular, the URL address of the profile page of Twitter has the fol-

lowing structure: http://twitter.com/account/redirect_by_id?id=xxx , where xxx is a

64-bit positive integer. Hence, to obtain a uniform sampling, we generated numbers uniformly

at random in a suitable interval and then we checked if it corresponds to a real account with a

me edge towards Facebook and whose alter account in Facebook has a private friend list. From

this sampling step we obtained a set of 355 accounts.

We proceeded by analyzing the set of Twitter friends for each of the accounts above, and

we selected public figures among them. In our case, because the set of candidates (see Section

3.5.1) is a subset of followers of these public figures, we neglected those public figures who

have a too high in-degree and considered only accounts with an in-degree ranging from 500

to 1500. Clearly, this choice was made only to guarantee computation feasibility, and did not

affect the performance of our technique as will be shown in the following.

After this, we considered the Facebook alter accounts of the candidates, extracted in the

previous step, and continued by calling the Graph API method described in Section 3.5.1 to

6 Observe that, the direction of the me edge is not relevant for our objective, because we only

need to know that the two accounts belong to the same person.

3.6 Related Work 73

verify whether we were able to reconstruct the private friend list of the original set of 355

users. As a result, we succeeded in 259 cases, thus obtaining a probability of success of 0.73.

3.6 Related Work

With the increase in both the number and the dimension of OSNs, the development of ap-

proaches aiming to deeply investigate their main features has become welcome. A very inter-

esting trend of the recent literature is to try to characterize user behavior in different plat-

forms.

There are a number of relevant reasons that call for a deeply study on how users act when

logging to these sites. First, analysis of user behavior allows the evaluation of the performance

of existing social systems, more refined site design [65, 243] and user tailored advertisement

placement policies [242]. Second, accurate models of user behavior in OSNs are crucial in

applications of social studies such as viral marketing. Indeed, one of the main goals of mar-

keters is the spread of their promotions quickly and widely. For this reason, they need to

understand how users interact and to build models representing these interactions in such a

way as to foresee how information will flow [156, 241]. Third, the study of user behavior helps

the prediction on how much the future workload of OSNs will influence the whole Internet

traffic, which is an essential information to properly dimension the Internet infrastructure

and content distribution systems [145, 202].

As for the analysis about user social behavior in a social network, [228] and [130] explored

search behavior on Twitter: while [228] make a deep analysis of large-scale query logs and

supplemental qualitative data, [130] focus on the study of the topological and geographical

properties.

A systematic measurement study on the statistics of the social network underlying the

video sharing service YouTube is reported by [73], in which a deep analysis on user behavior

through a number of ratings, views and comments on YouTube videos is carried out. Another

study on YouTube is presented by [167] and focuses on the identification of different classes

of user behavior to improve recommendation systems for advertisements in OSNs.

Several studies have looked at the comparison of the behavior of sample of users among

different OSNs [113, 251, 92]. However, all these studies extract trends on the use of social

sites and compare them through statistical parameters derived from the analysis of large sets

of users. Thus, they do not observe the behavior of the same user in the two systems. [113] try

to characterize user activities and usage patterns in some popular OSNs like Bebo, MySpace,

Netlog, and Tagged. In [251], instead, the authors consider the differences between Twitter

and traditional news media content. A comparison of Facebook and MySpace on the aspects

of trust and privacy is reported by [92]. The obtained results show that members of both

sites have similar levels of privacy concern. However, Facebook members report higher trust

in both the social network itself and the other Facebook users, and are more confident to

share identifying information. [214] collect objective, privacy-preserved behavior data from

user that are active in both Facebook and Gmail. The authors make a comparative analysis on

74 3 Privacy in Social Networks: a crucial issue

user behavior in OSNs and their way of using email services. The analysis shows that a large

portion of social interactions still occur through email messages, whereas participants tend to

be more emotional on Facebook.

Using a general population sample of 300 users, [122] examine the personality correlates

(i.e., Neuroticism, Extraversion, Openness-to-Experience, Agreeableness, Conscientiousness,

Sociability and Need-for-Cognition) of social and informational use of the two OSNs Facebook

and Twitter. By examining also age and gender they show that personality is related to online

socializing and on how people seek and/or exchange information. Moreover, a preference

for Facebook or Twitter is associated with differences in personality. [99] analyze the role

of persuasion in the actions that users perform in two social networking sites. The samples

analyzed comprise U.S. users from Facebook and Japan users from Mixi. The authors compare

the two OSNs on four persuasion goals: creating profile pages, inviting friends, responding

to content by friends, and how frequently they connect to the site. Their analysis reveals the

differences and similarities in how Facebook and Mixi are designed to influence users towards

the achievement of these four goals.

[102] compare user behavior on Sina Weibo and Twitter, by analyzing how people access

microblogs and by comparing the writing style of Sina Weibo and Twitter through textual

features of microposts. Moreover, based on semantics, they study and compare the topics

and sentiment polarities of posts of the two systems. Finally, they investigate the temporal

dynamics of the microblogging behavior such as the drift of user interests over time. [132]

study user behavior from four different perspectives, connection and interaction, traffic activity,

mobile social behavior, and malicious behaviors in order to classify attacks (such as spam and

Sybil attack) on the basis of the severity level of security threat.

Our approach differs from those presented in this section because, while all of them base

their analysis on samples derived from different social networks and generalize on user be-

havior by observing statistical aggregative parameters, our analysis, instead, is carried out on

a set of pairs of accounts (of Twitter and Facebook, respectively) such that the accounts of

each pair belong to the same user. Hence, our study actually reflects the different way of being

and acting of the same person in the two considered social networks.

4

A security problem: Social Network Mobile Apps

More and more often social networks are used as information and collaboration platforms world-

wide. This trend is also underlined by a great number of applications requiring access to data from

such systems to enrich the functionalities provided. With the increasing of this tendency, the problem

of access control becomes a crucial issue. Above all, the lack of fine-grained rules when applications

use social network APIs to access user profiles is a problem of great interest. For instance, in Twitter,

the supported access control policy is basically on/off, so that if a (third party) application needs

the right to write just a message on behalf of a user, he is enforced to grant access with no restric-

tion to his whole profile. This enables a large set of security threats and can make (even inexpert)

users reluctant to run these applications. To overcome this problem, we propose an effective dynamic

solution working for Android Twitter applications based on a middleware approach. The proposed

technique enables other possible benefits, such as, anomaly-based malware detection through API-

call patterns. Moreover, due to its modularity, this solution can be directly extended to a multi-social

network scenario.

4.1 Background

In this section, we provide the technical knowledge necessary to understand our proposal. It

concerns the authentication mechanisms on social networks.

Most of online social networks have embraced the paradigm of Software as Service (SaaS)

meaning that all features are available to end users as a service through the Internet. The

services offered to users are delivered as a set of Application Programming Interfaces (APIs)

available via the http/s protocol. However, one of the main issue is the necessity of provid-

ing authentication mechanisms that do not necessary require the direct log into the social

network for accessing its data and functions through external services. For this purpose, the

authentication of many social networks, such as Facebook, Twitter, Google+, is based on the

OAuth 1.0a protocol described in RFC 5849, which has been replaced by the new OAuth 2.0

authorization framework.

Basically, OAuth allows a third-party application to gain limited access to an http/s service

without users expose their password. To do this, it provides a token-based mechanism so that

an application can access data on in a social network profile if a valid token is provided. Such

a token is automatically delivered to the application directly from the social network after the

76 4 A security problem: Social Network Mobile Apps

user manually approves it. In the latest version of the Twitter API (v1.1), two forms of authen-

tication, both based on Oauth 1.0a, are allowed: Application–Only Authentication, where only

the application is authenticated and acts without using a user context, and Application–Users

Authentication, which allows the application to act on the user’s behalf. The former is the

basic authentication and allows it to call APIs and retrieve public information on the social

network. Clearly, in this case, the application cannot obtain any private information of any

user and cannot perform actions, such as tweeting, on the user’s behalf on Twitter. Now, we

focus our attention and technical discussion on the case of Twitter. From a technical point

of view, Twitter authentication scheme is based on the use of two Twitter API keys, namely

the consumer key and the consumer secret. Specifically, the consumer key is used to identify the

application itself, whereas the consumer secret, in combination with the consumer key, allows

the application to perform authenticated requests on its behalf.

The detailed flow is as follows: First, the application encodes its consumer key and secret

and performs an https POST request to the link https://api.twitter.com/oauth2/token

to send these credentials to the oauth2 / token endpoint. Then, the oauth2 / token vali-

dates them and replies with a bearer token. Finally, the application uses the bearer token for

the future interactions with the Twitter APIs. Clearly, this authentication scheme does not

support services or data requiring a user context. The Application–Users Authentication is

the most common authentication scheme and works by authenticating both the application

(or external service) and the user. The mechanism allows users to explicitly declare their will-

ing to provide the application with a token for opening a context on their behalf. This step is

allowed only if the application is registered on Twitter and, hence, is equipped with a valid

consumer key. The basic requirement for this authentication scheme is an access token, which

allows the application to operate on behalf of the user whom this access token belongs to.

There are mainly three authentication mechanisms to obtain the user token and are related to

the specific functionality the application wants to provide. Specifically, the possible authenti-

cation mechanisms are: Sign in with Twitter, 3-legged OAuth and PIN-based OAuth. As for the

first mechanism, in this case the application uses Twitter account information to identify a

user, thus allowing a fast log into its services. The application performs a POST requests, us-

ing its consumer information as credentials, to the oauth/request_token endpoint via the link

https://api.twitter.com/oauth/request_token. This request must embed as parameter

a callback URL where the user is redirected after the authentication on Twitter. In the re-

sponse, a request token is returned, which is used as a GET parameter to redirect the user (via

browser) to the link https://api.twitter.com/oauth/authenticate. This way, the user can

authenticate on Twitter, which, if the login procedure succeeds, sends a response containing

a verify token univocally associated with the request token to the callback URL. Finally, to

obtain a valid access token, allowing the retrieval of the account information for the user via

the account/verify_credentials endpoint, the application performs a POST request us-

ing the verify token as parameter to link https://api.twitter.com/oauth/access_token.

The account/verify_credentials endpoint can be accessed through the link https://api.

twitter.com/1.1/account/verify_credentials.json.

4.2 Problem formulation and desiderata 77

The second authentication mechanism 3-legged OAuth is used when an application wants

the privileges to act on the user’s behalf. To do this, the user is redirected on Twitter to au-

thorize the application. This mechanism is almost identical to the previous one. The only

significant difference is that the access token obtained with this procedure can only be used

once. In the case the application cannot directly make use of a browser to obtain the access

token, it can use the PIN-based OAuth. Also this mechanism is similar to the first. However,

since the application cannot access a Web browser, a URL is returned by Twitter in the last

step of the procedure. This is shown to the user who can now use a browser to access this link

and authenticate on Twitter. If the authentication succeeds, than a Web page with a 7-digit

code is shown to the user. Now, the user has to input this code to the application (that should

be waiting for this input) and the application can complete the procedure to obtain the access

token by sending a final request to the Twitter endpoint oauth/access_token with the 7-digit

code as parameter.

Once the application has been authenticated, Twitter can grant it one of the following

privileges (chosen before the token generation): (1) Read only, meaning that the application

can only read information on the user timeline and account (2) Read & Write, meaning that

the application can perform all reading activities along with writing/deleting contents and

profile statuses as well as sending direct messages to other users. Clearly, privilege 2 subsumes

privilege 1.

4.2 Problem formulation and desiderata

In this section, we motivate the problem by real-life examples and sketch the characteristics

that a solution of this problem should have. To better illustrate how our approach works,

we make explicit reference to a scenario in which a mobile application requires the access

to Twitter information via services provided by the social network (according to the SaaS

paradigm). This scenario is very common, as there are a lot of third-party mobile applications

that offer enhanced functionalities extending Twitter basic services.

4.2.1 Motivations

The first example we present concerns the case of an application allowing users to write tweets

with more than 140 characters. There are several ways to achieve this goal: by automatically

creating a short URL linking the whole user tweet, or by posting the long message as an

image, or by splitting the original tweet into a series of smaller linked tweets. In this case,

an application offering this feature should act on behalf of the user and, therefore, should

have the Read & Write privilege.

A more complex and interesting example of the SaaS paradigm application is given by the

use of the social signature [59]. Social signature is a recent proposal implementing electronic

signature by means of Twitter. This social network is used as “device” enabling the generation

of the signature and also as a trusted-third-party allowing signature sharing. Signers use their

mobile phone to generate the signature and to post a suitable tweet on their own account. The

78 4 A security problem: Social Network Mobile Apps

tweet shows the digest of the signed document along with other information necessary to

guarantee authenticity and non-repudiation. In this case, the data to be posted on Twitter

cannot be manually generated by the user. Again, the mobile application implementing the

social signature protocol should be authorized by the user to run Twitter services with Read &

Write privilege. The most relevant side-effect of this authorization is that, once an application

obtains the consumer’s access token, it may perform almost everything on the user profile,

although it needs only a subset of those permissions. The examples described above clearly

show situations in which the low granularity of Twitter access control model gives rise to

possible security threats because the least privilege principle is not accomplished.

4.2.2 Solution Requirements

To address the problem described above, a possible solution should satisfy the following re-

quirements:

Fine-grained privileges on Twitter services. The solution should allow the user to explic-

itly define the specific functionalities allowed to a mobile application on his Twitter account.

Specifically, the user should be able to directly specify the set of API methods that the appli-

cation is allowed to use. In the first example of Section 4.2, the user may allow the application

to only use the POST statuses/update method instead of granting any call to other not re-

quired writing methods, such as POST statuses/destroy/:id, which allows the deletion of

a previous tweet or POST account/update_profile allowing the update of personal profile

information such as the user contact name.

Device-Independent policy definition. Once the user defines a content access policy to the

Twitter functionalities for a given service, this should be applied to any application on each

specific device that the user wants to bound with these policies. This aspect has a heavy impact

on the solution architecture because access control rules must be available outside the user

device.

Anomaly-based detection of malicious usage of the service. Although the user is able to

specify fine-grained privileges, the misuse access privileges by an application is still possible.

A valid solution should be able to detect this illegal behavior by analyzing how an application

makes use of Twitter API’s methods.

We will see in the following how to build a solution able to ensure such requirements.

4.3 System Architecture

In this section, we describe our solution and the general architecture of its implementation.

Specifically, to satisfy all requirements described in Section 4.2.2, we identify two main com-

ponents for our system: (i) An Android service that monitors all traffic toward Twitter from

the user device; (ii) a remote middleware that communicates with the Android service on the

user device and verifies whether the activities performed by third-party applications match

the user access control rules.

A schema of the proposed framework is shown in Figure 4.1.

4.3 System Architecture 79

Fig. 4.1: Deployment diagram of the proposed framework.

The basic idea is that every call to a method of the Twitter APIs that is generated by a

third-party application running on the user device is intercepted and analyzed. To do so,

we implement an application requiring root privileges on Android and monitoring all https

traffic towards Twitter. When a communication towards Twitter is identified, the flow is redi-

rected to our remote middleware, which will act as an intermediate by performing the re-

quests to Twitter on behalf of the application that originated the communication. The mid-

dleware implements all the functionalities to satisfy the requirements of Section 4.2.2. In the

next sections, we will describe the two components in more detail.

4.3.1 The Android service

To achieve the goal our system must take control over the communication towards Twitter

originated by the user device. For this purpose, we provide the device with an application, im-

plemented as an Android service, that has to monitor all the Web traffic. However, as stated in

the Android specifications [6], the execution of an Android application follows the principle of

least privilege for which each application runs in a separated Linux process inside an indepen-

dent virtual machine. Moreover, each Linux process, associated with an Android application,

is executed by a different Linux user, who can access only the information in its isolated ad-

dress space. The mechanism underlying this specification ensures that no direct interaction

may occur between different applications. Figure 4.2 schematizes the concept outlined above.

To bypass this sandbox security strategy of Android, we have to give to our application

the root privileges. This way, it can access all the information available and makes use of the

underlying Linux operative system functionalities. The target of our root-level application is

very similar to that of some other famous applications, such as [10, 18]. Observe that, the prac-

tice of rooting an Android phone is widely accepted especially for security solutions, such as

[16, 17]. Moreover, it is also common to run applications that require special privileges to by-

pass carrier installed software, overclock and underclock the processor, modify system files,

or even more trivial actions like system setting customization. However, the main difference

is that our application has not only to intercept any communication towards Twitter starting

from the device, but also has to redirect the communication towards our middleware server.

80 4 A security problem: Social Network Mobile Apps

Fig. 4.2: Android application execution representation.

Our middleware will perform all the https requests to Twitter on behalf of the user applica-

tion and will return responses back to the application on behalf of Twitter. To achieve this

goal our application does the following: (i) jeopardizes the PKI trust chain by installing a self-

signed fake root certificate (this is possible with root privilege from Android 4.0 on [20]); (ii)

makes use of the powerful Linux firewall underlying the Android system, namely iptables.

By properly setting up rules on iptables, it is possible to redirect any TCP traffic accord-

ingly to our strategy. Observe that, even though it could be in principle considered a break

of security, the jeopardization of the PKI trust chain is, in fact, a practical solution. Indeed, it

is commonly adopted in supervised contexts (such as, enterprise environments), in which a

proxy servers perform traffic flow analysis and monitoring [15]. To do so, we started from the

source code of DroidWall - Android Firewall that is an open source project for a front-end ap-

plication to the Linux firewall [12]. The aim of DroidWall is to restrict the set of applications

that are allowed to access the device data networks, therefore we suitable modify its code to

implement our solution.

4.3.2 The middleware service

This component of our system is in charge of managing the authorization policies, defined

by the user, to the Twitter API’s contents. Specifically, all the traffic generated by any third-

party applications on any user-device is redirected, by our Android service, to this external

component. In this component we have the following modules:

Request Listener. This module receives all the https requests originated by our Android ser-

vice running on any device.

4.3 System Architecture 81

Token Handler. The aim of this module is to handle the interaction with the OAuth authen-

tication protocol. In the initialization step, our application requires the access to Twitter ser-

vices by issuing an Application–Users Authentication via OAuth protocol (see Section 8.1 for

further details). The output of this procedure is that the user is prompted to authorize the

application to access his Twitter account; in this phase, the application requires also the au-

thorization type (which is either Read only or Read & Write). At the end of this procedure, in

the case of positive authentication, the application is provided with a (long-term) token that

can be used to speed up the authentication procedure in the next communications with Twit-

ter. The basic strategy of our approach is to replace the original request of Application–Users

Authentication performed by the third-party application on the user device with a corre-

sponding request generated by the middleware itself. This way, the middleware will obtain

the access token, hereafter referred as master token, from Twitter and will perform all the next

requests on behalf of the third-party application. On the other side, this component generates

a sub-token, associated with the original master token, that will be sent back to the applica-

tion. As specified by the OAuth protocol, the application will use this sub-token in the call to

any Twitter API’s method.

Policy Handler. This module has two main functions: (i) to store a set of access control rules

for each application and (ii) to provide the right mapping between any sub-token and the cor-

responding rules. The implementation of fine-grained policies is orthogonal to the approach

described in this chapter, therefore it is possible to follow any existing approach, such as [98],

even though a specific model would be desirable (this is matter of our future work). A possible

example of an access policy could be the following. Consider the case in which a user wants to

prevent a third application from reading his private direct messages. In this case, the Twitter

APIs handling direct messaging are the following:

• GET direct_messages/sent. The call to this method returns the 20 latest direct mes-

sages sent by the authenticating user together with information about the sender and the

recipient user.

• GET direct_messages/show. This method returns the direct message whose identifier is

specified in the id parameter, along with information about the objects, the sender and

the recipient.

• POST direct_messages/destroy. Through this API method, the application can destroy

a direct message received by the authenticating user, by specifying the message identifier

in the required id parameter.

• POST direct_messages/new. This API method allows the application to send a new di-

rect message to a specific user on behalf of the authenticating user.

Clearly, the user could not want to manually specify all the API methods that has

to be blocked to achieve his goal. In this case, he can give only the general command

〈direct_message,deny〉. This module will translate this command into an XML-serialized rule,

which will propagate the deny command to all the sub-elements (i.e., the API methods refer-

ring to the direct messaging feature) of the element DirectMessage. Clearly, because the user

82 4 A security problem: Social Network Mobile Apps�
[...]

<Policy>

<Read allow="False">

<DirectMessage allow="False">

<sent allow="False">

<API>GET direct_messages\/sent</API>

</sent>

<show allow="False">

<API>GET direct_messages\/show</API>

</show>

</DirectMessages>

</Read>

<Write allow="False">

<DirectMessages allow="False">

<Destroy allow="False">

<API>POST direct_messages\/destroy</API>

</Destroy>

<PostNew allow="False">

<API>POST direct_messages\/new</API>

</PostNew>

</DirectMessages>

</Write>

</Policy>

[...] � �
Listing 4.1: An example of a policy denying direct messaging.

did not specify whether the rule has to affect reading or writing feature, it will be applied on

both of them (see Listing 4.1).

Anomaly Detector. This module implements a further security mechanism allowing the de-

tection of malicious behavior of third-party applications. By following an anomaly-based ap-

proach, the above task is accomplished on known applications for which a behavior finger-

print is stored in the middleware. To detect anomalies this module can take advantage of the

approaches proposed in [172].

Twitter Interface. It is in charge of handling the communication between the middleware

and Twitter. In particular, it forges the new messages to Twitter according to user policies and

receives the query results from Twitter.

4.3.3 Protocol

In this section we provide some further details about the protocol adopted by the entities

involved in our system to fulfill our solution tasks.

As stated in Section 4.1, OAuth protocol works by performing an initial strong authenti-

cation which allows the association of the user and the application that will performs queries

on his behalf. The output of this procedure is that the application will be provided with an

access master token through which it can interact with protected Twitter-user resources on his

behalf. Our protocol interposes, between the application that wants to use external APIs and

Twitter, both an Android service and a middleware. Hence, standing in the way of all user

application requests, our middleware is able to analyze and send them to Twitter only if they

match user access policies. Figure 4.3 describes our protocol among Twitter, the middleware

and the Android device.

4.4 Related work 83

Fig. 4.3: A communication diagram of the entities involved in our system.

In the first phase, the Android service monitors the original request of Twitter APIs per-

formed by the third-party application on the user device (1). Observe that, all the calls to

methods of the twitter APIs are performed via the https protocol. Moreover, they share the

same structure, i.e.: api.twitter.com/[version]/[APImethod]/[parameters]. Therefore,

once our Android service (see 4.3) monitors all https traffic and redirect to the middleware

components all traffic originally intended for Twitter(2). The listener module of the middle-

ware receives all requests and activates the Token Handler and the Policy Handler which

process this request and forward it to the Twitter Interface module if it matches the user

policies (3). Also in this step, the Anomaly Detector module is activated and analyzes the

request by combining it with information on previous activities from the same third-party

application to identify possible malicious behaviors. After that, in the case of positive match-

ing, this module builds a similar request and sends it to Twitter in order to access the needed

user resources (4). In a second phase, data flow back by following the same path described

above. Observe that, in this way, the Policy Handler module could perform further filters on

the obtained data to match user preferences in the case the used Twitter API method would

not allow the right grain level (5) (for instance, read only the tweets of a given profile). We re-

mark that this feature could not be supported by following a simple firewall-based approach.

Finally, the filtered data are sent back to the Android device (6).

4.4 Related work

Nowadays the lack of security in mobile devices is a critical issue because of the pervasive

diffusion of these systems [149, 70].

To solve this problem, several researchers investigated on fine-grained policy enforcement

[80, 188, 210, 67]. In [80], the authors define a system called CRePE able to enforce fine-

grained policies depending on the context of the smartphone. According to the combination

84 4 A security problem: Social Network Mobile Apps

of the value of some variables (e.g. location, time, temperature, noise, the presence of other

devices) that can define a particular context, the mobile device changes its settings and, for

instance, it runs only a restricted set of applications or it switches off/on some interfaces.

In [188], the authors create a framework to provide install-time permission-granting policies

and runtime inter-application communication policies. This allows a specific application to

change its runtime behavior, specifically: which external interface to use, which applications

can access its interfaces, and how they can use its interfaces. Always in the field of fine-grained

authorization, an interesting work is presented in [210]. In this paper, the authors introduce

DAuth an authorization protocol that allows fine-grained control of access permissions in

the context of application delegation. In particular, if an application is composed of more

than one external component (i.e., different weblets), then a potential risk can occur. The

countermeasure proposed in this work, is the definition of a new SDK to allow the design of

applications where the external components have different policies w.r.t. the on-device ones.

The authors of [67] try to unify distributed component models under a common meta-model

for the purpose of creating a platform independent model for the access control patterns.

Hence, the access control to application resources by the different components is handled

through an orthogonal security aware middleware, thus allowing a plug and play component

environment. All the approaches above assume that the applications that want to leverage

their frameworks must be complaint to their protocols. This requirement is not needed by

our solution that can be applied to any existing third-party application.

The problem of defining fine-grain authorization to access resources is a critical issue in

all the environments in which remote sharing of application services is needed. For instance,

[138] deals with the issue of guaranteeing fine-grain authorization for resource management

in virtual organizations within grid environments.

As for mobile environment, the ability to install third-party applications poses serious se-

curity concerns that raise the attention of lots of researchers. In particular, the authors of [181]

present a policy enforcement framework for Android called Apex. This framework allows

users to selectively make decisions about permissions on their device rather than automating

the decisions based on the policies of remote owners and allows finer-granular control over

usage. In [94], the Kirin security service for Android is proposed. This system certifies an ap-

plication according with a set of security rules, thus performing lightweight certification of

applications and mitigating malware at install time. A relevant tool to perform automated

security certification checking of Android applications as they are installed is SCANDROID

[101]. It analyses whether data flows through an application are consistent with specifications

extracted from the corresponding manifests.

Finally, since our model modifies the regular OAuth protocol flow in order to guarantee

more granular choices on what an application can do with APIs it is useful to notice that, in

this context, some extensions to the OAuth 2.0 authorization enabling an enhanced use of per-

missions are presented in [213, 77]. Specifically, the focus of [213] is to provide a mechanism

that computes permission ratings based on a recommendation model leveraging previous user

decisions and application requests in order to enhance user privacy.

5

Trust and Online Communities: the case of TripAdvisor

Many real-life reputation models suffer from classical drawbacks making the systems where they

are used vulnerable to users’ misbehavior. TripAdvisor is a good example of this problem. Indeed,

despite its popularity, the weakness of its reputation model is resulting in loss of credibility and

growth of legal disputes. This chapter aims at describing a reputation model abstractly considering

service providers, users and feedbacks, and implementing the theoretical notion of certified reputa-

tion to concretely define a strategy to normalize feedback scores towards reliable values. We apply

this model to the case of TripAdvisor, by proposing a solution to improve its dependability neither

increasing its invasiveness nor reducing its usability. Moreover, it fully guarantees backward com-

patibility.

5.1 Background

In this section, we recall the main attacks on reputation systems, on which our proposal op-

erates.

Self-Promoting attacks, concerning the possibility that a service provider increases its repu-

tation by fake positive feedbacks. Typically, such attacks are contrasted by excluding positive

feedbacks but this solution is not applicable in all real-life cases because the elimination of

positive feedbacks would compromise the effectiveness of the reputation system.

Slandering attacks, which aim at falsely decreasing the reputation of other service providers

(typically competitors) by providing fake negative feedbacks.

These attacks usually exploit real users who are disposed to send false feedbacks (positive

or negative) about a service provider, just for friendship, or sometimes for money or com-

petitive advantage. Often, the feedback does not correspond to a real transaction with the

service provider. Unfortunately, parallel markets of feedbacks exist, in which (more or less le-

gal) companies collect users and offer their (fake) feedbacks to any bidder. Furthermore, fake

accounts can be created to achieve the same goal, if the system do not prevent this possibility.

As a matter of fact, the account registration procedure of real-life systems does not implement

specific features able to trust digital identities.

In these cases, Sybil attacks may be done to make a fake account seemly real. A sybil at-

tack generates interaction between false accounts to mutually increase their reputation in the

system.

86 5 Trust and Online Communities: the case of TripAdvisor

Finally, Whitewashing attacks exploit the difficulty to establish users identities: in this case,

a user, who wasted his reputation, creates a new account to change its reputation to the default

initial trustworthiness value.

5.2 The Reputation Model

In this section, we describe our reputation model. The component of the model are:

1. A set of users U ,

2. a set of service providers S, and,

3. for each service provider s ∈ S, a list of feedbacks R(s), each corresponding to a transac-

tion. A feedback rs ∈ R(S) for the service provider s is a tuple 〈u,d,k, t, I〉, where u is the

author the feedback, d is the time of the feedback, k is the score given by u on s, t is a text

motivating k and I is the set of additional resources.

The transaction corresponding to a feedback rs is denoted by tr . To implement the notion

of certified reputation in this model, for a given feedback rs, we need two basic measures,

which are both numbers ranging in the interval [0,1]: (1) the trustworthiness of the identity of

u, denoted by trust(u), and (2) the trustworthiness of the transaction tr , denoted by trust(tr).

The first measure trust(u) is related to identity management issues and is a measure of

the level of assurance of identity proofing given by the registration phase into the reputation

system according to the model proposed by NIST [66]. Observe that we do not consider the

level of assurance of the authentication phase, thus assuming that no attacks on accounts of

users occur. This measure may take into account also external information associated with the

digital identity of the user in the system (for an instance, information coming from different

sources as online social networks). We remark that the trustworthiness of the identity of u is

directly related to some of the threats described in Section 5.1 (for example, Sybil attacks),

but it is in general related to misbehaving users, as any malicious activity is simplified when

the level of assurance of user identity is low.

Equally important is the trustworthiness of the transaction. Again, many of the attacks

described in Section 5.1 are based on the possibility to send a feedback about a service never

used. The trustworthiness of the transaction trust(tr) is a function h(c,w,p), where c is the

content of the feedback (so, it is a function of text t and resources I), w measures the presence

of witnesses (as theoretically provided in [124]) relying also to the time d, and p measures the

trustworthiness of the presence of a confirmation about the occurrence of the transaction.

On the basis of the two measures above we are able to reach our original goal, which is

the measure of trustworthiness trust(rs) of a feedback rs = 〈u,d,k, t, I〉 associated with a trans-

action tr , as the function trust(rs) = f (trust(u), trust(tr)) such that the higher trust(u) and

trust(tr), the higher trust(r). Once trust(rs) has been computed, the score k of the feedback rs

can be corrected on the basis of the overall trustworthiness trust(rs), using a function g, tend-

ing to bring the score k to the average score obtained by the service provider s the more the

value trust(rs) is low. We obtain thus the normalized feedback r∗s simply as r∗s = 〈u,d,g(k), t, I〉.

5.3 Application to TripAdvisor 87

Observe that the trust model we consider in this chapter does not include any reputation

mechanism regarding authors of feedbacks, but only service providers. Indeed, our intention

is to better isolate the problem we intend to deal with. Obviously, further reputation mecha-

nisms can be combined.

5.3 Application to TripAdvisor

In this section we apply the model presented in Section 5.2 to the case of TripAdvisor. Indeed,

the attacks to reputation systems described in Section 5.1 fully apply to the case of Tripdvisor,

as its reputation system is really weak. Fake reviews can be easily included into the system as

user’s identity is weakly managed, and no proof exists that a real interaction between review-

ers and operators occurred. Moreover, it would be easy for an operator claiming to be victim

of slandering attacks coming from competitor operators. This open the possibility of disputes

difficult to solve because TripAdvisor does not provide compensation mechanisms: a user

cannot provide proofs of his interaction with the operator and an operator cannot be claim

to be victim of an attack by a competitor. Interestingly, as recently reported by The Guardian

[229] the Italian antitrust authority has fined TripAdvisor e500,000 (US $600,000) following

complaints of improper business practices lodged by a national hoteliers association and a

consumer protection agency. The antitrust authority said in a statement that TripAdvisor had

failed to adopt controls to prevent false reviews, while at the same time promoting the site

content as authentic and genuine. Thus, the chosen application domain is both suitable to our

model and very topical.

As a first step we have to map all the entities of the model to the TriAdvisor setting.

The set of users U is the set of travellers, potentially covering all web users. The set of

service providers S corresponds to the set of restaurants, bars, hotels, and other operators

registered to TripAdvisor. A list of reviews is associated with each operator s ∈ S. It corre-

sponds to the list of feedbacks R(s) of our model. Indeed, a review rs is authored by a user

u and is provided by: a date d, an aggregate score k (also detailed into different evaluation

dimensions), a text t describing the interaction tr with the operator aimed at motivating the

score k, and, optionally, a set I of images portraying the experience. Thus, a review can be

mapped to a feedback 〈u,d,k, t, I〉.

As presented in Section 5.2, our goal is to compute the value

trust(rs) = f (trust(u), trust(tr)) (5.1)

for a given review rs given by the user u, in order to compute the normalized review r∗s =

〈u,d,g(k), t, i〉, once the functions allowing to compute trust(u) and trust(tr) are defined.

Let us start with the computation of trust(u), representing a level of assurance of identity

proofing of the customer u who have authored the review. Of course, a significative part of

the current weakness of the reputation system of TripAdvisor is based on the weakness of its

digital identity management system.

Concerning trust(u), we adopt an approach similar to the classification given by NIST

about the identity proofing [66] classifying 4 levels of assurance (LOAs): (1) claimed identity

88 5 Trust and Online Communities: the case of TripAdvisor

with no proof, (2) presentation of credentials with no verification, (3) presentation of cre-

dentials with verification, and (4) in-person presentation only. As for the case of TripAdvisor

level 4 is of course unrealistic, we consider 3 levels assigning the values trust(u) = 0,0.5,1 for

them, respectively. Currently, the registration phase of TripAdvisor does not force the user

to provide any non-self declared credential. Anyway, the possibility of registering via Face-

book/Twitter/Google+ profile is also allowed. We propose to include in the system also a

token-based two-factor registration mechanism, by sending a token as credential via sms or

instant messaging systems uniquely associated with a phone number (such as, for example,

Whatsapp or Viber). The usage of a phone-based mechanism as second factor of the initial

registration increases the level of assurance w.r.t. the other options. Thus, we set trust(u) = 0

if the registration of u was self-declared-credential based, trust(u) = 0.5 if the registration of u

was social-network-profile based; and trust(u) = 1 if the registration of u was token-by-phone

based. In principle, trust(u) = 1 also for social-network-profile based registrations provided

that the social-network registration mechanism is token-by-phone based too (as it happens for

some online social networks). Observe that an indication that a given account is fake could be

given also by the number of reviews of that user. Reasonably, an account created just to im-

plement a self promoting (or a slandering) review, will have one or a few reviews. Conversely,

a user showing a high number of reviews is less likely author of fake reviews. However, this

aspect lies outside our focus, as it concerns a reputation mechanism regarding authors of feed-

backs and the estimation of their expertise. As mentioned earlier, similar strategies (actually

already naively included in TripAdvisor), could be also fortified and combined with those

aspects that are subject of our work.

Concerning trust(tr), i.e., the trustworthiness of the transaction, we first recall that

trust(tr) = h(c,w,p), where c is the content of the feedback (so, it is a function of text t and

resources I), w measures the presence of witnesses (possibly relying also to the time d), and

p measures the trustworthiness of the presence of a confirmation about the occurrence of the

transaction.

Currently, no mechanism is explicitly given by TripAdvisor to certify a transaction. In

our model we identify three pieces of information that can be used to this purpose: content,

witnesses, confirmation. Let us see now if these pieces of information can be drawn from the

TripAdvisor system.

Concerning c (i.e., content), consider that the review is equipped with a motivating text

and, optionally, with images. Indeed, in addition to the text, a reviewer could include a photo

of an expensive but inadequate dish or a dirty bath in luxury hotel. We set the value of c to

c = 0,0.5,1 if (1) no image is included in the review (i.e., I = ∅), (2) I , ∅, (3) the content of

text and images is recognized as reliable and coherent, respectively. Obviously, the case (3)

(i.e., c = 1) requires semi-automatic activities and the intervention of a third party. Thus, this

possibility is here only hypothesized but it is actually considered as a future issue (thus not

included in the implementation).

Concerning the presence of witnesses (i.e., w), currently, no mechanism is provided by

TripAdvisor. We thus propose to include a simple mechanism to cover this gap as follows. A

5.4 Implementation Issues and Validation 89

user could indicate other people who can confirm his presence in an activity. The date d of

reviews can be used to validate this declaration. We set w = 0,0.5,1 if (1) no witness exist, (2)

there is just one witness, (3) there are multiple witnesses, respectively.

Concerning the confirmation by the operator p, no mechanism is at moment provided by

TripAdvisor, so that we propose the inclusion of the following (no-cost) system. We expect

that the operator issues a ticket to the reviewer, and the ticket is a credential needed to the

reviewer to provide a review. To contrast the possibility that an operator carries out self-

promoting attacks (by generating fake tickets), the idea is that the reviewer has a sequence of

tickets, each generated by an operator who he has visited, but for reviewing the i-th operator,

he has to use the ticket supplied from the (i −1)-th operator. The first ticket is generated from

the system when creating the reviewer account. We set p = 1 if the review uses a valid ticket,

p = 0 otherwise.

The value trust(tr) = h(c,w,p) is thus obtained by evaluating the function h on the values

c,w,p. As function h we choose a linear combination of the three variables: k1 ·c+k2 ·w+k3 ·p,

where k1, k2 and k3 are parameters of the system to tune through simulation and practical

experience.

As a first step, we have to combine the value trust(u) with the value trust(tr) so obtained

by computing trust(rs) = f (trust(u), trust(tr)). Again, for the function f we choose a linear

combination k3 · trust(u) + k4 · trust(tr).

Finally, the normalized review is computed as r∗s = 〈u,d,g(k), t, i〉, where we define g(k) as

g(k) = (α+trust(rs))·k∑
r′s∈R(S)(α+trust(r′s))

, where α is s suitable (small) offset to avoid null terms. This way, the

mean computed over all the scores obtained by the operator s is just the mean weighted by

trust values (shifted by α) of each review.

5.4 Implementation Issues and Validation

In this section, we describe our strategy to build and validate the system implementing the

approach presented in this chapter. We point out that, this is a work in progress carried out

within industrial project. For this reason, we give here only some details about the strategy

we are following for the validation of our proposal.

The data extraction strategy used to crawl TripAdvisor information leverages on HMTL

parsing. Processing HTML to obtain social data is a low-level way of dealing with web data

and requires much time because it needs to analyze all context information from the page

source code. However, it remains the only solution because (i) TripAdvisor API content is

not publicly available and is only for licensed partners and (ii) TripAdvisor APIs do not

make available information about reviewers, indispensable to apply our strategy. After the

extraction of data about reviewers, reviews and the corresponding hotels or restaurants (we

restrict to these categories of operators), we stored them in a MongoDB server, a document-

oriented database suitable for handling big data. Information stored in such a database is,

then, processed to compute the parameters described in Section 5.2 by means of a Java proto-

90 5 Trust and Online Communities: the case of TripAdvisor

type running on a personal computer equipped with a 4.0GHz Intel i7 CPU, 16 GB of RAM

and Ubuntu 14.04.

Concerning the experimental validation campaign, the first issue to address is the com-

putation of the parameter trust(u), representing the level of assurance of identity proofing of

the customer u who have authored the review. At the moment, TripAdvisor is not equipped

with a token-based registration mechanism hence we cannot use this information. However,

it is possible to access TripAdvisor by using an existing social network profile. Therefore, we

partition users who have a standard TripAdvisor account and those accessing the system via a

social network account. The supported social networks are Facebook and Google+ and, once

a user accesses the system using an account of one of these social sites, a new TripAdvisor

profile is built on the basis of the user information gathered from the social network.

As for the computation of the parameter trust(tr), which measures the trustworthiness

of the transaction, we rely on two pieces of information obtained from TripAdvisor: pictures

and witnesses. Concerning the former, although the functionality allowing the insertion of

pictures about a TripAdvisor service providers has always been available on the system, pic-

tures were originally not linked to any review. Only recently TripAdvisor has added the pos-

sibility of enriching a review with pictures of the visited place and, hence, now those pictures

are directly associated with the specific review. Therefore, we can extract this information

by parsing the HTML of the page containing a review. Listing 5.1 shows an example of such

HTML code, in which Line 2 contains the review identifier, whereas the presence of the HTML

tag img at Lines 16-17 means that there is a picture associated with this review. The attributes

concerning the picture are listed in Lines 22- 25. Specifically, the field data (Line 25) is the

url of the picture itself. The presence of a picture is used to compute the trustworthiness of

the review as defined in Section 5.2.

As for the second information useful for the computation of trust(tr) (i.e., presence of

witnesses), there is not a direct way to extract it from TripAdvisor even if, recently, some

advanced functionalities leveraging on social network friendships have been introduced in the

system. However, for the TripAdvisor account associated with a social network account (i.e.,

Facebook or Google+) we can combine TripAdvisor data with some knowledge derived from

the involved social sites. In more detail, by using the publicly available system SNAKE [64],

we can extract the friends of an account in a social network and, then, identify the witnesses

for a review r posted by a TripAdvisor account created via a social network account a through

the following algorithm:

1. Create the set R of the reviews having the same visiting date as r.

2. Create the set AR of the social network accounts of TripAdvisor users who generated a

review in R.

3. Extract the set Fa of social network friends of a by using the SNAKE system.

4. Compute I = Fa
⋂
AR.

The output of the algorithm described above is the set I is obtained as the intersection be-

tween two sets of social network accounts, and represents the accounts of the friends of a (Fa)

who posted a review about the same operator and in the same date as uf . Observe that, the

5.4 Implementation Issues and Validation 91�
1 <div class="entry">

2 <p property="v:description" id="review_252184***">

3 Very clean room [...]

4 </p>

5 </div>

6 <div class="media�ug_thumb�thumbCols1">

7 <div class="thumbnails">

8 <div class="photosInline">

9

10 <li class="�ThumbNailContainer">

11 <span class="u_/LocationPhotoDirectLink***"

12 onclick="ta.trackEventOnPage(’Reviews’,’user_photo’,’image’);

13�ta.util.cookie.setPIDCookie(5042);

14�return�ta.call(’ta.overlays.Factory.albumsLB’,

15�event,�this,�6509342,�274707,�2,�122220566);">

16 <img id=’lazyload_45931090_1’ height=’50’ alt=’’ width=’50’

17 class=’reviewInlineImage’ src=’http://e2.tacdn.com/***’/>

18

19 [...]

20 var lazyImgs = [

21 [...]

22 ,{"id":"lazyload_45931090_1",

23 "tagType":"img","scroll":true,"priority":100,

24 "logerror":false,

25 "data":"http://media-cdn.tripadvisor.com/media/***"}

26 [...] � �
Listing 5.1: Structure of a review.

step 2 described above involves only friends from a single social network, for example Face-

book. However, because nowadays most of users have accounts on multiple social networks,

still referring to the example above, a more complete solution could take also Google+ con-

tacts into account. To gather information about these additional accounts, the identification

of a Google+ alter account of the user owning the account a (whether it exists) is required.

A common approach to address this issue is typically based on profile matching techniques.

This task could be carried out by using, for instance, the approach of [61]. In particular, to find

matching profile, the string similarity between the associated usernames is combined with a

contribution based on a notion of structural similarity among the common neighbors.

So far, we have described how to obtain from TripAdvisor data, the information required

to compute the parameters introduced in Section 5.2. To validate the normalized scores com-

puted by our approach, they should be compared with on the actual scores of the operators,

that is the score obtained in case no malicious reviews are present in the system. Because ob-

taining these actual scores is not feasible, we adopt a sub-optimal strategy, which relies on the

information available on another well-known travel Website, namely Booking.com [33]. Al-

though the review mechanism of Booking.com could in principle be subject to some attacks,

the additional features of this system (such as, the fact that reviews can be posted only by

users who actually performed a reservation to the service provider) make it more robust w.r.t.

TripAdvisor. In particular, according to our model, Booking.com fulfills the maximum level

of assurance for both identity and transaction. Therefore, we are adopting data from Book-

ing.com as ground-truth in our validation campaign. Moreover, to further validate the results

of our approach, we can refer to the well-known Wisdom of Crowd principle of crowdsourcing

mechanism [121]. Under this assumption, if a service provider receives, over time, a very high

92 5 Trust and Online Communities: the case of TripAdvisor

number of reviews, the score will be highly trustable due to the dejection of the noise caused

by malicious outliers. For this reason, given an operator with a long history of reviews, we are

testing our approach by considering a snapshot of TripAdvisor in a past date. By using this

old information, we compute our normalized scores and compare our results with the score

achieved by the operator in the present time.

Both the above validation activities are in progress so we cannot present conclusive results

here although we are currently obtaining encouraging performances.

5.5 Related Work

Nowadays a great variety of computer applications are decentralized in open distributed sys-

tems. Moreover they belong to widely differing areas (such as peer-to-peer computing, seman-

tic Web, Web services, autonomic computing, and so on), and are characterized by the fact

that their components are autonomous actors, spread throughout a network and cooperating

in order to achieve the design objectives.

In most of these systems, however, there is a need to apply trust and reputation-based

approaches to improve their effectiveness. For this reason, in recent years, a lot of models

have been formalized due to the increasing recognition of their roles in controlling social

order in open systems [194, 144].

To provide trust metrics, these models take advantage of different information sources. In

general, these sources can be divided into two groups: (i) direct interactions [144, 206] and (ii)

feedbacks provided by other members of the society about experiences they had in the past

[194, 131]. Specifically, the model FIRE, described in [126], formalizes suitable concepts of

trust and reputation for open multi-agent systems. This approach is based on different met-

rics such as, interaction trust, role-based trust, witness reputation and certified reputation.

The model presented in [206] takes advantage of social relations between agents, whereas, in

[144] the hybrid trust model T-REX is formalized. It combines witness reputation and actors’

personal experience as well as it integrates multiagent systems (MAS) with Semantic Web

technology.

The AgentTMS model proposed in [194] is based on social relationships among agents

and, in particular, on types and strengths of these interactions. [131] proposes a reputa-

tion model for trust management in a semantic P2P Grid using fuzzy theory to compute a

peer trust level. The authors of TRAVOS [227] develop a trust metrics which uses probability

theory and past interactions between agents. In case of lack of personal experience between

agents, the model draws upon reputation information gathered from third parties.

All the approaches presented above apply on open Multi-Agent Systems (MAS) and it

is precisely in this context that the notion of certified reputation has been firstly introduced

[123, 125]. Specifically, the Certified Reputation of an agent is the reputation that is derived

from third-party references about its previous performance consisting of a number of certi-

fied references about its behavior on particular tasks. Such information is obtained and stored

5.5 Related Work 93

by the agent itself and made available to any other agent that wishes to evaluate its trustwor-

thiness for further interactions.

Our work gives a contribution in this field, by proposing a reputation model based on

service providers, users and feedbacks, implementing the theoretical notion of certified repu-

tation for the TripAdvisor travel service. Our goal is to define a strategy to normalize feedback

scores towards reliable values.

Part II

Private and Public Physical Organizations

97

This second part focuses on strategies assessing privacy and security on both public and

private physical organizations.

The first three proposed approaches lie in the field of e-governement, that is the use of

electronic communications devices, computers and the Internet to provide public services to

citizens. One of the main problems in this context is the authentication of transactions. In

order to solve this issue we proposed in Chapter 6 a new electronic signature protocol not us-

ing public-key encryption, qualified signature creation devices, or qualified certificates. This

protocol relies on an innovative model, which exploits the power of online social networks

of sharing information by spreading out on them the signature functions. Always in the con-

text of e-government, another critical aspect is authentication of users, especially in scenarios

where user’s privacy is threatened by honest-but-curious cloud providers. In Chapter 7 we pro-

pose an authentication scheme supporting full anonymity of users and unlinkability of service

requests. This is done by combining a multi-party cryptographic protocol with the use of a

cooperative P2P-based approach to access services in the cloud.

Another interesting and new aspect we focus on is related to Blockchain technology, which

allows mutually distrustful parties to transact safely without trusted third parties and avoid-

ing high legal and transactional cost. In Chapter 8, we propose an alternative public ledger

that, instead of the P2P network and the protocol of Blockchain, leverages the popular social

network Twitter, and builds a meshed chain of tweets to ensure transaction security.

Then, our focus moves towards some approaches in the field of urban security. More and

more often, both private and public organizations rely on cloud-based services supplied by

third parties. This happens in many cases, for those companies that do not choose to imple-

ment private clouds and for those governments in which national clouds are not adopted.

Urban security is one of the settings in which monitoring systems produce a huge amount

of data. An emblematic case is that of video surveillance, especially if a capillary solution

is adopted. Therefore, it is plausible that the municipality finds convenient to move video

surveillance data to a third-party cloud. In this case, the trustworthiness of the cloud provider

becomes a critical point. Among other threats, the possibility that the cloud does not return in-

tact responses may have severe consequences. In order to solve this issue, Chapter 9 proposes

an approach to allow users to verify that cloud query results are complete (i.e., no qualifying

tuples are omitted), fresh (i.e., the newest version of the results are returned), and correct (i.e.,

the result values are not corrupted).

98

Still in the context of urban security, another aspect concerns the trade-off between people

privacy and the need to guarantee security standards in critical environments also by adopting

continuous monitoring. To solve this trade-off, we propose a complex system that borrows the

concept of k-anonymity from databases and applies it to build a new approach allowing the

identification of people accessing a zone providing a desired level of privacy. Two interesting

application scenarios are presented in Chapter 10 and in Chapter 11, respectively Critical

infrastructures and for Assistive Living Facilities.

6

Security of Transactions in E-government: A

Social-Network-Based Advanced Electronic Signature

In e-government applications, the use of qualified electronic signature will always be increasing in

the next future. However, there are some aspects related to costs and usability that limit its diffu-

sion. This makes timely and important the issue of designing new signature protocols that relax

the heaviest features of public-key-encryption based qualified electronic signature, yet keeping the

characteristics of advanced electronic signature. We propose a new electronic signature protocol that

does not use public-key encryption, qualified signature creation devices, or qualified certificates. The

protocol relies on an innovative model, which exploits the power of OSNs of sharing information by

spreading out on them the signature functions. A deep security analysis shows that the proposed ap-

proach is robust against known attacks on digital signatures and an implementation using Twitter

services makes it realistic and effective.

6.1 Background

In this section, we introduce some background notions concerning the different kinds of elec-

tronic signature allowed by the current European regulations. Indeed, the solution proposed

in this chapter aims at being framed in the European regulatory framework to be concrete and

effective. As observed in the Introduction, the reference to the European regulatory frame-

work does not limit the generality of our proposal, as the US regulatory framework provides

a broader notion of electronic signature.

An advanced electronic signature [1] is defined as an electronic signature that meets the

following requirements: (1) it is uniquely linked to the signatory, (2) it is capable of identifying

the signatory, (3) it is created using means that the signatory can maintain under his sole

control, and (4) it is linked to the data to which it relates in such a manner that any subsequent

change of the data is detectable. An advanced electronic signature satisfying certain security

and quality requirements is said qualified electronic signatures. In particular, [1] states that a

qualified electronic signature shall: (1) be an advanced electronic signature, (2) be based on

a qualified certificate issued by a suitably certified certification service provider (as specified

in the Annex I of [1], and (3) be created by a secure signature creation device that meets

specific functional conditions which are also laid down in [1]. The main benefit of qualified

electronic signature is that they can benefit from an automatic legal equivalence to hand-

written signatures across the European Union.

100 6 Security of Transactions in E-government: A Social-Network-Based Advanced Electronic Signature

Despite these signatures hold the principles of technological neutrality, the de-facto stan-

dard for the electronic signature with automatic legal value is public-key-encryption-based

qualified electronic signature, which enforces the utilization of qualified PKI certificates and

qualified signature creation devices. Even the existing solutions of advanced electronic sig-

nature makes use of public-key encryption. Usually it is obtained by relaxing some security

requirement of qualified electronic signature, or by combining the use of dynamic signature

(capturing the biometric features of an hand-written signature) with public-key encryption

to link the final signature also to the content of the document.

We assume that the reader knows how a signature based on public-key encryption (typ-

ically RSA [201]) works. A signed document produces what it is usually called cryptographic

message, which can be encoded in several formats, such as PKCS#7, CMS, CAdES, XAdES or

pdf.

One of the drawbacks of qualified electronic signature is the need of having a secure sig-

nature creation device to sign a document, which increases the cost and decrease the usability

of the solution. For this reason, beside smart-card-based signatures, a remote digital signature

has been introduced. The remote signature is a type of signature, accessible via network (In-

tranet and/or Internet), in which the signatory’s private key is stored along with the signature

certificate, within a secure remote server (based on a HSM - Hardware Security Module) by

an accredited provider. HSMs are devices used for data encryption and decryption and host

one or more cryptographic keys that respond to automated or manual commands. They safe-

guards and manages digital keys and have the capability to detect an attack on their surface

and securely delete the sensitive content stored in their memory. In particular, HSMs are spe-

cific hardware designed to protect key against any kind of logical and physical manumission

or extraction of cryptographic material from its environment.

The HSMs are normally hardware that passed by certification procedure. The most impor-

tant are FIPS 140-2, a certification involved by USA’s Department of Commerce, and Common

Criteria [11], developed by a consortium that wants to obtain protection profiles for such

equipment. Key management life cycle has been studied by many researchers [187]. In partic-

ular, Menezes et al. [173] discuss the public key management in a general context, considering

user registration and initialization to key revocation. Note that an electronic signature solu-

tion asserts that all signatories are originally identified by the signature master with a given

level of assurance. In particular, the level of assurance of authentication in case of remote

signature (using HSMs) is at least the (multi-factor) level of assurance 3 of the NIST model.

Another important point is the level of assurance required for the PKI registration phase.

In this phase, the owner of the signature certificate is identified and registered by the certifi-

cation service provider. As for authentication, the level of assurance of the identification can

be referred to the NIST framework [66]. For qualified certificates, at least level 3 in-person is

required, i.e., the possession of verified current primary government picture ID that contains

applicant picture and either address of record or nationality of record (e.g., drivers license or

passport).

6.2 The Social-Network-Based Signature Model 101

6.2 The Social-Network-Based Signature Model

In this section, we present the abstract model underlying our proposal. In the sequel of the

chapter, we instantiate this model to a concrete scenario involving real-life entities and ad-

dressing all technical issues. The second step will be a prototype implementation of the con-

crete instantiation of the model. The model is composed of:

The Actors: The entities involved in the signature process: The signature master M, the signa-

tory S, and the social network T .

A Posting Integrity Mechanism: A mechanism provided to the signatories and the signature

master to prevent the corruption of their posting timeline.

A Registration Protocol: The initial phase, where the real-life identity of signatories is as-

sociated with a profile in the social network T and a secure sharing of this information is

established.

A Signature Generation Protocol: The protocol followed by signatories to sign a document.

A Revocation Protocol: The protocol aimed at inhibiting a given signatory to validly run the

signature protocol from the moment of revocation on.

A Signature Verification Protocol: The protocol followed by any recipient of a signed docu-

ment to verify the validity of the signature.

The Security Parameters: The parameters concurring at establishing the level of security of

the whole signature process. Now, we describe in detail each of the above component.

Actors. Any instance of the model consists of one signature masterM, a set of signatories (that

can be dynamically updated), and one social network T . Only T is assumed to be trusted.

Both signatories and signature master have a profile in T . We assume that this social network

supports (at least) (1) a friendship relation, (2) the possibility for users to post a text message

equipped with a timestamp in a public section of their profile, (3) the possibility of searching

for a message posted in a public section by means of usual text-search tools. For each signatory

S, a friendship with the signature master is established in the social network T . We require

that in T , automatically, any message posted in his public section by a friend S of M is

conditionally (according to a given condition set by M) replicated by M in its public section,

by including the same information, in such a way that the deletion of the original message

does not propagate to the replicated messages.

Posting Integrity Mechanism. Each signatory S is provided with a second preimage resistant

trap-door function f : D → C, where D and C are finite, and a secret information p such that,

for a given output y of the function f , finding x such that y = f (x) is feasible only for S, who

owns p. Each post (belonging to the signature protocol) of a signatory S is associated with a

number y such that the next post of the same signatory is associated with a number x such

that y = f (x). Consider that only S is able to generate a legal new post because he is the only

party able to compute the number to associate with the post. As shown in Section 6.3, this

measure prevents attacks based on the posting-timeline corruption.

Registration Protocol. All (real-life) signatories are originally identified (and assigned to a

social network profile) by the signature master. The first step of the registration protocol is

the publication done by the signatory S in the public section of his profile of the first message

102 6 Security of Transactions in E-government: A Social-Network-Based Advanced Electronic Signature

〈y0, I , IDS 〉, where y0 is obtained by the posting integrity mechanism above, I is an informa-

tion confirming the association of S with the signature master M, and IDS is defined above.

For each signatory S, the association between a real-life identity of S and his social network

profile is published as welcome message for S 〈y0, J, IDS 〉 in the public section of the signature

master profile, where y0 is the same as the registration message, J is an information describing

the real-life identity of S, and IDS is the identifier of S in the social network of T .

Signature Generation Protocol. Let Di be the i-th (i > 0) document (in order of time) being

signed by the signatory S, IDS be the identifier of S in the social network of T , and h be a

k-bit cryptographic hash function. We define the signature message as 〈yi ,h(Di), IDS 〉, where

yi is a number. A signature message 〈yi ,h(Di), IDS 〉 is said linked (in S) if (recursively) f (yi) =

yi−1 and either 〈yi−1,h(Di−1), IDS 〉 is the latest linked signature message associated with IDS

occurring in T or 〈yi−1, I , IDS 〉 is the first message posted by S at the registration phase.

The signature generation protocol consists of the publication done by S in the public sec-

tion of his profile of a signature message 〈yi ,h(Di), IDS 〉, which enforces that M either:

1. replicates this message in its public section (thus producing a message also called confir-

mation message), if it is linked in S and there not exists another message 〈yi ,h(D∗), IDS 〉 in

S or M with h(Di) , h(D∗), or

2. publishes an aborting message (for yi) 〈yi ,h(Di), IDS 〉 (meaning that the signature pro-

cedure fails), if the signature message is linked in S and there exists another message

〈yi ,h(D∗), IDS 〉 in S with h(Di) , h(D∗), or

3. does nothing, otherwise.

Moreover, the protocol enforces that the maximum time between the publication of the

message by S and the publication of the corresponding message by M is not greater than ∆t,

which we call reaction time constraint. The security mechanism based on the trap-door results

in a chain of signature messages starting from the original registration message 〈y0, I , IDS 〉

that only the signatory is able to generate. This chain is also published by the signature master

M due to the replication mechanism described above. According to the protocol, the chain is

replicated by M for all linked signature messages through confirmation/aborting messages.

However, if a signature message is not linked, no message is published by M. In other words,

no confirmation message for a signature message 〈yi ,h(Di), IDS 〉 such that f (yi) , yi−1 may

occur in the posting timeline of M or such that the iterated self composition of f to yi does

not allow us to reach y0 after i steps, where 〈y0, I , IDS 〉 is the first message posted by S at the

registration phase.

As we are interested in managing also states not generated by the signature generation

protocol (as for example those arising from the deletion of messages from the timelines of S

andM), we need to introduce a stronger notion of linkness. A signature message 〈yi ,h(Di), IDS 〉

is said (k-)linked (in S) if there exists k > 0 such that a message 〈f k(y),h(Dk), IDS 〉 occurs in the

public section of S and either its confirmation or a corresponding aborting message appears in

the public section ofM, and for each 0 < j < k the message 〈f j (y),h(Dj), IDS 〉 belongs to S or its

confirmation (or the aborting message) belongs to M, where f k denotes the self composition

6.2 The Social-Network-Based Signature Model 103

Fig. 6.1: An example of a linked message.

Fig. 6.2: An example of a k-linked message.

of the function f for k times1. Given a message 〈y,h(D), IDS 〉, denoting by n the value such

that 〈f n(y), I , IDS 〉 is the first message posted by S at the registration phase, it is easy to see

that if the message is k-linked (for 0 ≤ k ≤ n), it is j-linked too, for any k ≤ j ≤ n. Moreover,

it is also linked. This immediately follows from the definition of the signature generation

protocol. Therefore, to prove that a message is linked, it suffices to find the minimum k such

that the message is k-linked, thus in general saving computation. In Figures 6.1 and 6.2, we

report some examples of timelines to better explain the above notions.

Finally, Algorithm 2 schematizes the above protocol.

1 Observe that no computability problems may arise (in the worst case of a negative instance)

as f operates on finite sets. Anyway, to avoid infeasible computation in a concrete imple-

mentation it suffices to bound the maximum number of possible signature messages (per

signatory) by a value u, so that k, if any, is less or equal to u. Moreover, as f is efficient, u

can be large enough to cover all possible signatures of a user.

104 6 Security of Transactions in E-government: A Social-Network-Based Advanced Electronic Signature

Algorithm 2 Signature Generation Protocol
Notation S: the document signatory

Notation M: the signature master

Notation T : a social network

Notation h: a k-bit cryptographic hash function

Input IDS : the identifier of S in T

Input Di : the i-th document being signed by S

Input yi : a number

1: S publishes 〈yi ,h(Di), IDS 〉

2: if (〈yi ,h(Di), IDS 〉 is linked in S) then

3: if (@〈yi ,h(D∗), IDS 〉 in S and @〈yi ,h(D∗), IDS 〉 in M) then

4: M publishes 〈yi ,h(Di), IDS 〉

5: else if ((h(D∗) , h(Di))) then

6: M publishes the aborting message 〈yi ,h(Di), IDS 〉 in ∆t

7: end if

8: end if

Revocation protocol. The revocation of a signatory S is done by the signature master by sim-

ply removing the friendship of S and by publishing a revocation message identifying time

and reasons of revocation.

Signature Verification Protocol. Concerning the validity of the signature, our verification

procedure, for any detected potential signatory, outputs two possible values each equipped

with an attribute, resulting in four different outcomes (value, attribute): (1) (valid,

safe), (2) (invalid, safe), (3) (valid, unsafe), and (4) (invalid, unsafe). The full

meaning of attributes will be clear in Section 6.3. Basically, a safe outcome means that no

anomaly is detected. Conversely, an unsafe outcome indicates the occurrence of an anomaly

(i.e., attack or failure). Interestingly, due to the value returned, among valid and invalid, the

anomaly does not affect the (even legal) effects of the signature. Therefore, the attribute is

an extra information given as warning to detect an anomaly, as for example a blocked attempt

of attack. As it will be clear in Section 6.3.2, besides the attribute, the signature verifica-

tion procedure could return in principle further extra information related to the origin of the

anomaly. For simplicity, we do not consider this feature here.

Let D be the document whose signature has to be verified. The protocol works as fol-

low. First, the digest h(D) is computed. Then, h(D) is searched among the public information

posted in the social network T . If h(D) is not found the verification returns the outcome (in-

valid, safe), with no other information. In other words, the document D is detected as not

signed. Otherwise, we have the following cases:

1. Both signature message 〈y,h(D), IDS 〉 and its corresponding confirmation message exist

and S is not revoked. In this case, the verification procedure returns (valid, safe) w.r.t

S. Observe that, according to the signature generation protocol, the presence of the con-

firmation message ensures that 〈y,h(D), IDS 〉 is linked in S.

2. A signature message 〈y,h(D), IDS 〉 exists either in S or M (not in both). In this case, the

verification procedure returns:

a) (valid, unsafe) w.r.t S if either:

6.2 The Social-Network-Based Signature Model 105

i. the found message 〈y,h(D), IDS 〉 is linked in S, there not exists an aborting mes-

sage for y inM with time delay w.r.t. the signature message less than (or equal to)

∆t (thus compliant with the reaction time constraint ∆t), and S is not revoked,

or

ii. the found message 〈y,h(D), IDS 〉 is linked in S, a message exists (in S or M)

〈y,h(D′), IDS 〉 such that D , D′ , the message with lowest timestamp between

〈y,h(D), IDS 〉 and 〈y,h(D′), IDS 〉 contains h(D), and S is not revoked,

b) (invalid, unsafe) w.r.t S, otherwise.

Note that in the multiple signatories the signature verification protocol associates each

signatory with an outcome (value, attribute). An algorithm describing this protocol is

shown in Algorithm 3.

Algorithm 3 Signature Verification Protocol
Notation T : a social network

Notation S: the document signatory

Notation M: the signature master

Notation h: a k-bit cryptographic hash function

Notation ∆t: the reaction time constraint

Notation IDS : the identifier of S in T

Notation m: a signature message 〈y,h(D), IDS 〉 for the document D

Notation m′ : a signature message 〈y,h(D′), IDS 〉 (D′ ,D)

Notation m: an aborting message 〈−y,h(D), IDS 〉 on y

Notation tm: time delay w.r.t. the signature message m

Notation min(m,m′): a function returning the message with the lowest timestamp

Input D: the document to be verified

Output results: an empty list

1: Compute h(D);

2: Search 〈h(D)〉 on T ;

3: if (@〈h(D)〉) then

4: add 〈null, (invalid,safe)〉 to results;

5: return results;

6: end if

7: for each IDS found do

8: if (∃ m in S and ∃ m in M and S is not revoked then

9: add 〈IDS , (valid,safe)〉 to results;

10: else

11: if (∃ m in S or ∃ m in M) then

12: if (m is linked in S and @ m in M with tm ≤ ∆t and S is not revoked) then

13: add 〈IDS , (valid,unsafe)〉 to results;

14: else if (m is linked in S and (∃ m′ in S or ∃ m′ in M) and min(m,m′) =m and S is not revoked) then

15: add 〈IDS , (invalid,safe)〉 to results;

16: else

17: add 〈IDS , (invalid,unsafe)〉 to results;

18: end if

19: else

20: add 〈IDS , (invalid,unsafe)〉 to results;

21: end if

22: end if

23: end for

24: return results;

106 6 Security of Transactions in E-government: A Social-Network-Based Advanced Electronic Signature

Security Parameters. The level of assurance of the authentication procedure of users when

logging into their social network profile, say LoA(Auth), is a parameter of the model (the value

of this parameter can be assumed belonging to the score given by NIST in [66], thus from 1

to 4). According to our model, an electronic signature solution enforces that all (real-life) sig-

natories are originally identified (and assigned to a social network profile) by the signature

master (registration protocol) with a given level of assurance, say 〈LoA(Id),p〉, which is a pair

of parameters denoting with LoA(Id) the identification level of assurance adopted in the reg-

istration phase (among the levels given by NIST in [66], thus from 1 to 4), and with p if the

identification is in-person (p = 1) or remote (p = 0). 〈LoA(Id),p〉 induces the level of assurance

of the identification function of the electronic signature. LoA(Auth), 〈LoA(Id),p〉, and the other

security features of a concrete instantiation of the model induces the level of assurance of the

electronic signature w.r.t. both indicative and declaratory functions of the signature [221], thus

the security of the non-repudiation service implemented by the signature itself. Other param-

eters could exist, depending on the concrete instantiation of the model.

6.3 Security Model

In this section, we state the security properties required for the proposed e-signature protocol.

We denote by SM the security model so obtained. We remark that we consider attacks identi-

fied on the basis of the taxonomy proposed in [118], from most enabled adversaries who are

“enabled insiders”, namely, internal or external users and the signature master M. Hence, a

protocol which is secure against such adversaries is also secure against any other adversary

who is an outsider or a normal user in the system. Observe that even though most of the

anomalies based on software/network (fault-based) failures are subsumed by the considered

attacks, the aim of this section is to analyze the security of our protocol, not its dependability

in the largest meaning.

6.3.1 Assumptions, Security Properties, and Attacks

Our threat model realistically considers the following assumptions:

A1 A signature system is secure w.r.t. a given attack if it is (at least) as secure as CADES/X-

AdES qualified electronic signature system compliant to [1].

A2 Collision, preimage and second preimage attacks on the cryptographic hash function h

are infeasible;

A3 The social network T acts as a trusted third party;

A4 The attacker cannot add or compromise information shown on the social network ac-

counts of the signature master and signatories with no legal authentication;

A5 The authentication on the social network is configured to require a double-factor authen-

tication (level of assurance 3 of the NIST model [66]);

A6 The initial registration is done at level of assurance 3 in-person of the NIST model [66];

6.3 Security Model 107

A7 The occurrence of the initial registration is provable by both parties (the master and the

signatory), as well as the integrity of the published registration message;

A8 The exact duration of the signatory’s status granting the right to use the signature service

can be proven by means of secure information external to the system (e.g., documents

kept by the master);

A9 The secret enabling the trap-door function of the posting integrity mechanism is man-

aged with a level of security at least equal to that of CADES/XAdES qualified electronic

signature systems.

A10 No collusion may occur between master and users.

Concerning Assumptions A1, according to current European rules [1], we observe that the

level of security of the management of secrets in a CADES/XAdES qualified electronic signa-

ture is bounded by how users are authenticated to access HSMs (Hardware Security Modules)

services (considering that attacks on HSMs are definitely more difficult and there is no proof

of concept that the known vulnerabilities can be exploited to jeopardize the signature pro-

cess). In the case of HSM, users’ private keys are kept by a TTP (the HSM provider), and

their utilization (to generate signatures) is enabled by the signatory by means of a double-

factor authentication (level of assurance 3 of the NIST model [66]). This prevent the success

of keylogger-based attacks. So we consider this as lower bound security for how we manage

the secrets of our protocol. Therefore, Assumption A9 means that the adopted solution is able

to protect the secret against at least a keylogger-based attack on the device client side. Now,

we are ready to state the security properties of our protocol. Thanks to Assumption A10, we

consider only the cases where the attacker is either a signatory or the signature master. Ob-

serve that, according to Assumption A1, our aim is to assess that our solution can be classified

as advanced electronic signature, as defined in [1].

Security Property 1 (SP1) - Document Authenticity. SP1 is defined as follows: A signed

document should be always verified as issued by the real signatory. In other words, the signature

should be always a proof of origin.

The attack model we consider to describe how this property can be threaten is the follow-

ing:

Attack AA1: An adversary tries to use a fake Twitter profile to jeopardize the proof of origin

of a social signature of a legal user.

Attack AA2: An adversary attempts to impersonate another identity by deceiving the regis-

tration phase.

Attack AA3: An adversary attempts to impersonate another identity by stealing everything

the legal user needs to sign a document (by social engineering, interception, observation, end-

point compromise, guessing, of signature creation data).

Attack AA4: The attacker substitutes the original signature by a signature generated by him-

self on the same document, compromising the proof of origin.

Attack AA5: The attacker tries to attribute the signature of a document to a victim user.

108 6 Security of Transactions in E-government: A Social-Network-Based Advanced Electronic Signature

Security Property 2 - Document Integrity SP2 (Security Property 2) is defined as follows:

The binary content of a signed document should be always verified as exactly equal to the original

document.

The attack model we consider to describe how this property can be threaten is the follow-

ing:

Attack AI1: An adversary tries to forge a valid signature starting from a signature of the

victim (i.e., selective forgery attack).

Attack AI2: An adversary tries to forge a pair of documents with same digest and submit one

of the two documents to the victim to be signed (i.e., existential forgery attack).

Attack AI3: An adversary tries to forge a new document and, accordingly, the associated social

signature of a victim user (i.e., existential forgery attack).

Security Property 3 (SP3) - Signature Verification Dependability SP3 is defined as follows:

The signature validity verification should be always dependable.

The attack model we consider to describe how this property can be threaten is the follow-

ing:

Attack AD1: An adversary tries to repudiate its Twitter account or its use, thus invalidating

the signature validity verification.

Attack AD2: An adversary tries to repudiate a social signature by illegal operations (w.r.t. the

signature generation protocol) on his timeline.

Attack AD3: An adversary tries to repudiate a social signature by jeopardizing the revocation

system.

Attack AD4: An external adversary (different from the signatory) tries to make a valid signa-

ture generated by a certain user be verified as invalid.

Attack AD5: An adversary tries to make a signature generated over a fraudulently modified

document be verified as valid.

Attack AD6: The master, playing as adversary, tries to make invalid a valid signature verifi-

cation by illegal operations (w.r.t. the signature generation protocol) on his timeline.

Security Property 4 (SP4) - Document Immutability SP4 is defined as follows: The presenta-

tion of a signed document (i.e., what the document shows) should be always the same, not dependent

on external variables such as time, host device, etc.

Attack AP1: An adversary includes dynamic contents in a document being signed.

Attack AP2: An adversary corrupts the fonts of the host system.

Attack AP3: An adversary produces a polymorphic file [36] as document being signed.

6.3.2 Security Analysis

In this section, we analyze the practical security (as stated by Assumption A1) of our signa-

ture system. We consider separately all the security properties we have to guarantee, which

are document authenticity, document integrity, signature verification dependability, and doc-

ument immutability, as stated in the security model presented in the previous section. Even

though multiple signatories of a given document might occur, our security analysis focuses

only on the case of a single signatory, without loss of generality. Indeed, it is easy to realize

6.3 Security Model 109

that user collusion cannot give any advantage. The following theorem states that the protocol

satisfies the property SP1 of the security model SM.

Theorem 6.1 (Document Authenticity). The protocol is secure against attacks AA1, AA2, AA3,

AA4, and AA5.

Proof. Resistance to Attack AA1. Recall that AA1 occurs whenever an adversary tries to use

a fake social network profile to jeopardize the proof of origin of a social signature of a legal

user. In particular, the attacker creates a profile with the victim’s real-life information, and

then tries to impersonate the victim. Let 〈y,h(D), IDS 〉 be a fake signature message whose aim

is to attribute the signature of the document D to the signatory S. This attack is vanished by

the fact that the signature generation protocol requires that the signature message is linked,

to respond the value valid. But, thanks to Assumption A7, this cannot happen.

Resistance to Attack AA2. Recall that AA2 occurs whenever an adversary attempts to imper-

sonate another identity by deceiving the registration phase. The security of our system against

this attack is (at least) the same of CADES/XAdES qualified electronic signature systems, as

the level of assurance required for the initial registration is the same (according to Assump-

tion A6) and the master plays as third trusted party (according to Assumption A3).

Resistance to Attack AA3. Recall that AA3 occurs whenever an adversary attempts to imperson-

ate another identity by stealing everything the legal user needs to sign a document (by social

engineering, interception, observation, endpoint compromise, guessing of signature creation

data). The security of our system against this attack is (at least) the same of CADES/XAdES

qualified electronic signature systems, as the level of assurance of authentication required for

that signature in case of remote signature (using HSMs) is the same required for our system

(according to Assumption A5), that is level of assurance 3 of the NIST model [66].

Resistance to Attack AA4. Recall that this attack occurs whenever the attacker substitutes the

original signature by a signature generated by himself on the same document, trying to com-

promise the proof of origin. The only way to to this for the attacker is to remove the origi-

nal signature message from the victim’s timeline and the confirmation message from master

timeline and to perform a new signature on his social network profile. However, our system

is resistant to this attack, according to Assumptions A4 and A5.

Resistance to Attack AA5. Recall that this attack occurs whenever the attacker tries to attribute

the signature of a document to a victim user B. This attack can be performed in three modes:

1. In the first mode the master plays the role of attacker. In this case, the master forges

a message 〈y,h(D), IDS 〉, thus trying to attribute the signature of D to S. The signature

verification protocol falls into the case 2(a)i, since 〈y,h(D), IDS 〉 cannot be found in S.

But, to return a valid response, it requires that the message is linked in S. Since, for the

message to be linked, y must be the preimage of yi (where yi belongs to the latest signature

message of S) of the trap-door function whose secret is kept only by S. According to

Assumption A9, our protocol is secure against this attack.

2. Also in the second mode the master plays the role of attacker. Suppose that a user A

generates a linked signature message 〈y,h(D), IDA〉 to sign the document D. According to

110 6 Security of Transactions in E-government: A Social-Network-Based Advanced Electronic Signature

the signature generation protocol (see item 1), the master should replicates this message

in its timeline. Instead to do this, the master posts the message 〈y,h(D), IDB〉, thus trying

to attribute the signature of D to B. The signature verification protocol falls into the case

2, since 〈y,h(D), IDB〉 cannot be found in B. But, to return a valid response, it requires

that the message is linked in B. This cannot happen, because y belongs to the chain of A,

thus it is linked in A but not in B. Therefore, the signature verification protocol falls (1)

into the case 2b, thus returning (invalid, unsafe) w.r.t. B, and (2) into the case 2(a)i,

thus returning (valid, unsafe) w.r.t. A.

3. In the third mode the attacker is a user A. He just posts a linked (in A) signature message

〈y,h(D), IDB〉, thus trying to attribute the signature of D to B. According to the signature

generation protocol, the master does not publish the confirmation message because the

signature message is linked inA but not in B. Moreover, the signature verification protocol

falls into the case 2b, because the signature message is not linked in B, thus returning

(invalid, unsafe) w.r.t. B. The attack is then contrasted.

Resistance to Attack AA6. Recall that this attack occurs whenever the master (playing here the

role of attacker) tries to simulate the signature of a document by one of its employees. To do

this, the master can proceed in two modes (naive and enhanced).

(1) In the naive mode, the master posts in its timeline a fresh message 〈y,h(D), IDS 〉 such that

it is linked in S. If the master is able to do this, the attack succeeds, because the signature

verification protocol would return (valid, unsafe), according to item 2(a)i (i.e., simulat-

ing that S has deleted the signature message to repudiate the signature itself). However, this

attack would require the knowledge of the secret owned by S, in order to compute y, i.e.,

the preimage of yi , (where yi belongs to the latest signature message of S) of the trap-door

function. According to Assumption A9, our protocol is secure against this attack.

(2) In the enhanced mode, the master deletes (or does not publish) a confirmation message,

say 〈y,h(D), IDS 〉 and forges a fake confirmation message, say 〈y,h(D′), IDS 〉, where D′ ,D, to

falsely attribute the signature of the document D′ to S. Indeed, in this case, 〈y,h(D′), IDS 〉 is

linked in S. However, the timestamp of the forged confirmation message is more recent than

the message 〈y,h(D), IDS 〉 occurring in the timeline of S. Thus, according to item 2(a)ii of the

signature verification protocol, the verification procedure outputs (valid, unsafe) on D

and (invalid, unsafe) on D′ . Thus, the attack fails on both documents.

Now, by means of the following theorem, we state that the protocol satisfies the property

SP2 of the security model SM.

Theorem 6.2 (Document Integrity). The protocol is secure against attacks AI1, AI2, and AI3.

Proof. Resistance to Attack AI1. Recall that this attack occurs whenever an adversary tries to

forge a valid signature starting from a signature of the victim (i.e., selective forgery attack).

It is easy to see that, thanks to Assumption A7, only the master could try this attack, because

a valid signature message is always linked in the legal signatory. Suppose now the attacker

is the master. In this case, it tries to forge a linked signature message 〈y′ ,h(D′), IDS 〉 starting

from a linked signature message 〈y,h(D), IDS 〉 published by the victim S. The aim of the

6.3 Security Model 111

attack is to attribute to S the signature of the document D′ . To do this, the attacker should be

able to perform a second preimage attack on the trap-door function f , by finding y′ such that

f (y) = f (y′), which is infeasible for how f is chosen.

Resistance to Attack AI2. Recall that this attack occurs whenever an adversary tries to forge a

pair of documents with same digest and submit one the two documents to the victim to be

signed (i.e., existential forgery attack). The complexity of this attack, in our scheme, is that

of a collision attack (i.e., birthday attack), on the k-bit cryptographic hash function h, thus

O(2k/2). Again, this attack is impracticable according to Assumption A2.

Resistance to Attack AI3. Recall that this attack occurs whenever an adversary tries to forge

a new document and, accordingly, the associated social signature of a victim user (i.e., exis-

tential forgery attack). As the binary output of a signature creation is just the digest of the

document an existential forgery attack in strict sense can be always successfully done. How-

ever, this digest plays the role of signature only if it is issued as signature message by the

signatory (and the rest of the protocol is triggered). As a consequence the practical security

against this attack is guaranteed by Theorem 6.1.

The following theorem states that the protocol satisfies the property SP3 of the security

model SM.

Theorem 6.3 (Signature Verification Dependability). The protocol is secure against attacks

AD1, AD2, AD3, AD4, AD5, and AD6.

Proof. Resistance to Attack AD1. Recall that this attack occurs whenever an adversary tries

to repudiate its social network account or its use, thus invalidating the signature validity

verification. The repudiation of the social network account can be done only by questioning

about the security of the registration phase. According to Assumptions A6 and A1, our system

is secure against this attack. The repudiation of the social-network-account use can be done

only by claiming the violation of the account. However, due to Assumptions A4, A5, and A1,

we can conclude that our system is secure against this attack.

Resistance to Attack AD2. This attack may be performed by the user in three different modes.

(1) The first mode occurs whenever an adversary tries to repudiate a social signature by delet-

ing the corresponding signature message by his timeline. According to our protocol, whenever

the signatory issues a signature message in his social network account, the master generates

the confirmation message on his social network page provided that the signature message is

linked, by including the same information as the signature message. According to Assump-

tions A4 and A10, the signature verification protocol will output (valid, unsafe), because

we fall into the case 2(a)i. Therefore, according to Assumptions A5 and A1 our system is

secure against this attack.

(2) The second mode occurs whenever an adversary tries to repudiate a social signature by

generating a signature message not linked, that is a message 〈yi ,h(Di), IDS 〉 such that the iter-

ated self composition of f to yi does not allow us to reach y0, where 〈y0, I , IDS 〉 is the first mes-

sage posted by S at the registration phase. The aim of the attacker is to trigger the confirmation

message publication by the master. Indeed, according to 1 of the signature verification proto-

col, in this case the output of the verification protocol would be (valid, safe), so a possibly

112 6 Security of Transactions in E-government: A Social-Network-Based Advanced Electronic Signature

obligation about the document Di would seem correctly satisfied to any recipient. In a second

step, the plan of the attacker is to delete the message 〈yi ,h(Di), IDS 〉 from his timeline, in or-

der to enforce the verification protocol to check that the confirmation message 〈yi ,h(Di), IDS 〉

is linked in S (see 2 of the signature verification protocol) and thus to respond (invalid,

unsafe). This way, the repudiation of the signature on Di would succeed. However, the sig-

nature generation protocol enforces the master to verify that the message 〈yi ,h(Di), IDS 〉 is

linked in S, before confirming it (see 1 of the signature generation protocol). Thus, thanks to

Assumption A7 (ensuring that a fake chain source cannot be simulated by the signatory), this

attack is not possible.

(3) The third mode leverages the latency of the confirmation tweet. In detail, let 〈y,h(D), IDS 〉

the tweet corresponding to the signature the attacker tries to repudiate and suppose that this

message is linked in S. To do this, immediately after the previous tweet the attacker pub-

lishes a fake tweet 〈y,h(D′), IDS 〉. When he want to repudiate the signature on D, he deletes

the message 〈y,h(D), IDS 〉. Observe that the attack succeeds only if the signature on D ap-

pears valid until it is repudiated (thus apparently satisfying the related obligation). The aim

of the attacker is to jeopardize the recipient-side check based on timestamps described in

item 2(a)ii of the signature verification protocol, by trying to obtain that the timestamp of

the confirmation tweet associated with 〈y,h(D), IDS 〉 is more recent than the timestamp of

〈y,h(D′), IDS 〉. Indeed, in this case, the check described in 2(a)ii of the signature verification

protocol would output (valid, unsafe) on D′ (since the signature message is linked) and (in-

valid, unsafe) on D, thus allowing the repudiation of the signature on D. However, the above

situation cannot hold. Indeed, three cases may occur. The first case is that the attacker is

able to publish the second message 〈y,h(D′), IDS 〉 within ∆t from the timestamp of the mes-

sage 〈y,h(D), IDS 〉 (recall that ∆t is the reaction time constraint defined in Section 6.2). In

this case, according to option 2 of the signature generation protocol, the master publishes an

aborting messages for y. Therefore, according to item 2(a)i, the signature verification protocol

returns (invalid, unsafe) for both documents (since they are both inside the interval ∆t), thus

inhibiting the signature on D and thus vanishing the plan of the attacker. The second case is

that the attacker publishes the second message 〈y,h(D′), IDS 〉 after ∆t from the timestamp of

the message 〈y,h(D), IDS 〉. In this case, according to item 1 of the signature generation proto-

col, a confirmation message 〈y,h(D), IDS 〉 has been published by M before 〈y,h(D′), IDS 〉, due

to the reaction time constraint. Consequently, the signature verification protocol will return

(valid, unsafe), as explained in item 2(a)ii. The repudiation cannot be done. The third case is

that the schedule of the posting-reaction sequence is as follows. First the attacker publishes

the message 〈y,h(D), IDS 〉. Within ∆t, the master generates the confirmation for this message

and, in the meanwhile, the attacker publishes the second message 〈y,h(D′), IDS 〉. This would

trigger the publication by the master of an aborting message for y thus falling into the first

case above.

Resistance to Attack AD3. Recall that this attack occurs whenever an adversary tries to repudi-

ate a social signature by jeopardizing the revocation system. Specifically, the adversary, after

signing a document, performs a revocation request to claim that the revocation occurred be-

6.3 Security Model 113

fore the signature. As both signature, confirmation and revocation messages include a trusted

issuing time, the security against this attack is guaranteed by Assumption A4.

Resistance to Attack AD4. Recall that this attack occurs whenever an external adversary (differ-

ent from the signatory) tries to make a valid signature generated by a certain user be verified

as invalid. To do this, the attacker should remove the signature message from the victim’s

social network page and the confirmation message from the master social network page. Ac-

cording to Assumptions A4, A5, and A1, our system is secure against this attack.

Resistance to Attack AD5. Recall that this attack occurs whenever an adversary tries to make

a signature generated over a fraudulently modified document be verified as valid. To do this,

the attacker should inject a signature message into the victim’s social network page or the

corresponding confirmation message into the master social network page. According to As-

sumptions A4, A5, and A1, our system is secure against this attack.

Resistance to Attack AD6. Recall that this attack occurs whenever the master, playing as

adversary, tries to make invalid a valid signature verification by illegal operations (w.r.t. the

signature generation protocol) on his timeline.

This attack can be performed in three modes:

(1) The first mode is tried by the master by deleting the confirmation message associated with

a linked signature message 〈y,h(D), IDS 〉 . This attack fails because the signature verification

protocol returns the output (valid, unsafe), according to item 2(a)i.

(2) The second mode is tried by the master by deleting all the confirmation messages succes-

sive to the victim linked signature message 〈y,h(D), IDS 〉 and, then, by posting an aborting

message for y. This attack fails because the reaction time constraint will be not satisfied for

the aborting message, as described in the case 2(a)ii of the signature verification protocol.

Indeed, the output returned by the verification protocol is (valid, unsafe).

(3) The third mode to be considered is a fake revocation message. This attack cannot succeed

thanks to Assumption A8.

Now, we conclude by considering security against attacks on document immutability, that

is security property SP4 of the security model SM.

Theorem 6.4 (Document Immutability). The protocol is secure against attacks AP1, AP2, and

AP3.

Proof. Recall that attack AP1 occurs whenever an adversary includes dynamic contents in

a document being signed, attack AP2 whenever an adversary corrupts the fonts of the host

system, and attack AP3 whenever an adversary produces a polymorphic file [36, 151] as doc-

ument being signed. As widely proven by the literature [118], all CADES/XAdES qualified

electronic signature systems compliant to [1] are not resistant to attacks AP1 and AP2. This

is true also for attack AP3. In this case, the inclusion of the content-type of the document

among the authenticated attributes of the CADES/XAdES format would solve the problem

[118]. Similarly, in our scheme, we just would compute the digest of the document being

signed by applying the cryptographic hash function to the concatenation of the binary con-

tent of the document with its content-type. Thus, according to Assumption A1, we conclude

that our system is secure against attacks AP1, AP2 and AP3.

114 6 Security of Transactions in E-government: A Social-Network-Based Advanced Electronic Signature

6.4 A Twitter-Based Instantiation of our Model

In this section, we describe the instantiation of the model presented in the previous section in

a real-life scenario. The aim of this section is to prove that the idea embedded into the abstract

model, besides being an original and new approach, has a practical value, as it leads to a

concrete solution whose benefits we expect could be relevant both in terms of user experience

and economic aspects. In our instantiation, the actors of the model are the following. The

role of signature master is played by any private or public organization of any size, which we

call generically as Company, which applies the electronic signature solution to all documents

exchanged with its internal members, which we denoted as employees (and among them),

who play the role of signatories. The role of social network is played by Twitter. The reason

underlying the choice of Twitter derives both from its popularity and from the fact that it

is centered on tweets, which are the only way to share public content. Our choice allows us

to map a signature message to a tweet. The instantiation of our model in the Twitter setting

leads to a concrete electronic signature solution that we have called Tweet to Sign (T2S, for

short). In the remainder of this section, first we describe the specificities of Twitter used by

our system, as they strongly influence the design choices. Then, we present our solution.

6.4.1 Twitter Specifics

Twitter is a microblogging services made up of 140-character messages called tweets. It is

an easy way to discover the latest news coming from other people. It was designed to fit

into the character limit of a text message, and Twitter still works on any SMS-ready phone.

Brevity keeps Twitter fast-paced and relevant by encouraging people to tweet in the moment

and to focus on the essential idea they are trying to communicate. Inside a tweet the user

can see photos and videos from people he knows or behind-the-scenes moments from the

biggest stars. The user can link to news stories, blogs, websites and apps. Once the user tweet

is generated, it is publicly posted on his Twitter profile. The stream of tweets of a user is

called timeline. A user can follow another user and becomes a follower. Tweets of a user appear

in the timeline of their followers and are called retweets. Each Twitter user is identified by a

username starting with the symbol @. People use @ to mention a person in tweets. To categorize

tweets by keyword, people use the hashtag symbol # before a relevant keyword or phrase (no

spaces) in their tweet. Moreover, hashtags are indexed to make it easier to find a conversation

about that topic. Applications and websites which use Twitter are built using the Twitter

API. There are three kinds of API: (i) The REST API is used to do things like post tweets,

follow someone, create lists and more; (ii) the Search API is for performing searches; (iii) the

Streaming API is for application developers who want to receive a real-time stream of the

public tweets on Twitter. The official guide to Twitter [2] provides more detail on these

aspects.

6.4 A Twitter-Based Instantiation of our Model 115

6.4.2 T2S: Tweet to Sign

In this section, we describe our Twitter-based solution instantiating the model presented in

Section 6.2.

T2S Actors. As introduced earlier, the actors of our system are the Company, which is the entity

that needs to adopt the electronic signature (signature master), and its employees, who are

the users signing documents (signatories). As required by our model, it is possible to extend

the domain with other employees at any time. The role of the social network T is played

by Twitter. It is easy to recognize that Assumptions A3 and A4 are realistic for Twitter.

Concerning the estimation of the reaction time constraint ∆t, we refer the reader to Section

6.6.

T2S Posting integrity mechanism. It is implemented by means of a hash chain computed by

SHA-256, here denoted by h. Specifically, each employee S generates a secret p from which

the element y0 is computed as hu(p), where u is a suitable large value defined in the security

parameters (see below), and hu denotes the application of the self composition of the function

h to p. This way, given yi , it holds that the computation of yi−1 is efficiently done by computing

h(yi). On the contrary, given yi−1 the computation of yi is feasible only for S by computing

hu−i (p). Thus, we have built a trap-door function with secret p that, thanks to the properties

of SHA-256, is also second-preimage resistant. The secret p is managed in accordance with

Assumption A9. We will see the technical detail in Section 6.5.

T2S Registration Protocol. As required by the model a Twitter account for the Company is

created by a person who is authorized to act on behalf of the Company. Observe that Twitter

allows for double factor strong authentication [8]. Assumption A5 is thus realistic. Assume

that the username chosen for this account is @Company. Next, each employee signs up to

Twitter and, suppose, he uses @emp as screen-name. In this phase, the Company is responsible

of the verification of the employee identity, which, due to Assumption A6, must be done in-

person. Then, on Twitter he adds a follow relationship to @Company and, similarly, @Company

follows back the employee account. The employee registration message is the tweet: 〈 #y0 I

am an employee of @Company 〉, where y0 is is obtained by the posting integrity mechanism

above. The Company welcome message is 〈 #y0 #h(emp) @emp is Y 〉, where y0 is the same

as the registration message, h(emp) (which is hashtagged) is the cryptographic hash (SHA-

256) of the screen-name emp of the registered employee and Y is an information identifying

the employee himself. Y is typically the name and surname of the employee; however, further

information, such as the employee id, is added to manage cases of homonymy. In this phase,

all documents and actions needed to guarantee Assumptions A6, A7, and A8 are established.

T2S Revocation Protocol. The revocation tweet posted by Company is 〈 @emp is revoked

for I 〉, where I represents the information regarding the reason of the revocation. Note that

the time of the revocation coincides with the time of the tweet.

T2S Signature Generation Protocol. Suppose that @emp is the signatory and D be the docu-

ment being signed. The hash function h used to compute the digest of the document is still

SHA-256. This ensures that Assumption A2 is realistic. The tweet representing the linked

signature message on D has the form: 〈 #yi I signed the document #h(D) 〉, where yi is

116 6 Security of Transactions in E-government: A Social-Network-Based Advanced Electronic Signature

hu−i (p) (i.e., is the (u − i)-th element of the posting integrity chain). The confirmation tweet

posted by the Company is: 〈 #yi @emp signed the document #h(D) 〉. Observe that the ID

of the signatory @emp (corresponding to IDS of the model) is not reported in the signature

messages because it is implicit. This reduces also the set of attacks considered in the security

model described in Section 6.3. In particular, the third mode of the attack AA5 described in

Section 6.3.2 is not feasible. The aborting message posted by the Company in the case 2 of the

signature generation protocol has the form: 〈 #yi of @emp is aborted 〉.

T2S Signature Verification Protocol. Twitter allows us to implement the signature verifi-

cation protocol in a very efficient and natural way. Basically, the operations required by the

protocol are: (1) the searching of a signature tweet 〈 #yi I signed the document #h(D) 〉

or a confirmation tweet 〈 #yi @emp signed the document #h(D) 〉, on the basis of h(D) to

find the occurrence of a signature on D and on yi to check that the message is linked, (2) the

searching of an aborting tweet (in the case 2(a)i of the signature verification protocol) 〈 #yi
of @emp is aborted 〉 on the basis of yi , (3) the searching of a registration tweet 〈 #y0 I am

an employee of Company 〉, on the basis of y0, in the worst case of the check of the linkness

of a signature message, (4) the searching of a welcome tweet 〈 #y0 #h(emp) @emp is Y 〉, on

h(emp) to resolve the real-life identity of the signatory, and (5) the verification of the reaction

time constraint compliance required in the case 2(a)ii of the signature verification protocol.

Observe that all the above operations but the last one are done on information which is

hashtagged in our tweets, so it is feasible and efficient. The last operation is done by checking

the timestamps of the tweets.

T2S Security Parameters. The security parameters LoA(Auth) and 〈LoA(Id),p〉 are set to 3 and

〈3,1〉, respectively, meaning that only two factor authentication and in-person identification

in the registration phase in which possession of verified current primary government picture

ID that contains also applicantÂŠs picture are allowed [66]. Our solution includes another

parameter u, which is a number representing the maximum number of signatures a user may

generate (as discussed in the definition of the signature generation protocol in Section 6.3, u

can be large enough to cover all possible signatures of a user). As we have seen earlier, this

parameter is related to the posting integrity mechanism implemented as an hash chain of

length u.

6.5 Implementation of the proposal

In this section, we describe in detail the technical aspects concerning the architecture and

the implementation of our solution. The T2S application is composed of five independent

software packages: (1) two user-side packages, allowing the hash chain generation and the

document digest verification, resp.; (2) the signature software, which retrieves from the sig-

natory all the information necessary for a new signature and interacts with Twitter to pub-

lish the tweet associated with the signature; (3) the verification software, which returns the

list of employees who signed a given document; (4) a Company-side software service, which

implements the automatic generation of the confirmation tweet. Concerning the signature

6.5 Implementation of the proposal 117

and verification software packages, we integrated them into the same application that has

been built both as stand-alone application and as Web application. The Web application is the

most complete. Let us proceed by describing in detail the above components.

The user-side software packages. T2S provides two user-side software packages, namely an

application for the generation of the hash chain and a Firefox plug-in to validate the document

digest. As stated in Section 6.4.2, in accordance to the requirement of the posting integrity

mechanism, the former software must be resistant to attacks based on key-loggers (Assump-

tion A9). For this reason, we chose to implement it as a mobile phone application and, in par-

ticular, as an Android app. The compliance with Assumption A9 is obtained by the fact that,

as stated in the Android specifications [6], the execution of an Android application follows

the principle of least privilege [84] for which each application runs in a separated Linux process

inside an independent virtual machine. This mechanism prevents the leakage of data during

the lifecycle of an Android application. Moreover, the permanent storage of data can be kept

private inside a memory space reserved to a single application, so that no interaction with

external software is allowed [7]. Observe that this sandbox security mechanism could be in

principle compromised only by unlocking root privileges on the smartphone. This non-trivial

operation may allow an attacker to by-pass the Android OS layer and access the underlying

Linux environment. However, unlocking root privileges on a smartphone is not a legitimate

procedure. Indeed, for this reason, almost all vendors invalidate their product warranty if

such an action is carried out on the device. Therefore, we assume that a signatory cannot use

an unlocked smartphone to run our software. The Android application keeps the user secret

(inserted during a secure initial step by the user himself) along with the number i of gener-

ated elements in its private memory. Each time the user signs a document, the application

generates the entire hash chain and returns the i + 1-th element. As for the Firefox plug-in, it

verifies if the generated document digest is correct. This plug-in computes the SHA-256 of the

document sent by the user to the signature software and compares it with the content of the

tweet generated by the signature application. This is a further security functionality provided

by our solution.

The signature and verification software. This software is implemented as a Java Web Ap-

plication and runs on a server equipped with Apache Tomcat Server. It is composed of three

main modules: (1) the Authenticate (sub-)module, which handles users authentication; (2)

the Sign (sub-)module, implementing all the tasks necessary to sign a new document; (3) the

Verify (sub-)module, in charge of performing the steps required to identify the signatories

of a given document. The module Authenticate is activated once the user inserts his creden-

tials to access the Web application. After the authentication, the user chooses the action to do:

either signing a document or verifying a signed document. The module Sign relies on three

components, which are shared with the other modules of the Web application: (i) the Digest

component, which generates the digest of the input document, (ii) the TweetGen component,

whose purpose is to convert the digest generated before into a string and to prepare the body

of a new tweet, and (iii) the Share component, in charge of posting the new tweet on Twitter.

The module Sign is activated whenever the user chooses to sign a document. After the user

118 6 Security of Transactions in E-government: A Social-Network-Based Advanced Electronic Signature

selects the file being signed, the SHA-256 cryptographic hash function of this file is computed.

The generated digest is then encoded into a base64 string that will be inserted in the tweet.

Subsequently, the user is asked to insert the element yi of his hash chain. We remaind that the

user can generate it and automatically send it by means of the Android application described

in Section 6.5. Then, a new signature tweet is generated and validated by the Firefox plug-in

(see Section 6.5) and posted on Twitter. In particular, the posting action is done by calling a

specific link which is normally used to implement the Twitter “share button”. For instance,

suppose that:

h(D) = FtC7d6XTSJ0K5HCmQwzFeLtnkDDbmA/vOOhviZ58eQQ

yi = 9uJDZH7mGB2Fn4RqXOB9jrpNP3q3z4EsYPklbm8+ WMc

then this link has the following structure:

https : //twitter.com/intent/tweet?button_hashtag

= 9uJDZH7mGB2Fn4RqXOB9jrpNP3q3z4EsYPklbm8+ WMcF

tC7d6XTSJ0K5HCmQwzFeLtnkDDbmA/vOOhviZ58eQQ&text

= I have signed the document

where the request parameter button_hashtag contains both yi and the document digest. The

parameter text is the rest of the tweet (see Section 6.4.2). The verification of a document

digest is performed by means of the module Verify. This module makes use of the following

components: (i) the Digest component described earlier, (ii) the Search component which

executes a Twitter search of an hashtag and handles the results to extract information on the

users who posted tweets including this hashtag, (iii) the CheckTweet component, in charge

of verifying whether the tweet represents a valid signature as described in Section 6.2, (iv)

the RevealEmp component, which solves the real name of each tweeter identified as signatory.

This module receives the document whose signature has to be verified. Then, the digest of

this document is computed by using the same cryptographic hash function as the signature

generation (this task is performed by the Digest component). Hence, the digest is used as

hashtag to perform a Twitter search to find all the users who have generated a tweet including

this hashtag. Observe that this task cannot be performed by relying on Twitterś API. Indeed,

as specified in the Twitterś API documentation [9], search APIs do not return all tweets but

only the last tweets of a week. According to Twitter, the collection of all tweets referring

to an hashtag should be performed by using the Streaming APIs. This way, it is possible to

receive all the tweets posted with the observed hashtag in “real-time”. However, this solution

does not suit our application context: indeed, by relying on the Streaming APIs a trusted

party should store all the tweets generated by employees to build a database to be used for

the signature verification. This is not applicable to our case in which no trusted third party

(besides the social network itself) is required. Thus, in our solution, the search is performed

through the Twitter Web interface, in which no limitation on the number of retrieved tweets

exists. For this reason, the Search component is based on an HTML parser analyzing the

results of queries to an ad-hoc modified link. For example, considering again the document

digest above, the search link becomes:

6.5 Implementation of the proposal 119

Fig. 6.3: The deployment diagram of the T2S Service.

https : twitter.comsearch?f = realtime&q = %23FtC

7d6XTSJ0K5HCmQwzFeLtnkDDbmAvOOhviZ58eQQ&src =

typd.

The parsing of the results of these queries allows the extraction of the IDs of the tweets having

the document digest as hashtag, the screen-names of the users who posted them, and the

screen-name of the users mentioned in the tweet. After this, the Verify module distinguishes

tweets generated by the Company from those generated by employees. This way, by following

the procedure described in Section 6.2, this module identifies valid signatories. Finally, the

real name of signatories has to be extracted. This is done by leveraging again the Search

component to find the Company tweet linking the screen-name of an employee’s Twitter-

account to his real name, by using the hash of the screen-name as hashtag (see Section 6.2).

The T2S Company Service. The aim of this software is to implement the tweet mechanism that

allows the Company to “confirm/abort” the signature of documents done by its employees. It

is implemented as a Java application and runs as a Unix daemon under the YAJSW wrapper

tool. This application consists of three modules: (1) the Stream module, which receives new

tweets from the Company followings (employees), (2) the Update module, which allows users

to send an update request whenever some changes are made on the Twitter account of the

Company, and (3) the Tweet module whose aim is the automatic re-share of each tweet posted

by an employee.

Since the application is installed as system service, the modules Stream and Update are

activated on system boot. In particular, once executed, the Stream module opens a new con-

nection and associates a listener with the Twitter Streaming APIs. According to the default

configuration, this listener receives a random sample of the tweets generated globally on the

platform. However, it is possible to add a filter to the Twitter streaming connection so that

the listener will receive only tweets coming from a specified set of accounts. In our case, we

built a filter allowing the listener to receive information coming from all the accounts in the

list of the Company followings. The list of followings is automatically retrieved through the

120 6 Security of Transactions in E-government: A Social-Network-Based Advanced Electronic Signature

Fig. 6.4: Generic timeline of T2S actions.

Twitter Rest API GET friends/ids. However, if some modification happens on this list (e.g.,

a new employee is added) while the T2S Company Service is running, a new query to this API

method will be submitted by means of a trigger implemented in the Update module. Once a

new tweet posted by one of the employees is filtered out, the module Stream uses the func-

tionalities provided by the module Tweet to share a new tweet built according to the policies

described in 6.2. To do this, this module uses the Twitter Rest API POST statuses/update.

6.6 Performance Evaluation

In this section, we provide an experimental campaign to test the performances of our system

in terms of time overhead. The experiments had been performed on a personal computer

equipped with 4.0GHz Intel i7 CPU, and running Ubuntu 14.04 with Apache and Tomcat

servers. As for the client, we used a personal computer with the same hardware features. All

the tests had been carried out with the browser Mozilla Firefox version 14.0.1 and, besides

Firefox, no other user applications were running. The overall time diagram is shown in Figure

6.4. It deals with the two main functions of our prototype, which are: Sign and Verification.

These two actions have some preliminary steps in common. The former is the Authenti-

cation, in which the user sign in the system. We tested the duration of this first step and we

found out that it lasts less than 50 milliseconds on average. After this security step, a user

is prompted to choose the file to sign or verify from his PC. This step has to be carried out

manually, so we do not consider it in our analysis. Then, the algorithm to get the digest of

the document is executed. Clearly, the overhead of this step depends on the size of the file

chosen. Hence, we run a set of experiments to investigate how the algorithm execution time

varies with the size of the file chosen. We measured the time overhead for files in a range of

size from few kilobytes to 250 megabytes and obtained an average execution time of 4.08 sec.

The actions discussed above totalize a time overhead equal to tx−t0 ' 4.13 seconds, where

t0 is the initial time. From now on, we consider different actions and, consequently, different

time overheads, depending on whether the user signs or verifies a document. Consider the

case in which a user signs a document. In this case the software has now to generate the tweet

to be shared on Twitter automatically. This procedure is composed of two sub-steps. The for-

mer is the generation of the element yi of the user hash chain. This is done by means of the

6.7 Discussion 121

Actions Time (milliseconds)

Authentication (ta − t0) 41

Signature-tweet posting (tw − td) 3300

Company Reaction Time (tz − tw) 3600

Signature verification (best case) (tk − td) 3600

Signature verification (worst case) (tk − td) 7200

Table 6.1: Time overhead of T2S actions.

Android application on the user device. We measured that the yi generation time is negligible

whereas the device takes about 1.8 seconds to send this value to the Web application hosting

the signature software. The latter is the tweet generation. We obtained that the time for this

step is almost 0. After this, the user has to sign in Twitter. This step has to be carried out

manually so, once again, we do not consider it in our analysis. Finally, we have to consider the

tweet posting execution time. We measure that this time is about 1.5 seconds. Subsequently,

we measured the streaming time, i.e., the time interval required by the Twitter Streaming API

to propagate this tweet to the Company software for the generation of the confirmation/abort-

ing message. We obtained that the streaming time is 2.1 on average, whereas the procedure

for the generation (including all verifications required by the protocol) and posting of the

Company tweet takes 2.5 seconds on average. This time interval, say ∆t = tz − tw (see Figure

6.4), represents a good estimation of the reaction time constraint defined in Section 6.2. On

our testbed, it is about 3.6 seconds. As for the Verification step, the time overhead to check

the signature of a file is ty − tx, in which ty is the time required to find a tweet containing a

given hashtag, to verify if this tweet is a valid signature message, and to retrieve his real name

(see Section 6.2). We measured that the search for a given hashtag and the extraction of sig-

nature tweets from the result lasts about 1.8 seconds. Whereas, the time for the validation of

a single signature tweet ranges from 1.8 to about 5.4 seconds on average. This variation of the

estimated times is due to the additional checks required by our model in case of anomalies in

the validation of a signature (see Section 6.2). The results of our performance measurements

are summarized in Table 6.1.

6.7 Discussion

The concept of electronic signature is more and more important in a society moving towards

a complete dematerialization of documents and transactions, both in the public sector and in

business. The protocol we have presented is thought by keeping in mind the above dynamics.

Our work is an attempt to give an innovative, practical, and secure solution of advanced elec-

tronic signature overcoming the drawbacks of cost and low usability of qualified electronic

signature. We obtained this by relying on the power of social networks of sharing information

among people. The starting question was: Can we exploit what social networks offer for free

to play strategic functions of organizations and communities in a secure, cheap, and reliable

122 6 Security of Transactions in E-government: A Social-Network-Based Advanced Electronic Signature

way? So far, social networks have been mostly used as communication media. We think they

can become part of people workflows, with reciprocal advantage: for people high usability,

low cost, high availability, for social network providers more central role in the society. In

this chapter, we tried to apply this new paradigm to electronic signature. We addressed the

case in which an entity exists able to identify and register signatories at the initial stage, with

no limit in terms of its dimension. The scalability of our solutions arises from two facts. The

first one is that social networks, by definition, provide scalable services. The second one is

that our protocol, differently from the current qualified electronic signature, does not make

use of public-key encryption, but only cryptographic hash functions (which are inherently

efficient) and other simple operations. The overhead computation for the signature master is

thus feasible. In other words, the pure adoption of social networks in a e-signature framework

using public-key encryption would be much less realistic than our solution. Another nice fea-

ture of our social-network-based signature is that even though signatories must be previously

identified and registered, recipients can be everywhere and anyone in the world, thanks to

the pervasivity of social networks. Indeed, the verification of signatures leverages only public

information available on a social network and easily searchable. The solution is also privacy-

preserving, in the sense that the universal exposure of signatures does not affect the privacy of

signed documents, as only document digests are published. Concerning the aspect of privacy,

it is worth noting that we consider the case in which it is not a privacy threat that an adversary

may discover that a given document has been signed by a certain user. Therefore, this attack

is not contrasted. However, the current version of our protocol is thought for truly sharing

environments, where only the content of documents should be protected (also because the

published information is accessible by everyone, even external to the sharing community).

However, if the above conditions do not occur, we just have to modify our signature protocol

by including some salting-based techniques in the computation of digests. In this case, the

price we have to pay is that the set of recipients of a signed document must be prefixed (only

those subjects equipped with the information needed to detect the salts). Observe that this is

not a limitation. It is an intrinsic feature, because any recipient which is able to verify a signed

document can perform the attack above, independently of the technique used for signatures.

Also timing attacks (based on deadlines, periodic signatures, etc.) to discover if a (even salted)

document has been signed by a certain user can be contrasted by generating dummy traffic

in the timelines of users. The implementation of this extension is subject of our future work.

Our protocol provides users with another good feature. Indeed, our protocol supports im-

plicitly a signature timestamp service which is secure and enforceable against third parties,

with no extra cost. Recall that, to do this, the current qualified electronic signature requires

the adoption of additional paid services, typically provided by certification service providers,

also reducing the usability of signature applications (timestamps are generated by additional

operations). Another strong point of our signature is that multiple signatures on a single doc-

ument are implemented in a very easy and flexible way, with no need of planned exchanges

of the document being signed, as it happens for existing qualified electronic signatures. The

last nice feature we want to highlight is that our solution is proven to be at least secure as

6.8 Related Work 123

CADES/XADES signatures (which are the state-of-the-art qualified electronic signatures), in

a security model in which only realistic assumptions are done and everyone (but the social

network provider) can be the adversary (including the signature master). The complexity of

the security analysis (together with the high granularity of our signature verification proce-

dure) shows also that the implementation of the apparently trivial starting idea of publishing

digests of signed documents opens a number of security issues, which can be addressed, lead-

ing to a definitely non-trivial solution.

6.8 Related Work

In this section, we give a quick survey on the proposals related to electronic signature present

in the literature, besides the most known public-key-encryption based signature relying on a

PKI. Conditional Signatures were originally introduced by Lee et al. [152] to implement fair

exchange of digital signatures in untrusted environments and do not require the card to have

a user interface or any special peripheral (like Clarke et al. [78]). Berta et al. [31] propose

a method to generate, instead of an ordinary signature, a conditional signature such that it

is guaranteed that the condition can not become true before a certain amount of time has

passed. This should leave time for the user to move to a trusted terminal for checking the

signatures generated by the card and to enforce that the conditions of the fake signatures can

ever become true. Weak signature was introduced by T. Rabin and Ben-Or [197] to solve a

problem motivated by a question of general multi-party secure computation in the uncondi-

tional setting (network of untappable channels). They provide a form of authentication for

which the on-line participation of a third party is needed. Another signature scheme in the

unconditional setting was introduced by Chaum and Roijakkers [71]. It satisfies a stronger

set of conditions than Rabin’s Information Checking Protocol, at a great increase in commu-

nication cost. Naor et al. [178] suggest a number of transparency-based methods for visual

authentication and identification, and give rigorous analysis of their security. [170] presents

human-friendly identification schemes such that a human prover knowing a secret key in his

brain is asked a visual question by a verifier, which then checks if an answer sent from the

prover matches the question with respect to the key. Ateniese et al. [27] propose a visual cryp-

tography scheme for a set of participants to encode a secret image into many secondary images

in such a way that any participant receives one secondary image and only qualified subsets

of participants can “visually" recover the secret image, but non-qualified sets of participants

have no information, in an information theoretical sense, on the original image. This scheme

does not require the participants to perform any cryptographic computation. In [212], the

authors propose a inclusive security development that provides security for communication

in the MODBUS protocol and trends for future development and improvement of SCADA

systems. They selects and testes the most important cryptography algorithms to conclude

that the platform provides remarkable performance. The model of signature presented ap-

pears innovative w.r.t. the state of the art. Indeed, as better explained in in the next section, it

presents some peculiar characteristics which can be summarized as follows: (1) it is oriented

124 6 Security of Transactions in E-government: A Social-Network-Based Advanced Electronic Signature

to sharing environments, (2) it minimizes the implementation of dedicated infrastructures

because it exploits existing social networks, (3) it is scalable and highly usable, (4) it does not

requires the usage of encryption, (5) it does not rely on trusted third parties (besides the social

network) and certification service providers, (5) it provides a timestamp service for-free, and

(6) it naturally supports multiple signatures. Therein, the protocol is much simpler and not

resistant to master-side attacks. Moreover, no theoretical model, deep security analysis, and

implementation are provided.

7

Anonymous Authentication for Delivery of Cloud

Services

Always in the context of e-government, a critical aspect is the balance between privacy of users

when they access cloud services and accountability. The solution of this trade-off becomes essential

especially in scenarios where user’s privacy is threatened by honest-but-curious cloud providers.

Indeed, cloud computing is an emerging paradigm whose importance in e-government is more and

more increasing. In this scenario, we propose an authentication scheme supporting full anonymity of

users and unlinkability of service requests. This is done by combining a multi-party cryptographic

protocol with the use of a cooperative P2P-based approach to access services in the cloud. As this

solution is thought to be adopted in e-government scenarios, accountability of user accesses is always

preserved to prevent misuse and illegal actions.

7.1 Overview of the Proposal

In this section, we sketch out the idea underlying our proposal through a motivating example.

Consider the case in which a user exploits an e-health services of a cloud provider to interact

with an health-care institute of a given country and, then, in the same cloud session, makes a

flight reservation for that country. This example is illustrated in Figure 7.1.

These cross-domain data can be combined by the cloud service provider, assumed honest

but curios, to derive information on the private life of the user, and therefore, to obtain data

the user was not meant to reveal. In this case, for instance, it is possible to infer that either

the user is an employee of the health-care provider who is reaching his working place or a

patient who is requiring hospitalization. Therefore, by analyzing the typology of health-care

provider (e.g., mental hospital, orthopedic center, etc.), it is possible to make assumptions on

user’s disease.

Consider that, the sole application of anonymous authentication schemes like [169] is not

sufficient to solve our problem. Indeed, the service provider may still obtain user data from

the flight reservation and link them with the information on the health-care provider.

In our example, our technique proceeds as follows:

1. The user U sends his identity together with the identity of the cloud provider P to a

grantor G, which typically is an e-government institution where the user is registered.

126 7 Anonymous Authentication for Delivery of Cloud Services

Fig. 7.1: A user accessing the cloud to have information about an hospital and to

make a flight reservation.

2. G responds by sending some tokens and the reference to an entry point for the P2P net-

work. Each token includes a ticket (i.e., a credential) and a key. The ticket is spent for the

service, the key is maintained secret.

3. The user joins the P2P network and uses this network to send two tickets (one for each

request) to P anonymously.

4. P receives the two tokens from two users (different from U) of the P2P network, so that

the requests appear anonymous and unlinkable. Each ticket contains information that

only G and P can decrypt to establish that the credential is valid and to extract a secret

key for the secure communication with the user. The service is thus ciphered by this key

and delivered to the user by using again the P2P network.

In summary, our approach leverages on three basic features: anonymous authentication,

unlinkability of user service requests, and traffic flow anonymity in the communication with

the cloud service provider. Specifically, the first one is achieved by relying on a solution like

[72, 169] which leverages on the interaction with a grantor, playing the role of trusted third

party, to perform anonymous authentication to cloud services. Concerning the unlinkability

of service requests, our solution works by assigning different tokens for each request, thus

decoupling cross-domain information. However, since the cloud provider may still associate

service requests with the IP address of the user, we adopt a strategy leveraging on a P2P net-

work for the IP obfuscation. It is worth noting that only the combination of the two strategies

(i.e., multiple anonymous tokens and P2P user interface) achieve the privacy goal.

Finally, we discuss about accountability. The provider P logs all user’s activities by as-

sociating them with the random number included in the corresponding credential. Thus, no

information can be drawn from the analysis of logs even about behavioral patterns of the user.

Only in case of need (for example, in case of illegal actions), logs can be linked to the iden-

tity of the user by using information kept by G, thus allowing full accountability. In the next

section we describe in detail how the protocol is defined.

7.2 The service delivery protocol 127

Symbol Description

U A user accessing a service

P The cloud service provider

G The grantor

NS Nodes of the P2P network

A An entry point of the P2P network

H Cryptographic hash function

EQ(x) The encryption of x with the key of an entity Q

DQ(x) The decryption of x with the key of an entity Q

|| Concatenation operator

Table 7.1: Notations.

7.2 The service delivery protocol

In this section, we describe the design of our protocol for anonymizing the access to cloud

services. Preliminarily, we report in Table 11.1 the notation used throughout the rest of the

chapter.

The protocol we propose relies on an underlying P2P network, which is used to anonymize

communications. In particular, this avoids that the cloud service provider may obtain useful

information from the analysis of IP addresses of users accessing the services.

The entities involved in our protocol are:

1. The user U who needs to access cloud services.

2. A trusted third party said grantor G, which identifies users and provide them with tickets

necessary to enjoy cloud services.

3. The provider P , which supplies cloud services.

4. The open ended setNS of the nodes of the P2P network.

According to our protocol, a public key infrastructure exists so that both grantor and

providers have a certificate containing a public key. The protocol is structured as follows.

Initial Registration. The user U is identified and registered by G. All necessary information

to establish a secure channel is now exchanged.

Identification. In this phase, the user U submits his identity to the grantor G via secure

channel established in the initial registration. Moreover, U sends G the public key certificate

of the provider supplying the services he wants to access.

G verifies the identity of the user and his authorizations and grants a set T KS of n pairs

(where n is suitably set system parameter) (ticket,key) and the reference to a node A ∈ NS . In

particular, T KS = {(Ti ,Ki) : Ti = EP (τi ||ri)∧Ki =H(τi ||ri)}, where τi is a (long) validity time, ri

is a nonce, EP (x) denotes the encryption of x with the public key of the provider P (obtained

from the certificate of P), and H is a cryptographic hash function. Moreover, each ticket Ti is

signed by G to guarantee authenticity and integrity of the ticket. Observe that the value of n

actually sets the overall number of requests the user can do without re-contacting G. As the

size of each pair (Ti ,Ki) is small, we can imagine to have a large n to drastically reduce the

number of messages exchanged between U and G.

128 7 Anonymous Authentication for Delivery of Cloud Services

USER GRANTOR

identifier

T KS

A

Fig. 7.2: The identification phase.

Concerning the node A, it is randomly selected from the last t users who have been au-

thorized by the grantor to access some cloud services, where t is a system parameter set up

according to the P2P network dynamics (this approach is aimed at maximizing the probability

of finding the entry point alive).

Figure 7.2 summarizes the messages exchanged between user and grantor in this phase.

Service Request. Once the user has obtained the credentials to anonymously access the cloud,

he can require a service to P . First,U joins the P2P network by using A as entry point. Then,U

generates a secret S and computes ci = Ef (Ki)(S) encrypting the secret S with a key obtained

as function f (for simplicity not specified here) of the i-th key Ki . Then, he computes vi =

Ef (Ki)(ti), where ti is the timestamp recording the current time. Now, U creates the service

request messagem for P having the tuple 〈Ti , ci ,vi〉 as authentication credential. This message

is sent through the P2P network to reach P with an anonymous IP address. Concerning the use

of a P2P network to obtain such an anonymity, we observe that there exist several approaches

such as [245, 200]. It is worth noting that one of the most simple ways to obtain this goal

is as follows. Each node of the P2P network receiving a service request message m for P ,

with a certain probability delivers the request to P , otherwise forwards the request to another

P2P node. Involved nodes maintain the previous hop of the message route, which is used to

delivery the reply coming from P .

The use of the P2P network allows for the creation of an anonymous tunnel which varies

for different service requests coming from the same user. This way, the provider cannot link

the tickets adopted by the same user to access different services from the knowledge of the

sender IP address.

Once the provider receives the anonymous message originally generated by U from the

P2P network, it verifies authenticity and integrity of the ticket using the public key of the

grantor, and then deciphers Ti with its private key, thus obtaining τ ′i and r′i . Therefore, it

verifies the (long term) temporal validity of the ticket checking that τ ′i is less than the current

time. Then, it verifies that the nonce r′i has been never received in the past. If the ticket is

expired or already used, the request is denied. Observe that the long term temporal validity is

used in case of authorizations with validity time that must be reflected in the credentials sent

by G to U .

At this point, P computes K ′i = H(τ ′i ||r
′
i) and uses f (K ′i) as symmetric key to decipher ci

and vi , thus obtaining the secret S and the timestamp ti . If ti + ∆t is less than the current

time (where ∆t is a general system parameter set to a small value for security reasons – see

Section 7.3), the request is discarded. Otherwise, the protocol proceeds and if K ′i = Ki (i.e., it

is the correct key), then this key is valid. At this point, the provider uses this information to

7.3 Security Analysis 129

Step Messages

Identification U → G :identity

U → G :public key certificate of P

G→U : T KS = {(Ti ,Ki) : Ti = EP (τi ||ri)∧Ki =H(τi ||ri)}

G→U : A ∈ NS
Service Request U → A : join P 2P

U → P 2P :m = 〈Ti , ci ,vi〉

P 2P → P :m = 〈Ti , ci ,vi〉

P → P 2P : encrypted communication

P 2P →U : encrypted communication

Table 7.2: The messages exchanged in the protocol.

Fig. 7.3: The Service Request phase.

establish an encrypted communication (by using S) with the anonymous initial node through

the P2P network.

Figure 7.3 summarizes the messages exchanged between user and provider in this phase.

A schematization of the procedures executed by the actors involved in our protocol is reported

in Algorithm 4. Table 7.2 summarizes all the messages exchanged in the protocol.

7.3 Security Analysis

In this section, we will show the robustness of our protocol against the most common types of

attacks. This is discussed in the following.

Replay attacks. This type of attack is done by maliciously re-sending a ticket to access a ser-

vice. If the ticket has been already spent from the legal owner, then it will be detected

as not valid because the nonce r′ has been already received. Another possibility is that

the attacker intercepts the ticket when it is sent from the user to the provider. The ex-

piration time ∆t forces the attacker to use this ticket immediately because otherwise the

ticket expires. However, the attacker cannot generate the correct secret S necessary to the

communication with the provider because it is sent encrypted by f (K). Moreover, as the

messages exchanged between U and P are encrypted by S, the attacker has no advantage

from intercepting and replaying them to any party.

130 7 Anonymous Authentication for Delivery of Cloud Services

Algorithm 4 Authentication and communication protocol
Procedure User-Side

1: U submits his identity to the grantor G

2: U sends the public key certificate of P to G

3: if (request is rejected) then

4: close

5: end if

6: U generates S and computes ci = Ef (Ki)(S) and vi = Ef (Ki)(ti)

7: U joins the P2P network by means of A

8: U sends m = 〈Ti , ci ,vi 〉 to P via the P2P network

9: U establishes an encrypted communication channel with P

10: close

Procedure Grantor-Side

11: G receives U ’s request

12: if U has invalid credentials then

13: G rejects the request from U

14: close

15: end if

16: G sends the set TKS = {(Ti ,Ki) : Ti = EP (τi ||ri)∧Ki =H(τi ||ri)} to U

17: G selects A ∈ NS and sends it to U

18: close

Procedure Provider-Side

19: P computes DP (Ti) obtaining τ ′i and r′i
20: if τ ′i < current time or r′i has been already received then

21: P returns false to U

22: close

23: end if

24: P computes K ′i =H(τ ′i ||r
′
i)

25: P computes Df (K ′i)(ci) = S

26: P computes Df (K ′i)(vi) = ti

27: if ti +∆t ≥ current time and K ′i = Ki then

28: P establishes an anonymous encrypted communication channel with U

29: else

30: P returns false to U

31: end if

32: close

Spoofing attacks. The attacker simulates to be the grantor in order to obtain the login in-

formation of the user. The use of a PKI infrastructure for authentication of the grantor

avoids this attack.

Password guessing attacks. In this case, the attacker tries to obtain the login information

of the user by one of the following ways: (i) on-line, submitting possible authentication

credentials until the grantor does accept the credential. As this attack needs the partic-

ipation from the grantor, it is contrasted by including a delay in the reply of grantor to

limit the number of attempts in the time from the attacker; (ii) off-line, in which the ad-

versary guesses a secret without the participation of any other party. The secrets that he

could guess are the followings. τ and r, because from them he can compute K . Although

τ is easy to know as is a timestamp, r is randomly generated and as a consequence very

hard to guess. Also the knowledge of K is hard, because it is a digest computed by a

cryptographic hash function. Finally, the secret S is sent encrypted by f (K) and then also

7.4 Discussion 131

in this case is very hard to guess. Clearly, in these considerations, we assume that the

cryptographic functions and keys used are secure, as usual in this context.

Man in the middle. Here, the attacker monitors, alters or injects messages into the commu-

nication between the provider and the user who accesses the service. However, the secret

S used to encrypt the communication channel between P and U cannot be known by

the attacker. Moreover, he cannot alter the secret S sent to P in the service request phase

because K (which ciphers s) is known by U and calculated by P . Thus, the attacker is

not able to make them believe they are communicating directly to each other (condition

necessary for the success of the attack).

Denial-of-service attack. This typology of attack is very wide and is carried out from the

attacker by sending false requests to interrupt the service provided by P . However, as

the service request messages are signed by the grantor, fake requests are easily detected.

Moreover, in case a correctly signed message is sent to P more and more times, only the

first requests will be accepted, and the others will be discarded. Thus, only one service

will be provided with no possibility to overload the provider. Also the attack based on a

prior man-in-the-middle attack by blocking and collecting a huge number of tickets and

resend it as a burst to overload the service provider fails, because all tickets have a very

small expiration time.

Behavior-based deanonymization attack. This type of attack is carried out by identifying re-

current patterns in the usage of services during an authenticated session. The knowledge

derived from the analysis of service logs can be used to guess user identity on the basis

of his attended behavior inside the cloud. This kind of attacks are contrasted by using

different tickets for each service required. Moreover, because the attacker could associate

requests coming from the same IP address, all messages to the cloud service provider are

sent through a P2P network which adopts a routing protocol guaranteing anonymity.

7.4 Discussion

We have presented a new protocol for accessing cloud services in such a way that no infor-

mation about users can be drawn from log analysis by a honest but curious cloud provider.

The solution combines a multi-party protocol with a P2P approach to obtain anonymity at

the granularity of the single user’s request and unlinkability between different requests. Ac-

countability is preserved, provided that the trusted third party cooperates. This assumption

is coherent with the setting where this solution is thought, where the role of third trusted

party can be naturally played by a government entity. Among the strengths of the proposal,

besides its scalability and efficiency, we include the consideration that our solution has a re-

alistic business model, as many e-government situations can be recognized where the public

sector and the cloud provider market may have reciprocal advantages. The former has the

advantage of outsourcing services towards the cloud, the latter has the possibility to exploit

the (even attribute-based) digital identity management provided by e-government services.

Concerning efficiency and scalability, at the stage of this research, we can argue that the solu-

132 7 Anonymous Authentication for Delivery of Cloud Services

tion appears good only on the basis of qualitative considerations (a few exchanged messages,

simple cryptographic operations). Moreover, a possible extension of the P2P role can be done,

by enabling multiplexing of the service delivery over multiple virtual (anonymous) channels.

Both this extension and an accurate efficiency analysis are planned as the next step of this

research.

7.5 Related work

Although a wide amount of work deals with general security issues in cloud computing, only

few papers concern anonymous authentication. For instance, an overview of the different se-

curity risks that reduce the growth of cloud computing is presented in [215]. The authors of

[237] focus on cloud data storage security issues, such as error localization and the identifica-

tion of misbehaving server. The problem of ensuring the integrity of data storage is addressed

in [238]. The authors consider the task of allowing a third party auditor to check the integrity

of the dynamic data stored, on behalf of the cloud client. All the works cited above are inher-

ently different from our approach because they do not focus on the definition of techniques

for privacy-preserving access to cloud services.

A number of strategies ensure user privacy in cloud scenarios without relying on any

cryptographic solution. In particular, [150] establishes a set of requirements for a secure and

anonymous communication system and tries to fulfill those requirements by using a combi-

nation of existing systems, such as Tor and Freenet [79]. A client-based privacy manager that

helps reducing the risk of data leakage and loss of privacy is proposed in [176]. However,

the authors do not take into account the information derived from the possibility of linking

different user sessions that may ultimately result in user profiling attacks.

Several works deal with data privacy concerns. Wang et al. [236] propose a distributed

scheme with explicit dynamic data support (including block update, delete, and append) to

achieve cloud data integrity and availability. They rely on erasure-correcting code in the file

distribution preparation to provide redundancy parity vectors and guarantee the data de-

pendability. [139] leverages on the Tor architecture to provide data ownership privacy inside

cloud. A system parameter controls both the degree of anonymity and the computational

overhead imposed by the system.

The most widely used strategies for the anonymization of data content are differential pri-

vacy [91] and k-anonymity for privacy preserving microdata release [208]. These techniques

are used as a preprocessing step to anonymize private data content before their submission to

the cloud [139]. The proposals presented in [72, 76] take advantage of group signature scheme

as anonymous access method. The first definition of group signatures was proposed by Chaum

in [72]. This kind of signatures is defined as a “generalization” of the credential/membership

authentication schemes, in which one person proves that he belongs to a certain group. The

authors of [76] implement SPICE, a digital identity management system applicable to cloud

environment, which combines two group signatures to make the same signature look differ-

ent for multiple uses. The main drawback of group signature scheme is that the signature size

7.5 Related work 133

grows with the number of user, thus making these approaches inefficient in many application

contexts.

A recent proposal presented in [205] describes a decentralized access control technique

with anonymous authentication, which provides user revocation and prevents replay attacks.

The limitation of such an approach is that the different requests of a single user in a session

could be linked together, thus resulting in a behavioral-based attack. In contrast, our tech-

nique is able to protect users also against such a type of attack.

8

Security of Transactions: Tweetchain

Blockchain technology allows mutually distrustful parties to transact safely without trusted third

parties and avoiding high legal and transactional costs. Despite the rapid grow of interest of both re-

searchers and companies in Blockchains, it is well-known that the protocol (even in the 2.0 version)

has some weaknesses. In this chapter, we propose an alternative public ledger that, instead of the

P2P network and the Blockchain protocol, leverages the popular social network Twitter, by building

a meshed chain of tweets to ensure transaction security. Importantly, Twitter plays neither the role

of trusted third party nor the role of ledger provider. From a conceptual point of view, the protocol

is fully decentralized as in Blockchain, but the weaknesses above mentioned are overcome.

8.1 Background

Blockchain, originally published by Satoshi Nakamoto in [177], is known in the scientific lit-

erature as the main technical innovation of Bitcoin. In [177] the author presents Bitcoin elec-

tronic payment system as a revolutionary technology based on cryptographic proof instead

of trust. Indeed, replacing the central server signature with a consensus mechanism based

on proof of work, Bitcoin allows any two willing entities to transact directly with each other

without relying on a trusted third party.

Every user who wants to adopt this technology has to store locally on the computer hard

drive the Blockchain, in order to run a full version of the Bitcoin software. Blockchain as-

sumes the function of a distributed ledger recording the history of every transaction sent and

confirmed on the Bitcoin Network.

Specifically, a Blockchain is a distributed database that holds a continuously-growing list

of blocks. The single block contains timestamped batches of valid transactions within a certain

period of time, and a hash of the previous block. All these hashes link the blocks together in

linear and chronological order and are used to assure that all blocks are well formed and not

tampered with.

Figure 8.1 shows the representation of a Blockchain.

Within a block, there is a list of transactions created by participants any time they want to

exchange a cryptocurrency (in the case of Bitcoin). Even transactions are linked together in a

sort of chain. This chain is valid if it is composed of valid transactions (i) digitally signed, (ii)

136 8 Security of Transactions: Tweetchain

Fig. 8.1: A scheme representing the Blockchain structure.

that spend one or more unspent outputs of previous transactions, (iii) and for which the sum

of transaction outputs must not exceed the sum of inputs.

Another feature of Blockchain technology is that it is public and decentralized. Indeed,

the Blockchain runs on a widespread network of computers, called miners, holding all data in

the Blockchain, and working on expanding it. Their function is to compete in order to form

new blocks, that can be added or not to the Blockchain according to a consensus schemes, also

known as proof of work.

This algorithm dictates the way all nodes can agree that a miner includes its block into

the Blockchain. This is done establishing if the miner has done a certain amount of work that

entitles it to the block reward (e.g., the insertion of its block in the Blockchain). In the case of

Bitcoin, the task to accomplish for the miner is to compute a string, that when concatenated

with the hash of the previous block header and then hashed, returns a string with a certain

amount of preceding zeroes.

More in detail, after a new transaction tr is created, the network executes the following

steps:

1. tr is broadcast to all nodes.

2. Each node collects tr into a block.

3. Each node works on finding a difficult proof of work for its block (e.g., it runs the algo-

rithm described above).

4. Once the proof of work is found, the node broadcasts the block to all nodes.

5. Nodes accept the block only if all transactions in it are valid and not already spent. To

validate a block, a node only needs to keep a copy of the block headers of the longest

proof of work chain (which the node can get by querying network nodes) and obtain the

Merkle branch linking the transaction to the block it is timestamped in. By linking the

transaction to a place in the chain, the node can see if another network node has accepted

it, and blocks, added after it, further confirm the network has accepted it.

6. Nodes use the hash of the accepted block as the previous hash for the following blocks.

The longest chain is always considered the correct one and all nodes will keep working

on extending it. If two different versions of the next block are broadcast in the same time,

nodes may receive one or the other first. In that case, they consider the first one they received,

saving the other branch, in case it becomes longer. When the next proof of work is found and

one branch becomes longer the tie will be broken, and all the nodes working on the other

branch will then switch to the longer one.

8.3 Basic Approach 137

Even though a node does not receive a block, it can request it when it receives the next

block and checks whether it missed one. Thanks to that, the network is tolerant to dropped

messages and new transactions, once broadcast, need to reach many nodes, but not the whole

network.

As long as one single entity does not hold majority of the computing power, this algorithm

can mathematically ensure security on the block chain. Indeed, the fact that the proof of

work is made starting from the hashed header from the previous block, and that headers

contain a hash of all transactions in that block (as illustrate in Figure 8.1), changing an old

transaction requires that an attacker computes again the proof of work for all subsequent

blocks. Moreover, after that he has to continuously add blocks to this chain at a higher rate

than the legitimate chain to make the system using this chain instead of the right one. Indeed,

this attack result infeasible unless the attacker does not hold the most of the network.

Moreover, the growing number of miners running a node on their hardware increases

the security of the system. Therefore, Blockchain protocol adds an incentive to reward nodes

that keep mining and use their processing power (in terms of CPU time and electricity con-

sumptions), to create blocks. In case of Bitcoins, the first transaction in a block is a special

transaction that starts a new coin owned by the miner that create the block. The incentive

can also be funded with transaction fees. If the output value of a transaction is less than its

input value, the difference is a transaction fee that is added to the incentive value of the block

containing the transaction.

Moreover, privacy can still be guaranteed by keeping public keys anonymous. In this way

the public can see that someone is sending an amount to someone else, but without linking

the transaction to anyone.

8.2 The Tweetchain Model

In this section, we describe the model underlying our proposal.

The main entities of the model are:

• The Twitter social network, and, in particular, the followings among features:

1. the posting of tweets for registered users;

2. the notification on the follows activity;

3. the searching for information by hashtags.

• a welcome profile W used to implement a sort of yellow page support.

• the Tweetchain community, namely C, of users who join the Tweetchain protocol.

8.3 Basic Approach

In this section, we describe our approach and the structure of the messages exchanged by the

involved entities.

As a prerequisite, to participate in the Tweetchain community, a user must be able to

build, by starting from a secret, a (SHA-256 based) hash chain of a given size, say k, which

138 8 Security of Transactions: Tweetchain

will be used to maintain all his timeline activities linked together. This way, as will be clearer

in the following, no modification can be done on older messages without compromising the

remaining part of the user timeline. The value k, representing the length of the hash chain,

is a system parameter which also limits the maximum size of the chunk of the user timeline

(intended as number of tweets) that must be consider to verify the validity of a given message.

All the detail on the usage of this hash chain will be clarified in the following. As a further

observation, we will consider our system in a steady-state, meaning that there are always at

least s = 2t
1−m members in the Tweetchain community, where t and m are system parameters

discussed in Section 8.4.

Now, we are ready to describe our proposal. The Tweetchain paradigm is composed of the

following protocols.

Registration. It is executed by each user, say x, who wants to become member of the

Tweetchain community C. Clearly, a prerequisite of this protocol is the sign up to Twitter

in order to create a profile on it.

The first step he performs is to follow the welcome profileW and to publish a hello tweet

with the following structure:

〈 #HC1
x #HC1

W Hello @W 〉

where #HC1
x and #HC1

W are Twitter hashtags with the base64 encoding of the first element of

the hash chain of x and W as text, respectively, and @W is a Twitter reference to the welcome

page W .

After that, W verifies the tweet of x and sends a confirmation tweet as a welcome message

with the reference to this user and a link to his hello tweet. Suppose that W has already

posted i − 1 tweets, then the welcome message for x will have the following structure:

〈 #HCiW Welcome @x #HC1
x #T ID1

x 〉

where #HCiW and #HC1
x are Twitter hashtags of the base64 encoding of the ith element of

the hash chain of W and the first element of the hash chain of x, respectively, @x is a Twitter

reference to the user x, and #T ID1
x is a Twitter hashtag with the ID of the first tweet (hello)

of x as text. Observe that, the ID of a tweet (or status ID) is always unique inside Twitter.

As a consequence, W contains at least one tweet for each member of the community in

join-chronological order. After this, x generates at random the set Fx of s-followings who will

validate his transactions in the future. This set is built as follow:

• x retrieves his Twitter identifier. (Recall that each Twitter user has a unique 64-bit nu-

meric identifier.)

• Then, the identifier is used as seed to a community-known PRNG to extract s random

numbers and for each number, say n, computes n mod w. Here w is the total number of

tweets posted by W (i.e., the size of the Tweetchain community).

• At this point, the numbers computed above are used as indexes to select s distinct screen

names from the welcome profile W .

8.3 Basic Approach 139

Fig. 8.2: A scheme representing the registration procedure.

• x sends a private message to each of the s profiles, whose screen names have been derived

in the previous step, to ask them to follow him.

• After verifying the legitimacy of the request of x by using the community PRNG, each of

the profiles contacted by x adds a follow link towards x and duplicates the welcome tweet

of W by replacing #HCiW with their current hash chain element.

Transaction generation.

This protocol allows the generation of a new transaction. Similarly to what happens in

Blockchain, each transaction carries different information, such as:

• The timestamp of the generation.

• A content, i.e., the transaction payload.

• An input transaction.

• A target profile acting as transaction recipient.

In our protocol, the generation of a new transaction is assimilated with that of a new tweet

by the user, in the following referred as t-tweet. According to the requirements described

above, the i-th t-tweet of the user x, will have the following structure:

〈 #HCix #T ID
p
y content @r 〉

Where #HCix is a hashtag with the base64 encoding of the ith element of the hash chain

of x, #T ID
p
y is a hashtag of the ID of the p-th tweet posted by the user y and used as input for

this transaction, and @r is a Twitter reference to the recipient r of this transaction.

140 8 Security of Transactions: Tweetchain

Algorithm 5 Registration Protocol
Notation C: the Tweetchain community;

x: a Twitter user who wants to join C;

W : the welcome page;

Fx : the set of s-verifiers of x;

n: a random number.

Procedure Registration to C

1: x follows W

2: x publishes 〈 #HC1
x #HC1

W Hello @W 〉

3: W verifies 〈 #HC1
x #HC1

W Hello @W 〉

4: if Verification is ok then

5: W publishes a confirmation tweet: 〈 #HCiW Welcome @x #HC1
x #T ID1

x 〉

6: x retrieves his Twitter identifier

7: x extracts a set N of s random numbers trough a PRNG known by C

8: for all n ∈N do

9: x computes vn = (n mod w)

10: x retrieves the screen names corresponding to vn in W and adds it to Fx

11: end for

12: for all i ∈ Fx do

13: x sends a private message to i

14: i verifies the request of x

15: if Verification is ok then

16: i follows x

17: i publishes 〈 #HC
j
I Welcome @x #HC1

x #T ID1
x 〉

18: close

19: end if

20: end for

21: close

22: end if

As soon as x posts a new t-tweet, the s users of Fx following him will be notified by the

Twitter platform automatically. They will proceed by verifying the legitimacy of this new

transaction by using the verification protocol described below. After running the verification

procedure, they will publish a confirmation tweet on their timeline. Now, let v be one of the

users of Fx and let j−1 be the number of tweets generated by v till now, his confirmation tweet

for the transaction of x will be:

〈 #HC
j
v @x #TDix status #T ID

p
y content @r 〉

Here #HC
j
v is the hashtag of the j-th element of the hash chain of the verifier v, @x is the

reference to the user x, #TDix is the hashtag of the ID of the t-tweet generated by x, and status

can either be 1 for success or 0 for failure on the basis of the verification result. The remaining

of this tweet is the essential part of the body of the t-tweet of x necessary to reconstruct the

original tweet in case of deletion done by x.

Verification. This protocol is used to check the validity of a transaction. Now, suppose a ver-

ifier, say v, wants to verify the i-th transaction of the user x having the p-th transaction of a

user y as input and the user r as target. The transaction of x will have following structure:

〈 #HCix #T ID
p
y content @r 〉

8.3 Basic Approach 141

Fig. 8.3: A scheme representing the transaction generation.

The protocol works by verifying each part of this t-tweet. Observe that, concerning the

verification of the content, this is not considered here as it is strictly related to the objective

of the transaction, which is not specified in this chapter and, therefore, it is fully application

dependent. As for the verification of #HCix, first v checks whether this hash chain element has

been already used, in this case the verification will fail, otherwise the verifier has to compute

the SHA-256 hash of #HCix. Due to the hash chain property, the results of this computation

should be #HCi−1
x . Therefore, a search on Twitter for #HCi−1

x should return the previous

tweet posted by x. The goal of the verifier is to find the previous t-tweet of x or the initial hello

message. Now, because x will also post confirmation tweets for other users’ transactions, in

the case #HCi−1
x refers to a confirmation tweet, the procedure above is repeated until either a

t-tweet or the hello tweet is found. Let #T IDi−1
x be the ID of such a tweet, the verifier has now

to check whether he has confirmed this tweet in the past (i.e., has posted a confirmation tweet

with status 1 corresponding to it). If this is not the case, then the verifier will not confirm

(status 0) the new transaction, otherwise he will proceed with the verification of the second

part of the new t-tweet of x. The verification of #T ID
p
y implies the verification of the validity

of the input transaction. As said above, the input is the p-th t-tweet of the user y. The validity

of this tweet is related to the presence of at least t confirmation tweets among the s generated

by the verifiers associated with y. Because each confirmation tweet contains the ID of the

corresponding t-tweet, a search in Twitter for #T ID
p
y will return all the confirmation tweets

for the p-th t-tweet of p. Now, the verifier has to check both the presence of t confirmations

with status 1 and that they have been posted by the legitimate verifiers for y. Moreover, v

checks whether the target of #T ID
p
y is x and that it has not been already used as input in any

other transaction. The last verification done is the check of the existence of r (i.e., the target

user of this new transaction) in the Tweetchain community. This is obtained by searching

for @r in Twitter and by verifying the presence of the welcome message in W along with t

confirmations of the verifiers of r. At end of these steps, if all the verifications succeeded, then

the verifier will post a confirmation tweet with status 1 for the new t-tweet of x, otherwise the

status of this confirmation will be set to 0.

142 8 Security of Transactions: Tweetchain

Algorithm 6 Generation and Verification Protocol
Notation C: the Tweetchain community;

x: a Twitter user who generate a t-tweet;

Fx : the set of s-verifiers of x;

v: a verifier ∈ Fx ;

h: a 256-bit cryptographic hash function.

Procedure t-tweet Generation

1: x publishes 〈 #HCix #T ID
p
y content @r 〉

Procedure t-tweet Verification performed by v

2: if #HCix has been already used then

3: v publishes 〈 #HC
j
z @x #TDix 0 #T ID

p
y content @r 〉

4: close

5: end if

6: v computes h(#HCix) = #HCi−1
x

7: v searches for #HCi−1
x

8: while t-tweet OR hello tweet is found do

9: v searches for #HCi−1
x

10: end while

11: if #HCi−1
x is not found then

12: v publishes 〈 #HC
j
z @x #TDix 0 #T ID

p
y content @r 〉

13: close

14: end if

15: v retrieves #T IDi−1
x

16: if v has not already confirmed this t-tweet then

17: v publishes 〈 #HC
j
z @x #TDix 0 #T ID

p
y content @r 〉

18: close

19: end if

20: v searches for #T ID
p
y

21: if v finds less than t confirmation tweets OR the target of #T ID
p
y , @x OR @x has been already used as input in

any other t-tweet then

22: v publishes 〈 #HC
j
z @x #TDix 0 #T ID

p
y content @r 〉

23: close

24: end if

25: v searches for @r in C

26: if v does not finds a welcome message for @r in W OR less than t confirmation tweets of the verifiers of r then

27: v publishes 〈 #HC
j
z @x #TDix 0 #T ID

p
y content @r 〉

28: close

29: end if

30: v publishes 〈 #HC
j
z @x #TDix 1 #T ID

p
y content @r 〉

8.4 Security analysis

In this section, we describe a security analysis of our approach showing that it accomplishes

its objectives also in presence of attacks. Therefore, in the following, we describe the security

model and analyze the security properties of our proposal.

To analyze the security properties, first our threat model includes the following assump-

tions:

A1 The attacker cannot add or compromise information shown on the social network ac-

counts of any of the users of the Tweetchain community.

8.4 Security analysis 143

A2 The Twitter service is up and running as expressed in its use conditions and does not

intend to block the Tweetchain community (i.e., we assume that Twitter only could block

single individuals, not the whole community).

A3 Collision, preimage and second preimage attacks on the cryptographic hash function are

infeasible.

A4 The attacker cannot know the secrets used by users to generate their hash chains.

A5 Given t verifiers the maximum number of those who do not respond according to the

protocol to the verification request is m · t where 0 ≤m < 1.

A6 At most t user can collude to to break security properties of the protocol.

The last assumption merits a brief comment. We recall that, in our protocol, confirma-

tions are produced collaboratively by several users playing as verifier. Some users might be

corrupted by an adversary, but we assume an honest majority of users at all times. This is a

common assumption borrowed by the field of e-voting [256, 100], As a consequence, our tech-

nique is parametric with respect to the value t. It is chosen in such a way that the likelihood

that t randomly selected users misbehave is negligible. Similar considerations can be done for

Assumption A5.

Now, we are ready to identify the security properties (hereafter, SP) that our system has

to assure and discuss the attacks and the countermeasures to contrast them.

SP1- Transaction Authenticity. A transaction and the user generating it can always be verified

by the Tweetchain community.

Attack AA1: An adversary tries to impersonate the welcome profile W to tamper the list of

verifiers for a user.

This attack is contrasted by the fact that the screen name of each account is unique in

Twitter and that associated withW is known to all the Tweetchain community. Therefore,

due to Assumptions A1 and A2 this attack cannot happen.

Attack AA2: An adversary creates multiple accounts and tries to use them as verifiers of his

own transactions.

This attack is contrasted by two security mechanisms introduced in our approach: (i) the

welcome profile yellow page service; (ii) the PRNG-based mechanism for verifiers assign-

ment.

The former forces each user who wants to join the Tweetchain community to perform a

preliminary registration to W . After this, the latter security mechanism ensures that the

election of verifiers for a given user is publicly verifiable as the PRNG-base strategy is

entirely reproducible by each user in the Tweetchain community. Therefore, also thanks

to Assumption A1, this attack cannot happen.

SP2 - Transaction Integrity. The whole message (t-tweet) representing a transaction cannot

be tampered once posted on the system.

144 8 Security of Transactions: Tweetchain

Attack AI1: Some of the verifiers do not execute the verification protocol invalidating a trans-

action.

Thanks to Assumption A5 we know that, among t verifiers, the maximum number of those

who may not collaborate properly by posting the confirmation tweet ism ·t, where 0 ≤m <

1. To resist such attack we have to set the number of verifiers for any user of the community

to t
1−m . Indeed, our aim is to obtain at least t confirmations to validate a new transaction.

We know that if we consider an initial set of t verifiers, to obtain t confirmations we have

to add (m · t) verifiers to this set, to compensate those who may not respond among the

first t. Now, in the set of (m · t) added users, once again, we have that m · (m · t) may not

respond. Therefore to obtain at least t confirmations we need to set the number of verifiers

to t + (m · t) + (m2 · t) + · · · + (mi · t) = t ·
∑∞
i=0m

i = t
(1−m) . With this setting, such attack is

contrasted.

Attack AI2: Some of the verifiers collude to compromise the integrity of a transaction.

This attack is contrasted by considering that, according to Assumption A6, at most t users

can collude to perform an attack. Clearly, if we want to obtain t confirmations to validate a

new transaction, to contrast the collusion attack, we should set the number of verifiers for

each user to 2 · t. By combining this intuition with the countermeasure adopted to make

the approach resistant to Attack AI1 we have that the number of verifiers for each user

has to be set to 2·t
(1−m) .

Attack AI3: Twitter, playing as an adversary, tries to compromise the integrity of a transaction

by deleting a piece of the chain (even the whole) this transaction depends on.

Suppose the adversary has as target a transaction q. The logic underlying this attack is that

if the adversary is able to delete a partial or the whole set of transactions and correspond-

ing confirmations related to q, the integrity of the latter is compromised as the verification

of its input would fail. However, to prevent such an attack in our approach not only each

transaction is linked in a chain of transactions posted by other users (horizontal chaining)

but it is also linked, by means of the user hash chain, to messages generated by its owner

before and after it (vertical chaining). Moreover, this reasoning applies also for the con-

firmations of each involved transaction, thus creating a mesh of chained transactions and

confirmations around the attacker target, i.e. q. The deletion of any piece of this scheme

will produce a domino effect causing all the transactions in this mesh (possibly extending

to the entire community due to the small world property [141]) to be compromised. This

would intrinsically go against to what provided by Assumption A2.

Clearly, the reasoning above holds if there are transactions in the network which are more

recent than the piece of chain the adversary is planning to delete. Consider the improb-

able situation in which all the transactions involved in the piece of the horizontal chain

under attack are the last posted by the corresponding users. In this case, to contrast such

an attack, we enforce that a transaction, already validated through the verification pro-

tocol, can be considered in a safe state only if there are at least h transactions generated

after any element of the horizontal chain linking it (a similar measure is adopted also in

Blockchain). This reasoning is sketched in Figure 8.4, in which the horizontal chaining, the

8.4 Security analysis 145

Fig. 8.4: A fragment of the grid structure created by our protocol.

vertical chaining, and the depth h (necessary to consider the safe state for a transaction)

are highlighted.

SP3 - No repudiation of Transactions. The user generating a transaction cannot repudiate it.

Attack AR1: An adversary tries to make ambiguous a transaction by forging another one with

the same input transaction.

In this case, the attacker tries to create a fork in the chain using the same input transac-

tion but with different recipient. However, this attack cannot occur due to the verification

mechanism according to which each verifier has to check for the presence of the input

in a previous transaction (see Section 8.2). Therefore, also thanks to Assumption A1, the

attempt of creating a fork is demised because the confirmations will have status 0.

Attack AR2: The user, acting as an adversary, tries to repudiate a transaction by deleting the

corresponding t-tweet.

This attack can be performed in two ways: (i) the adversary deletes the t-tweet before all the

confirmations are produced; (ii) the adversary deletes the t-tweet after the confirmations.

In the first case, the transaction will be considered not valid by the verification protocol

and hence, it will be not usable as input for future transactions. Therefore, no real ad-

vantage is produced with this attack. In the second case, the adversary tries to make the

transaction valid by waiting for all the confirmations to be produced, and then proceeds by

deleting the original t-tweet with the objective of repudiating the transaction itself. How-

ever, the attack fails as, according to the verification protocol and due to Assumptions A5

and A6, the transaction will be considered valid because at least t confirmations will be

found.

146 8 Security of Transactions: Tweetchain

8.5 Discussion

The assurance of information is becoming an issue more and more important in the current

era. Moreover, an emerging trend is to do not rely on a single body, to ensure scalability and

to avoid to require the (sometimes unrealistic) trustworthiness of this body. Blockchain is

the other extreme, because transactions are broadcasted to the entire community and (poten-

tially) all the participants compete to verify and approve transactions. As we have commented

earlier, this global competition results in a huge amount of work and energy loss. Mainly for

this reason, an extensive use of Blockchain could be inopportune. However, a great attention

towards Blockchain has been recently devoted by both researchers and companies, due to its

high applicative power, mainly relying on the idea that Blockchain can implement a public,

shared ledger without dedicating any trusted entity.

The aim of our research is to find an alternate to Blockchain that can favor the mas-

sively extension of public-ledger-based applications, also by solving the main drawback of

Blockchain that is the need of the proof of work. We thought that this goal can be reached by

exploiting the native power of online social networks to connect people and playing for free

as a platform for massive collaboration. As a matter of fact, so far social networks have been

mostly used as communication media. We think they can become part of people workflows,

with reciprocal advantage: for people high usability, low cost, high availability, for social net-

work providers more central role in the society. Conversely, the P2P approach required by

Blockchain is certainly less universally accepted, results in more client-side invasivity, en-

forces a stratification of users making only the oligarchy of full nodes the real participants in

the community (the majority of nodes must trust full nodes). Moreover, for full nodes, a great

effort in terms of storage space, bandwidth, and computational power, is required.

The solution we have proposed, called Tweetchain, solves the above problems. We sum-

marize here its main features.

• As Blockchain, Tweetchain is a platform for different applications. In other words, the

content of the transactions is someway independent from the protocol. The mechanism

of resources referred by tweets, may allows us to use the protocol for many applications.

• Tweetchain ensures, if required, the same anonymity degree as Blockchain. Instead of

different public keys, the user may use different Twitter profiles and accessing the net-

work by TOR to obtain privacy. Concerning the possibility for an attacker to break this

privacy, it is easy to see that Tweetchain has the same resistance as Blockchain.

• Twitter does not play the role of trusted third party. Moreover, it does not provides spe-

cific functionalities of the protocol. It just publishes the tweets of the protocol exactly as

the other ones. As shown in the security analysis, Twitter cannot succeed as adversary,

only could stop the entire community. Even though this occurrence can be considered

very improbable in a real-life massive utilization of the protocol, it is easy to understand

that our approach can be thought at a multiple-social-network level, over the hundreds of

existing social networks. This way, the probability that the the community can be stopped

becomes negligible (even though only the biggest few social networks are involved).

8.6 Related work 147

• In Tweetchain, there is no need of proof of work. Therefore, there is no lost work in the

community. The confirmation of the transactions is done by a number of participants

ensuring that the probability of collusion is negligible. Thus, between the centralized

scenario of one is the trustee and the other extreme aimed (but not obtained) by Blockchain

of all are trustees, we find a sort of optimum equilibrium. Moreover, all the participants

have the same rights and exchange the same roles, in a truly conceptual P2P fashion.

• No P2P application must be installed by users. They just are required to run an appli-

cation accessing their Twitter profile. This appears more efficient and we expect that it

would be more acceptable because perceived as more secure and more transparent than

P2P. Besides the perception, it is rather intuitive that enabling P2P functionalities may

enlarge the attack surface client-side. Concerning the access control of the application to

the Twitter profile, approaches like [47] can be used to prevent application misbehaving.

• If we want to use Tweetchain for those applications in which the identity of actors is a

critical factor, we can enforce the use of only verified Twitter profiles with double fac-

tor strong authentication [8] or interfacing our protocol to some public digital identity

system.

• As for Blockchain 1.0, a lot of possible applications can be implemented over Tweetchain.

We do not consider that Tweetchain should be proposed as crypto-currency like Bitcoin.

This because the success of a crypto-currencies depends on a lot of factors that we did

not analyzed in this thesis. However, many other applications can be thought, related to

voting, e-commerce, document exchanges, ticketing, crowdshipping, reputation systems,

tourism, advertising, etc. As a future work, beside a full implementation, we plan to im-

plement on Tweetchain also the paradigm of smart contracts, thus enabling Tweetchain

to supports all the applications runnable over Blockchain 2.0.

8.6 Related work

Since its creation in 2008 [177], Blockchain technology has sparked a growing interest within

the scientific community.

Indeed, many works try to solve problems related to Blockchain in order to improve its

functionalities. In particular, in [28] the authors propose a new technology, called pegged

sidechains, which enables Bitcoins and other ledger assets to be transferred between multiple

Blockchains. This allows the interoperation among different cryptocurrency systems and gives

users access to these systems reusing Bitcoin currency and maintaining the assets they already

own.

In [143] an approach to guarantee privacy over smart contract systems based on decentral-

ized cryptocurrencies is presented. In the classical Blockchain protocol, the entire sequence

of transactions taken in a smart contract are propagated across the network and saved in the

Blockchain, and therefore are publicly visible. This system does not store financial transac-

tions in plain text on the Blockchain, solving also deanonymization attacks.

148 8 Security of Transactions: Tweetchain

We do not consider the problem of privacy of transactions in our work. By the way, as also

done in Blockchain, by using anonymous Twitter profiles in conjunction with some anony-

mous communication service, such as Tor [89], a user can certainly obtain these privacy re-

quirements.

Whereas, in [97] the authors propose Bitcoin-NG a Byzantine fault tolerant protocol in or-

der to solve the intrinsic scalability limits of Blockchain. Our consensus model can be framed

within the family of state-machine replication (SMR) protocols that consists essentially in

replicating deterministic state machines in different hosts [211]. Moreover, it guarantees con-

sensus despite participation of malicious (Byzantine) nodes because all the transaction ex-

changed are published on Twitter [21].

Always in this direction, the works presented in [158, 216] describe alternate structures

to the chain in order to reach higher rates (e.g., a directed acyclic graph of blocks and a tree

of blocks, respectively). Our work maintains a meshed chain structure, thus forming a sort of

grid (as shown in Section 8.4). Moreover, the block entity is assimilated with a single transac-

tion.

Also performing transactions off the chain can be seen as an alternative to improving the

bandwidth and latency [83, 195]. In our protocol we do not need that verifiers are always

all online and fully operational (see Sections 8.2 and 8.4). Moreover, once a verifier signs in

Twitter he is prompted to produce his confirmations before he can proceed with his tasks.

More than one authors suggest a mechanism based on incentive to motivate transaction

propagation, deterring the formation of large open mining pools [96, 157]. Within our proto-

col we do not consider incentives. Indeed, it is made up peer nodes, assuming in turn the role

of verifiers and transaction generators. If a node wants to benefit Tweetchain services it has

to agree with the protocol and serve as verifier when needed.

9

Urban Security and Third-Party Cloud: the case of

Video Surveillance

Cloud computing provides users with the possibility to store their data in third-party servers. These

data centers may be untrusted or susceptible to attacks, hence they could return compromised query

results once interrogated. This issue becomes particularly crucial in the case a third-party cloud is

used to store video-surveillance data. Query integrity has been widely investigated in the literature,

and a number of methods have been proposed to allow users to verify that query results are complete

(i.e., no qualifying tuples are omitted), fresh (i.e., the newest version of the results are returned),

and correct (i.e., the result values are not corrupted). However, in an application scenario, in which

append operations and range queries on stored data streams are dominant, and efficiency is a critical

factor, classical techniques for query integrity appear little suitable. This chapter proposes a new

solution to overcome these drawbacks.

9.1 Background

Understanding the following concepts and cryptographic primitives is useful for the compre-

hension of our approach and some related works we cite in this chapter:

• A Hash chain is given by the successive application of a cryptographic hash function H

to a data. For instance, a hash chain of length 3 can be obtained by applying three times

the hash function H to a string x H(H(H(x))).

• A Hash list is a list of hashes in which each hash value is referred to a different data block.

It is used to guarantee data integrity and it is better than a simple hash of the entire file

because, in the case of damage of a single block, this can be identified. Often, a top hash

is computed (i.e., a hash of the whole hash list) to make a first quick check on the entire

data.

• A Merkle hash tree [174] is a more advanced form of hash list which allows verification of

the contents of large data structures. It is defined as a tree in which every node (except for

the leaves) is labelled with the hash of the labels (or values, in case of leaves) of its children

nodes. An example of Merkle hash tree is presented in Figure 9.1. H0,0 and H0,1 are the

hash values of the first and the second data blocks D0 and D1, respectively. Iteratively,

H0 can be computed byH(H0,0||H0,1), where || is the concatenation operator. Proving that

a leaf node belongs to the given hash tree requires a computational cost proportional to

150 9 Urban Security and Third-Party Cloud: the case of Video Surveillance

Fig. 9.1: An example of Merkle Hask Tree.

the logarithm of the number of nodes of the tree. For instance, to authenticate the first

data block a user has to be provided with the hash value of the second data block (H0,1)

altogether with H1. Since the user holds a signed value of the top hash, he checks if top

hash is equal to H(H(H(D0)||H0,1)||H1)

• MAC means message authentication code and it is a short piece of information, associated

with a message, used to assess the integrity and authenticity of the message itself.

• A HMAC is a specific kind of MAC constructed from a cryptographic hash functions. In

particular, HMAC(K,m) = H ((K ⊕ opad)||H((K ⊕ ipad)||m)) where K is a secret key gen-

erated from a master key, m is the message to be authenticated, || denotes the operation

of concatenation, ⊕ represents exclusive or (XOR) operation, and opad and ipad are two

kinds of padding, namely outer and inner padding.

9.2 Scenario and Problem Formulation

In this section, we describe the referring scenario and formulate the problem we deal with.

Specifically, we consider a particular application context in which the (possibly untrusted)

cloud performs query processing on behalf of the data owner. The problem is guaranteeing

query integrity (i.e., completeness, correctness and freshness) [209].

We consider a realistic scenario of video surveillance. We have a network of (battery-

powered) cameras (such as, drones, micro-drones, insect spy drones, etc.) monitoring a high-

size area and store images into the cloud. Beside allowing data storage, this server provides

an interface to access data and to perform query processing on behalf of the data owner, who

administrates and analyzes query results in accordance to specific application-related require-

ments. To optimize the process, cameras are equipped with a motion sensor to intelligently

record event images only when motion is detected to allow power saving.

We remark that the choice of a specific application context is done with the purpose of

highlighting the practical significance of our proposal, also by considering the importance

that video surveillance is assuming nowadays. However, our solution is not ad-hoc, because

it appears suitable to all cases in which the cloud stores data streams and the efficiency of

9.3 Basic Approach 151

Fig. 9.2: A representation of the considered scenario.

continuous insertions is a critical aspect. Thus, many other applications can be easily found,

for example in the field of Internet of Things or logistics.

In our model, we may identify the following actors:

• The data owner: the entity that owns the data, performs queries to the cloud server, and

verifies query results.

• The cameras: which record video frames and store them on the cloud server.

• The cloud server: which hosts the database and publishes an interface for query process-

ing.

A graphical representation of this scenario is shown in Figure 9.2.

We want to provide a mechanism allowing the verification of the completeness, correct-

ness and freshness of query results. Clearly, battery saving assumes a very important role in

this case. Therefore, one of the main problems is that excessive computation on recording

sensors should be avoided. Under this assumption, as shown in detail in Section 9.4, the so-

lutions proposed in the literature for the problem of query integrity, are little suitable. The

aim of our work is to propose a more realistic (i.e., efficient) solution. We focus our attention

on range queries, which ask for the images captured in the interval between two given time-

stamps. This type of query is the most meaningful in the considered scenario. Concerning

data storing, because video frames have precise timestamps, we assume that all entities are

time-synchronized and data insertion in the database is possible only if the frame timestamp

is equal to the current time. As for the database dimension, we consider an aging mechanism

so that only data with timestamp greater than (tc − ts) are guaranteed in the database, where

tc is the current time.

9.3 Basic Approach

Our approach to verify query-result integrity can be classified as a deterministic technique

[209]. This type of approach makes use of authenticated data structure and allows the verifi-

cation of a query result leveraging verification objects that should be included in the results.

152 9 Urban Security and Third-Party Cloud: the case of Video Surveillance

Clearly, deterministic approaches work for queries in which the conditions apply on the at-

tribute for which the support structure has been created. Commonly, these solutions adopt

hash-based tree structures (such as Merkle hash trees or MB-trees [184, 159]) to organize

data. As we will analyze in Section 9.4, these structures are extremely efficient during the ver-

ification procedure, but require additional computational cost to maintain updated the struc-

ture during the insertion of new data. Unfortunately, in our application, insertions are highly

frequency operations performed by those devices which have strict power consumption con-

straints. Indeed, query verification is performed by the data owner. As a consequence, we look

for a method which supports insertions more efficiently than the hash-based tree structures.

We present our scheme in detail. We start by introducing some basic definitions.

Definition 9.1. Given a camera device si , we define the image sequence generated by si as

Fi = {f it1 , . . . , f
i
tn
}, where: (i) f itj is the image captured at the instant tj for each 1 ≤ j ≤ n and (ii)

tj < tj+1 (i.e., the instant tj comes before tj+1 in time) for each 1 ≤ j < n.

In words, an image sequence represents a track associated with a camera device and we main-

tain independent sequences for different devices. Observe that, each image together with all

support attributes (such as timestamp, geographic coordinates, etc.) is stored as a new tuple

in the database. Therefore, throughout the paper, we will refer to a tuple as an element of an

image sequence.

Definition 9.2. Given two instants tl and tu with t1 ≤ tl ≤ tu ≤ tn, a range query Qi (tl , tu) on

Fi asks for all the images f itx such that tl ≤ tx ≤ tu .

Basically, a range query is defined as a request to obtain all the images recorded by a given

device si during the interval [tl , tu], where tl and tu , with tl ≤ tu , are valid timestamps during

the device recording lifecycle, i.e., its total recording interval [t1, tn].

Now, consider a device image sequence Fi . Our approach works by organizing database

tuples associated with Fi in a chain. The link between two elements is built so that the owner

can always verify the chain validity. Specifically, given a tuple f itj = 〈a1, . . . , ap〉, where a1 = tj is

the tuple timestamp, and a2, . . . , ap are further attributes, our approach modifies it by adding

an attribute encoding a link towards the next tuple in our database according to the times-

tamp value. Therefore, we create a new structure f̂ itj = 〈f itj ,MAC〉, where the attribute MAC

is a message authentication code and is computed by means of the function HMAC(v,Ki) im-

plementing the HMAC protocol with SHA-256 as cryptographic hash function, v = f itj ||e, Ki
is a secret shared by the si camera and the data owner, and e is either the next tuple f itj+1

of

si , or a special element defined hereafter. Indeed, the chain is completed with the insertion of

dummy entries representing markers that are used to both validate the head of the chain and

to reduce the integrity verification costs by splitting Fi in time buckets. These elements are

pre-added to the database and are known to all the actors involved in our scenario (i.e., they

are part of the public scheme of our protocol).

Figure 9.3 shows the structure of the chain where the elements dTw and dTw+1 represent

markers, whereas the white boxes are normal tuples.

9.3 Basic Approach 153

Fig. 9.3: An example of the chain of a single device image sequence.

Concerning the markers, they have the following basic structure: dTw = 〈Tw, IDb〉, where

Tw is the marker pre-fixed time (i.e., Tw is chosen by the owner during the system initializa-

tion phase), and IDb is the bucket identifier. Clearly, as further illustrated in Figure 9.4, each

marker has also to maintain different attributes, namely MAC1, . . . ,MACn, representing links

to devices s1, . . . , sn, to complete the integrity chain described above. Therefore, the complete

structure of markers will be: d̂Tw = 〈Tw, IDb,MAC1, . . . ,MACn〉, where MACi is a message au-

thentication code associated with the device si and is computed by means of the function

HMAC(vi ,Ki) implementing the HMAC protocol with SHA-256 as cryptographic hash func-

tion, vi = Tw ||IDb ||e, Ki is a secret shared by the si camera and the data owner, and e can be

either the next si tuple f itj+1
(the first tuple in the corresponding bucket) or the next marker

dTw+1 .

Fig. 9.4: An example of multiple device chains.

In the next sections, we will describe our protocol for the creation and population of the

database, and the integrity verification mechanism.

9.3.1 Database population protocol

According to our scheme, preliminarily the data owner establishes the database life period by

deciding the number of markers and their time position (Tw). The marker time positions can be

simply uniformly distributed in the whole database life period or can follow specific patterns

decided by the owner. For instance, he may decide to intensify the number of markers during

specific time intervals, such as rush hours or critical daily moments. Initial marker values are

stored in a table of the cloud database, say m_tab, whose content is shown in Figure 9.5. All

154 9 Urban Security and Third-Party Cloud: the case of Video Surveillance

system entities know the exact position of each marker. Observe that, in this initialization

phase, the values of each attribute MACi is set to null.

T IDb MAC1 . . . MACn

00:00 1 null . . . null

01:00 2 null . . . null

: : : : :

Fig. 9.5: The initial state of m_tab with markers positioned at every hour.

Now, we discuss how a camera si inserts a new tuple. The algorithm formalizing this

procedure is reported in Algorithm 7: we can have two cases, depending if the table is empty

or not. In the first case, no previous tuple has been inserted so the table associated with the

camera sequence Fi , say si_tab, is empty. In this case, si has to link the new tuple to the

marker with the higher time position Tw such that tj ≥ Tw, where tj is the tuple timestamp.

Therefore, once the right marker has been found, si will perform an update on m_tab to set the

attribute MACi =HMAC(dTw ||f
i
tj
,Ki) of the marker d̂Tw . After this, it inserts the new tuple in

si_tab with its MAC attribute set to null and also stores it altogether with the time position

Tw+1 of the next marker in its local memory. The memorization of these parameters is useful

for future insertions as will be clearer in the following. Observe that, we assume the data

owner can always read the device-onboard memory, thus at every moment he can know the

timestamp of the last tuple inserted by each device.

Consider now the second case in which si has to insert a new tuple in a non-empty table.

Let tj be the timestamp of the last inserted tuple and tz be the timestamp of the tuple being

inserted. Moreover let Tw+1 be the marker time that si stored in its local memory during the

previous insertion and Tw+2 be the next marker. We can identify three possibilities:

1. tz < Tw+1. In this case, the new tuple will belong to the existing bucket delimited by mark-

ers with time position Tw and Tw+1. Therefore, to maintain the chain, the tuple will be

linked to the previous inserted element. To do so, the device performs an update on si_tab

to change theMAC attribute of the previous inserted tuple from null toHMAC(f itj ||f
i
tz
,Ki)

and inserts the new tuple in the database. Finally, it updates the last inserted tuple in its

local memory.

2. Tw+1 ≤ tz < Tw+2. In this case, the tuple will belong to a new bucket right next to the

current one; then, si will perform an update on si_tab to change the MAC attribute of

the previous inserted tuple from null to HMAC(f itj ||dTw+1 ,Ki), an update on m_tab to set

the attribute MACi = HMAC(dTw+1 ||f
i
tz
,Ki) for the row corresponding to the marker with

time position Tw+1. Finally, it inserts the new tuple in si_tab with the MAC attribute set

to null and also stores it altogether with the time position Tw+2 of the next marker in its

local memory.

3. tz ≥ Tw+2. In this case, the tuple will belong to a new non-adjacent bucket; therefore, start-

ing from the marker with time Tw+1, si has to find the marker with the higher time position

9.3 Basic Approach 155

Algorithm 7 Data Population Protocol: Insertion of a new tuple

1: if si_tab is empty then

2: search Tw : tj ≥ Tw
3: update m_tab.MACi =HMAC(dTw ||f

i
tj
,Ki) where T = Tw

4: insert f itj
= 〈tj , attr2 , . . . , attrp ,null〉 in si_tab

5: sets last_tuple = f itj
and last_time = Tw+1

6: else

7: if tz < Tw+1 then

8: update si_tab.MACi =HMAC(f itj
||f itz ,Ki) where t = tj

9: insert f itz = 〈tz , attr2, . . . , attrp ,null〉 in si_tab

10: set last_tuple = f itz and last_time = Tw+1

11: else if Tw+1 ≤ tz < Tw+2 then

12: update si_tab.MACi =HMAC(f itj
||dTw+1 ,Ki) where t = tj

13: and m_tab.MACi =HMAC(dTw+1 ||f
i
tz
,Ki) where T = Tw+1.

14: insert f itz = 〈tz , attr2 , . . . , attrp ,null〉 in si_tab

15: set last_tuple = f itz and last_time = Tw+2

16: else

17: search Tw+q : tz ≥ Tw+q ,q > 1

18: update si_tab.MACi =HMAC(f itj
||dTw+1 ,Ki) where t = tj

19: and m_tab.MACi =HMAC(dTw+1 ||dTw+q ,Ki) where T = Tw+1

20: and m_tab.MACi =HMAC(dTw+q ||f
i
tz
,Ki) where T = Tw+q .

21: insert f itz = 〈tz , attr2 , . . . , attrp ,null〉 where Tw+q in si_tab

22: set last_tuple = f itz and last_time = Tw+q+1

23: close

24: end if

25: close

26: end if

Tw+q (with q > 1) such that tz ≥ Tw+q. Then, si will perform an update on si_tab to change

the MAC attribute of the previous inserted tuple from null to HMAC(f itj ||dTw+1 ,Ki), two

updates on m_tab, the first to set the attribute MACi = HMAC(dTw+1 ||dTw+q ,Ki) for the

row corresponding to the marker d̂Tw+1 and the second to set the attribute MACi =

HMAC(dTw+q ||f
i
tz
,Ki) for the row corresponding to the marker d̂Tw+q . Finally, it inserts

the new tuple in si_tab with the MAC attribute set to null and also stores it altogether

with the time position Tw+q+1 of the next marker in its local memory.

t lat long snapshot MAC

02:16:57 41.508577 14.238281 b568eiaf38 . . . 60177w2455 . . .

02:17:02 41.508577 14.238281 b5684wks90 . . . 93048ag343 . . .

: : : : :

Fig. 9.6: An example of si_tab.

9.3.2 Database pruning protocol

As stated in Section 9.2, our approach implements also an aging mechanism for automati-

cally deleting older tuples to limit the database size. Deletion is carried out only on discrete

156 9 Urban Security and Third-Party Cloud: the case of Video Surveillance

time intervals, i.e., only the removal of an entire non-empty bucket at a time is allowed. In

this mechanism, the markers play a key role. Indeed, as only discrete deletion is allowed,

each marker represents a milestone maintaining device chains when previous elements are

removed. Data owner can always compute the first marker in the database still valid.

9.3.3 Integrity verification protocol

Suppose the data owner submits the range query Qi (tl , tu), meaning that all snapshots

recorded by device si in the time interval [tl , tu] should be returned intact as result. Our proto-

col enforces that the query processor module, cloud-side located, returns the tuples belonging

to all the buckets involved in the interval [tl , tu] along with all the markers linked to elements

of such buckets. Moreover, as additional information, the data owner knows the time position

of each marker and, for each device, knows the last tuple inserted in the database. Observe

that, this requirement is easy to obtain because all devices have an internal memory in which

this information is stored and we assume that the data owner can access it at every moment.

To verify the integrity of the result obtained, the data owner performs the following steps:

1. First, he verifies the head and tail of the chain. Specifically, as for the head he verifies if

the time value of the first marker, say Tf , is lower than or equal to tl . Concerning the tail,

instead, we can identify two cases: (i) tu is lower than or equal to the time value of the

last marker of the query result. In this case the tail is verified and no further checks are

required. (ii) tu is greater than the time value of the last marker of the query result. In

this case the owner has also to verify if the last tuple stored by si is present in the query

result.

2. Then, starting from the first marker, he verifies each chain link by iteratively computing

the MAC attribute of each element and comparing it with the value returned by the cloud,

to verify the query answer integrity.

The steps performed by the data owner to verify a query result are reported in the Algorithm

8.

9.4 Performance Comparison

In this section, we provide a comparison analysis of the performance of our approach w.r.t.

Merkle-hash-tree based solutions. The results of this analysis provide a valid support to the

motivations that gave rise to our work.

As will be shown in Section 9.6, Merkle-hash-tree based solutions can be considered the

state of the art when it comes of deterministic approaches for query integrity. For this com-

parison, we analyze the cost of two basic operations: (1) insertion of a new tuple and (2)

verification of range query results. We also consider the amount of information that must be

transferred to verify a query. We measure the computational cost in terms of number of hash

computations on a single block on which the compression function operates (which we call

unitary cost). Let denote by b the size of this block (it is 512 bits for SHA-256). Since the hash

9.4 Performance Comparison 157

Algorithm 8 Integrity Verification Protocol

1: submit the query Qi (tl , tu)

2: receive Ma: set of markers Ma = {dT : T ∈ [Tf ,Tl]}

3: receive T u: a set of tuples

4: read the last_tuplei = f̂ itz
5: if tl < Tf then

6: return false

7: else if tu > Tl and last_tuplei < T u then

8: return false

9: end if

10: close

11: for all th ∈ T u do

12: if !checkMAC(th, th+1) then

13: return false

14: end if

15: close

16: end for

17: close

18: return true

function follows the Merkle-DamgåÃěrd scheme, the computation cost of the hash value of a

generic message M of size m is approximatively m
b times the unitary cost. Consider that, for

plausible numeric values of our tuples, the cost of the hash of a single tuple is lower-bounded

by the unitary cost.

As for the insertion, as stated before, our approach guarantees asymptotic constant costs

(O(1)). Merkle-hash-tree approaches, on the other hand, require a logarithmic computational

complexity O(log n) in the dimension of the dataset n, as they need to update the tree-based

data structure after each insertion. Consider that, in our domain, the asymptotic analysis

gives very meaningful information because the dimension of datasets can be huge. Therefore,

despite the general efficiency of logarithmic costs, moving from logarithmic to constant costs

results in effective benefits. In our application setting, the high frequency of insert operations

makes these benefits definitively relevant.

To make a fair comparison, we could think of combining the Merkle-hash-tree approach

with a bucket-based strategy. In other words, we could aggregate the lowest level of the tree,

by defining k buckets, each of dimension n
k (by assuming uniform distribution), in order to re-

duce the depth of the tree. Anyway, the same efficiency of our insertion could be reached only

for k = n (i.e., for a degenerate tree with just the root). In this case, query verification would re-

quire the computation of the hash value of the whole single bucket. Due to the considerations

given above, this cost is lower-bounded by n unitary costs.

In contrast, our technique requires n
k unitary hash computations. Observe that, while the

aggregated version of Merkle hash tree enforces the reduction of k to obtain efficient inser-

tions, for us the cost of insertion is independent from k, so that we can set k suitably large.

Concerning k, we have to observe that besides the number of hash values to compute, also

the amount of information that should be transferred to verify a query must be taken into

account. Indeed, the smaller k, the higher this amount, as we have to transfer n
k tuples (for

this reason, the degenerate case with k = 1 has not practical meaning). Therefore, k should be

158 9 Urban Security and Third-Party Cloud: the case of Video Surveillance

a fortiori as large as possible. By excluding buckets so small that the little overhead produced

by the markers becomes non negligible, we are free of increasing the value of k. In principle,

we could estimate the distribution of the incoming data stream, and set k in such a way that

buckets are equi-depth, thus including a constant number of tuples.

9.5 Security analysis

In this section, we carry out the security analysis of our approach to validate it also in presence

of attacks from the cloud server. We describe the security model and analyze the security

properties of our proposal. We may identify the following properties our system has to assure:

1. SP1. The result of a range query has to be complete, it means that no tuples or attributes

are omitted (including markers).

2. SP2. The result of a range query has to be fresh. It means that the data owner can check

whether the newest version of the result is returned.

3. SP3. The result of a range query has to be correct. It means that the data owner can verify

that all the values in a query result have not been corrupted, nor have spurious records

been introduced.

To analyze the security properties above, our threat model includes the following assump-

tions:

1. A1. The camera devices and the data owner are trusted, unbreakable, and dependable.

2. A2. A secure communication between database and camera devices is established.

3. A3. Collision, preimage and second preimage attacks on the cryptographic hash function,

used by HMAC, are infeasible.

Now, we are ready to show that our approach satisfies the security properties on the basis

of the attack model described above.

Compliance with SP1.

In this case, our approach has to resist attacks in which the cloud server may attempt to

return incomplete results. We may identify four possible ways the cloud can reach this goal:

1. The cloud returns an empty set. In this case, the data owner checks whether there exists

a last inserted tuple. In the affirmative case, the attack is detected.

2. The cloud tries to omit some tuples of a query result. In this case, the data owner can

check that the result is incomplete by verifying the chain linking between all the result

elements inside each bucket (see Section 9.3.3). Therefore, thanks to Assumption A3, this

attack is contrasted.

3. The cloud server does not return a whole internal bucket. Also this attack is detected

because, in the first step of the integrity verification protocol, the data owner identifies

the chain header and tail and then, in the second step, verifies the whole chain integrity.

Therefore, any missing bucket is detected because the corresponding links in the chain

will be missing too, thus causing an interruption in the chain.

9.6 Related work 159

4. The cloud server does not return elements or buckets at the edges of the query result.

This attack makes sense only in the case of unbounded query, i.e., for query in which one

or both interval ends are not fixed. As for the verification of the left-hand bucket, the

owner can always identify the first marker because this information is part of the public

scheme. This is true also in case of deletion (triggered by the aging mechanism described

in Section 9.3.1) because the owner can always compute the first oldest valid marker.

In the case of a right unbounded query, the owner can verify the completeness of the

result by checking whether the last tuple inserted by the considered device is present (see

Section 9.3.1).

Compliance with SP2.

To be compliant with SP2, our approach should resist attacks in which the cloud server

tries to return the query result computed on an old complete version of the database. This

kind of attack can always be detected by the data owner because he knows the last tuple

inserted in the database. Indeed, theMAC attribute of each tuple can be either null or assume

its final value (i.e., no further updates are allowed after the initialization). Moreover, no null

MAC attribute value may exist for elements older than the last inserted tuple. Then, an old

version of the result can be detected if there exists a tuple older than the last inserted in the

database with a null MAC attribute.

Compliance with SP3.

The compliance with SP3 requires that our approach guarantees data correctness. We may

identify three cases:

1. The cloud server adds a whole bucket or a single tuple in the query result. However, due

to assumptions A1 and A3, no validMAC attribute can be generated without a secret key

stored in the device firmware.

2. The cloud server compromises some tuples or markers in the query result. Also this attack

cannot succeed because of the above reasoning on MAC attributes.

3. The cloud server tries to mix data recorded by different devices. As described in Section

9.3.1, each device si owns a private key Ki , therefore, due to assumptions A1 and A3, this

attack is not possible.

9.6 Related work

Since cloud computing is a successful emerging model the issue of assessing the integrity of

the stored data in terms of completeness, correctness and freshness represent a critical and

useful aspect to investigate [209].

There exist two types of solutions typically adopted in this context, probabilistic and de-

terministic solutions. Probabilistic solutions give a not certain (probabilistic) guarantee of

detecting violations [244, 82]. Specifically, the proposal described in [244] proposes a proba-

bilistic integrity audit method. Their scheme works through the insertion of a small number

of tuples into the outsourced database. For a query issued against this augmented database,

160 9 Urban Security and Third-Party Cloud: the case of Video Surveillance

there is certain probability that a small amount of the inserted tuples is returned with the

original data. An enhancement of this model is presented in [82], which allows to check the

integrity of queries (in particular join queries) performed by a non trustworthy server. This

approach relies on the insertion of fake tuples in the encrypted data. These tuples are divided

in markers (if they are newly generated tuples) or twins (replicas of tuples that already ex-

ist). Moreover, tuples are subdivided in buckets by using salts in the encryption, and possibly

inserting dummy tuples. The detection of a violation occurs if a twinned record appears solo

or a expected marker is missing. Obviously a trade-off exists because the the more the fake

tuples inserted, the more the offered guarantee, but in the meantime, the more the fake tuples

inserted, the more the overhead.

Deterministic approach is the second family of solutions. One of the simplest data in-

tegrity technique, defined in [184], consists in signing each tuple and creating a new attribute

in the same data table to store the corresponding signature (i.e., the hash value of the tu-

ple). Once the data owner makes a query, the cloud sends the corresponding hash value along

with the tuple data to verify it. Although the signature can prevent data corruption, obvi-

ously this scheme cannot assure any completeness requirement. Further solutions, to assure

the integrity of data storage, exploit hashing or digital signature schemas [114, 161]. These

kind of approaches are deterministic but impose an overhead that is not always bearable in

cloud scenarios. There are other possible solutions defined as probabilistic [147, 134] that do

not give a certain proof of integrity but use an probabilistic estimation. They leverage some

particular data put among the encrypted data [134].

Completeness of range queries results is not only related to the integrity of data storage

but also to the correctness of the way the queries are executed. This type of integrity is re-

ferred as computation integrity and it has to be guaranteed through the verification of the

correctness, the completeness and the freshness of query results.

Also this kind of integrity can be checked through both deterministic and probabilistic

solutions. As for the approaches belonging to the first type [160, 246, 120], they can detect

integrity violations with certainty usually leveraging some additional data called verification

objects, which the server should insert in the response together with the results.

In particular, Pang et. al. [191] use signature chaining schemas and organize tuples in a

chain. The chain is structured through an aggregated signature that signs each record with the

information from two neighboring records in the ordered sequence. This ensures the result

of selection query is continuous by checking the aggregated signature. A similar approach

is proposed by Narasimha [179] in DSAC (digital signature chain), where the signature of

a record is made up of its immediate predecessor tuple of every searchable dimension and

itself. The drawback of the above solutions is that they make a massive use of iterative hash

functions and digital signatures: thus, our approach is more efficient.

Moreover, [246, 86, 184] are based on Merkle tree and its variation (i.e., MB-Tree). For

instance, the proposal by Devanbu et al in [86] provides authenticity and non-repudiation

of the query results exposing to the user the tuples immediately beyond the left and right

boundaries of the query, and proving completeness through a verification object. In this case

9.6 Related work 161

the verification object is a Merkle tree. Some extensions of basic Merkle tree useful to handle

the completeness aspect of integrity are investigated in [85]. As shown in Section 9.4, our

technique is definitively more suitable than Merkle-tree based approaches to our application

context.

A further deterministic scheme, called MAC Chain, is proposed in [120]. This work uses

a model based on HMAC to provide a mean to verify query results integrity. Some differences

with our solution is that (i) the verification process is implemented on the TTP (Trusted Third

Party), (ii) in order to support query integrity verification, the data owner has to alter the out-

sourced relation structure. He inserts the verification objects computed by means of a MAC

that takes all the tuple values into account. It is clear that in our scenario in which video sen-

sors make a lot of insertions in the database, a low computational cost of insertion is required,

hence the model proposed in [120] is not suitable.

10

A Distributed Methodology and its Implementation for

Privacy-Preserving Access Accountability in Critical

Environments

In this chapter, we present a system to generate privacy-aware logs of people accesses to critical areas.

The solve the trade-off between security assurance and user privacy, it implements a k-anonymity

approach allowing us to guess who accessed a zone (for example, a room of a building), at a given

time, with probability k−1. The value of the parameter k is suitably set in such a way that the

uncertainty degree of access logs is enough to guarantee privacy and, at the same time, allows us to

restrict suspects to a feasible number of people in case of a security incident. Importantly, privacy

is guaranteed against both server and client-side attacks. We present an effective software-hardware

solution based on RFID and BeagleBone technologies implementing the above model. A distributed

algorithm allows the nodes of the network to independently generate quasi-IDs guaranteeing the

above privacy property, and satisfying security requirements. The experimental evaluation shows

the capability of the proposed method to reach satisfactory results.

10.1 Problem formulation and solution sketch

In this section, we describe the scenario considered in our study, the addressed problem and

we sketch the proposed solution. We consider a surveillant environment (e.g., a museum,

a government office, a tribunal, etc.) in which people internal accesses must be logged for

security purposes. However, as widely remarked in the introduction, for privacy reasons the

tracking must be done introducing a certain degree of uncertainty.

In particular, we require that, given an instant of time τ and a person p, it should be

possible to guess the location (with adjustable approximation1) of p inside the environment

at the time τ with a probability k−1, where k is positive integer number representing a privacy

requirement.

Now, we sketch the approach proposed to address this problem. Our technique is based on

the use of movement sensors, RFID tags and readers, a server, and a suitable communication

infrastructure.

Preliminarly, the environment is partitioned into two types of zones: monitored and non-

monitored zones. The choice of the type of zone depends on the particular scenario: for ex-

1 We mean that in a real implementation of the proposal, we may decide the degree of ap-

proximation accepted for the position of people (e.g., 50 meters), which depends on the

partition of the environment, as we will discuss later.

164 10 A Distributed Methodology and its Implementation for Privacy-Preserving Access Accountability in Critical Environments

ample, we expect that in an government building, monitored zones are any room, bathroom,

and so on, in such a way that in case of necessity it is possible to verify (a-posteriori) the

movements (obviously, with uncertainty) of a terrorist, for example to identify possible ac-

complices.

Moreover, each user to monitor is identified and associated with a passive and cheap RFID

tag, which is attached to something that the individual must keep with him: for example, it

may be attached to the visitor pass in a government building or to the ticket in a museum.

Each monitored zone is equipped with a movement sensor and a RFID reader to detect

the presence of a tag (thus, of a person). Sensors are able to detect the physical movement of

a person entering a zone in such a way that in case this movement is not associated with the

reading of a RFID tag, an alert is triggered. When a person enters a monitored zone, the reader

associated with this zone reads the identifier EPC of the RFID tag. Clearly, data received from

readers allow the exact (i.e., with no uncertainty) tracking of people, provided that the associ-

ation between tag EPC and person identity is known. The risk is concrete because an attacker

who accessed such data and knows the association tag-person may track any user.

To avoid this, received EPC are processed to generate new location traces that can be stored

guaranteeing users’ privacy. In particular, the idea is that the tag EPC is transformed into a

new number in such a way that k people are associated with the same number (which we call

qID – quasi identifier) and such a transformation is one way.

All sensors are connected to a local network so that the so obtained qIDs are sent to a

server, which manages a log file.

10.2 System architecture and implementation

In this section, we describe the architecture of our system and provide some details about the

technologies and hardware used. Our solution leverages on two mechanisms: the identifica-

tion of people based on RFID technology and the physical access monitoring.

As for the identification of people, in our design, passive RFID tags are used. They operate

at a frequency of 865-868 MHz in Europe and 902-928 MHz in America, have a read range up

to 10 meters and a cost of about 0.15$. Each reader can detect hundreds of tags in few seconds

and based on the signal strength received, the reader reports or ignores the received EPC to

avoid multiple reading of the same tag.

Readers are built by exploiting the BeagleBone Black community-supported development

platform: BeagleBone is a single-board computer equipped with open-source hardware par-

ticularly suited to be adopted as network device and has two expansion connectors allowing

other capes (i.e., expansion boards) to be stacked onto it. In particular, the BeagleBone com-

munity maintains a project, namely RFID Adaptor Board [5], whose purpose is the distribution

of a cape supporting the Texas Instrument’s TRF7970ATB multi-protocol RFID transreceiver

(Figure 10.1). This particular cape allows us to built our RFID readers by using BeagleBone

Black boards equipped with the TRF7970ATB RFID module. BeagleBones used in our sys-

10.2 System architecture and implementation 165

Fig. 10.1: The BeagleBone with the RFID Adaptor Board and the Texas Instrument’s

TRF7970ATB RFID module

Fig. 10.2: The BeagleBone and the Logitech C920 webcam

tem run a software implementing the data processing logic that allows us to obtain privacy

preserving logs (this issue is discussed in Section 10.3).

As for the physical access monitoring task, which is the second mechanism on which our

solution leverages, it can have several implementations and the choice is strictly related to

the particular environment under analysis and the precision requirement. The most common

solutions are the installation of turnstiles allowing people to pass through them only if a tag

is detected, infrared beams and thermal people counters or video counting which are considered

as enhanced people counter solutions.

Concerning the solution based on turnstiles, this is the most invasive one and can only

be adopted in specific and limited environments where heavy structural modifications can be

carried out. Moreover, it is not possible to verify that a tag belongs to the person crossing the

turnstile. Infrared beams and thermal people counters can be easily installed but they still do

not allow the verification of the tag and the person crossing the sensors. The last solution is

the most advanced and complete one, however the use of computer vision techniques could

lead to some privacy concerns if not properly handled.

In our design, we adopt video counting to stick with the most enhanced and powerful

solution. To reduce privacy issues related to handling of face images, our solution operates

on the fly not storing any image. The image processing software has been developed by using

the OpenCV library [4] and installed on the BeagleBone Black devices equipped with the high

resolution cam Logitech C920 (Figure 10.2). Actually, both the RFID people identification and

the physical access monitoring modules are installed on the same BeogleBone Black board.

The deployment diagram of our system is illustrated in Figure 10.3. The BeagleBone ex-

ecutes two modules, namely the Video Processing and the RFID Engine. The former com-

municates with the Logitech C920 and executes the imgRecognition.jar java software to

perform the physical access monitoring task. The latter, instead, receives information about

RFID tags in the proximity of the RFID reader stacked on the board and performs our strat-

166 10 A Distributed Methodology and its Implementation for Privacy-Preserving Access Accountability in Critical Environments

egy for privacy-preserving log storing by means of the java software idTrasformation.jar,

which is described in the next section.

Fig. 10.3: The deployment diagram of our system.

The BeagleBone boards, installed at the entrance of each zone that has to be monitored,

communicate with the central server, which is in charge of storing the anonymized informa-

tion about user access providing remote access to the log. An example of the connections

among BeagleBones and server are sketched in Figure 10.4.

10.3 qID generation

The notion of k-anonymity, introduced above, means that the probability of identifying a per-

son by accessing the stored location traces is k−1, where k is a given anonymity requirement.

Our system reaches this goal by suitably transforming the received EPC into a new number

called qID (i.e., quasi identifier) belonging to a new domain. This domain is smaller than the

number of people so that more people are associated with the same qID. In particular, this

domain is the interval [1, d], where d is a positive integer system parameter.

The log file stores four types of events, which are described in the following.

1. Entering the building. When a person enters a government building, one RFID tag is given

to (and associated with) him. This tag is integrated into the document issued to permit

the access to the building. Observe that, RFID tags used in our proposal have a life cycle.

10.3 qID generation 167

Fig. 10.4: A sketch of our system architecture.

Indeed, in a real scenario, there must be a large number of RFID tags ready to be given

to people. After a tag is associated with a person, it starts to work and we say it becomes

working (active).

Each BeagleBone needs to store the EPC of the currently working tags in the sorted set

S. When a tag becomes working, a message containing the timestamp, the type of event

(activation of a tag), and the assigned EPC is sent through the network. This way, each

BeagleBone can add into S the new EPC.

2. Leaving the building. When a person leaves the building and returns the tag, this tag ends

its life becoming inactive. Also in this case, a message containing the timestamp, the type

of event (deactivation of a tag), and the tag EPC is sent through the network. All Beagle-

Bones listening this event remove from S the EPC of the inactive tag.

Note that, tags used in our proposal are not one-time, because they will be reused for

another person after they are deactivated. As it will be clear in the following, this does

not rise any problem from the security point of view.

3. Entering a zone. When a person enters a controlled zone, the BeagleBone associated with

this zone reads the EPC of his tag, which is typically a 96-bit identifier. A new privacy-

preserving qID associated with this tag is computed from the EPC by means of the fol-

lowing three transformations:

a) The first transformation maps the 96-bit domain of EPCs, which is highly sparse (be-

cause the number of tags used is much smaller than 296) into the dense domain [1, |S |].

Specifically, the received EPC is mapped to the integer p, which is the position of the

EPC in the sorted set S, with 1 ≤ p ≤ |S |.

b) The second transformation is implemented by a random permutation function RPF

having domain and codomain equal to integer interval [1, |S |], which is used to suit-

ably exchange the position of two integers in this interval. Specifically, this trans-

formation is implemented by the function RP F : Z∗t → Z
∗
t where Z∗t is the multi-

plicative group of Zt , Zt is the set of (equivalent classes) of integers (mod t), and

168 10 A Distributed Methodology and its Implementation for Privacy-Preserving Access Accountability in Critical Environments

EPC 119 182 190 200 310 480

1st transf. 1 2 3 4 5 6

2nd transf. 4 1 5 6 3 2

3rd transf. 2 2 3 1 1 3

Table 10.1: An example of the transformation of 6 EPCs.

RP F(i) = i · g (mod t), for any g ∈ {1, . . . , t}. RP F works as a permutation, because Z∗t is

an additive cyclic group, and every i ∈ {1, . . . , t} is a generator for Z∗t when t is prime.

After this step, the position p is transformed into the permuted position p′ = RP F(p).

c) In the last transformation, a hash functionH having domain [1, t] and codomain [1,d]

is adopted (we recall that d is a system parameter), where d ≤ t. This function has the

purpose of reducing the domain of the output (i.e., the stored qIDs) and generating

the collisions among more qIDs necessary to implement the k-anonymity approach.

Also in this case, several implementations of this function can be used: we tested our

system by adopting the simplest hash function qID = 1 + p′ mod d.

To help the reader understand the whole qID generation process, we provide in Table 10.1

the instantiation of the above steps done in our system with parameter d = 3. We assume

that the sorted set of active tags is S = 119,182,190,200,310,480, where, for the sake of

presentation, we replace the 96-bit string of EPC by a 3-digit decimal number. The first

row reports the EPCs of the tags of the involved people. The second row shows the result

of the first transformation, which is the position of each EPC in the set S. The third row

reports the result obtained by applying the random permutation function, and, the last

row shows the use of our hash function to generate the final qIDs.

When a user accesses a monitored zone, the procedure described before is triggered and

a new qID is generated for him. After the computation of a qID, a message containing the

timestamp, the type of event (entrance into a monitored zone), the reference to the zone

entered and this qID is sent through the network. Moreover, the BeagleBone involved

in the reading adds into a local map T the pair 〈EPC, qID〉. This information is used

when the tag will leave the zone but is available only to the reader (i.e., no method is

implemented into the reader firmware to access the map T).

4. Leaving a monitored zone. The last event that is logged occurs when a person having a

tag with a given EPC exits a monitored zone. In this case, the sensor searches for the read

EPC into the map T to obtain the qID previously associated with this EPC. If such a query

does not give any result, an alarm is generated to report the fault situation. Otherwise, a

message containing the timestamp, the type of event (leaving from a monitored zone), the

reference to the zone and this qID is sent through the network. Moreover, the pair 〈EPC,

qID〉 is deleted from T .

All the messages sent through the network are appended to the log file stored by a server.

The log is encoded by XML format and does not include the information necessary to associate

a person with a tag, which is expected to be stored elsewhere. Each log event is mapped into an

10.4 Log Analysis 169

Fig. 10.5: A partial representation of a log.

element LogInfo. The attribute type specifies the typology of event, which can be activation

or deactivation of a tag, or the reading of a tag when a person enters or leaves a zone. LogInfo

sub-elements are: the timestamp of the event, the read EPC, the identifier of the involved zone

and the generated qID.

An example of this file, concerning events occurred in the morning of 20 July 2015, is

reported in Figure 10.5. The first two LogInfo elements show that two people accessed the

building at about 9 and the tags with EPC 119 and 182 (again, for simplicity, we represent an

EPC by 3 digits) were assigned to them. The next fragment of the log reports four entries into

the zones Z3, Z8, Z4 and again Z3, occurred at about 10. Observe that the last information is

the qID generated according to the procedure described at Step 3. Then, the log registered the

leaving from zone Z3 of a person associated with the qID=1. Finally, the last LogInfo element

shows that the person, to whom the tag with EPC=119 has been assigned, has left the building

at 13:00.

10.4 Log Analysis

In case of necessity, it is possible to elaborate the log file to find the set of the users who could

enter a given zone at a given time T . We say “could enter” because this operation returns a

set of k EPCs, in order to comply with the privacy requirement. For example, consider the

third LogInfo item of the log file fragment reported in Figure 10.5, we could be interested

in knowing (with uncertainty) who is the person who entered with qID=2 the zone Z3 at

T =10:00:05.

Algorithm 9 shows how to solve the above problem. It receives three inputs. The first one

is the index n of the log line to analyze. The other two inputs (i.e., T and S) are optional

and have as default value T = 0 and S = {} (their use will be clarified later). To solve the

170 10 A Distributed Methodology and its Implementation for Privacy-Preserving Access Accountability in Critical Environments

problem, the algorithm computes the set S of active tags at time T (Lines 1-11). This is done

by elaborating log files from the beginning, and adding to (Line 6) or removing from (Line 8)

S an EPC each time an event of tag activation or deactivation is found in the log. To accelerate

this computation, it is possible to create periodically a sort of check point, i.e., to save the set

S ′ of the active tags at a given timestamp T ′ . In this case, giving as optional input also S ′ and

T ′ , then the algorithm skips all log lines related to the events occurred before T ′ (Line 3). As

a consequence, it is possible to start the construction of the set of active tags from this point

instead of the beginning of the file.

After the set S has been obtained and the n-th line has been reached, a check that this line

concerns an entering event is done (Line 12). Then, the inversion of the 3rd (Line 13) and 2nd

(Line 15) transformation (see Section 10.3) are done to obtain the position p of the considered

EPC in S. Finally, this EPC is added to the output.

We provide now an example of this computation. Suppose we want to analyze the third

LogInfo item of the log file fragment reported in Figure 10.5 to know (with uncertainty)

who is the person who entered the zone Z3 with qID=2. Assume that the active tags are

those reported in the first row of Table 10.1. The first operation to do is to find the numbers

x ∈ [1,6] such that 1 + x mod d = 2. As d = 3, we have two candidates, x1 = 4 and x2 = 1. Then,

by inverting the random permutation function, we find that x1 and x2 derives from 1 and 2.

As a consequence, the requested EPC are the first and the second tags of S, which are 119 and

182. Thus, by restoring information from the third LogInfo item of the log fragment shown in

Figure 10.5 with the above procedure, we gather that at 10:00:05, the person associated with

the EPC equal to 119 or to 182 was in the zone Z3.

Finally, observe that by an analogous procedure is possible to analyze also items of the log

relative to events of leaving type.

10.5 Validation

In this section, we describe some experiments carried out to show how our system behaves

and to test its performances.

We remark that experiments are aimed at validating our approach and no comparative

experiments can be done. Indeed, as highlighted in Section 10.6, no privacy-preserving local-

ization method exists in literature able to resist server-side attacks.

We simulate the application of our approach to a real italian government building, namely

the Ariano Irpino law court2. It consists of 2 floors and 56 rooms (zones) and a representa-

tion of its planimetry is reported in Figure 10.6. Concerning the setting of RFID readers, we

assume that there is a reader at the entrance of each monitored room of the building and

that the adjustable range of the RFID readers is set to detect tags which are at a maximum

distance of 50 cm (about half the size of a door) from the reader. Since, for security reasons,

all people (employees or visitors) inside the building must already bring a badge with them,

RFID tags can be embedded in such badges. Each time a person crosses the entrance of a

2 http://www.tribunalearianoirpino.it

10.5 Validation 171

Algorithm 9 EP SRestoring
Constant d: system parameter

Input n: the line index of the log file to analyze

Input T : a timestamp

Input S: the set of active tags at timestamp T

Output U: the set of candidates

Variable X: a set of integers

Variable p: an integer

1: for n times do

2: read next line L from log

3: if L.timestamp > T then

4: if L.type = activation then

5: S.add(L.EPC)

6: end if

7: if L.type = deactivation then

8: S.remove(L.EPC)

9: end if

10: end if

11: end for

12: assert (L.type = entering)

13: X = {x | (1 + x mod d = L.qID }

14: for each x ∈ X do

15: p = RP F−1(x)

16: U .add(S[p])

17: end for

room, a reader reads the EPC from the RFID tag and triggers the execution of our technique

for creating privacy preserving logs. To simulate people movements inside the building, we

built a java prototype implementing a mobility model based on the Random Waypoint Model

[29], which has been largely investigated in the literature [171, 104]. Specifically, the mobility

model operates as follows: at the beginning of the simulation, each person randomly selects

a destination room inside the building. Then, he moves towards it with a velocity selected

uniformly at random in the interval (Smin,Smax). Once a patient reaches the end-point, he

stops for a time period that varies in the interval (Pmin, Pmax). After this interval, he continues

by choosing another room and starts moving towards it. In our simulation, we set Smin = 0.1

m/s, Smax = 2.1 m/s, Pmin = 0.0 seconds and Pmax = 1 hour.

10.5.1 Setting the system parameter

The first experiment aims at discussing about how to set the value of the parameter d in such

a way to obtain the desired privacy requirement. We recall that the parameter d represents the

cardinality of the set of qIDs that can be generated. We want that, at each time, the set of the

people with a given qID has cardinality equal to k. In this way, the probability of identifying

any individual from the transformed/permuted EPC is k−1, if no additional information is

provided.

Observe that a solution always exists for any plausible k: indeed, the trivial solution d = 1

always solves the problem because all people are associated with the same qID. Clearly, this

172 10 A Distributed Methodology and its Implementation for Privacy-Preserving Access Accountability in Critical Environments

Fig. 10.6: The planimetry of the environment considered.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350 400 450 500

d

Number of People

k=4
k=6
k=8
k=10

Fig. 10.7: Greatest value of d guaranteeing k-anonymity.

solution has the drawback that no meaningful information is provided. As a consequence, we

should find the greatest d satisfying the above property.

In this experiment, we vary the number of people from 50 to 500 and measure the greatest

value of d guaranteeing k-anonymity for different values of k. The results of this experiment

are reported in Fig. 10.7.

10.5 Validation 173

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
V
i
o
l
a
t
i
o
n
(
%
)

d

k=4

k=6

k=8

k=10

Fig. 10.8: Violations versus size of qID domain.

We observe that all the curves have similar growing trend, because the number of colli-

sions increases as the number of people increases, so that a higher value of d can be selected.

The oscillations from the exactly-linear trend are due to the non-ideal behavior of the hash

functions and the collisions of people with the same qID in the same room. The analysis of

this figure allows us to affirm that our approach is able to guarantee people privacy for any

plausible anonymity requirement.

10.5.2 Impact of d

Through the experiment described in this section, we want to measure the impact of the size

of the domain of possible qIDs on the capability of our approach of guaranteeing the privacy

requirements. For this purpose, we consider the same four values of the parameter k as done in

the previous experiment, we set the number of people in the building to 200 and we measure

the number of times, called V iolation, in which the anonymity requirement has not been

satisfied. Observe that, this metrics takes also into account the situation in which two users

with the same qID are in the same room. Indeed, this event does not generate uncertainty and,

therefore, reduces the chances to satisfy the anonymity requirement.

From the analysis of these results, we can state that the parameter d has a strong impact

on the performance of our system. Indeed, small variation of this parameter may result in

high performance variations. For instance, consider the curve k = 10. From the results of the

previous experiment we have that d = 8 is the value guaranteeing the privacy requirement

when the number of people is 200. By means of this experiment, we find that by varying d

from 8 to 22 the level of privacy given by the system quickly decreases and reach the lowest

value, as people are uniquely identified in all cases.

10.5.3 Impact of the number of monitored zones

In this experiment, we study the effect of the percentage of monitored zones w.r.t. the total

number of monitored zones in the building. To this extent, we fix the number of people in the

174 10 A Distributed Methodology and its Implementation for Privacy-Preserving Access Accountability in Critical Environments

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

V
i
o
l
a
t
i
o
n
(
%
)

d

MZ=25%

MZ=50%

MZ=75%

MZ=100%

Fig. 10.9: Violations versus number of critical zones.

building to 200 and the anonymity requirement k = 4. Now, we vary the percentage of moni-

tored zones MZ from 25% to 100% and we measure the same metrics V iolation, introduced

in the previous experiment, against different values of the parameter d. Figure 10.9 shows the

obtained results.

The analysis of this figure allows us to conclude that the number of monitored zones

slightly influences the capability of our approach to guarantee the anonymity requirement.

Indeed, only when MZ assumes the lowest value (i.e., 25%) it is necessary to reduce the opti-

mal value d = 35, as estimated in the previous experiments, to d = 28. In all the other cases,

the variation of the number of monitored zones has negligible impact. In conclusion, this ex-

periment shows that in the setting of the system parameters it is sufficient to consider only

the geometry of the building and not the number of monitored zones.

10.5.4 Impact of time

So far, we have tested the capability of our system to guarantee the privacy requirements by

analyzing a single log item. Now we provide a further study aiming at measuring the uncer-

tainty in the identification of a person who entered a zone over time. As a matter of fact, at

each access, k possible candidates are determined. Clearly, when more people enter a zone

over time, the number of candidates grows. In this experiment, we focus on a given zone and

measure the number of candidates (as fraction of the total number of people inside the build-

ing) who access it over time. Clearly, the result of this experiment is strongly influenced by

the access frequency of this zone. Therefore, we consider four typologies of zone, each char-

acterized by a different bias of access probability (P B, for short). In particular, when P B = 0

we mean that all building zones have the same probability of being accessed, whereas P B > 0

means that the probability of accessing this zone is increased by P B w.r.t. the uniform proba-

bility. The analysis is conducted by considering a time window representing a whole morning

(i.e., from 9.00 AM to 01.00 PM), and fixing the number of people in the building to 200 and

d = 35. The results of this experiment are reported in Figure 10.10

10.6 Related work 175

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00
P
e
o
p
l
e
(
%
)

Time

PB=0.3
PB=0.2
PB=0.1
PB=0.0

Fig. 10.10: Percentage of people versus time for different values of P B.

We observe that, at the end of morning the set of people who could access a zone with

no bias (i.e., P B = 0) is about 47%, whereas when the zone access frequency is higher (i.e.,

P B = 0.3), the set of candidates coincides with the whole population at about 12.00am. As a

consequence, given an acceptable uncertainty level, this experiment allows us to estimate at

which time this level of uncertainty is reached, thus allowing to perform suitable counter-

measures. For example, to limit to 15% the possible suspects of a malicious action in a room

of a museum with P B = 0, we should schedule an inspection per hour to detect damages.

10.6 Related work

In this section, we survey the literature regarding location anonymity.

The concept of k-anonymity was originally designed by Samarati and Sweeney in the field

of database privacy. According to them, a database provides k-anonymity if explicit identifiers

of all the tuples are removed from the database and, additionally, the quasi-identifiers (set of

attributes leaking confidential information) of each individual in the database cannot be dis-

tinguished from those of at least k−1 other individuals. Hence, this approach of k-anonymity

suggests the suppression and generalization (obfuscation) of quasi-identifiers.

The general idea of k-anonymity location [107, 185] is that the position of a user is given

provided that the probability of identifying her is less than k−1. In many cases, a trusted

third-party is necessary to implement such a solution [135]. However, the efficacy of these

approaches strongly rely on user density. Indeed, a large number of users must subscribe to

the service, otherwise either the privacy cannot be guaranteed or the user’s location has to

be given with a very large approximation. Moreover, the presence of malicious users strongly

compromise privacy. A similar approach to protect location data consists in creating areas

of confusion where the traces from several users converge [189]. Also in this case, whenever

low-density areas are considered, a threshold between privacy and data accuracy has to be

chosen.

176 10 A Distributed Methodology and its Implementation for Privacy-Preserving Access Accountability in Critical Environments

Over time a wide range of application scenarios took advantage of this technique to guar-

antee privacy. This is the case of LBSs and of [24], in which the authors propose an approach

for adaptive location-privacy protection in participatory sensing context. In the context of

LBSs (location based services), k-anonymity location requires that location information inside

a message sent from a mobile user to a LBS should be indistinguishable from at least k−1 other

messages from different mobile nodes [112]. In this particular application scenario, deleting

identifiers from location data is not a good choice. Indeed, as found in [146, 119], several

techniques can be exploited to infer the location of a subject’s home and, then, the subject’s

identity. The most popular solution for designing privacy-preserving LBSs consists in obfus-

cating the actual location from which a query is made by constructing cloaking regions that

contain the locations of k anonymous users.

This technique, called location cloaking approach [127, 140], aims to perturb location data

by introducing random noise in order to guarantee user’s privacy. However, due to the spacial

nature of data, in many cases, the original data can be closely estimated from the perturbed

data using a spectral filter that exploits some theoretical properties of random matrices [136].

Another privacy-preserving mechanisms is presented in [75]. In this paper, the authors

argue that the ability of generating fake contextual data can be important also in privacy

preserving applications. For instance, it could be possible to add some dummy queries (or

fake transactions) that are indistinguishable from the real queries, so that it is different to

trace the real interests of users performing them.

An extension of k-anonymity for specific types of data, like spatio-temporal data, is the

(k,δ)-anonymity [23], which is specifically designed for uncertain trajectories defined as the

movement of an object on the surface of the Earth. This technique exploits the spatial un-

certainty δ ≥ 0 in the trajectory recording process. In [230], the authors prove that, for any

δ > 0 (that is, whenever there is actual uncertainty), (k,δ)-anonymity does not hide an original

trajectory in a set of k indistinguishable anonymized trajectories.

The wide diffusion of RFID technology and the assumption that, according to RFID stan-

dard, each object in the network is uniquely identifiable, give raise to privacy concerns. For

example, an adversary might be able to discover person’s movements, and gain an advan-

tage. Several techniques including privacy-preserving RFID technologies [34], such as EPC

re-encryption and killing tags [133], have been proposed to address the privacy issues in the

data collection phase where communication between tags and readers takes place.

11

A Privacy-Preserving Localization Service for Assisted

Living Facilities

This chapter aims at describing a novel localization service to monitor the position of residents in

Assisted Living Facilities (ALF). The service supports a configurable balancing between precision

and privacy, in such a way that the right of the residents to move freely in the environment in which

they live without being tracked is preserved. However, in case of need, they can always be quickly

localized. To do this, we implement, on top of an RFID-based architecture, a probabilistic model

guaranteeing that the probability of identifying a person in a given (sensitive) place is k−1, where

k represents the required privacy level. This is obtained by ensuring that the EPC sent by RFID

tags is not an identifier, but is equal to that of other k − 1 people, each afferent to a different reader.

We show that our method reaches the goal, resisting also attacks aimed at breaking privacy on the

basis of humans’ movement models. Importantly, privacy is guaranteed against both misuse of the

administrator and client-side eavesdropping attacks.

11.0.1 Motivation

The aim of this section is to highlight the importance of privacy in the context of ALFs, to-

gether with the relevance of the ALF scenario as application setting for innovative IT solu-

tions. This represents a strong motivation of our work, in which we try to investigate both the

above aspects in the context of people localization.

As a matter of fact, ALFs are a good example in which a challenging problem is to find the

correct balancing between high services and high privacy. Since many years, researchers are

facing this problem. See for example [117], in which the project team considered privacy an

important aspect of the environment, as prior research found that residents had strong pref-

erences for privacy. Still in this context, [116] classifies ALFs on the basis of the privacy level

required by their patients. The results show that an increasing number of ALFs consider pa-

tient privacy as a fundamental feature and, therefore, it is included as one of the main aspect

in the evaluation and classification of such environments. Moreover, the Assisted Living Facil-

ities Association of America [26] suggests a general interpretation of assisting living to include

a philosophy that emphasizes some form of resident independence, autonomy, and privacy,

thus recognizing the importance of residents’ privacy as related to the dignity of individuals.

The impact of privacy requirements and needs on the organization of ALFs is also highlighted

in the book “Assisted living: Needs, practices, and policies in residential care for the elderly”

178 11 A Privacy-Preserving Localization Service for Assisted Living Facilities

by Zimmerman [254]. In this work, the author discusses the case in which the main reason

for nursing home residence is not related to health care. In this context, he clinches the im-

portance of including, in the social model of care, humanistic concerns for high order needs

among which privacy is one of the most prominent.

Following the observation above, our approach applied to this application scenario has,

therefore, a considerable relevance. The importance of such a scenario is also witnessed by the

attention toward it reserved by a lot of other researches in the IT field. Consider, for instance,

the survey on IT tools to support ALFs described in [198], in which the authors report that the

use of mobile and wearable sensors are becoming pervasive in such environments to improve

patient security. Such technologies allows for the implementation of HAR (Human Activity

Recognition) modules of fundamental importance in taking care of elderly residents. Another

approach showing the importance of the use of IT tools to improve the assistance offered in

ALFs is presented in [148]. Here, the benefit of using concepts for home automation environ-

ments to take decisions on the basis of variation in the value reported by sensors is proved

also by focusing on privacy issues in the storage of patient’s data.

The high number of research efforts towards the improvement of services offered in ALFs

together with the lack of refined solutions protecting the privacy of people living in these

environments are the premises of this work, whose aim is to add a missing piece in the re-

lated scientific literature by proposing a solution to guarantee residents’ privacy in ALFs still

satisfying monitoring requirements.

11.1 Privacy-preserving localization

In this section, we describe the scenario considered in our study and the proposed solution.

We consider an assisted living facility in which the position of residents has to be monitored.

The approach we follow to address this problem is based on the use of active RFID tags, RFID

readers, and a server.

Preliminarily, we introduce the notations used in the following (they are summarized in

Table 11.1). Our solution is parametric w.r.t. two numbers d and a: d is a positive integer

and a is a real number in the interval [0,1] (their role will be discussed in Section 11.3.2).

Let p be the number of residents to monitor and r be the number of RFID readers present in

the environment. RPF is a random permutation function operating on the set of integers [1,p],

defined as:

RP F :Z∗p→Z
∗
p

whereZ∗p is the multiplicative group ofZp,Zp is the set of (equivalent classes) of integers

(mod p), and RP F(i) = i · g (mod p), for any g ∈ {1, . . . ,p}. We assume that p is prime: this way,

RP F works as a permutation because Z∗p is an additive cyclic group, and every i ∈ {1, . . . ,p} is

a generator for Z∗p.

We are ready to present how our proposal works. We start from the infrastructure. The

first operation is to partition the ALF into cells by properly positioning the RFID readers in

11.1 Privacy-preserving localization 179

a,d system parameters

p number of residents

r number of readers

RPF random permutation function

Table 11.1: Notations

known locations. The position of each reader depends on the power transmission level and

the read distance and has to guarantee that each portion of the place is covered by at least one

reader.

As for the spatial distribution of readers, we used the approaches proposed in [231]. This

solves the problem arising when a tag is located within the range of two RFID readers, which

might be falsely identified as to be in two different places at the same time. Each resident

is equipped with an active RFID tag that replies to the reader requests sending a suitable

number said QID (quasi-identifier). Finally, the readers communicate with a server, which

handles data flow on the network.

The idea is that the QID generated by each RFID tag changes at each reading in a pseudo-

random way. As a consequence, a malicious attempt to track a resident by sniffing the gen-

erated number fails, if the attacker cannot associate the generated QID with the victim. To

protect user privacy, we remove any one-to-one correspondence between QIDs and residents,

which is replaced by a one-to-many correspondence. However, to preserve the localization ser-

vice, we require that the above correspondence guarantees the localization of a resident with

a probability k−1. In other words, our approach implements a mechanism able to guarantee,

at any time, that there exist k different positions in which a resident could be.

The workflow of our protocol to monitor residents is iterative and, in the following, we

describe what happens at the iteration t > 0.

1. Query. The server sends a reading request to all the r readers, which, in turn, query the

tags inside their coverage area.

2. QID generation. Each RFID tag contains a 64-bit pseudo-random number generator

(PRNG), whose seed is known by the server, and is able to compute the random per-

mutation function RP F defined above. To reply the request, the tag computes ID(t) =

RP F
(
ID(t − 1)

)
, where we assume that ID(0) = i for the tag of the i-th resident. In words,

at the beginning (t = 0), each resident is identified by a progressive integer 1, . . . ,p and,

after each iteration, it is associated with a new integer in [1,p]. The random permutation

function assures that, at each iteration, two different tags are not associated with the same

integer. Then, the tag computes QID at the iteration t as:

QID(t) =

ID(t) mod d if P RNG(t) ≤ a · 264

P RNG(t) mod d otherwise

180 11 A Privacy-Preserving Localization Service for Assisted Living Facilities

where, we recall, a and d are system parameters and P RNG(t) is the t-th element of the

pseudo-random sequence of the tag. In words, with probability a, the tag returns an hash

obtained by uniformly mapping ID(t) to a domain of d elements, whereas, with proba-

bility (1− a), ĨD(t) is pseudo-randomly generated.

3. Response. The j-th reader (with 1 ≤ j ≤ r) processes the received data, say {QID1, . . . ,QIDz}.

For each received QIDi , the tuple 〈QIDi ,x〉 is sent to the server, where x is a positive in-

teger obtained as:

x =

R
(
{1, . . . , r}�j

)
if ∃ z < i :QIDz =QIDi

j otherwise

In words, if more tags generate the same QID, only the first is associated with j: the

remaining ones are associated with other randomly chosen readers (the function R gener-

ates a random integer in [1,p], j excluded). Otherwise, if a QID is generated by only one

tag, then this tag is associated with this reader (i.e., j).

4. Storing. The server collects the tuple received from all readers. If the number of the re-

ceived tuples is lower than the number of residents, the service detects that a resident

has left the ALF and throws an alert. Otherwise, these tuples are stored overwriting the

tuples at the previous iteration.

The protocol described above gives us the possibility to locate a resident and to verify that

no resident leaves the ALF.

The procedure to locate a resident u is as follows. Let assume we are at the t-th iteration.

The server can obtain theQID(t) generated by u, as it can compute P RNG(t) and ID(t) of step

QID generation. Then, the server performs a reading request to all the r readers and among all

the tuples received, it filters out the set T = {〈QID(t), l1〉, . . . ,〈QID(t), l|T |〉} (i.e., those referring

to QID(t)). Now, the server can guess the location of u with probability |T |−1: indeed, the

possible |T | locations of u are inside the coverage areas of the readers l1, . . . , l|T |.

Concerning the procedure to guarantee that residents are confined inside the ALF, it works

as follows. Periodically, the server executes a reading request to the readers and checks that all

the p QIDs from the residents’ tags are received. When the number of received QIDs is less

than the expected one, an alert is generated. Moreover, from the knowledge of the expected

QID, it is possible to guess (with a given probability) who is the absent resident and his/her

last possible (k) positions (indeed, the server stores the last tuples received). Observe that

the frequency at which tags send the signal represents an important privacy issue because a

high sending frequency could allow an attacker to track residents’ movements. We study this

aspect in Section 11.3.2.

11.1.1 Running Example

In this section, we sketch a simple example to show how the whole protocol works and the

messages exchange among the actors.

11.1 Privacy-preserving localization 181

System parameter Value

a 1

d 2

p 4

p′ 5

r 100

t 1

Table 11.2: System parameter settings for the running example

As for the parameter settings, we choose a = 1, so that QID(t) will be deterministically

generated (see Section 11.1). Moreover, we set the number of possible different QIDs d = 2.

The number of monitored persons p is set equal to 4 and, therefore, p′ = 5 (i.e., the first prime

number such that p′ > p), whereas the number of readers is equal to 100. For the sake of

simplicity, we omit the discussion about how the system parameters are set on the basis of

the privacy requirements. In Table 11.2, we report a summary of the settings chosen for our

parameters.

In Fig. 11.1, we illustrate the messages exchange among the actors from the initial state

(t = 0) to the first iteration (t = 1). In the first step performed by our protocol, the server

sends the message reading request to all the 100 readers (step Query of Section 11.1). This

starts the iteration t = 1, which we are considering in this example. All the readers carry out

authentication with the RFID tags within their coverage area and forward them the reading

request. At this point, all RFID tags perform the step QID generation. Table 11.3 helps us to

understand how QIDs are generated by each monitored person: the second row of the table

reports the initial value of ID associated with each person (i.e., ID(0)), whereas the third row

reports the result of the application of the random permutation function (RP F) from step t = 0

to step t = 1, by assuming g = 3. The last row, instead, shows the final QID values for step

t = 1 obtained as ID(1) mod 2.

After this computation, every RFID tag sends the obtained QID to the RFID reader from

which the reading request come. The readers collect the received QIDs and process them. In

particular, we assume that P3 is under the coverage area of the reader R1, P4 is under the

reader R2, whereas P1 and P2 are under the reader R3. Thus, both the readers R1 and R2

receive only one QID (from P3 and P4, respectively) and they send to the server the tuple

〈QID,x〉, where the first element is the QID received from the tag (0 in both cases) and the

second element is the index of the reader (i.e., 1 and 2, respectively). As for the reader R3,

it receives the same QID from P1 and P2. For the first QID, the tuple 〈1,3〉 is sent to the

server, whereas the secondQID is not directly sent to the server. Indeed, according to the step

Response, in case of collision of some QID on the same reader, as it happens for P1 and P2,

only one of them is associated with this reader, whereas the remaining QIDs will be mapped

to other readers. In particular, a random reader is selected (we assume it is the reader R87 in

182 11 A Privacy-Preserving Localization Service for Assisted Living Facilities

Fig. 11.1: An example of protocol instantiation.

Patients P1 P2 P3 P4

ID(0) 1 2 3 4

ID(1) 3 1 4 2

QID(1) 1 1 0 0

Table 11.3: An example of the transformation of 4 tag identifiers.

our example) and the second QID is associated with this reader, in such a way to hide that

more users with the same QID are in the same place (this could result in the violation of

the privacy requirement). In practice, P1 will be associated with reader R3, whereas P3 will

be virtually mapped on the reader R87. Finally, the server stores all the received records and

checks that all expected QID are really received.

11.2 Case study

In this section, we describe the real-life scenario we considered in our experimental evaluation

of the performance and security features of our approach. For this purpose, we referred to an

existing ALF and built a simulator based on its physical characteristics. Specifically, the con-

11.3 Security Model 183

sidered real-life ALF stretches over about 50k square meters and hosts a maximum number

of 500 monitored residents. We designed our solution by computing the number of readers

to cover all the different areas occurring in this facility and their exact position therein. Ob-

serve that the position of each reader depends on the power transmission level and the read

distance has to guarantee that each portion of the place is covered by at least one reader.

To satisfy all the requirements of the techniques above for reader distribution, we have

that the number of readers necessary to cover the entire area is 2000. Concerning the use of the

RFID technology, RFID active tags and readers use an operating frequency of 433 MHz, which

can be safely used also for healthcare applications. This is an important property as some of

the ALF residents may suffer from important pathologies requiring severe constraints for the

electrical equipments used for their care. The (adjustable) read range of such tags has been

set to cover an area of about 40 meters (i.e., about a room). Each reader can detect hundreds

of tags in few seconds and based on the signal strength received, the reader reports or ignores

the received EPC to avoid multiple reading of the same tag (see Section 11.1). Tags have small

size and are attached to person’s wrist or ankle using standard ID straps.

This real-life scenario will be used in the next section as test bed for our experiments

aimed to validate our proposal.

11.3 Security Model

In this section, we describe the security model and analyze the security properties of our

proposal.

11.3.1 Attack Model

As usual in this context, we realistically assume that a solution satisfying the privacy require-

ment exists. Consequently, we do not consider inadmissible cases, for example with very few

monitored people or in which k is too high with respect to the number of residents and the

possible locations.

Under this basilar assumption, we state the security properties of our protocol. We recall

that we aim to obtain k-anonymity, meaning that the probability of localizing a person is k−1,

where k is a given anonymity requirement. Our approach reaches this goal by forcing that

more people generate the same QID.

We identify the following actors in our scenario:

• service provider, the entity that implements the RFID-based solution in the environment

(i.e., installs and configures the readers, wires the connections among readers, provides

the monitoring software, etc.).

• residents, who have to be monitored and whose privacy has to be preserved.

• (system) administrators, who can access all data produced by the service;

• unmonitored people, who are present in the environment but are not monitored (e.g.,

nurses or visitors).

184 11 A Privacy-Preserving Localization Service for Assisted Living Facilities

Concerning the security features of our proposal, we identify the following properties that

our approach must satisfy:

1. SP1. Given a QID q, at least k different readers report the presence of a resident sending

q.

2. SP2. Resistance to attacks done by the administrators in which from the knowledge of the

QID sent by a given resident the administrator wants to know his position.

3. SP3. Resistance to attacks based on the installation of fake tags by unauthorized people.

4. SP4. Resistance to client-side attacks based on eavesdropping.

5. SP5. Resistance to attacks based on the analysis of trajectories of residents.

To analyze the security properties above, our threat model includes the following assump-

tions. The security will be analyzed w.r.t. a parameter x (see below).

1. the service provider is trusted;

2. besides attacks considered by property SP3, no further physical attacks on the hardware

infrastructure is possible;

3. the attacker cannot launch DoS attacks on tags, readers, and server;

4. the monitoring software run by tags, readers and server cannot be altered;

5. only passive attacks on the network traffic are possible;

6. the association between RFID tag and resident cannot be compromised;

7. the attacker has no knowledge about residents’ habits;

8. the attacker is able to know the position of at most x residents.

Concerning assumptions 2 and 3, we note that their removal, does not give the attacker

any information about residents’ localization but results in the compromission of the effective-

ness of the technique. Among all assumptions that are realistic, we observe that assumption

7 is commonly adopted in the literature [217].

Moreover, because compliance with SP4 and SP5 is strongly scenario-dependent, it would

be infeasible to analytically prove it. Therefore, we will address this issue experimentally in a

simulated real-life ALF. The real-life ALF we consider stretches over about 50k square meters.

We set the number of monitored residents to 500 and we computed that the number of RFID

readers necessary to cover the entire area is about 2000. Each reader can detect hundreds of

tags in few seconds and based on the signal strength received, the reader reports or ignores

the received EPC to avoid multiple reading of the same tag (see Section 11.1). Tags have small

size and are attached to person’s wrist or ankle using standard hospital ID straps. In our ex-

periments, to simulate resident shifts inside a given area, we built a prototype implementing

random-based mobility models described in [29]. The default model is that residents move

randomly in the whole area.

11.3.2 Security Analysis

In this section, we study the security properties of our approach on the basis of the attack

model described above. Recall that our target is to guarantee the privacy requirement k. First,

11.3 Security Model 185

we observe that our method is ε-approximate, because the privacy requirement is guaranteed

with probability 1 − ε, where ε is a small positive real. Moreover, the security is analyzed

w.r.t. the parameter x defined earlier in Assumption 8. To do this, we just increase the privacy

parameter k to the value k + x. Indeed, from the knowledge of the position of x residents, the

attacker can guess the position of other residents with probability equal to (k − x)−1 (thus the

initial privacy requirement is satisfied).

Compliance with SP1. The next theorem proves that our proposal guarantees the security

property SP1 described in Section 11.3.1, i.e., given a QID q, it guarantees that at least k

different readers report the presence of a resident sending q.

Theorem 11.1. Given an admissible privacy requirement k, there exist at least one configura-

tion of the parameters d and a such that k-anonymity is guaranteed with probability 1−ε, for

any 0 < ε < 1.

Proof. We need to compute two probabilities P1 and P2. For the first one, we intro-

duce the random variable C1 defined as follows: given a QID q, C1 is the total number

of residents who, at a given time t, generate q as QID. We call number of QID-collisions

the value returned by C1. We study the probability P1(C1 = c1), which is the probability

to have exactly c1 QID-collisions, with 0 ≤ c1 ≤ p. First, consider the case a = 1. We ob-

tain that P1(C1 = c1) = 1 if c1 = p
d , P1(C1 = c1) = 0 otherwise. Indeed, when a = 1, QID(t)

is equal to the deterministic value Q̃ID(t) mod d and the function RP F, which introduces

pseudo-random permutations, guarantees that the possible QIDs are uniformly distributed

among residents. Then, consider the case a = 0. Now, the probability of having c1 QID-

collisions is: P1(C1 = c1) =
(d−1)p−c1 p!

(p−c1)!
dp . Indeed, dp is the number of possible assignments

of QIDs and (d − 1)p−c1 p!
(p−c1)! is the number of cases producing c1 QID-collisions. Moreover,

P1(C1 = c1) = 1
dp−c1

1
dc1 (d − 1)p−c1 p!

(p−c1)! = p!
(p−c1)! (1

d)c1 (1− 1
d)p−c1 . By combining the two cases

above, we obtain:

P1(C1 = c1) =

a+ (1− a) p!
(p−c1)! (1

d)c1 (1− 1
d)p−c1

if c1 = p
d

(1− a) p!
(p−c1)! (1

d)c1 (1− 1
d)p−c1

otherwise

The second probability we have to compute is related to the case in which, among the c1

colliding residents, some of them are under the same reader. Consequently, the reader uses

the function R (recall step Response in Section 11.1) to associate all (but the first one) colliding

residents with other readers. However, it could happen that the new reader generates a reader-

collision because another resident with the same QID is also under such a reader. Whereas

QID-collisions help to increase privacy, reader-collisions are disadvantageous because more

residents are associated with the same reader, thus reducing the number of possible locations

186 11 A Privacy-Preserving Localization Service for Assisted Living Facilities

for these residents. To study the second probability, we introduce the random variable C2

defined as the total number of times that the function R returns a reader that sends the same

QID, thus generating a reader-collision. Therefore, we study the probability P2(Cc1,c2 = c2),

which is the probability that, having c1 residents with the same QID and c of them under the

same reader, we have c2 cases in which the function R generates reader-collisions, with 0 ≤

c2 < c. If we denote by RA the set of readers associated with residents generating the sameQID

and by RB the remaining ones, P2(Cc1,c2 = c2) can be written as
∑c2
i=0

(
P2A(Cc1,c2 = i)+P2B(Cc1,c2 =

c2 − i)
)
, where the first term is the probability to have i cases in which the function R returns

a reader in RA (thus generating a reader-collision), whereas the second term is the probability

to have c2−i cases in which the reader-collision is obtained because the function R returns the

same reader among those in RB. The sum considers all the possible cases generating c2 reader-

collisions. P2A(Cc1,c2 = i) = i · c1−c+1
r−1 because we do i random generations, |RA| = c1 − c + 1, and

the remaining readers are r − 1. Following the same reasoning seen for P1(C1 = c1) in the case

a = 0, we can write:

P2B(Cc1,c2 = c2 − i) =

(
r−(c1−c+1)−1

)c−(c2−1)
c!

(c−(c2−i))!

r−(c1−c+1) .

The problem we have to solve is to find d and a such that, for a given (small) ε, the follow-

ing inequality holds:
p∑
c=k

(
P1(C1 = c1) +

c−k∑
i=0

P2(Cc1,c2 = i)
)
≥ 1− ε

In words, we require at least k residents generating the same QID (P1). Then, if we have k + x

colliding residents, we accept also cases in which x are in the same place (the sum on P2 deals

with this possibility). By satisfying the above equation, we guarantee with probability 1 − ε

that at least k residents with the same QID in k different places occur, thus validating the

theorem.

To conclude the proof, we show that, if a solution satisfying the privacy requirements

exists (as stated in the hypothesis of the theorem), then at least one setting of d and a satisfying

the above equation exists. Indeed, the trivial solution d = 1, a = 1 solves the above problem

because all residents have the same QID. However, in this case, no meaningful information

about the location of any resident is provided. As a consequence, we need to find the greatest

d satisfying the above property. This number can be found by a guess-and-check iterative

method, which starts from the minimum value d = 2 and at each iteration increases by 1 the

value of d (as we will see below, the choice of a is related to some security considerations that

suggest us to set a = (1− x−1), where x is a suitable positive integer). �

Compliance with SP2. In this case, we have to prove that our approach resists to attacks

in which the administrator knows the QID sent by a given resident and wants to know his

position. According to Theorem 11.1, with probability 1 − ε, an attacker finds that there are

at least k different places in which the presence of a person with a given QID is reported.

Consequently, no privacy leakage occurs.

Compliance with SP3. To be compliant with SP3 our approach has to resist to attack in which

fake tags are installed in the environment. We identify two cases: (i) an attacker introduces a

11.3 Security Model 187

fake tag to compromise the monitoring system; (ii) an attacker introduces a fake tag to allow

a resident to leave the monitored environment.

In the first attack, the adversary simulates a tag and sends a randomQID. First, we observe

that the addition of a new tag is detected by the system, as p + 1 (instead of p) QIDs are

received; Moreover, this does not violate residents’ privacy because the QID generated by

the attacker increases the number of collisions. As a follow up of this attack, in the second

case, an adversary wants to allow a resident to leave the environment without being detected.

However, to do this, the attacker has to know the whole sequence of QIDs generated by this

resident. But this information is unknown.

Compliance with SP4.

To be compliant with SP4 resistance to attacks based on eavesdropping must be guaran-

teed by our approach. Therefore, we consider the case in which an attacker knows the QID

generated by a resident (for example, by eavesdropping the communication between tag and

reader) and wants to guess who is the resident located near that reader at that time. However,

residents’ QIDs are dynamic and change at each reading in a pseudo-random way, so that no

correlation between two subsequent readings should be guessed. Observe that, setting a = 1

means that theQID generation of each tag depends only on the random permutation function

that guarantees a uniform distribution of QIDs and a number of collisions deterministically

fixed. However, a side effect of setting a = 1 is that the sequence of QIDs generated by the

same tag is periodic with period equal to the number of patients. An attacker may exploit

this periodicity to know the next QIDs that a patient will generate and, thus, may try to track

patient movements. The parameter a is used to prevent such an attack by randomly changing

some elements of the deterministic QID sequence in such a way to break this periodicity. The

parameter a measures the probability that an element of the deterministic QID sequence is

not changed.

It is, then, obvious that the possibility to successfully carry out this attack depends on the

values of the parameters of the system; therefore, by tuning such parameters, we can reduce

the probability of success for this attack to any desired (low) value.

For this reason, we carried out several experiments to study the behavior of our technique

for different values of system parameters. We start by studying the parameter a. In this first

experiment, we choose five different values for a (i.e., 0.0, 0.1, 0.25, 0.5 and 1) and we measure

the number C of colliding residents against the percentage dC of the QIDs for which we

observe C collisions. We set the parameter d (i.e., the number of possible QIDs) to p/4. In

Figure 11.2, we report the results of this experiment.

From the analysis of this figure, we observe that the peak of each curve decreases if a

assumes low values. In particular, if a is equal to 0, then our approach assigns QIDs in a

pseudo-random way, according to the generator PRNG described in Section 11.1. For this

reason, the trend of dC is very smooth and the standard deviation of the number of collisions

is high. By contrast, if a is equal to 1, then the QID generation is deterministic and, hence,

we observe a very peaked trend of dC for C = 4. Therefore, we should set a to the highest

possible value allowing our approach to resist to attacks based on the periodicity of the QIDs

188 11 A Privacy-Preserving Localization Service for Assisted Living Facilities

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10

d
C

C

a:1.0

a:0.9

a:0.75

a:0.5

a:0.0

Fig. 11.2: Number of residents with the same QID versus dC for different values of a.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

d
C

C

d:250

d:125

d:83

d:62

Fig. 11.3: Number of residents with the same QID versus dC for different values of

d.

generation. If we assume that changing one element every x elements of the deterministic

sequence is sufficient to avoid a periodicity-based attack, we should set a = (1− x−1).

In the second experiment, we test the behavior of our approach for different values of

the parameter d (i.e., p/2, p/4, p/6, and p/8), which identifies the number of different QIDs

generated by residents. We set the value of the parameter a to 0.9. The result of this experiment

is reported in Figure 11.3.

The discrete-Gaussian-like curves associated with the different values of d show decreas-

ing height of the peak as d decreases, whereas the width of the bell (and, hence, the standard

deviation) behaves the opposite. This can be explained by considering the fact that a lower

value of d implies a greater number of users who generate the sameQID. However, due to the

presence of the parameter a, which represents the probability of assigning a QID different

from that generated deterministically, the lower value of d also implies a greater number of

residents that could have assigned a different QID w.r.t that assigned deterministically. These

11.3 Security Model 189

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 1 2 3 4 5 6 7 8 9 10 11
d
C

C

#pat:400
#pat:425
#pat:450
#pat:475
#pat:500

Fig. 11.4: Number of residents with the same QID versus dC for different number of

residents (d = 83).

residents will decrease the number of collisions for the QID they should have assigned deter-

ministically and will increase the average number of collisions for the otherQIDs. This causes

the reduction of the height of the curve’s peak and the increment of its standard deviation.

In the next experiment, we consider another issue. In a real-life scenario, it is possible

that the number of residents may be less than the maximum number of residents (i.e., 500 in

our experiments). However, once the RFID tags have been configured, the tag reconfiguration

every time a resident arrives or leaves the ALF could be expensive. For this reason, we study

the system performances when the number of residents is less than the expected one.

Figure 11.4 shows again the number C of colliding residents when the overall number of

residents is decreased up to 20%. In this run, we set a = 0.9 and d = 83. Now, if we assume

that the anonymity requirement is k = 4, then the anonymity requirement is not guaranteed

in the worst case. This problem can be solved by reducing the value of d. A value of d reaching

this goal can be found by applying a simple guess-and-check iterative method. For example,

by changing the value d to 62, we obtain the results reported in Figure 11.5. With this new

configuration, the anonymity requirement k = 4 is guaranteed with all the possible number of

residents considered in this experiment.

Now, we compare the effectiveness of our technique in localizing a resident w.r.t. another

approach that we call naive. In this approach, the tag of each resident is identified by a unique

static ID. When a request for the resident with ID = x is sent by readers, all tags act as follows.

The tag with ID = x replies to that request. The other tags generate a random r in the interval

[1,p], where p is the number of residents, and reply to that request if r ≤ k − 1. Clearly, this

approach expects that k tags reply to a location request on average, to satisfy the privacy

requirement. In this experiment, we keep fixed the number of residents to 500 and we set

a = 0.9 and d = 125 for our approach.

In Figure 11.6, we report the number C of residents’ collisions measured for the two ap-

proaches. The result shows that our approach always outperforms the naive approach. Specif-

190 11 A Privacy-Preserving Localization Service for Assisted Living Facilities

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d
C

C

#pat:400
#pat:425
#pat:450
#pat:475
#pat:500

Fig. 11.5: Number of residents with the same QID versus dC for different number of

residents (d = 62).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 1 2 3 4 5 6 7 8 9 10 11

d
C

C

Naive Approach
d:125-a:0.9

Fig. 11.6: Number of residents with the same QID versus dC for the two techniques.

ically, it is worth noting that the curve associated with the latter has a trend similar to that

obtained by our approach when a = 1.

Compliance with SP5. So far, we have considered a threat model in which the attacker eaves-

drops the reading of one QID. As a consequence, we neglected the movements of residents,

considering that all residents could be at any place of the environment at the reading time.

Now, to show the compliance of our approach with SP5, we consider the case in which

the attacker eavesdrops consecutive reading of tag QIDs. In this new scenario, the frequency

of tags reading assumes a great importance, as shown through the following example. If we

consider an average speed of 1.6 m/s for each resident, we have that a resident takes about

11 minutes to move from any point to any point, because the maximum distance between

two points inside the considered environment is about 1 kilometer. As a consequence, if all

11.3 Security Model 191

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 150 200 250 300 350 400 450 500 550 600 650
C
c
v
r

Tags Reading Period [sec]

d=50
d=62
d=83
d=125

Fig. 11.7: Number of residents with the same QID inside a coverage area versus time

(seconds).

readers query tags with a frequency higher than 1 reading every 11 minutes, then the attacker

may take advantage from the reduced set of possible paths to guess residents’ habits or, even

worse, to identify them.

Therefore, to guarantee the compliance with SP5, we discuss the problem of setting a

maximum reading frequency to solve the trade-off between privacy protection and localiza-

tion accuracy. In the first experiment, we consider that each resident moves at a constant speed

of 1.6 m/s and can choose a different movement direction (i.e., random shifts). We vary the

reading period from 2.5 to 10.66 minutes because, as observed above, periods higher than 11

minutes do not give any advantage to the attacker. Now, given a resident u, we measure the

number Ccvr of residents with the same QID who are inside the coverage area of u, where as

coverage area we mean the area that u can cross in the reading period. In this experiment, we

assume that the anonymity requirement is k = 2. In Figure 11.7, we report Ccvr versus tags

reading period (in seconds) for different values of d.

Looking at the value d = 125, we observe that if we set the RFID-reader query time to 300

seconds (i.e., 5 minutes), then we guarantee that there are about two users inside a coverage

area (i.e., the privacy requirement k = 2 is satisfied). Clearly, if the value chosen for d is lower

than 125, then the query time can be reduced. For instance, by looking at the same figure, if

d = 50, we find that a query time of 150 seconds is sufficient to satisfy the privacy requirement,

because it assures at least two collisions (i.e., Ccvr ≥ 2).

Concerning the influence of the average speed of residents on these results, we observe

that the higher this speed, the wider the coverage area. As a consequence, an increase in the

speed results in an improvement of the privacy degree obtained because a wider coverage

area implies a higher probability of collisions of residents inside it. In practice, the effect of

speed increasing is that all the curves of Figure 11.7 reach the final value (e.g., 4 for the curve

d = 125) for a lower tag reading period.

192 11 A Privacy-Preserving Localization Service for Assisted Living Facilities

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6

%
O
c
c
u
r
e
n
c
e

C

Fig. 11.8: Number of residents with the same QID inside the coverage area versus

the percentage of involved users.

Now, we study possible attacks when residents’ movements are not fully random, as actu-

ally happens in real world. For this purpose, we use as mobility model the Random Waypoint

Model [29]. This mobility model generates resident shifts as described below. At the beginning

of the simulation, each resident randomly selects one destination point inside the considered

area. Then, he moves towards this end-point for a walking interval (Wmin,Wmax) with a speed

selected uniformly at random in the interval (Smin,Smax). Speed and movement direction

of each resident are selected independently of other residents. Once a resident reaches the

end-point or ends his walking interval, he stops for a duration defined by the “pause” pa-

rameter that varies in the interval (Pmin, Pmax). After this interval, he continues his previous

path or chooses another end-point and starts moving towards it. In our simulation, we set

Wmin = 3.0 seconds, Wmax = 10.0 seconds, Smin = 0.1 m/s, Smax = 1.6 m/s, Pmin = 0.0 seconds

and Pmax = 6.0 seconds.

In this experiment, we suppose the attacker is able to estimate the parameters of the res-

idents’ mobility model and to reduce the space of the possible target points. We set a = 0.9,

d = 125, and the reading period to the value 300 seconds. For each resident u, we compute his

coverage area as the maximum space he can cross in the tags reading period and count how

many residents with the same QID as u fall in u’s coverage area.

In Figure 11.8, we report the number of collisions measured inside the coverage area ver-

sus the percentage of the involved users.

This figure shows that 85% of residents share their QID with more than 2 other residents

inside the coverage area. Only 14% of them are alone. Thus, the probability that a resident

is alone inside the coverage area is 0.14, but the probability of being alone again at the next

step is 0.14 ∗ 0.14 = 0.019 and becomes 0.003 if a third step is considered. Denoting by q the

probability that a resident is alone inside a coverage area after one shift, an attacker guesses

the i-th shift of a resident with a probability q =
∏i

1 p. In practice, this experiment allows us

11.4 Discussion 193

to conclude that by suitably setting d, a, and the minimum tag reading period, we can reduce

the probability q to satisfy any admissible privacy requirement.

11.4 Discussion

As a final discussion, we provide some considerations on the effectiveness of our service.

We may state the following:

- Concerning the use of the RFID technology, we briefly recall that RFID tags can be classified

into passive, semi-active and active on the basis of computational power, presence of power

supply, transmission range and cost. Moreover, it is possible to distinguish between two kinds

of tags operating at different frequencies and, hence, having different and adjustable trans-

mission range (from few meters to hundreds meters): UHF tags and HF tags. In our design, we

adopt RFID active tags and readers operating at UHF frequency of 433 MHz, which is allowed

for healthcare applications. It is worth noting that our solution is feasible from an economic

point of view, as witnessed by the fact that commercial RFID-based solutions specifically ori-

ented to track residents in assistive environments exist, even though they do not address at

all privacy issues. In our case, the cost of the solution can be estimated by considering plau-

sible prices of about $2 per tag and $200 − $300 per reader. In addition, we have to consider

the cost of the network infrastructure connecting the readers, even though also non-RFID so-

lutions require (possibly more expensive) network infrastructures. On the other hand, it is

known that RFID technology is more cost effective than other technologies for localization

such as Bluetooth, WLAN or UWB (Ultra-wideband).

- The results obtained about the relationship between speed of residents (we consider 1.6

m/s) and parameter setting show that we obtain a good privacy level yet allowing quick res-

idents’ localization by means of a limited number of attempts and, thus, of human resources

employed to manage emergency. This conclusion arises from the results of the experiments

carried out to prove the compliance of our approach with SP5 described in Section 11.3.2.

- The attack model is realistic because the environment cannot be considered closed as a rele-

vant number of external persons (visitors, medical representatives, maintainers, cleaners, etc.)

are often present in the ALF. Thus, the environment can be considered hostile.

- The need of free movement in the environment is particularly realistic as assisted living

facility are used for people with disabilities in which resident activities are monitored to help

to ensure their health, safety, and well-being.

- A limitation of our experimental study regards the environment, which is assumed to be a

perfect rectangular. Clearly, the regular shape of the simulated area implies a uniform distri-

bution of RFID readers. Actually, there could be some areas smaller or bigger, thus requiring

to modify the coverage area set for each reader in the simulation. This approximation may

lead to underestimate or overestimate the total number of RFID readers. However, these vari-

ations w.r.t. the real-life activity and the structure should not affect the conclusions arising

from the analysis of the experimental results.

194 11 A Privacy-Preserving Localization Service for Assisted Living Facilities

In conclusion, the approach presented in this chapter allows us to localize residents in an

assisted living facility by preserving their privacy. As a matter of fact, even though the party

that performs data elaboration and administration (e.g., medical staff, nursery managers, IT

staff, etc.) can be assumed trusted, it is not true, in general, that the utility of having precise

information about residents’ location is stronger than the right of keeping private the exact

movements of residents. The solution of the above trade-off is the main added value our work

w.r.t. the existing literature, in which no protection against administrator-side attacks is pro-

vided. Our study, shows that the proposed service is enough flexible and precise to be an

effective tool for residents’ localization. Moreover, we show that the method is robust against

several possible attacks on privacy.

11.5 Related Work

In this section, we survey the literature regarding location anonymity, finally focusing on

health-care environments.

Generally, different applications imply different privacy threats and models. For instance,

in mobile phones, LBS applications using Global Positioning System (GPS) [105], or Wireless

Networks, all moving nodes have continuous timestamps. Therefore, the user’s location is con-

tinuously detected [224, 22]. This assumption, instead, does not hold for an RFID scenario,

because an RFID-tagged object (e.g., a smart card) is unlikely to be continuously detected.

In this case, high computational efficiency and low cost is needed, moreover the approach

presented in [249] can be used to improve the efficiency of the RFID system. In this context,

an approach to tracking children in a large park still preserving their privacy is presented in

[163]. Through a deep security analysis the authors show that their tracking scheme guaran-

tees children identity privacy, unlinkable location privacy, and forward security. However, this

approach does not contrast server side attacks. This limitation is not present in our approach.

The problem of balancing (1) the need of protecting health information and (2) the utility

of sharing information, has received great attention in the last years [168, 240].

RFID technology and data anonymization have been widely adopted in health-care envi-

ronments [226, 81]. According to the results presented in [234], we propose a practical solu-

tion to the problem of localizing people in an assistive environment, to reduce risks related to

hospitalization and to increase patient independence. This feature, together with the others

described above (i.e., no third trusted party used, no obfuscation, administrator-side attack

prevention), makes our approach relevant and novel with respect to the state of the art.

Part III

Final Issues

197

This part of the thesis is devoted to point out some final remarks and possible extensions

of the topics presented previously. In particular, in Chapter 12 we have a look at some future

research, whereas in Chapter 13 we draw our conclusions. In addition, in this part, we include

a bibliography indicating both the papers presented in the literature related to the topics this

thesis focuses on, and our contributions.

12

Future Directions

In this chapter, we describe some future developments of our research. In particular, in the first

section, we describe some future directions in the field of privacy, security and trust in online com-

munities. Whereas, in the last section, we focus on some future works dealing with privacy and

security on both public and private physical organizations.

12.1 Online Communities

As a first task in the context of online communities, we have implemented a model to gener-

alize and match concepts, actions and relationships of existing social networks. This has been

done to uniformly handle social network data and as a mean to accomplish the crucial issue

of crawling data from a multi-social network scenario to retrieve all the information needed

for our study on privacy and security in OSNs. We plan to go further along this path and to

design a multi-social network oriented language based on our model.

This language could help us to extend also the approach presented in Chapter 4. Here,

we described a middleware to allow fine-grained access control of Twitter applications. This

solution could be developed also for other mobile platforms and social networks. Still in this

context, another direction we plan to follow is the definition of both a specific access control

model and an anomaly detection module, which, till now, we have considered as orthogonal

problems. The first module will extend the study described in this thesis by providing an

attribute-based model for access control rules. Whereas, the anomaly detection module will

have to implement a further security mechanism allowing the detection of malicious behavior

of third-party applications.

As for trust in OSNs, an interesting future direction is the definition of trust models for

the certification of digital identities in social networks. This objective can be reached by com-

bining structural information from social networks with biometric data recorded during the

profile registration phase and constantly monitored as users interact with social network ser-

vices. Specifically, we consider chains of trust among users, and each chain starts from a root

profile, which is a profile certified by a Profile Certification Authority. To build a certified

profile (or root profile), a user has to register to the social network via a Profile Certification

Authority (also by exchanging of identification documents). In this phase, the Profile Certi-

fication Authority gathers the biometrical parameters of the user to create a model that will

200 12 Future Directions

be exploited, in the future interaction with him, to verify whether the account is still under

control of this user. In the negative case, the profile will be no longer certified. Starting from

a root node a trust chain is built by considering his neighborhoods. Specifically, the root pro-

file directly certifies his 0-level neighborhood. For this purpose, we consider a preliminary

(safe) step in which the root profile builds a biometric model of his direct contacts (this can be

done, for instance, during first messaging interactions). After this preliminary step, the root

profiles will continue to monitor his 0-level neighbors and will compute their direct trust

level based on the comparison between their current biometric behavior and that recorded

during the preliminary step. This procedure, can be now reiterated by 0-level neighborhood

profiles with their contacts (1st-level neighborhood of root profile), thus creating a chain of

trust relations.

The following example clarifies the protocol sketched above.

The user A wants to get in contact with a user B; therefore he uses social network features

to find the account of B. To be sure that the account he is contacting really belongs to B, he

will compute a trust value for this account by applying the following algorithm:

• if B is a root profile, then the maximum value of trust is obtained;

• an indirect trust value will be computed, otherwise.

The indirect trust level, is computed by propagating the direct trust values on the friendship

graph of the social network. Specifically, we may consider applying a PageRank-based algo-

rithm to evaluate the indirect trust level of profiles. In this case, each profile will receive a

boost in their trust level based on the trust level of their neighbors.

12.2 Physical Organizations

In the context of secure transactions, a lot of future directions can be thought. In particular,

in Chapter 8 the model Tweetchain is proposed as an alternative public ledger that ensures

transaction security by building a meshed chain of tweets. A number of possible applications

can be implemented over Tweetchain related to e-voting, e-commerce, document exchange,

ticketing, crowdshipping, reputation systems, tourism, advertising, etc. Among these, the im-

plementation of the paradigm of smart contracts over Tweetchain, could be of particular

importance. Indeed, this application is currently thought for Blockchain 2.0 which allows the

execution of code, written in a Turing-complete language, inside transactions. Therefore, we

plan to improve Tweetchain by introducing the support to a Touring-complete language for

transactions.

In the context of urban security, instead, we plan to focus our research on possible ap-

plications of the Internet of Things (IoT) [58]. This new scenario represents a good meeting

point between social communities and physical organizations. Indeed, the information com-

ing form OSN profiles could be used to improve some aspects of the physical networks of the

objects belonging to the people who own these profiles. In particular, we plan to study a new

selection criterium of links among objects to guarantee an effective access to services and data

in a network of things.

12.2 Physical Organizations 201

Accordingly to the Internet of Things paradigm the establishment of new connections

among nodes is driven by the discovery of the availability of desirable services or matching

devices. Typically, the fact that two objects get in touch somewhere, sometimes (maybe be-

cause the corresponding owners meet in a certain location) is enough to trigger (with a given

threshold) the establishment of a link between the two objects. This property is called proxim-

ity. Our aim will be that to identify possible enhanced ways to discover potentially beneficial

links.

To do this, preliminarily, we need to identify the properties that can be used to build a

more complex model.

In the literature, such properties have been identified as: (i) proximity, (ii) homogeneity,

i.e., they are the same kind of object created by the same manufacturer; (iii) ownership, i.e.,

they belong to the same user; (iv) friendship, i.e., owners are mutual friend in a social network.

Arguing that decisions regarding the formation of new links among objects could rely on

a mix of the above properties, we define a decision function to establish if a link between two

objects 〈x,y〉 has to be created or not.

Observe that all the above properties give us some information about the direct relation-

ship between two objects. We argue that also some indirect knowledge coming from the social

networks of owners could be of high importance to support the decision function. Actually,

having an indirect knowledge that can be used as a filter of the quality of links, our intention

is to use all the above direct properties in addition to the classical selection criterium based

on the sole proximity. Therefore, we introduce two measures, which we combine to compute

the aimed decision function. These are: T dirx,y , which derives from the direct knowledge about

objects and owners, and T indx,y , which encodes some indirect knowledge.

As indirect knowledge, we plan to use interest assortativity [51], by means of which it is

possible to have a measure of the correlation between a given human interest and the presence

of links between humans. This choice is motivated by observing that the creation of a new link

between two objects should also depend on the contexts in which these objects are used by

the corresponding owners. Therefore, the information about interest assortativity may help

to establish the level of membership of an object to a given context.

13

Conclusions

In this thesis, we have presented several activities performed in the context of trust, secu-

rity and privacy within communities. Specifically, the contribution provided by this thesis

concerns two referring macro-areas, namely (i) online communities, and (ii) physical organi-

zations.

As for the research activities related to the first macro-area, we started by describing a

multi-social network model and a system to provide meta-APIs. These tools have been thor-

oughly exploited in this thesis to extract and handle heterogeneous information from this

complex scenario. Then, we have analysed the behavior of OSN users when it comes of pri-

vacy and disclosure of personal information, friendship and activity level. In this analysis, we

posed particular attention on how users perceive privacy and on the robustness of Facebook

privacy settings. We continued this activity by focusing on a close subject which is acquir-

ing an always increasing importance, i.e., the security of mobile applications exploiting social

network services. In this context, we proposed a middleware approach to allow the definition

of fine-grained access control policies of applications using social network APIs. Finally, we

discussed the topic of trust in online communities and proposed a reputation model that con-

siders service providers, users and feedbacks, to implement the theoretical notion of certified

reputation. Through this model we have concretely defined a strategy to normalize feedback

scores towards reliable values in reputation systems.

Concerning the research activities dealing with the second macro-area, we proposed some

approaches focused on privacy and security in the contexts of both public and private phys-

ical organizations. Specifically, in the field of e-government we presented a new electronic

signature protocol that does not use public-key encryption, qualified signature creation de-

vices, or qualified certificates. Then, we proposed an authentication scheme supporting full

anonymity of users and unlinkability of service requests in the cloud. Finally, we presented

an alternative to Blockchain leveraging services from social networks to ensure transaction se-

curity among untrusted parties. We implement this idea in an approach, called TweetChain,

which uses services from Twitter to reach the above goal.

After these studies, we moved to some approaches whose application lays in the context of

urban security. In particular as a first issue, we observed that video-surveillance is becoming

more and more pervasive in people daily lives. To handle the huge size of generated data a lot

of public and private organizations adopt cloud solutions for the storage. This may introduce

204 13 Conclusions

risks if cloud providers are not trusted. Therefore, we proposed an approach allowing the

user to verify that query results are complete (i.e., no qualifying tuples are omitted), fresh

(i.e., the newest version of the results are returned), and correct (i.e., the result values are not

corrupted).

Finally, still in the context of people monitoring, we designed a complex framework that

allows the tracing of people movements using a privacy-preserving identification technique.

We described the application of this system to two interesting scenarios: the first is related

to critical infrastructures, whereas the second to Assistive Living Facilities. We showed the

effectiveness of our solution through a deep experimental campaign for both scenarios.

Ringraziamenti

Il mio percorso da studentessa è giunto al termine. Al traguardo non posso che pensare ai

miei cari che mi hanno accompagnato durante questo viaggio con pazienza e amore. È a tutti

loro che dedico questo lavoro di tesi. Ringrazio di cuore ogni componente della mia grande

famiglia per la presenza e il supporto. Prima di concludere, però, vorrei rivolgermi a qualcuno

in particolare.

A mia zia Giusy va il mio pensiero più tenero. Le auguro una rinascita e prego che il suo

sorriso dolce torni presto a risplendere in mezzo a noi anche più bello di prima.

A mia nonna. Perchè il suo affetto e la sua forza sono per me punto di riferimento costante

e un rifugio sicuro.

Ai miei nonni che non ci sono più, ma che sarebbero stati più che fieri dei miei risultati.

Alla mia seconda famiglia, perchè in loro ho trovato un padre, una madre e una sorella

che mi amano incondizionatamente, e questa è per me una delle più grandi fortune.

A Felicia, Filippa e Chad perchè mi donano ogni giorno nuove prospettive da cui osservare

il mondo.

Al mio fidanzato a cui non riservo solo un ringraziamento, ma la promessa di ringraziarlo

tutti i giorni della mia vita.

E, infine, a mio padre, mia madre e mio fratello. Sono le fondamenta del mio essere e

non ho parole per esprimere loro il mio amore, ma so che il miglior modo per ringraziarli,

dovunque il futuro mi porterà, sarà quello di essere felice.

References

1. Directive 99/93/CEE. http://eur-lex.europa.eu/legal-content/EN/ALL/

;jsessionid=TCsMT1yBQ965GRJTMG9GnFDxQqYP1W7Y1LFLLkwsmjvWRy1Q15FJ!

527097711?uri=CELEX:31999L0093.

2. Twitter. https://dev.twitter.com/docs, 2012.

3. Method and apparatus for monitoring movements of an individual. http://www.

google.com/patents/US6049281, 2014.

4. OpenCV Website. http://opencv.org/, 2014.

5. RFID Adaptor Board Website. http://beagleboard.org/project/RFIDADP/, 2014.

6. Android Developers. https://developer.android.com/index.html, 2015.

7. Android Internal Storage. https://developer.android.com/guide/topics/data/

data-storage.html#filesInternal, 2015.

8. Twitter authentication. https://support.twitter.com/articles/20171580, 2015.

9. Twitter.com API Documentation. https://dev.twitter.com/overview/

documentation, 2015.

10. bitShark. https://play.google.com/store/apps/details?id=blake.hamilton.

bitshark, 2016.

11. Common Criteria. http://www.commoncriteriaportal.org/cc/, 2016.

12. DroidWall. https://code.google.com/p/droidwall/, 2016.

13. EIDAS. http://eur-lex.europa.eu/legal-content/IT/TXT/PDF/?uri=CELEX:

32014R0910&from=DE, 2016.

14. Facebook Graph API Documentation. https://developers.facebook.com/docs/

graph-api, 2016.

15. Firewall analyzer. https://www.manageengine.com/products/firewall/

employee-internet-monitoring.html, 2016.

16. Firewall pk+. https://play.google.com/store/apps/details?id=com.ikramshah.

firewallpk, 2016.

17. Mobile security and antivirus. https://play.google.com/store/apps/details?id=

com.avast.android.mobilesecurity, 2016.

18. Network Log. https://play.google.com/store/apps/details?id=com.googlecode.

networklog, 2016.

208 References

19. On Electronic Identification and Trust Services for Electronic Transactions in the In-

ternal Market and Repealing Directive 1999/93/EC. http://eur-lex.europa.eu/

legal-content/EN/TXT/?uri=uriserv:OJ.L_.2014.257.01.0073.01.ENG, 2016.

20. Security SSL. http://developer.android.com/training/articles/security-ssl.

html#Concepts, 2016.

21. Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael K Reiter, and Jay J

Wylie. Fault-scalable byzantine fault-tolerant services. In ACM SIGOPS Operating Sys-

tems Review, volume 39, pages 59–74. ACM, 2005.

22. O. Abul, F. Bonchi, and M. Nanni. Never walk alone: Uncertainty for anonymity in

moving objects databases. In Data Engineering, 2008. ICDE 2008. IEEE 24th International

Conference on, pages 376–385. Ieee, 2008.

23. O. Abul, F. Bonchi, and M. Nanni. Anonymization of moving objects databases by clus-

tering and perturbation. Information Systems, 35(8):884–910, 2010.

24. Berker Agir, Thanasis G Papaioannou, Rammohan Narendula, Karl Aberer, and Jean-

Pierre Hubaux. User-side adaptive protection of location privacy in participatory sens-

ing. Geoinformatica, 18(1):165–191, 2014.

25. Nadeem Akhtar. Social network analysis tools. In Communication Systems and Net-

work Technologies (CSNT), 2014 Fourth International Conference on, pages 388–392. IEEE,

2014.

26. ALFAA. Assisted living facilities association of america. An overview of the assisted living

industry, 1993.

27. Giuseppe Ateniese, Carlo Blundo, Alfrede De Santis, and Douglas R Stinson. Construc-

tions and bounds for visual cryptography. In Automata, Languages and Programming,

pages 416–428. Springer, 1996.

28. Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,

Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling

blockchain innovations with pegged sidechains. URL: http://www. opensciencereview.

com/papers/123/enablingblockchain-innovations-with-pegged-sidechains, 2014.

29. F. Bai and A. Helmy. A survey of mobility models. Wireless Adhoc Networks. University

of Southern California, USA, 206, 2004.

30. Jöran Beel and Bela Gipp. Enhancing search applications by utilizing mind maps. In

Proceedings of the 21st ACM Conference on Hypertext and Hypermedia, pages 303–304.

ACM, 2010.

31. István Zsolt Berta, Levente Buttyán, and István Vajda. Mitigating the untrusted terminal

problem using conditional signatures. In Information Technology: Coding and Computing,

2004. Proceedings. ITCC 2004. International Conference on, volume 1, pages 12–16. IEEE,

2004.

32. Angela Bohn, Christian Buchta, Kurt Hornik, and Patrick Mair. Making friends and

communicating on facebook: Implications for the access to social capital. Social Net-

works, 37:29–41, 2014.

33. Booking.com. The Booking Site. http://www.booking.com/, 2015.

References 209

34. Tuhin Borgohain, Uday Kumar, and Sugata Sanyal. Survey of security and privacy issues

of internet of things. arXiv preprint arXiv:1501.02211, 2015.

35. Janez Brank, Marko Grobelnik, and Dunja Mladenić. A survey of ontology evaluation

techniques. In In Proceedings of the Conference on Data Mining and Data Warehouses

(SiKDD 2005), 2005.

36. Francesco Buccafurri, Gianluca Caminiti, and Gianluca Lax. Fortifying the dalì attack

on digital signature. In Proceedings of the 2nd International Conference on Security of

Information and Networks, pages 278–287. ACM, 2009.

37. Francesco Buccafurri, Vincenzo Daniele Foti, Gianluca Lax, Antonino Nocera, and

Domenico Ursino. Bridge analysis in a social internetworking scenario. Information

Sciences, 224:1–18, 2013.

38. Francesco Buccafurri, Lidia Fotia, Gianluca Lax, Serena Nicolazzo, and Antonino No-

cera. A lightweight electronic signature scheme using Twitter. In Proc. of the Italian

Symposium on Advanced Database Systems (SEBD 2015), pages 160–167, Gaeta, IT, 2015.

39. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. A Sys-

tem for Privacy-Preserving Access Accountability in Critical Environments. Journal of

Pervasive and Mobile Computing. Currently under Revision.

40. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. A Model to

Support Multi-Social-Network Applications. In Proc. of the International Conference On-

tologies, DataBases, and Applications of Semantics (ODBASE 2014), pages 639–656, Aman-

tea, Italy, 2014. Springer.

41. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. A Privacy-

Preserving Solution for Tracking People in Critical Environments. In Proc. of the Interna-

tional Workshop on Computers, Software & Applications (COMPSAC’14), pages 146–151,

Västerȧs, Sweden, 2014. IEEE Computer Society.

42. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. Fortify-

ing tripadvisor against reputation-system attacks. In Internet Security (WorldCIS), 2014

World Congress on, pages 20–21. IEEE, 2014.

43. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. Generat-

ing K-Anonymous Logs of People-Tracing Systems in Surveilled Environments. In Atti

del Ventiduesimo Convegno Nazionale su Sistemi Evoluti per Basi di Dati (SEBD’14), pages

37–44, Sorrento Coast, Italy, 2014.

44. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. A Model

Implementing Certified Reputation and its Application to TripAdvisor. In Proc. of the

International Conference on Availability, Reliability and Security (ARES 2015), pages 218–

223, Touluse, France, 2015. IEEE.

45. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera.

Accountability-Preserving Anonymous Delivery of Cloud Services. In Proc. of the Inter-

national Conference on Trust, Privacy and Security in Digital Business (TRUSTBUS 2015),

pages 124–135. Springer, 2015.

210 References

46. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. Compar-

ing twitter and facebook user behavior: privacy and other aspects. Computers in Human

Behavior, 52:87–95, 2015.

47. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. A Middle-

ware to Allow Fine-Grained Access Control of Twitter Applications. In Proc. of the in-

ternational conference on mobile, secure and programmable networking (MSPN 2016), pages

168–182, Paris, France, 2016. Springer.

48. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. A Privacy-

Preserving Localization Service for Assisted Living Facilities. IEEE Transaction on Service

Computing, 2016. In Press.

49. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. A threat

to friendship privacy in Facebook. In Proc. of the International Cross Domain Conference

and Workshop (CD-ARES 2016), pages 96–105, Salzburg, Austria, 2016. Springer.

50. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. Complete-

ness, Correctness and Freshness of Cloud-Managed Data Streams. In Proc. of the Italian

Symposium on Advanced Database Systems (SEBD 2016), pages 134–141, Lecce, IT, 2016.

51. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. Inter-

est Assortativity in Twitter. In Proc. of the International Conference on Web Informa-

tion Systems and Technologies (Webist 16)), volume 1, pages 239–246, Rome, Italy, 2016.

SCITEPRESS.

52. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. A model to

support design and development of multiple-social-network applications. Information

Sciences, 331:99–119, 2016.

53. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. Range

Query Integrity in Cloud Data Streams with Efficient Insertion. In Proc. of the 15th

International Conference on Cryptology and Network Security (CANS 2016), pages 719–

724, Milan, Italy, 2016. Springer.

54. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. Range

Query Integrity in the Cloud: the Case of Video Surveillance. In Proc. of the International

Conference for Internet Technology and Secured Transactions (ICITST-2016), Barcelona,

Spain, 2016. IEEE.

55. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. Range

Query Integrity in Cloud Data Streams with Efficient Insertion. In Proc. of the 1st Italian

Conference on Cybersecurity (ItaSec2017), Venice, Italy, 2017.

56. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera.

Tweetchain: An alternative to blockchain using Twitter. In Proc. of the International Con-

ference on ICT Systems Security and Privacy Protection (IFIP SEC 2017), Rome, Italy, 2017.

Submitted for publication.

57. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera. Using

Twitter for Consensus: Tweetchain as Alternative to Blockchain. In Proc. of the Inter-

national Conference on Web Engineering (ICWE 2017)), Rome, Italy, 2017. Submitted for

publication.

References 211

58. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, Antonino Nocera, Luca Console,

and Assunta Matassa. Twitter Interest Assortativity and its Application to Privacy and

the Internet of Things. International Journal of Human-Computer Studies. Currently Un-

der Revision.

59. Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, Antonino Nocera, and Lidia Fo-

tia. A new approach for electronic signature. In Proc. of the International Conference on

Information Systems Security and Privacy (ICISSP 16)), pages 440–447, Rome, Italy, 2016.

SCITEPRESS.

60. Francesco Buccafurri, Gianluca Lax, and Antonino Nocera. A new form of assortativity

in online social networks. International Journal of Human-Computer Studies, 80:56–65,

2015.

61. Francesco Buccafurri, Gianluca Lax, Antonino Nocera, and Domenico Ursino. Discov-

ering links among social networks. In Machine Learning and Knowledge Discovery in

Databases, pages 467–482. Springer, 2012.

62. Francesco Buccafurri, Gianluca Lax, Antonino Nocera, and Domenico Ursino. Moving

from social networks to social internetworking scenarios: The crawling perspective. In-

formation Sciences, 256:126–137, 2014.

63. Francesco Buccafurri, Gianluca Lax, Antonino Nocera, and Domenico Ursino. Discover-

ing missing me edges across social networks. Information Sciences, 319:18–37, 2015.

64. Francesco Buccafurri, Gianluca Lax, Antonino Nocera, and Domenico Ursino. A system

for extracting structural information from social network accounts. Software: Practice

and Experience, 45(9):1251–1275, 2015.

65. Moira Burke, Cameron Marlow, and Thomas Lento. Feed me: motivating newcomer

contribution in social network sites. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 945–954. ACM, 2009.

66. William E Burr, Donna F Dodson, and William T Polk. Electronic authentication guideline.

NIST 800-63-2, 2006.

67. Carol C Burt, Barrett R Bryant, Rajeev R Raje, Andrew Olson, and Mikhail Auguston.

Model driven security: unification of authorization models for fine-grain access control.

In Enterprise Distributed Object Computing Conference, 2003. Proceedings. Seventh IEEE

International, pages 159–171. IEEE, 2003.

68. G. Caldarelli. Scale-Free Networks: Complex Webs in Nature and Technology. Number

9780199211517 in OUP Catalogue. Oxford University Press, 2007.

69. F. Carmagnola and F. Cena. User identification for cross-system personalisation. Infor-

mation Sciences, 179(1-2):16–32, 2009.

70. Luca Caviglione, Jean-Francois Lalande, Wojciech Mazurczyk, and Steffen Wendzel.

Analysis of human awareness of security and privacy threats in smart environments.

arXiv preprint arXiv:1502.00868, 2015.

71. David Chaum and Sandra Roijakkers. Unconditionally-secure digital signatures. In

Advances in Cryptology-CRYPT0ï£¡90, pages 206–214. Springer, 1991.

72. David Chaum and Eugène Van Heyst. Group signatures. In Advances in Cryptology–

EUROCRYPT’91, pages 257–265. Springer, 1991.

212 References

73. Xu Cheng, Cameron Dale, and Jiangchuan Liu. Statistics and social network of youtube

videos. In Quality of Service, 2008. IWQoS 2008. 16th International Workshop on, pages

229–238. IEEE, 2008.

74. Christy MK Cheung, Pui-Yee Chiu, and Matthew KO Lee. Online social networks: Why

do students use facebook? Computers in Human Behavior, 27(4):1337–1343, 2011.

75. R. Chow and P. Golle. Faking contextual data for fun, profit, and privacy. In Proceedings

of the 8th ACM workshop on Privacy in the electronic society, pages 105–108. ACM, 2009.

76. Sherman SM Chow, Yi-Jun He, Lucas CK Hui, and Siu Ming Yiu. Spice–simple privacy-

preserving identity-management for cloud environment. In Applied Cryptography and

Network Security, pages 526–543. Springer, 2012.

77. Simone Cirani, Marco Picone, Pietro Gonizzi, Luca Veltri, and Giorgio Ferrari. Iot-oas:

An oauth-based authorization service architecture for secure services in iot scenarios.

Sensors Journal, IEEE, 15(2):1224–1234, 2015.

78. Dwaine Clarke, Blaise Gassend, Thomas Kotwal, Matt Burnside, Marten Van Dijk, Srini-

vas Devadas, and Ronald Rivest. The untrusted computer problem and camera-based

authentication. In Pervasive Computing, pages 114–124. Springer, 2002.

79. Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W Hong. Freenet: A dis-

tributed anonymous information storage and retrieval system. In Designing Privacy En-

hancing Technologies, pages 46–66. Springer, 2001.

80. Mauro Conti, Vu Thien Nga Nguyen, and Bruno Crispo. Crepe: Context-related policy

enforcement for android. In Information Security, pages 331–345. Springer, 2011.

81. William Lee Croft, Wei Shi, Jorg-Rudiger Sack, and Jean-Pierre Corriveau. Geographic

partitioning techniques for the anonymization of health care data. arXiv preprint

arXiv:1505.06786, 2015.

82. Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi, and

Pierangela Samarati. Integrity for join queries in the cloud. Cloud Computing, IEEE

Transactions on, 1(2):187–200, 2013.

83. Christian Decker and Roger Wattenhofer. A fast and scalable payment network with

bitcoin duplex micropayment channels. In Symposium on Self-Stabilizing Systems, pages

3–18. Springer, 2015.

84. Peter J Denning. Fault tolerant operating systems. ACM Computing Surveys (CSUR),

8(4):359–389, 1976.

85. Premkumar Devanbu, Michael Gertz, Charles Martel, and Stuart G Stubblebine. Au-

thentic third-party data publication. In Data and Application Security, pages 101–112.

Springer, 2001.

86. Premkumar Devanbu, Michael Gertz, Charles Martel, and Stuart G Stubblebine. Au-

thentic data publication over the internet. Journal of Computer Security, 11(3):291–314,

2003.

87. Ratan Dey, Zubin Jelveh, and Keith Ross. Facebook users have become much more pri-

vate: A large-scale study. In Pervasive Computing and Communications Workshops (PER-

COM Workshops), 2012 IEEE International Conference on, pages 346–352. IEEE, 2012.

References 213

88. Claudia Diamantini, Domenico Potena, and Emanuele Storti. Semantically-supported

team building in a kdd virtual environment. In Collaboration Technologies and Systems

(CTS), 2012 International Conference on, pages 45–52. IEEE, 2012.

89. R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router.

Technical report, DTIC Document, 2004.

90. RIM Dunbar. Social cognition on the internet: testing constraints on social network size.

Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1599):2192–2201,

2012.

91. Cynthia Dwork. Differential privacy: A survey of results. In Theory and Applications of

Models of Computation, pages 1–19. Springer, 2008.

92. Catherine Dwyer, Starr Hiltz, and Katia Passerini. Trust and privacy concern within so-

cial networking sites: A comparison of facebook and myspace. AMCIS 2007 Proceedings,

page 339, 2007.

93. Nicole B Ellison, Charles Steinfield, and Cliff Lampe. The benefits of facebook “friends:”

social capital and college students’ use of online social network sites. Journal of

Computer-Mediated Communication, 12(4):1143–1168, 2007.

94. William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mobile phone

application certification. In Proceedings of the 16th ACM conference on Computer and

communications security, pages 235–245. ACM, 2009.

95. P. Erdös and A. Rényi. On Random Graphs, I. Publicationes Mathematicae, 6:290–297,

1959.

96. Ittay Eyal. The miner’s dilemma. In 2015 IEEE Symposium on Security and Privacy, pages

89–103. IEEE, 2015.

97. Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. Bitcoin-ng: A

scalable blockchain protocol. In 13th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 16), pages 45–59, 2016.

98. Pietro Ferrara, Omer Tripp, and Marco Pistoia. Morphdroid: Fine-grained privacy ver-

ification. In Proceedings of the 31st Annual Computer Security Applications Conference,

pages 371–380. ACM, 2015.

99. BJ Fogg and Daisuke Iizawa. Online persuasion in facebook and mixi: A cross-cultural

comparison. In Persuasive technology, pages 35–46. Springer, 2008.

100. P.A. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of voting or

lotteries. In Financial Cryptography, pages 90–104. Springer, 2001.

101. Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster. Scandroid: Automated security

certification of android applications. Manuscript, Univ. of Maryland, http://www. cs. umd.

edu/avik/projects/scandroidascaa, 2(3), 2009.

102. Qi Gao, Fabian Abel, Geert-Jan Houben, and Yong Yu. A comparative study of usersï£¡

microblogging behavior on sina weibo and twitter. In User modeling, adaptation, and

personalization, pages 88–101. Springer, 2012.

103. Yue Gao, Meng Wang, Zheng-Jun Zha, Jialie Shen, Xuelong Li, and Xindong Wu. Visual-

textual joint relevance learning for tag-based social image search. Image Processing, IEEE

Transactions on, 22(1):363–376, 2013.

214 References

104. Poonam Garg, CK Nagpal, and Swatie Bansal. Impact of random waypoint mobility

model on hybrid routing protocols of scalable mobile ad hoc network. International

Journal of Innovative Research and Development, 2(10), 2013.

105. Mark N Gasson, Eleni Kosta, Denis Royer, Martin Meints, and Kevin Warwick. Normal-

ity mining: Privacy implications of behavioral profiles drawn from gps enabled mobile

phones. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transac-

tions on, 41(2):251–261, 2011.

106. Maíra Gatti, Paulo Cavalin, Samuel Barbosa Neto, Claudio Pinhanez, Cícero dos Santos,

Daniel Gribel, and Ana Paula Appel. Large-scale multi-agent-based modeling and sim-

ulation of microblogging-based online social network. In Multi-Agent-Based Simulation

XIV, pages 17–33. Springer, 2014.

107. G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K. Tan. Private queries in lo-

cation based services: anonymizers are not necessary. In Jason Tsong-Li Wang, editor,

SIGMOD Conference, pages 121–132. ACM, 2008.

108. G. Ghoshal, V. Zlatić, G. Caldarelli, and M. E. J. Newman. Random hypergraphs and

their applications. Physical Review E, 79(6):066118, 2009.

109. M. Gjoka, M. Kurant, C.T. Butts, and A. Markopoulou. Walking in Facebook: A case

study of unbiased sampling of OSNs. In Proc. of the International Conference on Computer

Communications (INFOCOM’10), pages 1–9, San Diego, CA, USA, 2010. IEEE.

110. Minas Gjoka, Maciej Kurant, Carter T Butts, and Athina Markopoulou. Walking in Face-

book: A case study of unbiased sampling of OSNs. In INFOCOM, 2010 Proceedings IEEE,

pages 1–9. IEEE, 2010.

111. Derek Greene and Pádraig Cunningham. Producing a unified graph representation from

multiple social network views. In Proceedings of the 5th Annual ACM Web Science Confer-

ence, pages 118–121. ACM, 2013.

112. M. Gruteser and D. Grunwald. Anonymous usage of location-based services through

spatial and temporal cloaking. In Proceedings of the 1st international conference on Mobile

systems, applications and services, pages 31–42. ACM, 2003.

113. László Gyarmati and Tuan Anh Trinh. Measuring user behavior in online social net-

works. Network, IEEE, 24(5):26–31, 2010.

114. Hakan Hacigümüş, Bala Iyer, and Sharad Mehrotra. Ensuring the integrity of encrypted

databases in the database-as-a-service model. In Data and Applications Security XVII,

pages 61–74. Springer, 2004.

115. Eszter Hargittai and Eden Litt. The tweet smell of celebrity success: Explaining varia-

tion in twitter adoption among a diverse group of young adults. New Media & Society,

13(5):824–842, 2011.

116. C. Hawes, C.D. Phillips, M. Rose, S. Holan, and M. Sherman. A national survey of as-

sisted living facilities. Gerontologist, 43(6):875–882, 2003.

117. Catherine Hawes, Charles D Phillips, Miriam Rose, et al. High service or high privacy

assisted living facilities, their residents and staff: Results from a national survey. US Depart-

ment of Health and Human Services Washington, DC, 2000.

References 215

118. Jorge L Hernandez-Ardieta, Ana I Gonzalez-Tablas, Jose M De Fuentes, and Benjamin

Ramos. A taxonomy and survey of attacks on digital signatures. computers & security,

34:67–112, 2013.

119. B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady. Enhancing security and privacy in

traffic-monitoring systems. IEEE Pervasive Computing, 5(4):38–46, 2006.

120. Jun Hong, Tao Wen, Quan Gu, and Gang Sheng. Query integrity verification based-on

mac chain in cloud storage. In Computer and Information Science (ICIS), 2014 IEEE/ACIS

13th International Conference on, pages 125–129. IEEE, 2014.

121. Jeff Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4, 2006.

122. David John Hughes, Moss Rowe, Mark Batey, and Andrew Lee. A tale of two sites:

Twitter vs. facebook and the personality predictors of social media usage. Computers in

Human Behavior, 28(2):561–569, 2012.

123. T.D. Huynh, N. Jennings, and N. Shadbolt. Fire: An integrated trust and reputation

model for open multi-agent systems. In ECAI 2004: 16th European Conference on Artificial

Intelligence, August 22-27, 2004, Valencia, Spain: Including Prestigious Applicants [sic] of

Intelligent Systems (PAIS 2004): Proceedings, volume 110, page 18. Ios PressInc, 2004.

124. T.D. Huynh, N.R. Jennings, and N.R. Shadbolt. Certified reputation: how an agent can

trust a stranger. In Proceedings of the fifth international joint conference on Autonomous

agents and multiagent systems, pages 1217–1224. ACM, 2006.

125. Trung Dong Huynh, Nicholas R Jennings, and Nigel R Shadbolt. Certified reputation:

how an agent can trust a stranger. In Proceedings of the fifth international joint conference

on Autonomous agents and multiagent systems, pages 1217–1224. ACM, 2006.

126. Trung Dong Huynh, Nicholas R Jennings, and Nigel R Shadbolt. An integrated trust and

reputation model for open multi-agent systems. Autonomous Agents and Multi-Agent

Systems, 13(2):119–154, 2006.

127. Ren-Hung Hwang and Fu-Hui Huang. Socialcloaking: A distributed architecture for k-

anonymity location privacy protection. In Computing, Networking and Communications

(ICNC), 2014 International Conference on, pages 247–251. IEEE, 2014.

128. T. Iofciu, P. Fankhauser, F. Abel, and K. Bischoff. Identifying users across social tagging

systems. In Proc. of the International Conference on Weblogs and Social Media (ICWSM’11),

Barcelona, Catalonia, Spain, 2011. The AAAI Press.

129. Paul Jaccard. Etude comparative de la distribution florale dans une portion des Alpes et du

Jura. Impr. Corbaz, 1901.

130. Akshay Java, Xiaodan Song, Tim Finin, and Belle Tseng. Why we twitter: understanding

microblogging usage and communities. In Proceedings of the 9th WebKDD and 1st SNA-

KDD 2007 workshop on Web mining and social network analysis, pages 56–65. ACM, 2007.

131. Saeed Javanmardi, Mohammad Shojafar, Shahdad Shariatmadari, and Sima S Ahrabi.

Fr trust: a fuzzy reputation–based model for trust management in semantic p2p grids.

International Journal of Grid and Utility Computing, 6(1):57–66, 2015.

132. Long Jin, Yang Chen, Tianyi Wang, Pan Hui, and Athanasios V Vasilakos. Understand-

ing user behavior in online social networks: A survey. IEEE Communications Magazine,

51(9):144–150, 2013.

216 References

133. A. Juels. Rfid security and privacy: A research survey. Selected Areas in Communications,

IEEE Journal on, 24(2):381–394, 2006.

134. Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In Proceed-

ings of the 14th ACM conference on Computer and communications security, pages 584–597.

Acm, 2007.

135. P. Kalnis, G. Ghinita, K. Mouratidis, and D. Papadias. Preventing location-based iden-

tity inference in anonymous spatial queries. IEEE Trans. on Knowl. and Data Eng.,

19(12):1719–1733, 2007.

136. H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. Random-data perturbation tech-

niques and privacy-preserving data mining. Knowl. Inf. Syst., 7(4):387–414, 2005.

137. G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning:

applications in VLSI domain. Very Large Scale Integration (VLSI) Systems, IEEE Transac-

tions on, 7(1):69–79, 1999.

138. Kate Keahey. Fine-grain authorization for resource management in the grid environ-

ment. In Grid ComputingÃćÂĂÂŤGRID 2002, pages 199–206. Springer, 2002.

139. S.M. Khan and K.W. Hamlen. Anonymouscloud: A data ownership privacy provider

framework in cloud computing. 2012.

140. Yong-Ki Kim, Amina Hossain, Al-Amin Hossain, and Jae-Woo Chang. Hilbert-order

based spatial cloaking algorithm in road network. Concurrency and Computation: Practice

and Experience, 25(1):143–158, 2013.

141. Jon M Kleinberg. Navigation in a small world. Nature, 406(6798):845–845, 2000.

142. N. Korula and S. Lattanzi. An efficient reconciliation algorithm for social networks. In

Proc. of the International Conference on Very Large Data Bases (VLDB’14), pages 377–388,

Hangzhou, Cina, 2014. VLDB Endowment.

143. Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papamanthou.

Hawk: The blockchain model of cryptography and privacy-preserving smart contracts.

University of Maryland and Cornell University, 2015.

144. Kalliopi Kravari, Christos Malliarakis, and Nick Bassiliades. T-rex: A hybrid agent trust

model based on witness reputation and personal experience. In E-Commerce and Web

Technologies, pages 107–118. Springer, 2010.

145. Balachander Krishnamurthy. A measure of online social networks. In Communication

Systems and Networks and Workshops, 2009. COMSNETS 2009. First International, pages

1–10. IEEE, 2009.

146. J. Krumm. Inference attacks on location tracks. In International Conference Pervasive

on Pervasive Computing, Lecture Notes in Computer Science, pages 127–143. Springer,

2007.

147. Wei-Shinn Ku, Ling Hu, Cyrus Shahabi, and Haixun Wang. A query integrity assurance

scheme for accessing outsourced spatial databases. Geoinformatica, 17(1):97–124, 2013.

148. Hendrik Kuijs, Carina Rosencrantz, and Christoph Reich. A context-aware, intelligent

and flexible ambient assisted living platform architecture. Cloud Computing, 2015.

149. Mariantonietta La Polla, Fabio Martinelli, and Daniele Sgandurra. A survey on security

for mobile devices. Communications Surveys & Tutorials, IEEE, 15(1):446–471, 2013.

References 217

150. Risto Laurikainen. Secure and anonymous communication in the cloud. Aalto University

School of Science and Technology, Department of Computer Science and Engineering, Tech.

Rep. TKK-CSE-B10, 2010.

151. Gianluca Lax, Francesco Buccafurri, and Gianluca Caminiti. Digital document signing:

Vulnerabilities and solutions. Information Security Journal: A Global Perspective, 2015.

152. Byoungcheon Lee and Kwangjo Kim. Fair exchange of digital signatures using condi-

tional signature. In Symposium on Cryptography and Information Security, pages 179–184,

2002.

153. R. T. Leenders. Modeling social influence through network autocorrelation: constructing

the weight matrix. Social Networks, 24(1):21–47, 2002.

154. EA Leicht, Petter Holme, and Mark EJ Newman. Vertex similarity in networks. Physical

Review E, 73(2):026120, 2006.

155. J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani. Kronecker

graphs: An approach to modeling networks. The Journal of Machine Learning Research,

11:985–1042, 2010.

156. Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The dynamics of viral mar-

keting. ACM Transactions on the Web (TWEB), 1(1):5, 2007.

157. Yoad Lewenberg, Yoram Bachrach, Yonatan Sompolinsky, Aviv Zohar, and Jeffrey S

Rosenschein. Bitcoin mining pools: A cooperative game theoretic analysis. In Proceed-

ings of the 2015 International Conference on Autonomous Agents and Multiagent Systems,

pages 919–927. International Foundation for Autonomous Agents and Multiagent Sys-

tems, 2015.

158. Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain protocols.

In International Conference on Financial Cryptography and Data Security, pages 528–547.

Springer, 2015.

159. Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Dynamic au-

thenticated index structures for outsourced databases. In Proceedings of the 2006 ACM

SIGMOD international conference on Management of data, pages 121–132. ACM, 2006.

160. Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Authenticated

index structures for aggregation queries. ACM Transactions on Information and System

Security (TISSEC), 13(4):32, 2010.

161. Jin Li, Xiaofeng Chen, Jingwei Li, Chunfu Jia, Jianfeng Ma, and Wenjing Lou. Fine-

grained access control system based on outsourced attribute-based encryption. In Com-

puter Security–ESORICS 2013, pages 592–609. Springer, 2013.

162. Seung-Hwan Lim, Sang-Wook Kim, Sunju Park, and Joon Ho Lee. Determining content

power users in a blog network: an approach and its applications. Systems, Man and

Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 41(5):853–862, 2011.

163. X. Lin, R. Lu, D. Kwan, and X.S. Shen. REACT: An RFID-based privacy-preserving chil-

dren tracking scheme for large amusement parks. Computer Networks, 54(15):2744–

2755, 2010.

164. L. Lovász. Random walks on graphs: A survey. Combinatorics, Paul Erdos is Eighty,

2(1):1–46, 1993.

218 References

165. Adolfo Lozano-Tello and Asunción Gómez-Pérez. Ontometric: A method to choose the

appropriate ontology. Journal of Database Management, 2(15):1–18, 2004.

166. L. Lü and T. Zhou. Link Prediction in Complex Networks: A Survey. Physica A: Statistical

Mechanics and its Applications, 390(6):1150–1170, 2011.

167. Marcelo Maia, Jussara Almeida, and Virgílio Almeida. Identifying user behavior in on-

line social networks. In Proceedings of the 1st workshop on Social network systems, pages

1–6. ACM, 2008.

168. Bradley A Malin, Khaled El Emam, and Christine M O’Keefe. Biomedical data privacy:

problems, perspectives, and recent advances. Journal of the American Medical Informatics

Association, 20(1):2–6, 2013.

169. Lukas Malina and Jan Hajny. Efficient security solution for privacy-preserving cloud

services. In Telecommunications and Signal Processing (TSP), 2013 36th International Con-

ference on, pages 23–27. IEEE, 2013.

170. Tsutomu Matsumoto. Human–computer cryptography: An attempt. Journal of Computer

Security, 6(3):129–149, 1998.

171. Ashish K Maurya, Dinesh Singh, Ajeet Kumar, and Ritesh Maurya. Random waypoint

mobility model based performance estimation of on-demand routing protocols in manet

for cbr applications. In Computing for Sustainable Global Development (INDIACom), 2014

International Conference on, pages 835–839. IEEE, 2014.

172. Roy Maxion, Kymie Tan, et al. Benchmarking anomaly-based detection systems. In

Dependable Systems and Networks, 2000. DSN 2000. Proceedings International Conference

on, pages 623–630. IEEE, 2000.

173. A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone. Handbook of applied cryptography.

CRC, 1997.

174. Ralph C Merkle. A certified digital signature. In Advances in CryptologyâĂŤCRYP-

TOâĂŹ89 Proceedings, pages 218–238. Springer, 1989.

175. P. Mika. Ontologies are us: A unified model of social networks and semantics. In The

Semantic Web–ISWC 2005, pages 522–536. Springer, 2005.

176. Miranda Mowbray and Siani Pearson. A client-based privacy manager for cloud comput-

ing. In Proceedings of the fourth international ICST conference on COMmunication system

softWAre and middlewaRE, page 5. ACM, 2009.

177. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

178. Moni Naor and Benny Pinkas. Visual authentication and identification. In Advances in

Cryptologyï£¡CRYPTO’97, pages 322–336. Springer, 1997.

179. Maithili Narasimha and Gene Tsudik. Dsac: integrity for outsourced databases with sig-

nature aggregation and chaining. In Proceedings of the 14th ACM international conference

on Information and knowledge management, pages 235–236. ACM, 2005.

180. A. Narayanan and V. Shmatikov. De-anonymizing social networks. In Proc. of the Inter-

national IEEE Symposium on Security and Privacy, pages 173–187, Oakland, California,

USA, 2009. IEEE Computer Society.

181. Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: extending android per-

mission model and enforcement with user-defined runtime constraints. In Proceedings

References 219

of the 5th ACM Symposium on Information, Computer and Communications Security, pages

328–332. ACM, 2010.

182. M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Random graph models of social net-

works. Proceedings of the National Academy of Sciences, 99(suppl 1):2566–2572, 2002.

183. Mark EJ Newman. Assortative mixing in networks. Physical review letters, 89(20):208701,

2002.

184. Muhammad Saqib Niaz and Gunter Saake. Merkle hash tree based techniques for data

integrity of outsourced data. In GvD, pages 66–71, 2015.

185. Ben Niu, Qinghua Li, Xiaoyan Zhu, Guohong Cao, and Hui Li. Achieving k-anonymity

in privacy-aware location-based services. In Proc. IEEE INFOCOM, 2014.

186. S. Noor and K. Martinez. Using social data as context for making recommendations: an

ontology based approach. In Proceedings of the 1st Workshop on Context, Information and

Ontologies, page 7. ACM, 2009.

187. Jane E Nordholt, Richard John Hughes, Jane Marie Riese, Christine Marie Ahrens,

Charles Glen Peterson, and James William Harrington. Scalable software architec-

ture for quantum cryptographic key management, August 16 2013. US Patent App.

14/423,551.

188. Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel. Seman-

tically rich application-centric security in android. Security and Communication Net-

works, 5(6):658–673, 2012.

189. Y. Ouyang, Y. Xu, Z. Le, G. Chen, and F. Makedon. Providing location privacy in assisted

living environments. In PETRA ’08: Proceedings of the 1st international conference on

PErvasive Technologies Related to Assistive Environments, pages 1–8, New York, NY, USA,

2008. ACM.

190. Elliot T Panek, Yioryos Nardis, and Sara Konrath. Mirror or megaphone?: How relation-

ships between narcissism and social networking site use differ on facebook and twitter.

Computers in Human Behavior, 29(5):2004–2012, 2013.

191. HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan. Verifying com-

pleteness of relational query results in data publishing. In Proceedings of the 2005 ACM

SIGMOD international conference on Management of data, pages 407–418. ACM, 2005.

192. George Papadakis, Konstantinos Tserpes, Emmanuel Sardis, Magdalini Kardara,

Athanasios Papaoikonomou, and Fotis Aisopos. Social media meta-api: leveraging the

content of social networks. In Proceedings of the 21st international conference companion

on World Wide Web, pages 271–274. ACM, 2012.

193. Tiffany A Pempek, Yevdokiya A Yermolayeva, and Sandra L Calvert. College students’

social networking experiences on facebook. Journal of Applied Developmental Psychology,

30(3):227–238, 2009.

194. Min Peng, ZhengQuan Xu, ShaoMing Pan, Rui Li, and Tengyue Mao. Agenttms: A mas

trust model based on agent social relationship. Journal of computers, 7(6):1535–1542,

2012.

195. Joseph Poon and Thaddeus Dryja. The bitcoin lightning network, 2015.

220 References

196. Robert Porzel and Rainer Malaka. A task-based approach for ontology evaluation. In

ECAI Workshop on Ontology Learning and Population, Valencia, Spain. Citeseer, 2004.

197. Tal Rabin. Robust sharing of secrets when the dealer is honest or cheating. Journal of the

ACM (JACM), 41(6):1089–1109, 1994.

198. Parisa Rashidi and Alex Mihailidis. A survey on ambient-assisted living tools for older

adults. IEEE journal of biomedical and health informatics, 17(3):579–590, 2013.

199. Erzsébet Ravasz, Anna Lisa Somera, Dale A Mongru, Zoltán N Oltvai, and A-L

Barabási. Hierarchical organization of modularity in metabolic networks. science,

297(5586):1551–1555, 2002.

200. Mohamed Amine Riahla, Karim Tamine, and Philippe Gaborit. A protocol for file shar-

ing, anonymous and confidential, adapted to p2p networks. In Sciences of Electronics,

Technologies of Information and Telecommunications (SETIT), 2012 6th International Con-

ference on, pages 549–557. IEEE, 2012.

201. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and

public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

202. Pablo Rodriguez. Web Infrastructure for the 21st Century. In 18th International World

Wide Web Conference, April 2009.

203. Larry D Rosen, K Whaling, S Rab, L Mark Carrier, and Nancy A Cheever. Is facebook cre-

ating disorders? the link between clinical symptoms of psychiatric disorders and tech-

nology use, attitudes and anxiety. Computers in Human Behavior, 29(3):1243–1254, 2013.

204. Brian Lee Yung Rowe. Using social network graph analysis for interest detection. arXiv

preprint arXiv:1410.0316, 2014.

205. Sushmita Ruj, Milos Stojmenovic, and Amiya Nayak. Decentralized access control with

anonymous authentication of data stored in clouds. Parallel and Distributed Systems,

IEEE Transactions on, 25(2):384–394, 2014.

206. Jordi Sabater and Carles Sierra. Reputation and social network analysis in multi-agent

systems. In Proceedings of the first international joint conference on Autonomous agents and

multiagent systems: part 1, pages 475–482. ACM, 2002.

207. Gerard Salton and Michael J McGill. Introduction to modern information retrieval.

1986.

208. Pierangela Samarati. Protecting respondents identities in microdata release. Knowledge

and Data Engineering, IEEE Transactions on, 13(6):1010–1027, 2001.

209. Pierangela Samarati. Data security and privacy in the cloud. In ISPEC, pages 28–41.

Springer, 2014.

210. Joshua Schiffman, Xinwen Zhang, and Simon Gibbs. Dauth: Fine-grained authorization

delegation for distributed web application consumers. In Policies for Distributed Systems

and Networks (POLICY), 2010 IEEE International Symposium on, pages 95–102. IEEE,

2010.

211. Fred B Schneider. Implementing fault-tolerant services using the state machine ap-

proach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

212. Aamir Shahzad, Malrey Lee, Young-Keun Lee, Suntae Kim, Naixue Xiong, Jae-Young

Choi, and Younghwa Cho. Real time modbus transmissions and cryptography security

References 221

designs and enhancements of protocol sensitive information. Symmetry, 7(3):1176–1210,

2015.

213. Mohamed Shehab, Said Marouf, and Christopher Hudel. Roauth: recommendation

based open authorization. In Proceedings of the Seventh Symposium on Usable Privacy

and Security, page 11. ACM, 2011.

214. Jianqiang Shen, Oliver Brdiczka, and Yiye Ruan. A comparison study of user behavior

on facebook and gmail. Computers in Human Behavior, 29(6):2650–2655, 2013.

215. Lal Vikram Singh, Amol V Bole, and Shailesh Kumar Yadav. Security issues of cloud

computing-a survey. 2015.

216. Yonatan Sompolinsky and Aviv Zohar. Accelerating bitcoin’s transaction processing. fast

money grows on trees, not chains. IACR Cryptology ePrint Archive, 2013:881, 2013.

217. Joo-Han Song, Vincent W. S. Wong, and Victor C. M. Leung. Wireless location privacy

protection in vehicular ad-hoc networks. Mobile Networks and Applications, 15:160 – 171,

2010.

218. Thorvald Sørensen. {A method of establishing groups of equal amplitude in plant soci-

ology based on similarity of species and its application to analyses of the vegetation on

Danish commons}. Biol. Skr., 5:1–34, 1948.

219. L. Specia and E. Motta. Integrating folksonomies with the semantic web. In The semantic

web: research and applications, pages 624–639. Springer, 2007.

220. Jessica Staddon, David Huffaker, Larkin Brown, and Aaron Sedley. Are privacy con-

cerns a turn-off?: engagement and privacy in social networks. In Proceedings of the eighth

symposium on usable privacy and security, page 10. ACM, 2012.

221. Brian Stanford-Smith and Paul T Kidd. E-business: key issues, applications and technolo-

gies. IOS press, 2000.

222. Statista. The statistics portal. http://www.statista.com/statistics, 2015.

223. A. Stewart, E. Diaz-Aviles, W. Nejdl, L. B. Marinho, A. Nanopoulos, and L. Schmidt-

Thieme. Cross-tagging for personalized open social networking. In Proceedings of the

20th ACM conference on Hypertext and hypermedia, pages 271–278. ACM, 2009.

224. A. Stubblefield, J. Ioannidis, and A. D. Rubin. A key recovery attack on the 802.11b

wired equivalent privacy protocol (wep). ACM Trans. Inf. Syst. Secur., 7(2):319–332,

2004.

225. D. Stutzback, R. Rejaie, N. Duffield, S. Sen, and W. Willinger. On unbiased sampling for

unstructured peer-to-peer networks. In Proc. of the International Conference on Internet

Measurements, pages 27–40, Rio De Janeiro, Brasil, 2006. ACM.

226. Shital S Suryawanshi and Vinod S Wadne. Securing health care data in collaborative

data publishing using mapreduce framework. 2015.

227. WT Luke Teacy, Jigar Patel, Nicholas R Jennings, and Michael Luck. Travos: Trust and

reputation in the context of inaccurate information sources. Autonomous Agents and

Multi-Agent Systems, 12(2):183–198, 2006.

228. Jaime Teevan, Daniel Ramage, and Merredith Ringel Morris. # twittersearch: a compar-

ison of microblog search and web search. In Proceedings of the fourth ACM international

conference on Web search and data mining, pages 35–44. ACM, 2011.

222 References

229. TheGuardian. Italy fines TripAdvisor e500,000 over false reviews. http://www.

theguardian.com/travel/2014/dec/23/ italy-fines-tripadvisor-500000, 2014.

230. R. Trujillo-Rasua and J. Domingo-Ferrer. On the privacy offered by (k, δ)-anonymity.

Information Systems, 38(4):491–494, 2013.

231. Rolando Trujillo-Rasua and Agusti Solanas. Efficient probabilistic communication pro-

tocol for the private identification of rfid tags by means of collaborative readers. Com-

puter Networks, 55(15):3211–3223, 2011.

232. Sebastián Valenzuela, Namsu Park, and Kerk F Kee. Is there social capital in a social net-

work site?: Facebook use and college students’ life satisfaction, trust, and participation1.

Journal of Computer-Mediated Communication, 14(4):875–901, 2009.

233. Katrien Van Cleemput. Friendship type, clique formation and the everyday use of com-

munication technologies in a peer group: A social network analysis. Information, Com-

munication & Society, 15(8):1258–1277, 2012.

234. A. Vilamovska, E. Hatziandreu, H. R. Schindler, C. Van Oranje-Nassau, H. De Vries, and

J. Krapels. Study on the requirements and options for rfid application in healthcare.

2009.

235. J. Vosecky, D. Hong, and V.Y. Shen. User identification across multiple social networks.

In Proc. of the International Conference on Networked Digital Technologies (NDT’09), pages

360–365, Ostrava, the Czech Republic, 2009. IEEE Press.

236. Cong Wang, Qian Wang, Kui Ren, Ning Cao, and Wenjing Lou. Toward secure and

dependable storage services in cloud computing. Services Computing, IEEE Transactions

on, 5(2):220–232, 2012.

237. Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving public auditing

for data storage security in cloud computing. In INFOCOM, 2010 Proceedings IEEE,

pages 1–9. Ieee, 2010.

238. Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Enabling public auditability

and data dynamics for storage security in cloud computing. Parallel and Distributed

Systems, IEEE Transactions on, 22(5):847–859, 2011.

239. X. Wang, F. Wei, X. Liu, M. Zhou, and M. Zhang. Topic sentiment analysis in twit-

ter: a graph-based hashtag sentiment classification approach. In Proceedings of the 20th

ACM international conference on Information and knowledge management, pages 1031–

1040. ACM, 2011.

240. Yongjin Wang and Konstantinos N Plataniotis. An analysis of random projection for

changeable and privacy-preserving biometric verification. Systems, Man, and Cybernetics,

Part B: Cybernetics, IEEE Transactions on, 40(5):1280–1293, 2010.

241. Duncan J Watts, Jonah Peretti, and Michael Frumin. Viral marketing for the real world.

Harvard Business School Pub., 2007.

242. Debra Aho Williamson. Social network marketing: Ad spending and usage. Social Net-

work Marketing, Report by Debra Aho Williamson, 2007.

243. Christo Wilson, Bryce Boe, Alessandra Sala, Krishna PN Puttaswamy, and Ben Y Zhao.

User interactions in social networks and their implications. In Proceedings of the 4th ACM

European conference on Computer systems, pages 205–218. Acm, 2009.

References 223

244. Min Xie, Haixun Wang, Jian Yin, and Xiaofeng Meng. Integrity auditing of outsourced

data. In Proceedings of the 33rd international conference on Very large data bases, pages

782–793. VLDB Endowment, 2007.

245. Zhiyong Xu, Rui Min, and Yiming Hu. Hieras: a dht based hierarchical p2p routing

algorithm. In Parallel Processing, 2003. Proceedings. 2003 International Conference on,

pages 187–194. IEEE, 2003.

246. Ziwei Yang, Shen Gao, Jianliang Xu, and Byron Choi. Authentication of range query

results in mapreduce environments. In Proceedings of the third international workshop on

Cloud data management, pages 25–32. ACM, 2011.

247. S. Ye, J. Lang, and F. Wu. Crawling online social graphs. In Proc. of the International

Asia-Pacific Web Conference (APWeb’10), pages 236–242, Busan, Korea, 2010. IEEE.

248. R. Zafarani and H. Liu. Connecting corresponding identities across communities. In

Proc. of the International Conference on Weblogs and Social Media (ICWSM’09), San Jose,

CA, USA, 2009. The AAAI Press.

249. Degan Zhang, Xiang Wang, Xiaodong Song, and Dexin Zhao. A novel approach to

mapped correlation of id for rfid anti-collision. Services Computing, IEEE Transactions

on, 7(4):741–748, 2014.

250. Z. Zhang and C. Liu. A hypergraph model of social tagging networks. Journal of Statis-

tical Mechanics: Theory and Experiment, 2010(10):P10005, 2010.

251. Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing He, Ee-Peng Lim, Hongfei Yan, and

Xiaoming Li. Comparing twitter and traditional media using topic models. In Advances

in Information Retrieval, pages 338–349. Springer, 2011.

252. Bu Zhong, Marie Hardin, and Tao Sun. Less effortful thinking leads to more social

networking? the associations between the use of social network sites and personality

traits. Computers in Human Behavior, 27(3):1265–1271, 2011.

253. Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local infor-

mation. The European Physical Journal B, 71(4):623–630, 2009.

254. Sheryl Zimmerman. Assisted living: Needs, practices, and policies in residential care for the

elderly. JHU Press, 2001.

255. Lili Nemec Zlatolas, Tatjana Welzer, Marjan Heričko, and Marko Hölbl. Privacy an-

tecedents for sns self-disclosure: The case of facebook. Computers in Human Behavior,

45:158–167, 2015.

256. A. Zwierko and Z. Kotulski. A light-weight e-voting system with distributed trust. Elec-

tronic Notes in Theoretical Computer Science, 168:109–126, 2007.

