
 
 
 
 

DOCTORAL SCHOOL 
MEDITERRANEA UNIVERSITY OF REGGIO CALABRIA 

 
DEPARTMENT OF INFORMATION ENGINEERING, INFRASTRUCTURES  

AND SUSTAINABLE ENERGY (DIIES) 
 
 

PHD IN 
INFORMATION ENGINEERING 

 
 

S.S.D. ING-INF/02 
XXVIII CYCLE 

 

 

 
 

QUANTITATIVE INVERSE SCATTERING VIA 
VIRTUAL EXPERIMENTS AND COMPRESSIVE SENSING 

 

 

 
 

CANDIDATE 

Martina Teresa BEVACQUA 
 
 

ADVISOR 

Prof. Tommaso ISERNIA 
 
 

CO-ADVISOR 

Dr. Lorenzo CROCCO 
 
 

COORDINATOR 

Prof. Claudio DE CAPUA 
 

 

REGGIO CALABRIA, FEBRUARY 2016 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finito di stampare nel mese di Febbraio 2016 

 

 

Edizione  

Collana Quaderni del Dottorato di Ricerca in Ingegneria dell’Informazione 

Curatore Prof. Claudio De Capua 

 

ISBN 978-88-99352-03-5 

 

Università degli Studi Mediterranea di Reggio Calabria 

Salita Melissari, Feo di Vito, Reggio Calabria 



 
MARTINA TERESA BEVACQUA 

 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

QUANTITATIVE INVERSE SCATTERING VIA 
VIRTUAL EXPERIMENTS AND COMPRESSIVE SENSING 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

The Teaching Staff of the PhD course in 
 INFORMATION ENGINEERING 

 consists of: 
 
 

Claudio DE CAPUA (coordinator) 
Raffaele ALBANESE 
Giovanni ANGIULLI 

Giuseppe ARANITI 
Francesco BUCCAFURRI 

Giacomo CAPIZZI 
Rosario CARBONE 

Riccardo CAROTENUTO 
Salvatore COCO 

Mariantonia COTRONEI 
Lorenzo CROCCO 

Francesco DELLA CORTE 
Lubomir DOBOS 

Fabio FILIANOTI 
Domenico GATTUSO 

Sofia GIUFFRE' 
Giovanna IDONE 

Antonio IERA 
Tommaso ISERNIA 

Fabio LA FORESTA 
Gianluca LAX 

Aime' LAY EKUAKILLE 
Giovanni LEONE 

Massimiliano MATTEI 
Antonella MOLINARO 

Andrea MORABITO 
Carlo MORABITO 

Giuseppe MUSOLINO 
Roberta NIPOTI 

Fortunato PEZZIMENTI 
Nadia POSTORINO 

Ivo RENDINA 
Francesco RICCIARDELLI 

Domenico ROSACI 
Giuseppe RUGGERI 

Francesco RUSSO 
Giuseppe SARNE’ 

Valerio SCORDAMAGLIA 
Domenico URSINO 

Mario VERSACI 
Antonino VITETTA  



 

 

 

Acknowledgments 
 
 

A significant and valiant scientific research activity is quite a task and it is not 

possible without suitable support and guidance. Of course, words cannot 

compensate them and not even fully express my gratitude… 

First and foremost, I would like to express my appreciation and thanks to my 

advisor Prof. Tommaso Isernia, for having showed me the world of 

Electromagnetism for the first time and especially for having made my PhD 

experience productive and stimulating. His continual guidance and dedicated 

involvement in every step throughout my PhD studies and related research 

activities have allowed me to learn a lot and to grow as a researcher.  

Besides my advisor, I would like to thank my co-advisor Dr. Lorenzo Crocco 

for his insightful comments and hard questions which encouraged me to 

widen my research and to look at it from various perspectives. The possibility 

of interacting with him has represented an invaluable opportunity for 

improving my scientific knowledge. 

I would like to express my gratitude to Dr. Andrea Morabito for the example 

he has provided me as a tireless and flawless researcher, and for his 

professional and non-professional advices. 

Moreover, I am thankful to Dr.. Loreto Di Donato. My research activity has 

profited greatly from his expertise and the useful collaboration with him, 

starting from the beginning when he supported me as co-advisor of my 

Bachelor thesis.  

Last, but not least, my sincere thanks also go to Drs. Rosa Scapaticci, Roberta 

Palmeri and Antonella Laganà for their invaluable collaboration and their 

company during this experience. 



 

 

 

  



 

 

 

Contents 
 

 

 

 

INTRODUCTION ....................................................................................................... 1 

I.1 INVERSE SCATTERING PROBLEMS AND THEIR RELEVANCE ................................................ 1 

I.2 BASIC EQUATIONS AND APPROACHES..................................................................................... 4 

I.3 TWO CHALLENGING DIFFICULTIES: ILL-POSEDNESS AND NON-LINEARITY .................... 6 

I.4 SOLUTION STRATEGIES .............................................................................................................. 8 

 I.4.1   REGULARIZATION TECHNIQUES ................................................................................... 9 
 I.4.2   TRADITIONAL METHODS TO OVERCOME NON LINEARITY ..................................... 10 
 I.4.3   SOME RECENT DEVELOPMENTS ................................................................................. 14 
I.5 AIM AND OUTLINE OF THE THESIS ........................................................................................ 16 

 
 
PART I: NEW PARADIGM AND TOOLS FOR NON LINEAR INVERSE 
SCATTERING PROBLEMS 
 

 
CONDITIONING SCATTERING PHENOMENA BY VIRTUAL EXPERIMENTS

 .......................................................................................................................... 23 

1.1 MATHEMATICAL NOTATIONS AND MEASUREMENT CONFIGURATION ........................... 23 

1.2 A NEW FRAMEWORK OF THE VIRTUAL SCATTERING EXPERIMENTS ............................... 26 

1.3 CONDITIONING SCATTERING PHENOMENA BY MEANS OF SUITABLY DESIGNED 

VIRTUAL SCATTERING EXPERIMENTS .................................................................................... 27 

1.4 LINEAR SAMPLING METHOD AS A WAY TO SYNTHESIZE CIRCULARLY SYMMETRIC 

EXPERIMENTS ............................................................................................................................ 29 

1.5 ON THE CHOICE OF PIVOT POINTS ........................................................................................ 33 

1.6 NEW UNDERSTANDING AND INTERPRETATION OF RECENTLY INTRODUCED 

INVERSION STRATEGIES........................................................................................................... 36 

 1.6.1   AN EFFECTIVE LINEAR APPROXIMATION OF THE INTERNAL FIELD .................. 36 
 1.6.2   A ‘FICTITIOUS MEASUREMENTS’ STRATEGY FOR ASPECT LIMITED DATA ........... 39 

 
VIRTUAL EXPERIMENTS BASED SOLUTION APPROACHES FOR INVERSE 

SCATTERING ................................................................................................. 41 

INTRODUCTION ...................................................................................................................................... 41 

2.1 A DIRECT ALGEBRAIC RECONSTRUCTION ............................................................................ 42 

 2.1.1   A NEW APPROXIMATION FOR FOCUSED CONTRAST SOURCES ............................... 43 
 2.1.2   A NEW ALGEBRAIC SOLUTION PROCEDURE ............................................................. 46 
 2.1.3   METHOD’S ASSESSMENT .............................................................................................. 50 
2.2 A REGULARIZED CONTRAST SOURCE INVERSION ............................................................... 53 

 2.2.1   A NEW CONTRAST SOURCE REGULARIZATION SCHEME ........................................ 54 
 2.2.2   IMPLEMENTATION OF THE PENALTY TERM ............................................................. 55 
 2.2.3   METHOD’S ASSESSMENT .............................................................................................. 58 
2.3 A DISTORTED ITERATED VIRTUAL EXPERIMENTS METHOD ............................................. 60 

 2.3.1   NEW ITERATED SCHEME ............................................................................................. 61 
 2.3.2   METHOD’S ASSESSMENT .............................................................................................. 64 
2.4 ASSESSMENTS AGAINST EXPERIMENTAL AND SINGLE FREQUENCY DATA .................... 67 

2.5 FUTURE EXTENSIONS ............................................................................................................... 74 



 

 

 
SPARSITY PROMOTING METHODS FOR INVERSE SCATTERING ................ 77 

INTRODUCTION ..................................................................................................................................... 77 

3.1 THE COMPRESSIVE SENSING THEORY FOR AN EFFECTIVE RECOVERY ........................... 80 

3.2 COMPRESSIVE SENSING AND LINEARIZED INVERSE SCATTERING .................................. 82 

 3.2.1   CS INSPIRED LINEAR INVERSION .............................................................................. 83 
 3.2.2   NUMERICAL ANALYSIS................................................................................................ 86 
3.3 COMPRESSIVE SENSING AND NONLINEAR INVERSE SCATTERING................................... 91 

 3.3.1   SPARSITY CONSTRAINED SCHEME ............................................................................. 92 
 3.3.2   SPARSITY PENALIZED SCHEME .................................................................................. 94 
 3.3.3   NUMERICAL VALIDATION .......................................................................................... 96 
3.4 CS-REGULARIZED DISTORTED ITERATED VIRTUAL EXPERIMENTS METHOD ............. 100 

 3.4.1   ASSESSMENT WITH NUMERICAL AND EXPERIMENTAL DATA............................. 102 
3.5 POSSIBLE DEVELOPMENTS .................................................................................................... 107 

 
 
PART II: NEW APPROACHES FOR MICROWAVE IMAGING IN BIOMEDICAL 
DIAGNOSIS AND SUBSURFACE PROSPECTIONS 
 

 
A COMPRESSIVE SENSING APPROACH FOR BREAST CANCER 

MICROWAVE IMAGING ENHANCED BY MAGNETIC 
NANOPARTICLES ........................................................................................ 111 

4.1 INTRODUCTION AND RELEVANCE OF THE PROBLEM ...................................................... 111 

4.2 BASICS AND MATH OF MNP ENHANCED MWI ................................................................. 112 

4.3 EFFECTIVE RECOVERY BY AD-HOC COMPRESSIVE SENSING APPROACH ...................... 114 

4.4 NUMERICAL VALIDATION ..................................................................................................... 115 

 4.4.1   ON THE CHOICE OF CS PARAMETERS ...................................................................... 118 
 4.4.2   ANALYSIS OF ROBUSTNESS AGAINST A PRIORI INFORMATION  
             ON THE BREAST UNDER TEST ................................................................................................ 120 
4.5 CS INSPIRED IMAGING STRATEGY VS TSVD ..................................................................... 123 

 4.5.1   REDUCTION OF THE NUMBERS OF MEASUREMENTS ............................................. 124 
 4.5.2   SUPER-RESOLUTION IMAGING ................................................................................... 125 
4.6 CONCLUSIONS AND DISCUSSION.......................................................................................... 127 

 
A COMPRESSIVE SENSING APPROACH FOR SUBSURFACE MICROWAVE 

IMAGING OF NON-WEAK BURIED TARGETS ........................................ 131 

5.1 INTRODUCTION ...................................................................................................................... 131 

5.2 IMAGING NON-WEAK AND EXTENDED BURIED OBJECT ................................................. 133 

5.3 NUMERICAL ASSESSMENTS .................................................................................................... 137 

 
CONCLUSIONS ....................................................................................................... 145 

SUMMARY OF THE CONTRIBUTIONS ................................................................................................. 145 

FUTURE DEVELOPMENTS ................................................................................................................... 149 

 

APPENDICES ........................................................................................................... 151 

APPENDIX A ......................................................................................................................................... 151 

APPENDIX B.......................................................................................................................................... 152 

APPENDIX C ......................................................................................................................................... 154 

APPENDIX D ......................................................................................................................................... 156 

APPENDIX E ......................................................................................................................................... 158 

 
REFERENCES ......................................................................................................... 167 

 



 

 

 

List of  Figures 
 
 
 
 
Figure 1.1 Pictorial view of the measurement configuration adopted to collect 

the scattering experiments. ...................................................................... 24 

Figure 2.2 On scattering experiments. (a) Original scattering experiments: the 
impinging waves on the investigated domain come from directions ��; multiple angles are used to obtain more information on the 
unknown target. (b) Virtual scattering experiments: the incident field 
is the result of the simultaneous excitation of the original primary 
sources according to a combination criterion ruled by the pivot point ��. ................................................................................................................. 30 

Figure 3.3. The LSM as a way to synthesize circularly symmetric virtual 
experiments: (a) actual support of the scattering system; (b) retrieved 
support via LSM energy indicator. Amplitude of virtual induced 

current for some sampling points: (c) ��=(0.388	λ, -0.0125	λ), (d) ��=(-0.413	λ, -0.0125	λ), (e) ��=(0.288	λ, -0.513	λ). Fitting of LSM 

equation versus �� [rad] for the pivot points considered in (c), (d) 
and (e), respectively: continuous line represents the values assumed 
by the right hand side while the red points are the values assumed by 
the left hand side. ...................................................................................... 32 

Figure 2.1 Behavior of the Bessel function amplitude (solid line) as compared 
to the approximation (2.4) truncated at the first term (dashed line), at 
the second term (dotted line) and at the third term (dash-dot line). 
Two complex contrast values are reported: in the upper panel 	� = 1 − 0.05�, while in the lower one 	� = 2 − 0.1�. The 
background medium is lossless. .............................................................. 45 

Figure 2.2. Numerical assessment of DARE. The circular homogeneous 
target: (a) real part of the reference profile; (b) LSM indicator map 
with the selected pivot points superimposed as dots; (c) real part and 
(d) imaginary part of punctual value of retrieved contrast, before 
interpolation; (e) real part and (f) imaginary part of retrieved contrast.
 ..................................................................................................................... 52 

Figure 2.3. Numerical assessment of DARE. The C-O target: (a) real part of 
the reference profile; (b) LSM indicator with the selected pivot points 
superimposed as dots; (c) real part and (d) imaginary part of punctual 
value of retrieved contrast, before interpolation; (e) real part and (f) 
imaginary part of retrieved contrast. ...................................................... 52 

Figure 2.4. Numerical assessment of RCSI. The ring-shaped scatterer. (a) Real 
part and (b) imaginary part of the contrast profile; (c) Normalized 
logarithmic LSM indicator map with the selected pivot points 

superimposed as dots; (d) visual sketch of the circular region ℐ�� for 

the innermost pivot point with a contour plot of the actual scatterer 



 

 

support; (e) same as (d), but for the inner pivots; (f) same as (d), but 
for the outermost pivot points; (g) real part and (h) imaginary part of 
the retrieved contrast. ............................................................................... 59 

Figure 2.5 The Flowchart describing the DIVE method. ................................. 63 

Figure 2.6. Numerical assessment of DIVE. The kite target: (a) real part and 
(b) imaginary part of the reference profile. LSM indicator maps with 
the selected pivot points superimposed on it, for k=0 (e) and k=1 (h). 
Real part and imaginary part of the initial estimation (c)-(d) and of the 
final reconstruction (f)-(g). Real part and imaginary part of the 
retrieved contrast function with DBIM (i)-(j). The RRE versus 
iterations respectively for DIVE (k) and DBIM (l), respectively. ...... 66 

Figure 2.7. Validation of VE based methods with the Fresnel TwinDielTM 
target data: (a) Reference profile. Real part and imaginary part of the 
retrieved contrast function with DARE (b)-(c), RCSI (d)-(e) and 
DIVE (f)-(i). In particular (f)-(g) is the initial estimation and (h)-(i) is 
the final reconstruction. ........................................................................... 71 

Figure 2.8. Validation of VE based methods with the Fresnel FoamDielIntTM 
target data: (a) Reference profile. Real part and imaginary part of the 
retrieved contrast function with DARE (b)-(c), RCSI (d)-(e) and 
DIVE (f)-(i). In particular (f)-(g) is the initial estimation and (h)-(i) is 
the final reconstruction. ........................................................................... 72 

Figure 2.9. Validation of VE based methods with the Fresnel 
FoamTwinDielIntTM target data: (a) Reference profile. Real part and 
imaginary part of the retrieved contrast function with RCSI (b)-(c) 
and DIVE (d)-(g). In particular (d)-(e) is the initial estimation and (f)-
(g) is the final reconstruction. ................................................................. 73 

Figure 3.1. Numerical assessment of CS linearized approaches. The five 
lossless point-like scatterers. (a) Actual contrast profile. (b) LSM 
indicator map with the selected pivot points superimposed as dots. 
Contrast profile retrieved profile via the approach (3.5) (c) real and 
(d) imaginary part. The retrieved profile with approach (3.5) cast for 
just the virtual incident fields: (e) real and (f) imaginary part. ............ 89 

Figure 3.2. Numerical assessment of CS linearized approaches. The three 
square target. (a) Actual contrast profile. (b) LSM indicator map with 
the selected pivot points superimposed as dots. The retrieved profile 
with approach (3.7): (c) real and (d) imaginary part. ............................ 89 

Figure 3.3. Numerical assessment of CS linearized approaches. The slanted 
square target. Contrast reference profile: (a) real part, (b) imaginary 
part. (c) LSM indicator map with the selected pivot points 
superimposed as dots. (d) The mean square error versus the number 
of iterations. The retrieved profile with approach (3.7): (e) real (f) 
imaginary part. The retrieved profile with TSVD: (g) real (h) 
imaginary part. ........................................................................................... 90 

Figure 3.4. Numerical assessment of CS linearized approaches. The ring 
square example. (a) Real part of the contrast reference profile. (b) 
LSM indicator map with the selected pivot points superimposed as 
dots. The retrieved profile by means of the approach (3.7): (c) real 
and (d) imaginary part. The retrieved profile by means of the 
approach (3.9): (e) real and (f) imaginary part. ..................................... 91 



 

 

Figure 3.5 Plot of a generic monodimensional and non quadratic cost 
functional. The different local minima correspond to different 
attraction basins. ........................................................................................ 93 

Figure 3.6. Numerical assessment of CS non linear approaches. The 
inhomogeneous square. (a) Real part and (b) imaginary part of the 
contrast reference profile. The retrieved profile with approach (3.12) 

(� = 150, err=5%): (c) real and (d) imaginary part. The retrieved 

profile with approach (3.12) (� = 100, err=4%): (e) real and (f) 
imaginary part. The retrieved profile with approach (3.12) and 

considering � = � = 14 (� = 150, err=7%): (g) real and (h) 
imaginary part. The retrieved profile with approach (3.12) and 

considering � = � = 11 (� = 150, err=16%): (i) real and (j) 
imaginary part. ........................................................................................... 97 

Fig. 3.7. Numerical assessment of CS non linear approaches. The lossy 
Austria profile. (a) Real part and (b) imaginary part of the contrast 

reference profile. The retrieved profile with approach (3.14) (k = 5	 ∙10 − 8, err=15%): (c) real and (d) imaginary part. The retrieved 

profile with approach (3.14) and considering � = � = 16 (k = 5	 ∙10 − 8, err=19%): (e) real and (f) imaginary part ................................ 98 

Figure 3.8. Numerical assessment of DIVE-CS. The kite target: real part and 
imaginary part of the retrieved contrast function at the initial step (a)-
(b) and at the last iteration (c)-(d). The RRE versus iterations for 
DIVE-CS(e). ............................................................................................ 103 

Figure 3.9. Validation of DIVE-CS with experimental data: the Fresnel 
TwinDielTM target at 6 GHz: (a)-(b) real part and imaginary part of 
the retrieved contrast function. (c)-(d) are the same of (a)-(b) for 
reduced number of processed data. ...................................................... 104 

Figure 3.10. Validation of DIVE-CS with experimental data: the Fresnel 
FoamTwinDielIntTM target at 4 GHz: (a)-(b) real part and imaginary 
part of the retrieved contrast function. (c)-(d) are the same of (a)-(b) 
for reduced number of processed data. ............................................... 105 

Figure 3.11. Validation of DIVE-CS with experimental data: the Fresnel 
FoamDielIntTM target at 4 GHz. (a)-(b) Real part and imaginary part 
of the retrieved contrast function. (c)-(d) are the same of (a)-(b) for 
reduced number of processed data. ...................................................... 106 

Figure 4.1. Conceptual scheme of the differential measurements procedure 
adopted in MNP enhanced MWI to extract the useful signal. ......... 113 

Figure 4.2. Measurement configuration adopted in the breast cancer MWI. 117 

Figure 4.3 Transversal slices of the permittivity maps across the tumor for the 
two considered breast phantoms derived from magnetic resonance 
images and taken from the Wisconsin University Repository [Zastrow 
et al., 2008]: (a) Ph1, (b) Ph2. .................................................................. 117 

Figure 4.4. Numerical assessment of CS inspired approach for MNP 
enhanced MWI. Transversal slices of the retrieved absolute value of 
the induced magnetic contrast (Ph1): (a) via unconstrained 
implementation (b) by means of the constrained one. The black line 
indicates the actual contour of the tumor. .......................................... 121 



 

 

Figure 4.5 Numerical assessment of CS inspired approach for MNP enhanced 
MWI. Transversal slice of the reconstructed magnetic contrast in 

when setting � < ��� !�"#. ................................................................... 121 

Figure 4.6. Numerical assessment of CS inspired approach for MNP 
enhanced MWI. 3D Reconstructions of the absolute value of the 
induced magnetic contrast. (a) Ph1 and exact breast as reference 
scenario; (c) Ph1 and accurate reference breast; (e) Ph1 and empty 
system as reference profile; (b), (d) and (f) same as (a),(c) and (e) but 
for Ph2. ..................................................................................................... 122 

Figure 4.7. Numerical assessment of CS inspired approach for MNP 
enhanced MWI. 3D Reconstructions of the absolute value of the 
induced magnetic contrast exploiting 12 probing and receiving 
antennas and considering the background as reference profile. (a) 
New measurements configuration; (b) reconstruction via CS and (c) 
via TSVD. ................................................................................................ 125 

Figure 4.8. Numerical assessment of CS inspired approach for MNP 
enhanced MWI. 3D Reconstructions of the absolute value of the 
induced magnetic contrast via CS (a) and via TSVD (b) (thresholded 
at -3dB). Transversal slices of the reconstructed differential magnetic 
contrast obtained via CS (c) and via TSVD (d). ................................. 126 

Figure 5.1. The geometry of the 2D subsurface problem and the adopted 
measurement configuration. The black circles and white triangles 
represent two or more transmitting and receiving antennas in a 
surface-GPR acquisition. ....................................................................... 133 

Figure 5.2. The virtual measurements setup. The black and white circles refer 
to actual and fictitious measurements, respectively, while the white 
triangles denote the transmitters. .......................................................... 136 

Figure 5.3 Numerical assessment of VE-CS approach for subsurface MWI. 
Example 1. (a) Logarithmic map of the LSM indicator with 
superimposed the pivot points and the contour of the reference 
profile, (b) virtual measurements setup. (c)-(d) Permittivity and 

conductivity of the retrieved profile by means of VE-CS (�= 0.18) 

for SNR=30dB ($�� = 0.45,���"% = 0.29). ....................................... 141 

Figure 5.4 Numerical assessment of VE-CS approach for subsurface MWI. 
Example 2. (a) Logarithmic map of the LSM indicator with 
superimposed the pivot points and the contour of the reference 
profile, (b) virtual measurements setup. Permittivity and conductivity 

of the retrieved profile for SNR=30dB by means of (c)-(d) BA-CS (�& 
= 0.3) and (e)-(f) VE-CS (�& = 0.15). (g)-(h) the same as (e)-(f) for 

SNR=10dB with �&= 0.17. ..................................................................... 141 

Figure 5.5 Numerical assessment of VE-CS approach for subsurface MWI. 
Example 2. (a) Logarithmic map of the LSM indicator with 
superimposed the pivot points and the contour of the reference 
profile, (b) virtual measurements setup. Permittivity of the retrieved 

profile by means of the CS with (c) BA (�& = 0.04), (d) VE (�&= 0.32), 

(e)-(f) VE with RF=4 (�&= 0.28) and RF=10 (�&= 0.15), respectively 

for SNR=30dB. (g)-(j) the same as (c)-(f) for SNR=10dB with �&= 



 

 

0.26 (BA-CS), �&= 0.33 (VE-CS), �&= 0.28 (RF=4) and �&= 0.24 
(RF=10). ................................................................................................... 142 

Figure E.1 CS ‘for dummies’. Sets defined by data equation for '% = 3 and ')′ = 3 (a), 2 (b) and 1(c). ..................................................................... 161 

Figure E.2 CS ‘for dummies’. Sets defined by sparsity assumption for '% = 3 

and + = 2(a) and 1(b). ............................................................................ 161 

Figure E.3 CS ‘for dummies’. Intersections the sets determined by the data 
equation and the sparsity assumption. ................................................. 161 

Figure E.4: CS ‘for dummies’. ℓ�-balls for the cases p=3 (a), p=2 (b), p=1 (c) 

and p=0.5 (d) ........................................................................................... 166 

Figure E.5: CS ‘for dummies’. Intersection between ℓ- - ball and data set. As 

long as the data set is not parallel to any face or edge of the ℓ- - ball 
solution to (C.6) is unique, and corresponds to the solution of the 
original intersection problem. ............................................................... 166 

 
 
 
 
 
 
  



 

 

 

List of Tables  
 
 
 
 
Table I. Numerical assessment of DIVE. The kite target: details of the 

inversion procedures. ............................................................................... 65 

Table II. The Fresnel TwinDielTM target: details of the inversion procedures.
 ..................................................................................................................... 71 

Table III. The Fresnel FoamDielIntTM target: details of the inversion 
procedures. ................................................................................................. 72 

Table IV. The Fresnel FoamTwinDielIntTM target: details of the inversion 
procedures. ................................................................................................. 73 

Table V. Numerical assessment of DIVE-CS. The kite target: overall details 
of the inversion procedures. .................................................................. 103 

Table VI. The Fresnel TwinDielTM: overall details of the inversion 
procedures. ............................................................................................... 104 

Table VII. The Fresnel FoamTwinDielIntTM: overall details of the inversion 
procedures. ............................................................................................... 105 

Table VIII. The Fresnel FoamDielIntTM: overall details of the inversion 
procedures. ............................................................................................... 106 

Table IX. Numerical assessment of CS inspired approach for MNP enhanced 
MWI: polarizability and volumetric errors .......................................... 123 

Table X. Numerical assessment of VE-CS approach for subsurface MWI: 
error metrics for the second example. ................................................. 140 

Table XI. Numerical assessment of VE-CS approach for subsurface MWI: 
error metrics for the third example. ..................................................... 140 

 
 
 
 
 
 
 
 
 
 
  



 

 

 

List of Acronyms  
 
 
 
 

BA Born Approximation 
BIM Born Iterative Method 
CS Compressive Sensing 
CSI Contrast Source Inversion 

DARE Direct Algebraic Reconstruction 
DBA Distorted Born Approximation 

DBIM Distorted Born Iterative Method 
DIVE Distorted Iterative Virtual Experiment 
DOF Degree of Freedom 
EPT Electric Properties Tomography 
FFE Far Field Equation 
FM Factorization Method 

GPR Ground Penetrating Radar 
LSM Linear Sampling Method 
MNP Magnetic Nanoparticle 
MR Multiplicative Regularization 
MRI Magnetic Resonance Imaging 
MWI Microwave Imaging 
PMF Polarizing Magnetic Field 
RCSI Regularized Contrast Source Inversion 
RIP Restricted Isometry Property 
ROI Region Of Interest 
SNR Signal to Noise Ratio 
SOM Subspace Optimization Method 
SVD Singular Value Decomposition 

TSVD Truncated Singular Value Decomposition 
TV Total Variation 
VE Virtual Experiment 

 
 
 
  



 

 



 

 

 

Introduction 
 

 

 

 

I.1 Inverse scattering problems and their relevance 

 
An electromagnetic field which is propagating in the space in presence 

of obstacles goes through some perturbations depending on their nature and 

features. This phenomenon, which is named electromagnetic scattering [Colton 

and Kress, 1998, Hopcraft and Smith, 1992], implies the presence in the space of 

a new electromagnetic field, known as total field, given by the linear 

superposition of the original one, which is called incident or unperturbed 

field, and the perturbation field, which is referred to as scattered field. The 

scattered field is physically generated by the targets that interact with the 

incident field during its propagation. In fact, the incident field induces inside 

the obstacles some currents which become sources of the scattered field.  

Electromagnetic scattering implies two different classes of problems: 

forward scattering and inverse scattering. The forward scattering problem 

aims at determining the scattered field when the features of the targets which 

have generated it and the incident field are known. On the contrary, the 

inverse scattering problem consists in the quantitative reconstruction of the 

targets’ features starting from the knowledge of the incident field and the 

measurements of the scattered field [Colton and Kress, 1998, Hopcraft and Smith, 

1992].  

From a physical point of view, the difference between direct and 

inverse problem is linked to the concept of cause and effect. In the direct 

problem, starting from the knowledge of the causes (the interaction between 

the incident field and the objects) the aim is the computation of the scattered 

field, while the inverse scattering problem amounts at determining the feature 

of the targets which generate the perturbation of the original field, provided 

that the effect of the interaction (the scattered field) is known. These 
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problems are related by a sort of duality, that is if the role of data and 

unknowns is exchanged one problem is obtained from the other one [Bertero 

and Boccacci, 1998]. 

Although strictly coupled, the mathematical nature of the two problems 

is deeply different. In fact, the forward inverse scattering problem is linear 

and well posed, that is, according the Hadamard’s definition [Bertero, 1989], its 

solution always exists, is unique and depends continuously on the data, which 

are represented by the knowledge of the incident fields and the features of the 

obstacles. This is not true for the inverse scattering problem which is both 

non-linear and ill-posed with respect to the nature of the obstacles [Colton and 

Kress, 1998, Hopcraft and Smith, 1992, Bertero and Boccacci, 1998]. Because of the 

difficulty in tackling the ill-posedness and non-linearity of the problem, 

significant efforts have to be pursued in the mathematical, applied physics 

and engineering communities to develop reliable, effective and accurate 

methods and strategies to solve this inverse problem. However, such a 

challenging task is still an open issue. 

Obviously, the availability of processing techniques able to avoid the 

difficulties due to non-linearity, as well as to give an accurate quantitative 

rendering of the actual electromagnetic scenario, is essential in a number of 

applications. Surely, the capability of microwaves of investigating non-

accessible scenarios in a non-invasive and non-destructive way has 

contributed to increase the strong interest in applications [Pastorino, 2004], 

such as subsurface prospections [Daniels, 2004, Persico, 2014], biomedical 

diagnostics [Hassan and El-Shenawee, 2011, Semenov and Corfield, 2008, Semenov et 

al., 2007], safety and security surveying operations [Pierri et al., 2013, Jin and 

Yarovoy, 2015, Millot and Casadebaig, 2015], and non-destructing testing of 

materials [Zoughi, 2000], only to mention some examples. 

Probably, one of the most important applications of microwave is in 

medical imaging, wherein this technology could improve health care in terms 

of prevention screening programs and monitoring applications.  

In fact, in the last years the evidence that human tissues exhibit 

different electromagnetic properties at microwaves, depending on their 

typology and physio-pathological status, has given rise to a huge interest in 



I.1    Section 

3 

Microwave Imaging (MWI) for medical applications, by exploring in 

particular the possibility of retrieving morpho-functional images of the 

inspected anatomical structure. The use of non-ionizing radiations and 

possibly cheap and portable devices represents the main advantage offered by 

MWI with respect to other medical imaging techniques.  

In particular, MWI has gained increasing interest in breast cancer 

diagnostics [Fear et al., 2002, Hassan and El-Shenawee, 2011], as it represents the 

first cause of death for cancer in women and its early diagnosis has a huge 

impact in the fight against cancer. Moreover, currently adopted diagnostic 

techniques in breast cancer diagnostic still suffer from some limitations and 

researchers are pushed to investigate to alternative techniques. For instance, 

the widely adopted X-ray mammography, besides being ionizing, still could 

give a larger rate of false negatives and false positives, so in many cases a 

breast biopsy is needed to verify the tumor diagnosis. 

In addition, several research groups are investigating the possibility to 

use microwave techniques in other fields of medical imaging, such as possible 

diagnostic tools for brain stroke and ischemic disease [Scapaticci et al., 2012a, 

Semenov and Corfield, 2008]. This is due to the fact that ischemic tissues show in 

the microwave band different electric properties with respect to healthy 

tissues and that microwaves are particularly suitable to perform a continuous 

monitoring, since they are not harmful for the patient, being non- ionizing. 

Other possible applications are bone mineralization monitoring [Meaney et al., 

2012, Zhou et al., 2010] and soft tissues imaging [Semenov et al., 2007]. 

Another important class of applications is use of microwave in 

subsurface inspection [Daniels, 2004, Crocco and Soldovieri, 2011, Persico, 2014, 

Soldovieri and Crocco, 2011]. A very wide range of possibilities exists, the most 

common being the safe and accurate location of the position of buried object 

(like pipes, utilities or potential hazards such as mine shafts and voids), the 

investigation of the reinforcement and condition of roads, bridges, and 

airport runways, the identification of structural integrity of buildings, the 

study of the environmental and geological conditions, or archaeological sites.  

Demining is another important application [Daniels, 2006, Persico, 2014]. 

In particular, modern mines are customarily built with plastic materials with 
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only little or even no metallic parts. Therefore, they are often hardly visible or 

completely invisible to a metal detector. In this context it is fundamental for 

the effectiveness of the survey and the safety of the people involved in it to 

provide all the details possibly available, that is the position and the depth, the 

size, the shape and the electromagnetic properties of the buried target, in such 

a way to avoid the occurrence of false negative (or false positive). In this 

respect, microwave tomographic approaches offer different tools which are 

able to produce reliable and easily interpretable images of the investigated 

scenarios. Notably, such a kind of outcomes is much more user friendly than 

the ones achieved by using standard GPR data processing.  

Finally, the inverse scattering problems solution are also of interest in 

the design of filters, radiation elements and microwave devices [Bucci et al., 

2005, Roberts, 1995, Song and Shin, 1985, Hakansson, 2007, Di Donato et al., 

2014a], as some synthesis problems can be formulated in terms of retrieval 

problems. For example in [Di Donato et al., 2014a], an effective synthesis of 

cloaking profiles is performed via inverse scattering techniques. 

 

 

I.2 Basic equations and approaches 

 
The two fundamental equations describing the relevant scattering problem for 

a generic incident field ./ are the data equation and the state equation. The 

first one is an integral representation of the scattered field in the region 

exterior to the investigation domain, while the state equation is the integral 

representation of the total field inside the investigation domain. The 

mathematical expressions of these latter, in case of nonmagnetic media, are, 

respectively: 

 .0 = 123	.4 
(I.1) . = ./ +1!3	.4 
(I.2) 
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where .0 and	. are the scattered field outside the investigation domain and 

total field induced in the investigation domain, respectively, and 	 is the 

contrast function which relates the electromagnetic features of the object and 

the ones of the host medium. 12 and 1! are a short notation for the bilinear 

integral radiation operators relating the quantity 	. to the scattered field .0 
outside and inside the investigation domain, respectively. Note in the above 

equations the time harmonic factor $67{9:;} is assumed and dropped. 

The inverse scattering problem aims at retrieving the unknown contrast χ from the scattered fields .0 measured on a generic curve of observation. As 

stressed in the introduction, such a problem is non-linear respect to χ and ill-

posed. The former circumstance descends from the dependence of the total 

field . on the unknown contrast function χ expressed by the state equation, 

while the latter from the compactness of the radiation operator 1> [Bertero 

and Boccacci, 1998], as described in the following section. 

According to the above considerations, if +(χ, ./	) denote the 

nonlinear scattering operator relating the contrast and the arbitrary incident 

field to the corresponding scattered field, the inverse scattering problem is 

generally solved by seeking the global minimum of: 

 Φ(	) = ‖.0 − +(χ, ./	)‖D 

(I.3) 

which defines the discrepancy between the measured data and the predicted 

scattered field, corresponding to χ and ./ [Roger, 1981, Joachimowicz et al., 

1998]. An alternative approach involves the simultaneous solution of the 

system of equations (I.1)-(I.2) for both the contrast function and the electric 

field inside the object. Obviously, the set of unknowns enlarges but the 

degree of non linearity [Bucci et al., 2001a] reduces to that of a fourth order 

polynomial. In this case the problem is generally solved by seeking the global 

minimum of: 

 Φ(	, .) = ‖.0 − 123	.4‖D + ‖.(E) − ./(E) + 1!3	.4‖D 

(I.4) 
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Finally, it is also possible to consider the currents induced inside the 

object as auxiliary unknowns instead of the total field .. To this end, the 

mathematical formulation of the problem is modified by defining the contrast 

sources F = 	.. Opposite to field-type approaches, in this case the inverse 

scattering problem is turned into an inverse source problem and one of the 

two fundamental equations of the electromagnetic scattering, i.e. the eq. (I.1), 

become linear [van den Berg and Kleinman, 1997, D’Urso et al., 2010, Isernia et al., 

2004].  

 

 

I.3 Two challenging difficulties: ill-posedness and non-
linearity 

 
Besides its applicative relevance, the inverse scattering problems are 

also challenging from a theoretical point of view. Indeed, as pointed out in 

the previous Sections, the inverse scattering problem is ill-posed and also 

non-linear in the relationship between the data and unknowns.  

 

A. Implication of ill-posedness 

A problem is said well-posed according to the Hadamard’s definition 

[Bertero, 1989] if its solution always exists, it is unique, and it depends 

continuously on the data. If one of these three requirements is not satisfied, 

that is the solution might not exist at all, or it might not be unique or might 

not depend continuously on the data, then the problem is said to be ill-posed. 

This latter requirement is related to the ‘physical meaning’ of the solution. As 

a matter of fact, the key idea of Hadamard was to assume that an estimate of 

the unknown of the problem which considerably changes following a small 

variation of data is not a reliable solution. This has an immediate practical 

consequence, as variations on the data may occur (actually, occur) due to the 

unavoidable presence of measurement errors. 

In inverse scattering problems the solution always exists, and theoretical 

uniqueness is proved in both tridimensional and bidimensional cases [Colton 
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and Paivarinta, 1992, Nachman, 1993]. The crucial point is represented by the 

continuity requirement, as described in the following. 

In case of single-view (a single illuminating incident wave is used), the 

scattering operator which relates unknown target’s properties to scattered 

fields is compact, i.e. it transforms any bounded set in a pre-compact one 

[Kolmogorov and Fomine, 1973, Bertero and Boccacci, 1998]. As the inverse of a 

compact operator cannot be continuous, the single view inverse scattering 

problem is ill-posed and small variations of the scattered field data produce 

unbounded variations of the corresponding ‘solutions’. The data are always 

affected by noise, which is then amplified in the inversion process, thus 

rendering completely meaningless the retrieved solution. This happens also in 

the discrete version of the inverse scattering problem, which is referred to as 

ill-conditioned problem. 

To get a better insight into the ill-posedness, it is worth recalling that 

another basic property of pre-compact sets is that they admit a finite-

dimensional representation within any required accuracy [Kolmogorov and 

Fomine, 1973, Bucci and Isernia, 1997]. Any scattered field can be accurately 

represented with a finite number of parameters and such a number can be 

identified as the number of Degree Of Freedom (DOF) of the field [Bucci and 

Franceschetti, 1989]. It follows that only a finite number of independent 

measurements of the scattered field is available and hence only a limited 

number of independent parameters can be recovered from scattered field 

data. In fact, it is not possible to retrieve a generic function belonging to an 

infinite dimensional space from a finite number of parameters belonging to a 

finite dimensional space.  

Unfortunately, also in case of multi-view cases (more illuminating 

incident waves are used) the problem remains ill-posed. The incident fields 

also belong to a compact set as non superdirective source are assumed, and, 

by considering the same arguments used in the single-view, the scattering 

operator is also compact in the multi-view case. Hence, there is no hope of 

extending at will the number of independent equations considering different 

incident fields. Only a finite number of scattering experiments can be in fact 

considered.  



Introduction 

8 

As a consequence, the problem cannot be solved in any ordinary sense, 

but a generalized solution has been defined in order to restore well-

posedness. 

 

B. Implication of non-linearity 

As shown in Section I.2, a generalized solution of inverse scattering is 

usually looked for by minimizing a suitable cost functional, which takes into 

account the physical model and also the relationship between the measured 

field data and the corresponding unknown contrast function. 

Due to the non-linearity of the underlying problem, this cost functional 

is a non-quadratic one, so that it may have many local minima which are ‘false 

solutions’ of the problem [Isernia et al., 2001]. The more the problem departs 

from a linear one the more the occurrence of false solutions.  

As a consequence, the obtained results depend on the considered initial 

guess. In fact, if the initial guess does not belong to the attraction region of 

the actual solution, the minimization scheme, if not adequately constrained, 

could be trapped in local minima, which could be completely different from 

the actual ground truth.  

Moreover, the cost functional usually depends on a very large number 

of unknowns, especially in tridimensional geometries.  

Besides the global optimization, which is often not viable in realistic 

case due to the elevate number of unknowns, several strategies do exist to 

tackle and defeat the occurrence of the false solutions and, so, to counteract 

the non-linearity. In the following Section, the main ones are briefly 

discussed. 

 

 

I.4 Solution strategies 

 
Due to the difficulty in tackling the non-linearity and ill-posedness of 

the inverse problem different efforts have been carried out in the literature.  

A common feature for any inversion approach is the requirement to be 

fast, to have a low computational burden and to provide reliable 
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reconstructions with as minor as possible priori information on the physical 

or geometrical properties of the unknown scenario.  

 
I.4.1 Regularization techniques 

 
In order to restore well-posedness, the solution of the problem must fit 

the data within the experimental error but also expresses some expected 

physical properties of the unknown. The most simple form of enforce a priori 

information is to include a regularizing term in the cost functional.  

The principle of the regularization methods is indeed to use the 

additional a priori information on the contrast function in an explicit way to 

construct from the beginning a solution both compatible with the data and 

which exhibit some specific physical features. The kind of additional 

information which can be exploited and/or enforced includes (but it is not 

limited to): 

 

i. an upper bound on the dimensionality of the space where the 

unknown function is looked for. In order to avoid ill-posedness 

problem, a necessary (still not sufficient) condition is that its 

dimension is not greater than the one of the data space. Such a 

strategy can be defined ‘regularization by projection’ [Bucci et al., 

2001b, Isernia et al., 1997, Isernia et al., 2004, Catapano et al., 2009a, 

Scapaticci et al., 2012b, Scapaticci et al., 2015, Li et al., 2013, Lencrerot et al., 

2009]; 

ii. a requirement on the energy of the solution such as for instance a 

minimum ℓG energy requirement. This is the case of the well known 

Tikhonov regularization technique [Tikhonov et al., 1995, Bertero and 

Boccacci, 1998]; 

iii. enforcing a piecewise constant behavior on the contrast function 

[Oliveri et al., 2014, van den Berg and Kleinman, 1995, van den Berg et al., 

2003, Crocco and Isernia, 2001]; 

iv. physics induced bounds on the values of the unknown permittivity 

and conductivity functions (f.i., positive conductivities); 
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v. the knowledge that the punctual value of the unknown function only 

can belong to a given finite alphabet of values [Catapano et al., 2004]. 

 

Strictly speaking, when dealing with the non-discretized problem, only 

(i), (ii) and (v) allow to hopefully restore well-posedness, as constraints (iii) 

and (iv) do not avoid to deal with infinite dimensional spaces for the 

unknown. 

When the additional information is of statistical nature the regularized 

method are Bayesian. 

In order to restore the well-posedness of the problem, another 

interesting opportunity is offered by the Compressive Sensing theory [Donoho, 

2006, Baraniuk, 2007] (for more detail see Appendix E and Chapter 3), a new 

paradigm in signal recovery which is based on the concept of ‘sparsity’ or 

‘compressibility’ of the unknown function, i.e the possibility to represent this 

latter in an exact or anyway accurate fashion through a limited number of 

nonzero coefficients of a convenient basis.  

All the above discussed regularizations act only on the actual unknown 

that is the contrast function 	. When exploiting ‘contrast oriented’ 

regularization schemes, one is implicitly enforcing some property of the 

unknown function, and the effectiveness of the different regularizations will 

depend on how much the unknown scenario 'fits' the regularization model.  

 

I.4.2 Traditional methods to overcome non linearity 

 
As a countermeasure to non-linearity, linearized methods seem to allow a 

very easy implementation and require a limited amount of computer memory 

and computational time, even though they suffer from several limitations 

induced by the adopted approximated model.  

In fact, considering for instance the Born Approximation (BA) [Devaney, 

1984], the unknown total field inside the object is assumed equal to the 

incident field. This hypothesis is fully satisfied only in absence of the object 

itself so that the BA is acceptable in case of weak scatterers, i.e., for objects 

whose internal characteristics are very close to the ones of the external 
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medium, and/or for objects whose dimension is very small in terms of the 

wavelength in the external medium, so that the scattered field due to their 

presence is negligible with respect to the incident field. Note, if the 

linearization is performed around a nominal scenario different from a 

homogeneous background, the underlying approximation is referred to as 

Distorted Born approximation (DBA) [Devaney and Oristaglio, 1983].  

Other examples of linearized methods are the physical optics 

approximation (Kirchhoff approximation), where waves are scattered from 

electrically large conductors, and the Rytov approximation, where the length 

scale of fluctuations is large as compared to the wavelength [Devaney, 1981].  

These methods are quantitative, i.e. give the full characterization of the 

targets, as long as the adopted approximated model holds true. As a 

consequence, because of their limitations, they are typically not capable of 

providing an accurate description of the targets’ features when exploited 

outside of the range of validity of the underlying approximations and could 

give completely meaningfulness results.  

As improvement with respect to the linearized method, the quadratic 

method [Brancaccio et al., 1995, Pierri et al., 2002] is also worth being 

mentioned. In this latter, a weak degree of non-linearity is introduced by 

adopting a second order approximation for the unknown-data mapping 

operator. In particular, the method is named quadratic as the unknown 

appears as a power of the second order. With respect to the linear methods as 

for instance BA, it allows to reconstruct a class of unknown profiles wider, 

but in any case it has a limited practical interest. 

A possible extension of BA to the case of non-weak scatterer can be 

represented by the Born iterative method (BIM) [Wang and Chew, 1989] and 

the distorted Born iterative method (DBIM) [Chew and Wang, 1990]. This 

latter aims at solving the two coupled scattering integral equations by solving 

a sequence of linear problems and by updating the internal fields (also the 

Green function in DBIM) at each iteration through the solution of a forward 

scattering problem. Obviously, the final outcome and performances depend 

on the starting guess and the range of validity of the intermediate 
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linearizations, so the convergence to actual ground truth cannot be always 

ensured. 

In order to overcome the above limits, iterative optimization 

procedures, which tackle the inverse scattering problem in its full non 

linearity and do not involve any approximations, are often proposed to 

determine both the morphology and the electromagnetic contrast of the 

targets. The main practical difficulty with the iterative optimization algorithms 

is the long (or extremely long) reconstruction times required in order to 

complete the minimization. Global optimizations, as genetic or particle swarm 

algorithms [Haupt, 1995, Pastorino et al., 2000, Donelli et al., 2006], are generally 

not viable in case of large number of unknowns (typical in realistic problems 

like medical imaging) due to the exponential growth of the computational 

complexity. 

For this reason, local iterative optimization schemes are usually adopted. 

Examples of these are the modified gradient method [Kleinman and van den 

Berg, 1993, Souriau et al., 1996, Isernia et al., 1997, D’Urso et al., 2010], the 

Contrast Source Inversion (CSI) method [van den Berg and Kleinman., 1997], the 

Contrast Source Extended Born model [Isernia et al., 2004] and the Subspace 

Optimization Method (SOM) [Chen, 2010]. However, being the cost 

functional related to the underlying problem non-linear, local minimization is 

prone to the occurrence of false solutions [Isernia et al., 2001].  

Increasing as much as possible the essential dimension of data and 

reducing as much as possible the number of unknowns, positively affects the 

false solution problem. In fact each additional independent contribution will 

have a minimum in the actual solution, while its other minima will be 

widespread. The additional equations will fit the local minima as long as they 

are independent from the previous ones. For instance further data can be 

gained by multi-view scattering experiments, with the only drawback that the 

complexity of the image device increases. Unfortunately, at a given frequency 

only a finite amount of independent experiments can be performed (see 

Section I.3.A). An alternative possibility is offered by the frequency diversity, 

although it needs to model dispersive behavior of the involved media [Bucci et 

al., 2000]. 
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Moreover, if appropriate a priori information is available, optimization 

methods can be equipped with a good starting guess, regularization schemes 

or constraints (see for instance the subsection I.4.1) in order to extend their 

applicability and reliability.  

Additionally, in order to gain preliminary understanding of shape 

and/or of other characteristics of the unknown objects and overcome the 

limitations of optimization schemes and even linearized method [Catapano et 

al., 2007a, Brignone et al., 2007], smart pre-processing techniques can be exploited 

[Cakoni and Colton, 2006, Colton et al., 2003, Kirsch, 1998, Zhong and Chen, 2007, 

Catapano et al., 2007b, Zhang et al., 2012a, Crocco et al., 2013].  

Two relevant examples are the Linear Sampling Method (LSM) [Colton 

et al., 2003, Catapano et al., 2007b] and the Factorization Method (FM) [Kirsch, 

1999], which pursue the reconstruction of the morphological features of the 

scatterers by solving an auxiliary linear inverse problem with a negligible 

computational burden. For instance in [Catapano et al. 2007a] the target’s 

support estimation, obtained via LSM, is used for quantitative inversion 

carried out via non-linear optimization, thus improving the reliability of the 

inversion process and reducing its computational burden.  

Finally, an interesting alternative to deal with the occurrence of the false 

solutions can be represented by step wise refinement techniques. Some 

examples include: 

• frequency hopping techniques [Haddadin and Ebbini, 1998], in which, 

one starts with a low resolution reconstruction, by processing just the 

lower frequency data, and then uses it as a starting guess for higher 

frequency reconstruction. This technique plays a very important role, 

as low frequencies make it possible to locate the objects and to 

reconstruct them roughly, and then higher frequencies allow finer 

details to be retrieved; 

• multiscale/multiresolution techniques [Baussard, 2005, Scapaticci et al., 

2012b, Chiappinelli et al., 1999, Scapaticci et al., 2015], in which one starts 

with a coarse representation of the unknown and then improve 

reconstruction by focusing attention on details (in this respect 

Wavelets transform seem be a convenient framework); 
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• the splitting of the problem into simpler auxiliary ones, each one 

devoted to determine some partial information about the scatterer 

(such as position of the center of the scatterer, presence of losses, 

possible symmetries, mean value and shape of its permittivity 

distribution), before the final quantitative inversion. 

 

I.4.3 Some recent developments  

 

As discussed in the previous subsection, a priori information on the 

unknown and pre-processing techniques are traditionally exploited in order to 

limit the occurrence of false solution. In fact, each preliminary knowledge on 

the unknown contrast can be used to get a good starting point for iterative 

inversion schemes in order to fall into the right attraction basin, or to restrict 

of the dimensionality of the unknown space, or choose the suitable 

representation basis in order to increase the data-unknown ratio (f.i. 

projection methods based on Fourier harmonics or Wavelets transform), or 

even to enforce other constraints.  

On the other hand, priori information on the unknown or suitable pre-

processing step could open the way to a new way of thinking about the 

solution of inverse scattering problems. In fact, rather than enforcing during 

the inversion procedure some properties, known a priori or acquired by 

means of a pre-processing of the data, one can take into account them from 

the beginning by rewriting the pertinent scattering equations [Isernia et al., 

2004, Ma et al., 2000, Crocco et al., 2012a]. 

For instance in [Isernia et al., 2004] by taking advantage of the a priori 

information on the features of the Green's function, a convenient rewriting of 

the integral equations (I.1) and (I.2) has been exploited to introduce a new 

model for bidimensional electromagnetic scattering by dielectric objects in 

lossy media. By exploiting this latter, a new series expansion has been 

introduced in order to accurately and effectively solve the forward and inverse 

problem. This main advantage offered by this new scattering model is the 

lower degree of nonlinearity with respect to parameters embedding dielectric 

characteristics if compared to the traditional model.  
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A suitable rewriting of the scattering equation and a new field 

approximation, which rely on a proper (physics inspired) exploitation of the 

solution of the LSM, have been recently proposed in [Crocco et al., 2012a]. The 

proposed field approximation takes into account the nature of the unknown 

scenario through the pre-processing step and allows to exploit a linear model 

for quantitative reconstruction. In particular, in [Di Donato et al., 2015a] the 

range of applicability of this original inversion procedure is investigated 

showing that it significantly outperforms the usual BA, as it is target 

dependent and considers the contribution of the field scattered by the object. 

A generalized version of this linear inversion method has been recently 

introduced in [Di Donato et al., 2016] in order to appraise the properties of 

non-weak anomalies with respect to a partially known and non-homogeneous 

scenario, going beyond the range of validity of the DBA. 

Other recent development in the solution of inverse scattering interests 

a new kind of regularization, which interest the auxiliary unknown, furtherly 

considered in addition to the actual one, rather than the contrast function (see 

subsection 1.4.1). Notably, enforcing some property on the auxiliary 

unknown would allow to reduce the nonlinearity of the inverse scattering 

problem, with obvious beneficial effects with respect to the possible 

occurrence of false solutions.  

Note the only method up to now acting on the contrast sources to 

regularize the problem is the subspace optimization method (SOM) [Chen, 

2010]. The essence of the method is that part of the contrast source is 

determined from the spectrum analysis without using any optimization, 

whereas the rest is determined by optimization method. 

The intrinsically different nature of these regularizations, with respect 

to other ones acting on the contrast, naturally suggests that these approaches 

could be exploited together, leading to further improved performances, as 

done in [Xu et al., 2015]. 
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I.5 Aim and outline of the thesis 

 
Solutions of inverse scattering problems can be completely erroneous if 

non-linearity and ill-posedness are not properly tackled. The availability of 

processing techniques, able to avoid the possible occurrence of false solutions 

as well as able to give an accurate quantitative rendering of the actual 

electromagnetic scenario, is essential in several applications (such as demining 

and biomedical imaging), as discussed in the Section I.1.  

In this respect, the aim of the thesis is concerned with the development 

of innovative and reliable solution procedure for quantitative inverse 

scattering problem, which have a range of applicability as wide as possible 

while keep low both the complexity of the solution method and the 

computational burden.  

In this thesis the 2D problem is analyzed and discussed, as its full 

understanding is still an open issue and is pivotal towards the more 

demanding 3D case. In fact, both the optimization of the corresponding 

inversion approaches and the possibility of using interesting high 

performance hardware resources and effective solution strategies allow to 

foresee a simple extension at the case of 3D geometry. As a demonstration of 

the actual viability in 3D problems, in Chapter 5, a tridimensional geometry is 

also considered. 

With the aim of developing new solution strategies and tools, the 

general idea of the thesis is the well-conditioning of the inverse scattering 

problem by acting from one hand on the actual variable, that is the contrast 

function, and from the other hand on the auxiliary unknown, that is the total 

field or the contrast sources induced inside the target.  

In order to act on the auxiliary unknown and contemporary reduce the 

non-linearity, in the first part of the thesis the new paradigm of Virtual 

Scattering Experiments (VE) is introduced. VE are a new kind of 

experiments, which are obtained starting from the statement that scattering 

phenomena can be recombined in many different ways, due to the linearity of 

Maxwell equations with respect to the primary sources. Their peculiarity is 

that they can be designed in such a way to condition the scattering 
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phenomena and enforce some peculiar properties on the internal fields or on 

the corresponding currents. Note that this kind of information does not 

descend from some priori assumptions on the scattering model or on the 

contrast function. Rather, it follows from some smart pre-processing of the 

available data. In particular, in this thesis, such information is conveniently 

used in order to develop three new inversion approaches (see Chapter 2 and 

[Bevacqua et al., 2014a, Bevacqua et al., 2015a-d]). 

On the contrary, in order to act on the actual unknown, the emerging 

and powerful tool in signal/image processing of the Compressive Sensing is 

exploited. The CS allows to improve the accuracy of existing inversion 

procedures, obtaining a kind of ‘super- resolution’, and/or driving the design 

of simpler and cheaper measurement set-ups. Obviously, it can be definitely 

attractive in the solution of inverse scattering problems. Unfortunately, this 

theory is well developed only for the case of phenomena described through 

linear models. This represents a fundamental difficulty for its application in 

the problem at hand. In this respect, three different approaches are 

developed, in which a possible linearization is considered and discussed and 

two possible approaches considering the problem in its full non linearity are 

also explored [Di Donato et al., 2014b, Bevacqua et al., 2015e] 

The thesis consists of 5 chapters and 5 appendices (where mathematical 

details are deepened) and it is organized in two different parts. In the first part 

of the thesis (Chapters 1-3) both theoretical and numerical results reached by 

developing innovative solution strategies for quantitative inverse scattering 

are illustrated and discussed. In the second part of the thesis (Chapters 4-5) 

the outcomes reached in the previous Chapters are originally exploited in 

order to improve the imaging results by considering two different 

applications: biomedical diagnostics, in particular for the breast cancer, and 

subsurface prospections. [Bevacqua and Scapaticci, 2015, Bevacqua et al., 2015f]. 

In particular, in Chapter 1, the mathematical notations and the general 

adopted measurement setup for 2D scalar problems are first illustrated. Then, 

the new paradigm of VE for the solution of inverse scattering problem is 

introduced and the possibility of conditioning the scattering phenomenon by 

means of proper designed VE is presented. To this end, the LSM is proposed 
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as design tool [Crocco et al., 2011, Di Donato et al., 2011], by taking advantage of 

its physical interpretation in terms of electromagnetic focusing problem. 

Finally, in light of the above field conditioning concept and the VE 

framework, two inversion methods recently introduced in literature are briefly 

recalled and reinterpreted. These strategies aim at counteracting the non-

linearity of inverse scattering problem [Crocco et al., 2012a], and overcoming 

the relevant information lack arising when data are gathered under aspect 

limited measurements configuration [Di Donato and Crocco, 2015]. 

Chapter 2 introduces, describes and discusses three different solution 

strategies based on suitably designed VE. In particular, in the first two of 

them VE are built in such a way to induce a circularly symmetric behavior of 

the scattered fields and contrast sources. Then, limitations associated to the 

linearization used in [Crocco et al., 2012a] are overcome according to two 

different approaches.  

In the first one, named Direct Algebraic Reconstruction (DARE) a new 

and original approximation of the contrast source induced inside the targets is 

introduced [Bevacqua et al., 2015g]. These latter allows to reduce the solution 

of the inverse problem to a diagonal system of third degree algebraic 

equations. This method provides a very fast solution of the inverse scattering 

problem by means of closed form formulas. The method is introduced and 

discussed in Section 2.1, while some details are deferred to Appendices A, B 

and C.  

In Section 2.2, by using the same kind of VE, a Regularized Contrast 

Source Inversion (RCSI) scheme is introduced [Di Donato et al., 2015b], in 

which no approximation of the scattering model is considered. Rather, a 

simple regularization term acting on the induced currents rather than the 

contrast function is added in the standard CSI scheme. Some details about 

CSI scheme are reported in Appendix D. 

In the same spirit of overcoming limitations due to linearizations or 

approximations, as well as to deal with scatterers located in a possibly non 

homogeneous background, in Section 2.3 a Distorted Iterated Virtual 

Experiments (DIVE) inversion method is discussed [Bevacqua et al., 2016a]. In 

the same line with DBIM (but using VE), it is based on a series of 
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intermediate linearizations, in which the Green’s function, the VE and 

corresponding approximations [Crocco et al., 2012a] are updated on the basis of 

intermediate results. 

While Chapter 2 is focused on VE as a way to have a conditioning of 

the auxiliary unknown H	 or I, Chapter 3 is concerned with the exploitation 

of possible regularizations on the contrast function. In particular, it 

introduces and describes new inversion methods inspired to CS theory, in 

which different possible kinds of sparsity of the contrast function, as well as 

different possible ways of exploiting them, are considered. 

In particular, in Section 3.2 and 3.4 the CS theory is used in conjunction 

with VE based approaches [Bevacqua et al., 2015h, Bevacqua and Di Donato, 

2015], that are the linear approximation recalled in Section 1.6.1, and the 

DIVE method introduced in Section 2.3. As such, these two methods act 

contemporary on actual unknown, which is supposed to be sparse, and on the 

auxiliary one, which is conditioned by means of well-designed VE. 

Later in Section 3.3, a first attempt of imposing sparsity regularization 

in non-linear framework is discussed [Bevacqua et al., 2014b]. In particular, two 

innovative sparsity promoting methods are introduced and developed, which 

tackle the inverse scattering problem in its full non-linearity by adopting again 

a CSI scheme.  

As a byproduct, an original geometrical interpretation of CS ‘for 

dummies’ is also furnished in Appendix E. 

Both in Chapter 2 and 3, numerical results against simulated and 

experimental data are given in order to assess the validity of the proposed 

inversion methods. 

As a proof of the actual viability of the introduced techniques in real 

applications, the second part of the thesis concerns with use of microwaves 

for the breast cancer imaging enhanced by the use of Magnetic Nanoparticles 

(MNP) and for the imaging of objects buried in the subsoil. 

More in details, MNP enhanced MWI represents an innovative 

technique for breast cancer diagnosis, in which MNP have been proposed as 

contrast agent, in order to overcome some limitations of conventional 

microwave imaging techniques, thus providing reliable and specific diagnosis 
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of breast cancer. In particular in Chapter 4 an ad hoc CS inspired inversion 

technique is introduced for the reconstruction of the magnetic contrast 

induced within the tumor [Bevacqua and Scapaticci, 2016].  

On the other hand, the Subsurface MWI represents an assessed means 

to process GPR and valid alternative to the standard GPR data processing. In 

particular in Chapter 5, an efficient inverse scattering strategy based on 

framework of the VE and Compressive Sensing is proposed to achieve 

dielectric characterization of non-weak and extended hidden targets and 

buried objects in lossy soil [Bevacqua et al., 2016b].  

Conclusions and recommendation for further developments are finally 

given. 
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1 

Conditioning scattering phenomena by 
Virtual Experiments 

 

 

 

 

1.1 Mathematical notations and measurement configuration 

 

In the following the mathematical formulation of inverse scattering 

problems is introduced in more details with respect to the canonical 2D scalar 

case, by considering TM polarized fields, and assuming and dropping the time 

harmonic factor $67{9:;}.  
The adopted measurements configuration is the so-called multiview-

multistatic one, in which the antennas are organized in such a way that for 

each transmitting antenna all the antennas (including the transmitting one) act 

as receivers, and all antennas alternately act as a transmitter. By the sake of 

simplicity, let us consider the case where antennas are located in the far-field 

with respect to the investigation domain Ω ⊆ ℛG and on a circumference Γ 

distant R from the origin of the reference system 6NO, which is centered 

respect to Ω, see fig. 1.1. 

Let us consider an unknown nonmagnetic object with compact, 

possibly not connected support Σ and denote with QR and �S its relative 

permittivity and the electric conductivity, respectively. The target is embedded 

in a nonmagnetic medium of permittivity QT and conductivity �T. The 

magnetic permeability is everywhere equal to that of free space UV.  

The unknown contrast function which relates the electromagnetic 

features of the object and the ones of the host medium is defined in E =(6, O) ∈ Ω as : 

	(E) = QR(E) − 9�R(E) :QV⁄QT(E) − 9�T(E) :QV⁄ − 1 

(1.1) 
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where : = 2YZ and Z is the working frequency.  

 

 

Figure 1.1 Pictorial view of the measurement configuration adopted to collect the scattering 

experiments. 
 
 

The equations governing the scattering phenomenon for the geometry 

at hand for the generic [ -th incident field H!(�) can be expressed in an 

integral form as it follows: 

 

HR(�)(E) = \TG ]^T(E, E_)
`

	(E_)H(�)(E_)aE_ = 12b	H(�)c,																E ∈ Γ 

(1.2) 

H(�)(E) = H!(�)(E) + \TG ]^T(E, E_)
`

	(E_)H(�)(E_)aE_

= H!(�) + 1!b	H(�)c, E ∈ Ω 

(1.3) 

where HR(�)(∙) and	H(�)(∙) are the scattered field and total field induced in Ω, 

respectively, while \T = :dUTQT is the wavenumber in the host medium.12 

and 1! are a short notation for the bilinear integral radiation operators, which 

are defined on X × T, with X ⊂ ij(Ω) the subspace of the possible contrast 

functions, T ⊂ iG(Ω) a proper subspace for the total electric fields inside the 

object, and with value on two proper subspace for the scattered field outside 

and inside the object, S2 ⊂ iG(Γ) and S! ⊂ iG(Ω), respectively. ^T(E, E_) is 
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the Green’s function pertaining to the background medium. If the 

background is the free space ^T(E, E_) = −9/4	mVG(\T|E − E_|), being mVG 

the zero order and second kind Hankel function. In general case of 

heterogeneous non homogenous background, ^T(E, E_) is pertaining to the 

particular reference scenario at hand and cannot be calculated in closed form, 

with exception of few canonical scenarios. For this reason, it is typically 

numerically calculated by using the reciprocity principle. 

If the contrast source I, i.e. the current induced inside the scatterer, is 

considered as alternative auxiliary unknown, the data and state equation are 

rewritten as follows: 

HR(�)(E) = \G ]^T(E, E_)
`

I(�)(E_)aE_ = 12bI(�)c,									E ∈ Γ 

(1.4) 

I(�)(E) = 	(E)H!(�)(E) + 	(E)	\G ]^T(E, E_)
`

I(�)(E_)aE_

= 	H!(�) + 	1!bI(�)c, E ∈ Ω 

(1.5) 

The inverse scattering problem aims at retrieving the unknown contrast χ ∀	�	p	Ω from the scattered fields HR measured for several receiving 

positions on Γ and for a set of known incident fields H!.  
As stressed in the Introduction, the inverse scattering problem is non-

linear, because of the dependence of I or H on the unknown contrast 

function χ, and ill-posed because of the compactness of the radiation 

operator 1> [Bertero and Boccacci, 1998]. Accordingly, only a finite number of 

scattering experiments is considered. In so doing, care has to be taken in 

choosing the positions �-, … , �r of the ' transmitting probes and those of 

the � receiving ones, �-, … , �s, in such a way to collect all the available 

information in a non-redundant fashion. This can be efficiently done by 

adopting the measurement strategies proposed in [Bucci and Isernia, 1997], 

wherein a Nyquist criterion is essentially suggested for the case at hand. The 

number of antennas acting both as transmitters and receivers is set on the 
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order of 2	ℛ$tu3\T4	t, where t is the radius of the minimum circle enclosing 

the investigation domain Ω. 

 

 

1.2 A new framework of the virtual scattering experiments 

 
It is well known that the inverse scattering problems can take advantage 

from multiple (or multiview) experiments [Bucci and Isernia, 1997], i.e., from 

considering ' incident fields impinging from angles ��, which produce a 

corresponding set of scattered fields, measured for � angles ��. Due to the 

linearity of the scattering phenomenon, with respect to the primary sources, a 

superposition of the incident fields, with known coefficient v�, gives rise to a 

scattered field which is nothing but the superposition (with the same 

coefficients) of the corresponding scattered fields. In other words, if  

ℰ!(E) = xv�
r

�y- H!(E, ��) 
(1.6) 

is a superposition of the incident fields coming from the ' different 

directions ��, then: 

ℰ(E) = xv�
r

�y- H(E, ��) 
z(E) = xv�

r
�y- I(E, ��) 

ℰR(�) = xv�
r

�y- HR(��, �) 
(1.7) 

are, respectively, the total field, the contrast source and the scattered field 

which would be generated for the incident field (1.6). 

From the simple reasoning above, it follows that performing several re-

arrangements of the original experiments allows to build a set of new 

experiments. These new experiments are referred to as Virtual Experiments, 
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in order to remark that they do not require new experimental measurements 

as they are derived from a posteriori software procedures. No a priori 

information on the contrast function is needed to generate VE. 

Clearly, VE are just a different way to consider or to re-weight the 

originally collected information. In fact, the amount of information carried by 

VE cannot exceed that of the original ones, and some information could be 

actually lost if they are not properly designed.  

Note that one can recombine in different way the original experiments 

acting on the coefficients v�, thus obtaining different total fields ℰ and 

corresponding induced currents z, exhibiting different given behaviors. 

 

 

1.3 Conditioning scattering phenomena by means of 
suitably designed virtual scattering experiments 

 
The natural question then arises of whether and how one can take 

advantage from VE, i.e., if their adoption can in some way simplify the 

problem.  

The aim is the same which induce to implement a change of variable in 

solving a complex integral, or a change of investigation domain (f.i. from 

space/time domain to Laplace one) in solving a differential equation. In this 

respect, the VE could be considered as a linear transformation which allows 

to turn from the domain of the original experiments to a virtual domain in 

which the solution of the inverse scattering problem is more easily found.  

An interesting chance is that of exploiting the VE to condition the 

scattering phenomenon, i.e. to enforce some given behaviors on the contrast 

sources or on the total fields inside the Region of Interest (ROI). 

The ratio underlying this choice is very simple. In fact, it is well known 

that inverse scattering problems are non-linear in the relationship between the 

data and unknowns, as the induced currents and the total fields inside the 

targets are also unknown. Obviously, an exact knowledge of the internal fields 

or of the contrast sources would allow to linearize the inverse scattering 

problem. In this spirit, being internal fields and contrast sources unavailable 
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(as they depend on the contrast function) it can be argued that exploitation of 

any possible information on I or H can provide beneficial effects with 

respect to the possible occurrence of false solutions, thus simplifying the 

solution of the problem. 

Taking profit from such a circumstance, one can re-cast the inverse 

problem in terms of virtual experiments rather than reasoning in terms of the 

original ones. In fact, if care has been taken in generating VE in order to 

avoid loss of significant information, the recasting of the problem in term of 

properly designed VE implies that the total fields (or the scattered fields) and 

contrast sources exhibit or approach some given behavior. As a consequence, 

the exploitation of such properties can be used to remove part of the 

difficulties that arise in the solution of the inverse problem, and, so, to 

develop more accurate inversion procedures.  

In effect, in addition to the reduction of the nonlinearity, enforcing 

during the inversion procedure some property or structure on the total fields 

or contrast sources represents a new way to regularize the problem by acting 

on the auxiliary unknowns rather than the actual unknown (see subsection 

I.4.3). 

Amongst the different possibilities and considering the case when the 

scatterers are hosted in a homogeneous background, let us focus on the idea 

of conditioning the scattering phenomenon in order to enforce a set of 

scattered fields or contrast sources exhibiting a circular symmetry around a set 

of different point ��, called ‘pivot points’. In a number of cases (see for 

instance Section 2.1) such request also implies a localization of the scattering 

phenomenon. In fact, (but for special cases) enforcing a circular symmetric 

scattered fields or contrast sources means that these latter seem to emerge 

from the considered pivot point. 

Both the general idea (enforcing circular symmetry) as well as the related 

localization phenomenon open the way to innovative, convenient and 

effective solution procedures, which will be introduced and described in the 

next chapters of the thesis. 
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1.4 Linear sampling method as a way to synthesize 
circularly symmetric experiments 

 
To design a set of VE, the scattered fields collected in the original 

experiments are the only available data, so that one has to act on them to 

pursue the design goal and to determine the superposition coefficients that 

define the set of VE.  

As stressed in the previous section, amongst the different opportunities, 

let us consider the case when the scatterers are hosted in a homogeneous 

background and a corresponding design of the experiments such that each 

virtual scattered field exhibits (within some required accuracy) a circular 

symmetry around some pivot points ��. By considering a proper set of pivot 

points �� belonging to the scatterer’s support (which can be estimated by a 

number of methods [Catapano et al., 2007b, Crocco et al., 2013]), the (original) 

multiview experiments can be turned in multipivot virtual ones (see fig. 1.2). 

A possible way to calculate the unknown coefficients is to enforce that 

the scattered fields ℰR resulting from a VE fulfill the following equation: 

 

ℰR{E, E|} 	= xv��
r

�y- HR(��, E) = ^T{E, E|}	 
(1.8) 

where E ∈ Γ, �� ∈ Ω is the considered pivot point, ~� = {v��} with 7 =
1,2, … . P identifies the combination coefficients required to implement the 

VE that give rise to the sought circular symmetry around the � pivot points ��. In fact, by assuming that one is able to determine these coefficients, by 

virtue of eq. (1.6) they also modify the original amplitudes of the primary 

sources in such a way that their combined effect induces a current which 

radiates (on the measurement curve Γ) a circularly symmetric field around �� 

[Catapano et al., 2007b]. The right-hand side of eq. (1.8) is the far-field radiated 
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on Γ by an elementary source located in �� (in TM case a filamentary 

current)1.  

Interestingly, eq. (1.8) is nothing but the discretized version of the well-

known Far Field Equation (FFE), i.e., the basic (linear) equation underlying 

the LSM [Cakoni and Colton, 2006], with �� playing the role of the sampling 

point. Accordingly, the problem cast in (1.8) is ill-conditioned and has to be 

solved through some regularization strategy. Its regularized solution is 

commonly exploited to recover the shape of unknown targets by simply 

plotting (in a logarithmic scale) the energy of the solution over the sampling 

grid. 

 

 

                                (a)                                                                   (b) 

Figure 2.2 On scattering experiments. (a) Original scattering experiments: the impinging 

waves on the investigated domain come from directions ��; multiple angles are used to 
obtain more information on the unknown target. (b) Virtual scattering experiments: the 
incident field is the result of the simultaneous excitation of the original primary sources 

according to a combination criterion ruled by the pivot point ��. 

 
 

Detail on the implementation of the regularized solution of FFE can be 

found in [Catapano et al., 2007b, Catapano et al., 2009b], where the Tikhonov 

regularization is adopted entailing an interesting effect on the synthesized 

contrast source. In fact, the minimum energy requirement (on the primary 

sources) enforced by the Tikhonov regularization corresponds to minimize 

                                                 
1 Note that the discussion reported in this section can be generalized to the case of non 

homogeneous scenario. In this respect, the scattered field is enforced to resemble on Γ as a 
field radiated by an elementary source located inside the reference scenario (see Section 1.6.1 
for more details). 
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the non-radiating component [Marengo et al., 2000, Marengo and Ziolkowski, 

2000, Devaney and Wolf, 1973] of the contrast sources [Crocco et al., 2012b].  

By construction, the radiating component of this contrast source will be 

circularly symmetric around the selected pivot point, whereas it is not possible 

to foresee its non-radiating behavior (as one is acting on the scattered fields). 

Nevertheless, the assumption of a circularly symmetric contrast source allows 

to include the part of non-radiating sources which is circularly symmetric, 

while the non-radiating or poorly radiating angularly varying sources possibly 

induced by the virtual incident field are just neglected, as they are expected to 

be small. As a consequence, being the VE built by adopting the Tikhonov 

regularization (which enforced a minimum energy requirement), recasting the 

problem in terms of VE is by itself a form of regularization. 

In conclusion, in light of the above reasoning, as long as eq. (1.8) is 

fulfilled in a regularized sense, the resulting virtual contrast source will exhibit 

an essentially circularly symmetric structure with respect to the pivot point at 

hand, while angularly varying (radiating and non-radiating) contrast sources 

are instead expected to be small and negligible. [Crocco et al., 2012b]. 

To get a better understanding of all the above, let us report a numerical 

example with a scattering system made of two obstacles in free space. The 

ROI is a square of dimension 1.6	� × 1.6	� (� is the considered wavelength) 

which is assumed to embed the unknown targets and is discretized in N� = 64 × 64 cells (following [Richmond, 1965]). The targets have different 

shapes, as shown in fig. 1.3(a), and different electric features: a C-shape target 

with χ = 0.5, and a circular target with χ = 0.85.  

In order to collect in a non-redundant way as much information as 

possible [Bucci and Isernia, 1997], the synthetic data are generated considering 17 plane waves evenly spaced in angle, while the corresponding scattered 

fields are measured in 17 evenly spaced angular positions on Γ at a distance R = 1.6	� from the origin. Finally random gaussian noise with a Signal to 

Noise Ratio (SNR) of 20a� is considered to simulate measurement 

uncertainties. 



Conditioning scattering phenomena by Virtual Experiments 

32 

 

In fig. 1.3(b) the energy of the solution v�� is reported for all the 

points belonging to the grid in which the investigation domain Ω is divided. 

As it can be seen, when the sampling point belongs to the scatterers support 

an approximately focused and circular symmetric contrast source arises, see 

fig. 1.3(c)-(d). On the other hand, fig. 1.3(e) shows the virtual current for a 

sampling point that does not belong to the obstacle support. In this 

circumstance the current does not show any circular symmetry. This 

circumstance is also confirmed by fig. 1.3(f)-(h), which shown the data fitting 

pertaining to eq. (1.8), with respect to the different receiver positions ��. 

When the pivot point does not belong to the support of the scatterer the 

 
                                            (a)                                            (b) 

 
                    (c)                                            (d)                                            (e) 

 
                        (f)                                           (g)                                          (h) 
 

Figure 3.3. The LSM as a way to synthesize circularly symmetric virtual experiments: (a) 
actual support of the scattering system; (b) retrieved support via LSM energy indicator. 

Amplitude of virtual induced current for some sampling points: (c) ��=(0.388	λ, -0.0125	λ), 

(d) ��=(-0.413	λ, -0.0125	λ), (e) ��=(0.288	λ, -0.513	λ). Fitting of LSM equation versus ��
[rad] for the pivot points considered in (c), (d) and (e), respectively: continuous line 
represents the values assumed by the right hand side while the red points are the values 
assumed by the left hand side.  
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solution becomes unbounded and the virtual scattered field does not fit 

anymore the function ^T{E, E|}. 

It is worth noting that determining the required set of superposition 

coefficients 	{v��} for the design of circularly symmetric experiments 

corresponds to solve the problem of focusing an electromagnetic wave in an 

unknown environment. This is sort of canonical problem, which has been 

broadly addressed in the literature by means of various approaches. Apart 

from the LSM, other methods can be considered for the design of VE. These 

latter may include the FM [Kirsch, 1999, Di Donato, 2013], adaptive time 

reversal procedures [De Rosny et al., 2010, Fink and Prada, 2001, Devaney et al., 

2005] or other more sophisticated methods to achieve field focusing in 

partially unknown environments [Crocco et al., 2012c].  

Among the possible choices, in this thesis a procedure based on the 

LSM [Colton et al., 2003, Catapano et al., 2007b] is adopted as VE design tool, as 

it only entails a simple linear processing of the field scattered and the 

computation of the Singular Value Decomposition (SVD) of the matrix data 

[Catapano et al., 2007b]. Moreover, LSM yields an estimate of the target’s 

support, which is useful to properly locate the pivot points. 

 

 

1.5 On the choice of pivot points 

 
The possibility of actually achieving truly circularly symmetric contrast 

sources and scattered fields is related to the actual support of the scatterer. 

Luckily, a number of powerful methods for the estimation of such a support 

do exist [Crocco et al., 2013]. In this respect, the LSM is an effective candidate 

to pursue this task. In fact, a generalized solution of FFE is such that the uG-

norm of the coefficients v��, i.e.: 

 

‖v�‖�G = x|v��|Gr
�y-  

(1.9) 
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becomes unbounded when �� approaches the boundaries from the inside and 

when �� does not belong to the support of the scatterer (see fig. 1.3). 

Therefore, the energy of v�� plays the role of a support indicator, which is 

simply obtained by sampling the investigation domain Ω into a grid of points, 

solving the FFE in those points and then plotting the corresponding values of ‖v�‖. In particular, the normalized indicator function, as defined in [Catapano 

et al., 2009b]:  

Υ = log-V‖v�‖ − log-V‖v�‖�"%���(log-V‖v�‖ − log-V‖v�‖�"%) 
(1.10) 

can be used. Υ continuously varies between 0 and 1 and assumes its largest 

values in points belonging to the scatterers. Note that ‖v�‖�"% is the largest 

value in the grid of points belonging to Ω. 

Once the unknown target support is estimated, the choice of the pivot 

points has to ensure that the resulting VE are capable of enforcing the 

expected behavior of the contrast sources and scattered fields. Hence, pivot 

points whose corresponding virtual scattered fields more closely resemble 

cylindrical waves should be preferred. In fact, such a condition entails a better 

circularity of the scattered fields ℰR and contrast sources z. In particular, 

since the contrast source’s support is constrained onto Σ, it is expected that 

the induced currents for �� very close to the estimated boundary will not 

show an exact circular symmetry with respect to �� [Catapano et al., 2007b, 

Crocco et al., 2013]. Obviously, no focusing at all of the induced current is 

possible for points outside of the scatterer. This physical observation 

corresponds to what is foreseen by LSM theory, according to which the 

energy of the solution ‖v�‖.  blows up when E| approaches the boundary of 

the scatterer (see fig. 1.3) [Colton et al., 2003]. 

Accordingly, the choice of the pivot points is carried out following the 

simple rules which follow. 

First of all, the pivot points are chosen among those points that are 

understood to belong to the estimated support, as provided by Υ. Obviously, 
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they are not meant as a sampling of the scatterer permittivity, which is 

unknown. 

As far as the number of pivot points and independent scattering 

experiments is concerned, it depends on the dimensions of the scatterer [Bucci 

and Isernia, 1997], so that a number of pivot points in the order of that 

deriving from the estimated dimensions of the scatterer (via Υ) is chosen. 

Note that it is important not to underestimate the number of experiments, so 

to carry all possible information gathered by the original experiments in the 

virtual framework2. Conversely, considering a larger number would only have 

a drawback in terms of computational burden. In some cases it may be useful 

or even appropriate to consider a larger number of pivot points (see Section 

2.1.3). 

Finally, as far as their location is concerned, the pivot points should be 

such that enforcing a circular contrast source is possible. Therefore, they 

should be preferably located in those parts of the region under test where Υ 

attains values close to 1, as these are the point where enforcing a circularly 

symmetric source is expected to be simpler [Catapano et al., 2007b, Crocco et al., 

2012a, Crocco et al., 2013]. In doing so, one should also avoid to cancel any 

significant information carried by the original experiments. To this end, pivot 

points must be chosen not too close each other, as the information carried by 

VE of clustered pivots would be nearly the same. In practice, the available 

pivot points are evenly spaced within the estimated support. 

                                                 
2 Actually, part of the information collected in the original experiments is used in the pre-
processing step to estimate the target support. 
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1.6 New understanding and interpretation of recently 
introduced inversion strategies 

 
In this section, two inversion methods recently introduced in literature 

are briefly recalled. Both techniques are here reinterpreted in the light of the 

reasoning reported in the above sections, which shows the interesting 

possibility of conditioning the scattered field by means of the design of 

suitable VE. 

It is important to highlight that although the FFE underlying the LSM 

is herein used to design the VE, the methods which are recalled in this 

Chapter and are introduced in the next one can be also applied by using 

different procedures to achieve a conditioning of the scattering phenomenon, 

as stressed at the end of Section 1.4.  

 

1.6.1 An effective linear approximation of the internal field 

 

In order to avoid non-linear optimization for quantitative imaging, 

recently a linear model based approximation has been developed in [Crocco et 

al., 2012a] and successively extended in [Di Donato et al., 2016]. The approach 

has been introduced as a new scattering approximation based on the physical 

meaning of LSM, but a new understanding and a general interpretation can be 

given with respect to the framework of VE. 

As explained in previous Sections, while the overall information 

content in the original experiments remains unchanged, their clever re-

arrangements can allow to condition the scattering phenomena, in particular 

to enforce circular symmetry on the auxiliary unknowns (f.i. the total field).  

In the VE design equation (1.8) the function v�� recombine the 

measured scattered field at a given receiver arising for the different 

transmitter’s positions in such a way to match the field radiated by an 

elementary source located in the sampling point. Accordingly, provided that a 

solution of eq. (1.8) can be actually found, the data equation (1.2) can be 

revamped in terms of VE as: 
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ℰR{E, E|} = \TG ]^T(E, E_)
`

	(E_)ℰ{E_, E|}aE_ = 123	ℰ4,				E ∈ Γ		 
(1.11) 

wherein ℰR, ℰ are the virtual (measured) scattered and virtual (internal) total 

fields given by eq. (1.7).  

The new eq.(1.11) is still non-linear in terms of the unknowns, as both 	 and ℰ are unknown. However, the peculiar nature of the design equation, 

which enforces the target to behave like a point-like scatterer (observing the 

scattered field on Γ), allows to enforce, at least approximately, a given 

behaviour for the scattered field, and hence to introduce an effective 

approximation for ℰ in Ω.  

In fact, according to [Marengo and Ziolkowski, 2000], a minimum energy 

solution of eq. (1.8) entails a scattered field in Ω which resembles the one 

pursued on Γ by the design equation (see fig. 1.3(f)-(g)) [Catapano et al., 2007b, 

Crocco et al., 2013]. This corresponds, by exploiting the continuity of the field’s 

tangential component, to an analytic prolongation of the field from the 

measurement curve Γ inside the scatterer and up to the considered pivot 

point ��. 

Moreover, as long as eq. (1.8) can be solved in ��, its solution can be 

used to define an incident field whose corresponding scattered field is a 

cylindrical wave pattern centered on Γ. Notably, such a scattered field is 

always the same regardless of the probed target (within the level of accuracy 

of the regularized LSM solution.) Conversely, the virtual incident wave 

depends on the scatterer under test through v��. Obviously, this is the 

opposite of what happens in usual scattering experiments, where the scattered 

field changes with the scatterer, while the incident field is independent from 

it.  

This change of roles can be exploited to cast a new approximation of 

the relationship between the contrast and the scattered fields. In particular, 

when the sampling point is inside the scatterer’s support the total field can be 

conveniently approximated by means of the following expression: 
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ℰ{E, E|} ≈ ℰ!{E, E|} + i�b^T{E, E|}c 
(1.12) 

wherein the first addendum at the right hand side is the incident field arising 

in the VE and the second addendum is a low pass version of the internal 

Green’s function, where the low-pass filtering is meant to avoid the field 

singularity in the pivot point.  

As it can be observed in eq. (1.12), this new powerful approximation 

consists in approximating the total field ℰ arising in the VE framework as the 

contribution of the original incident fields as ruled by the coefficients v�� 

plus the elementary field pattern originating at the pivot point �� [Crocco et al., 

2012a]. 

The field approximation (1.12) has been generalized in the case of 

partially known scenario [Di Donato et al., 2016], where the ground truth at 

hand can be conveniently thought as a modification of a known non-

homogeneous one.  

The VE design equation is again pursued by means of the solution of 

the LSM but considering a partially known scenario [Catapano and Crocco, 

2009], i.e. rewriting the equation (1.8) as: 

 

∆ℰR{E, E|} 	= xv��
r

�y- ∆HR(��, E) = ^T{E, E|} 

(1.13) 

where ∆HR is the anomalous field, that is the scattered field due to the 

presence of obstacles or anomalies inside the reference scenario, ∆ℰR is the 

anomalous field arising in the VE and, finally, ^T is the elementary field 

pattern originating at the pivot point in the non-homogeneous reference 

scenario. 

The solution of the distorted FFE (1.13) in the whole ROI and the 

selection of the pivot points �� inside the anomaly support allow the design of 

the VE. Finally, if the problem is recast in term of these experiments, the field 

approximation (1.12) is generalized as: 
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ℰ{E, E|} = xv��
r

�y- HT(�)(E) + i�{^T(E, E�)} 
(1.14) 

wherein HT is the background field arising in the reference scenario and the 

second addendum is a low pass filtered version of ^T.  

Note that both approximations (1.12) and (1.14) take implicitly into 

account the nature of the scatterer/anomaly through the weighting function v��. As such, the above linear framework can cope with a class of dielectric 

profiles, both in terms of dimension and contrast values, widely exceeding the 

BA, as shown in [Di Donato et al., 2015a], and DBA. 

More details concerning the method’s implementation and the field 

approximation can be found in [Crocco et al., 2012a, Di Donato et al., 2016]. 

 

1.6.2 A ‘fictitious measurements’ strategy for aspect limited 
data 

 

The VE framework can be exploited not only to introduce the above 

linearized approaches, but also, (and more interesting) to counteract the 

additional specific difficulty that one could cope with the solution of an 

inverse scattering problem, when both primary sources and measurement 

probes cannot surround the region under test. This happens, for instance, in 

case of subsurface imaging (as described in the last Chapter) or cross-hole 

borehole imaging, where just ‘aspect limited’ data pertaining to a reduced 

angular sector are available. 

In this respect, the approximation (1.12) provides an analytical 

expression for the fields in the ROI. Since the spatial behavior of the 

scattered field is known everywhere for each VE, one can predict the value of 

the field in locations where physical measurements are not possible or 

present. Then, additional equations can be introduced in order to get profit 

from the expected behavior of the scattered fields in locations other than the 

measurement point on Γ.  

In particular, one can enlarge the set of measurement data, by adding a 

set of ‘fictitious measurements’, located in ��∗ on a fictitious curve Γ∗ 
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(complementary to Γ), in such a way to restore the full aspect configuration 

[Di Donato and Crocco, 2015]. The value of the (virtually measured) scattered 

field at these fictitious locations would be obviously given by ^T{EE∗, E|}. 

According to the above, the (virtual) data equation can be suitably rewritten 

as: 

\TG ]^T(E, E_)
`

	(E_)ℰ{E_, E|}aE_ = � ℰR{E, E|}	if		E = EE ∈ Γ					^T{E, E|}	if		E = EE∗ ∈ Γ∗	 
(1.15) 

where �� and ��∗ denote the actual and the fictitious measurement points, 

respectively. 

Exploiting the achieved field conditioning, it could seem that one can 

place fictitious measurements as close as possible to the targets, i.e. inside Ω 

or even inside the scatterers. However, analytical prolongation (which allows 

for fictitious measurements) works fine outside the scatterers, while it 

becomes more critical when going inside the scatterers, wherein it may more 

easily fail. Hence, a convenient and more reliable choice amounts to place the 

fictitious probes approximately at the same distance of that between the 

investigated domain and the actual probes. 



 

 

 

2 

Virtual experiments based solution 
approaches for inverse scattering 

 

 

 

 

Introduction 

 

In this Chapter, three different approaches for quantitative solution of 

2D scalar inverse scattering problems are presented and described. The 

developed methods share with the linear approximation recalled in the 

Section 1.6.1 the idea of exploiting suitably designed VE (rather than the 

multi-view multi-static ones), built in such a way to induce a specific behavior 

on the scattered field and contrast source. 

However, the developed methods are indeed very different from the 

linear approximation recalled in the Section 1.6.1. In fact, they still take into 

account the non-linear nature of the inverse scattering problem. Obviously, 

these circumstances give rise to definite advantages in terms of performances. 

In particular, the first method acts on currents rather than fields, which 

is assumed to be focused and circularly symmetric. The core of the approach 

is represented by an original approximation of contrast sources, which allows 

to derive an explicit algebraic relationship between induced currents and 

contrast function. 

The second methods, which acts again on the currents, consists in a 

new regularization scheme for CSI, in which the scattering problem is recast 

into a set of VE, and circularly symmetric contrast sources are looked for. In 

particular, a penalty term is added to the usual CSI cost functional, in order to 

account for the symmetry of the auxiliary unknowns.  

Finally, in the last technique, the linear approximation recalled in 

Section 1.6.1 is exploited within an iterative scheme, in which Green's 

functions, VE and corresponding approximations are updated at each step on 

the basis of intermediate results. Notably, this procedure takes into account 



Virtual Experiments based solution approaches for inverse scattering 

 

42 

the nature of the scatterer from the first step and, as such, it is expected to 

outperform the standard DBIM [Chew and Wang, 1990], while preserving its 

flexibility and simplicity. Notably, by proceeding through linear 

approximations the approach also allows to get profit in as simple fashion 

from some recently introduced regularization technique (See Section 3.4). 

Examples dealing with both numerical and experimental data are 

provided in the following to assess the effectiveness of proposed methods. 

 

 

2.1 A direct algebraic reconstruction 

 

Unlike the linear method in Section 1.6.1, the algebraic solution method 

acts on currents and it allows to take into account in a simple fashion (part of) 

the non-radiating contrast sources [Marengo et al., 2000, Marengo and Ziolkowski, 

2000, Devaney and Wolf, 1973]. As such, the proposed quantitative inversion 

method is expected to largely exceed the range of effectiveness of the 

traditional weak scattering approximations. 

The approach takes advantage of two main ideas. First, the original 

scattering experiments are re-arranged in such a way to give rise to induced 

currents virtually focused in a set of pivot points belonging to the imaged 

domain. Second, a novel analytical approximation is introduced for the 

currents arising in the designed VE, which holds true in a neighborhood of 

the pivot point. Such an approximation relies on an overlooked theorem for 

Bessel functions and provides an explicit dependence of the focused currents 

on the contrast function.  

As discussed in the following, these two ideas allow to recast the 

inverse problem in such a way that the values of the contrast in the pivot 

points can be achieved by solving a diagonal system of algebraic equations. 

Then these latter are simply interpolated in order to achieve the unknown 

properties of the whole ROI. As a consequence, provided the proposed 

approximation holds true, the inverse scattering problem is solved by means 

of closed form formulas, and, hence, in a reliable and extremely fast manner.  
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Note that the applicability of DARE depends on the limitations of the 

design step, as well as on the validity of the approximations introduced on the 

contrast sources. As shown through examples in the following and in Section 

2.4, the proposed method is capable of imaging targets that are usually tackled 

by means quantitative inversion tools which are both computationally 

demanding and prone to false solutions occurrence. 

 

2.1.1 A new approximation for focused contrast sources 

 
Let us consider a set of VE capable to induce currents having a focused 

distribution around given pivot points	��. Moreover, let us make the 

additional assumption that the contrast function is slowly variable around 

each pivot point, so that one can consider the medium to be approximately 

homogeneous in a neighborhood of 	��.  

By exploiting canonical solutions [Jones, 1986] in a reference system 

centered on the pivot point, the contrast source z arising in the VE can be 

expressed as a superposition of Bessel functions, i.e.: 

 

z{E, 	E|} = x �����{\��}�j
�y�j $������ G¡ 

(2.1) 

where ¢� and � = £E − E|£ are the polar coordinates with respect to ��, ��� 

is an amplitude coefficient, ��(∙) is the Bessel function of order � and 

\� = \Td1 + 	� and 	� are, the ‘local’ wavenumber and ‘local’ values of 

contrast in 	�� (and its neighborhood), respectively. 

Observing that the induced current at hand is focused, and 

remembering the behavior of Bessel functions in the origin, it follows that the 

only term which survives in (2.1) in a neighborhood of the pivot point is the 

one with � = 0. As a result, in such a neighborhood the actual contrast 

sources can be approximated by means of the zero order Bessel function, 

whose argument depends on the unknown properties of the medium in 	��, 

i.e.,: 
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z{E, 	E|} ≈ �V��V{\�	�}, E ∈ ℐ��{E|} 

(2.2) 

where	ℐ��{E|}	is a circular neighborhood of �� of radius ¤�. Notably, 

expression (2.2) takes into account both the radiating and non radiating part 

of the source around the pivot point. 

Then, advantage can be taken from the Multiplication Theorem 

[Abramowitz and Stegun, 1964] for Bessel functions, according to which: 

 

Q�¥�¥(Q¦) = x 1�! ¨(1 − QG)¦2 ©�j
�yV �¥��(¦) 

(2.3) 

so that:  

�V{\�	�} = 	x 1�!
j

�yV ª−	�\T	�2 «� ��(\T	�) 
(2.4) 

As shown in Appendix A, this series is convergent for any 	�. 

Note expression (2.4) has a two-fold interest. First, as a neighborhood of �� is 

considered, by truncating eq. (2.4) to the first few terms, it is possible to 

rewrite (2.2) as follows: 

 

z{E, 	E|} ≈ �V� ¬�V(\T	�) − 12 		�	\T	�	�-(\T	�)
+ 18 		�G	(\T	�)G�G(\T	�) 

(2.5) 

where the argument of the Bessel functions just now depends on the 

background medium. 

Second, it is possible to take into account in a simple fashion (part of) 

the non-radiating contrast sources [Marengo et al., 2000, Marengo and Ziolkowski, 

2000, Devaney and Wolf, 1973] and, moreover, to separate the radiating and 

non radiating parts of the source. As shown in Appendix B, an analytical 

expression for the radiating part of z is obtained, i.e.: 
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z�®¯{E, 	E�} ≈ �V� °	¤�G
4 b�VG{\T¤�} + �-G{\T¤�}c − 	�4 ¤�G�-G{\T¤�}

+ 	�G48 \TG¤�±b�V{\T¤�}�G{\T¤�}
+ �-{\T¤�}�²{\T¤�}c	³	�V(\�) 

(2.6) 

where each term in (2.5) gives a contribution, while the non radiating part is 

simply the difference between z and z�®¯. 

Eq.(2.5) is a remarkable result, as it provides (within the range of 

validity of the approximation resulting from the truncation) an explicit 

algebraic relationship between z and 	�, which is linear if the expansion is 

truncated to the second term, and quadratic otherwise.  

 

 

Figure 2.1 Behavior of the Bessel function amplitude (solid line) as compared to the 
approximation (2.4) truncated at the first term (dashed line), at the second term (dotted line) 
and at the third term (dash-dot line). Two complex contrast values are reported: in the upper 

panel 	� = 1 − 0.05�, while in the lower one 	� = 2 − 0.1�. The background medium is 
lossless. 

 

 

Of course, eq. (2.5) has a limited validity, which depends on the 

distance � from the considered pivot point, as well as from the local value of 

the contrast. As expected, (see also fig. 2.1) the larger � (and the higher is 	�), 
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the smaller the range of validity of the approximation (2.5). As 	�	is the 

unknown of the problem, the determination of the actual geometric 

neighborhood of validity is not trivial (see the following subsections for 

further discussion).  

However, in the proximity of the pivot point it is possible to express the 

contrast source as an algebraic function of the contrast times a scalar variable 

(�V�), which provides the basis for a new and effective inversion method. 

 

2.1.2 A new algebraic solution procedure 

 

To introduce the proposed inversion method, let us first rewrite the 

scattering equations with respect to the relevant VE framework. In particular, 

the state equation (1.5) can be rewritten as: 

 

z{E, 	E|} = 	(E)ℰ!{E, E|} + 	(E)	\TG ]^(E, E_)
ℐ´�

z{E′, 	E|}aE_

+ 	(E)	\TG ]^(E, E_)
ℐ̅´�

z{E′, 	E|}aE_,				E ∈ ¶	 
(2.7) 

As approximations (2.2) and (2.5) are going to be used, the domain ¶	 is 

divided in two non-overlapping subdomains: the neighborhood	ℐ´�  of �� and 

its complementary set with respect to ¶, ℐ̅́ � . As long as the currents induced 

by the VE are well focused, and ℐ´� 	is properly chosen, it is possible to 

neglect the second integral. 

Similarly, the data equation (1.4) can be split into two contributions: 

 

ℰR{E, E|} = \TG ]^(E, E_)
ℐ´�

z{E′, 	E|}aE_

+ \TG ]^(E, E_)
ℐ̅́ �

z{E′, 	E|}aE_,			E ∈ Γ		 
(2.8) 
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where the second term at the right hand side can be again neglected.  

 

A. Inversion procedure 

By means of the explicit relationship between the z and 	� and 

following the analytical developments reported in Appendix C, it is possible 

to particularize and merge eqs. (2.7) and (2.8) for each pivot point into the 

single third order algebraic equation: 

 ·̅�	�² + �̧�	�G + ¹̅�	� + º»� = 0 

(2.9) 

where the only unknown is the value of the contrast in the considered pivot 

point. In fact, the scalar variable �V� can also be expressed by means of eq. 

(C.2) in terms of the local contrast function 	�. Eq.(2.9) is the core of the 

new inversion method, as it allows to estimate the unknown contrast in the 

pivot point at hand by solving a cubic equation, which admits, as well known, 

a closed form solution [Cardano, 1545]. Hence, the required estimate is 

obtained in a very efficient way, without resorting to iterative methods. 

To evaluate the overall contrast, one can consider all the pivot points 

for which the VE are designed, so that the overall inverse scattering problem 

can be formulated as a diagonal system of polynomial equations: 

 ·(Χ⊙ Χ⊙ Χ) + �(Χ⊙ Χ) + ¹Χ + º = 0 

(2.10) 

where ⊙ denotes the Hadamard product between vectors, ¾ =3	- ⋯		À ⋯		�4Á		is the vector that contains the punctual values of the 

unknown contrast in the selected pivot points ��, and (	)Á denotes the matrix 

transposition. Finally, ·, �, ¹ and º are diagonal matrices given by:  

 

· = Â·̅- ⋯ 0⋮ ⋱ ⋮0 ⋯ ·̅�Å 
� = Â�̧- ⋯ 0⋮ ⋱ ⋮0 ⋯ �̧�Å 
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¹ = Â¹̅- ⋯ 0⋮ ⋱ ⋮0 ⋯ ¹̅�Å 
º = Âº»- ⋯ 0⋮ ⋱ ⋮0 ⋯ º»�Å 

(2.11) 

and the expression of the different elements can be found above in eq. (C.4).  

Starting from the solution of (2.10), which provides the values of the 

contrast function in the � considered pivot points, an interpolation is 

performed in order to obtain the image of the reconstructed contrast over the 

investigated region. In particular, a linear interpolation is adopted in the 

following because of the assumed slow spatial variations of the contrast.  

Note that an important feature of the proposed method is the very low 

computational burden it requires. In fact, for each pivot point the solution is 

achieved in real time by solving the eq. (2.9) and independently from each 

other. In fact, the diagonal nature of the algebraic system (2.10) allows to 

handle the different pivot points in parallel. 

 

B. Managing false solutions 

The non-iterative inversion method described above is extremely 

effective and efficient, and it has the unique feature of allowing to solve the 

non-linear inverse scattering problem through simple algebraic tools. Note 

that the achieved equations preserve the non-linearity of the problem, while 

allowing to deal with a kind of localized scattering phenomenon, which 

translates into a diagonal relationship between the data and the unknown 

contrast in the pivot points.  

Notably, diagonalization and algebraic nature also allow to manage in 

an effective fashion the false solutions problem [Isernia et al., 2001]. In fact, 

the third degree polynomial considered in the method admits three roots, so 

that two of them correspond to false solutions. In the canonical case of 

targets embedded in free space, these roots are expected to be spaced (in the 

average) of 120°, so that only one of them is physically realizable, i.e. only one 

root will have a positive real part and a negative imaginary part. In addition, a 
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priori information concerned with the expected ‘slow’ spatial variability of the 

contrast can be possibly exploited.  

Similar ‘physical feasibility’ arguments are expected to hold in more 

general cases.  

 

C. On the Choice of ¤� and of the order of Bessel Expansions 

In the proposed method, the radius ¤� is a free parameter, whose 

choice obeys a very obvious trade off. In fact, from one side, one needs a 

value of ¤� as large as possible, as this will reduce the error arising from 

neglecting the second term in (2.7) and (2.8). On the other side, large values 

of ¤� may imply lack of validity of both (2.2) and (2.5). Notably, as already 

stated, the ‘optimal’ choice of ¤� also depends on the value of 	�, which is 

unknown. 

By taking advantage of the very fast inversion allowed by the obtained 

diagonal algebraic formulation, an ‘a posteriori’ criterion is suggested in order 

to choose a suitable value of ¤� for all pivot points. In particular, after using 

several trial values for ¤� and estimating the corresponding contrast 

functions, the fitting achieved in eq. (1.5) is quantified. To this end, the 

following residual is introduced: 

 

¤$Æ(¤�) = xÇz{E, 	E�} − 		ℰ!{E, E|} + 	1!bz{E, 	E�}cÇ`G
Çℰ!{E, E|}Ç`G�  

(2.12) 

where 	 and z are the contrast and the contrast sources obtained for a given 

radius ¤�. In particular, z is evaluated as in eq. (2.2), where �V�	is calculated 

by using eq. (C.2). 

To set ¤�, the residual (2.12) is appraised for different tentative values 

(belonging to a limited range), as well as for second and third order 

expansions of the Bessel function (see eq. (2.5)) Then, the value 

corresponding to the minimum residual error is picked as the most 

appropriate one.  
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The above outlined ‘tuning’ procedure entails the repeated execution of 

the (computationally negligible) task of solving the system of equations (2.10). 

As such, it may result in an increase of the overall computation time required 

by the method. However, the optimization procedure is intrinsically parallel, 

as ¤� is equal for all pivot points and each residual value associated to a 

specific radius ¤� can be computed independently from the other ones. Thus, 

by relying on such an implicit parallelism, the inversion can be carried out in 

real time by considering a number of processors in the order of the number 

of tentative radii. 

Even if in bidimensional case, dealt with in the Section, all results are 

already achieved almost in real time, this is an interesting point to address in 

the view of the future extension to 3D problems, wherein parallelization can 

be exploited to achieve, also in this more challenging case, real time imaging 

results. 

 

2.1.3 Method’s assessment 

 

In the following a ‘controlled’ assessment is carried out with simulated 

data. In these examples, one or more unknown objects are positioned inside a 

square domain of side L and, following [Bucci and Isernia, 1997], the same 

number of receivers M and transmitters N, both located on a circumference Γ 

of radius R, is considered, with N = M = 2	ℛe3\T4L/√2. The scattered field 

data, simulated by means of a full-wave forward solver based on the method 

of moments, are corrupted with a random Gaussian noise with given SNR. 

To evaluate the accuracy of the retrieved contrast function, the 

normalized mean square error is defined as $�� = ‖Ì�ÌÍ‖Î‖Ì‖Î  where 	 is the 

actual contrast profile and 	Ï the estimated one. 

The first example deals with a lossless circular cylinder embedded in 

free space, see fig. 2.2(a), with 	 = 1 and L = 1.5	λ. Following [Richmond, 

1965], a number of cells 'Ð equal to 64 × 64 is used, while N = M = 15, SNR = 20	dB and R = 3	λ.   
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First, the target support is estimated from the LSM indicator (1.10) 

[Colton et al., 2003, Catapano et al., 2007b] over the imaged domain, see fig. 

3.2(b). Then, the pivot points are uniformly spread over the estimated 

support, see fig. 2.2(b), and the coefficients pertaining to the LSM solutions in 

the selected pivot points are used to define the VE. Note, respect to the 

guidelines given in Section 1.5, the pivot points are also selected near to the 

border of the scatterer, as the contrast function is obtained by interpolating 

each punctual value 	�.  

Finally, the diagonal system of third degree algebraic equations is 

solved, adopting the criteria in Section 2.1.2 to choose the ‘physically feasible’ 

root of the algebraic equation in each pivot point. The real and imaginary 

parts of the obtained contrast values are shown in figs 2.2(c) and (d), 

respectively. Note that the value of the imaginary part of the contrast in some 

pivot points is clipped to zero to guarantee both the expected slow variability 

and the physical feasibility condition (i.e., ℐÓ	{	} ≤ 0). 

The retrieved contrast function, resulting from the linear interpolation 

of the punctual values estimated in the selected pivot points (figs. 2.2(c)-(d)), 

is shown in figs. 2.2(e)-(f). As it can be seen, the real part is accurately 

estimated, and the lossless nature is also envisaged as the imaginary part is 

indeed negligible with respect to the real one. In the proximity of the scatterer 

boundary, the contrast is slightly underestimated, because of the reduced 

capability of the LSM to focus the currents. The final reconstruction error is 

as low as 8%.  

The second example is the same one considered in Section 1.4, 

constituted by two different scatteres, a C shape target and a circle cylinder. 

As it can be noted from figs 2.3(e)-(f), notwithstanding the cumbersome 

nature of the objects, a quite accurate reconstruction, corresponding to $�� = 34%, is achieved.  

 

Many other examples have been considered in order to appreciate the 

potentiality of DARE method. In particular, an accurate validation analysis 

has been carried out by considering homogenous circular cylinders (as the one 

considered in fig. 2.2) with different radii and electromagnetic properties. The 
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method has worked fine as long as the LSM has been able to build focalized 

currents. In fact, for radii larger than 0.4	λ or contrasts larger 2.5, the contrast 

sources recombined by means of the LSM solution turn out to be not 

focalized anymore and the hypothesis of applicability of the method is not 

fulfilled. 

 

 
                      (a)                                           (b)                                           (c) 

 
                      (d)                                           (e)                                           (f) 

Figure 2.2. Numerical assessment of DARE. The circular homogeneous target: (a) real part 
of the reference profile; (b) LSM indicator map with the selected pivot points superimposed 
as dots; (c) real part and (d) imaginary part of punctual value of retrieved contrast, before 
interpolation; (e) real part and (f) imaginary part of retrieved contrast. 
 

 
                      (a)                                           (b)                                           (c) 

 
                      (a)                                           (b)                                           (c) 

Figure 2.3. Numerical assessment of DARE. The C-O target: (a) real part of the reference 
profile; (b) LSM indicator with the selected pivot points superimposed as dots; (c) real part 
and (d) imaginary part of punctual value of retrieved contrast, before interpolation; (e) real 
part and (f) imaginary part of retrieved contrast. 
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2.2 A regularized contrast source inversion 

 

As discussed in Section I.4, in order to overcome the difficulty of the 

inverse scattering problem, a class of solution approaches that is broadly 

adopted is the one of modified gradient methods [Kleinman and van den Berg,. 

1993, van den Berg and Kleinman, 1997, Isernia et al., 1997, Isernia et al., 2004, 

Chen, 2010], in which the inverse problem is cast as the minimization of a cost 

functional. Such a functional depends on both the unknown contrast and the 

auxiliary unknown, which can be the field in the ROI or the contrast source 

therein induced. 

These methods do not require any approximation (but for the obvious 

discretization), nor an explicit solution of the forward problem at each step. 

However, due to the large number of unknown parameters, similar to other 

non-linear inversion schemes, modified gradient methods are based on local 

iterative optimization, so that they are prone to the occurrence of false 

solutions [Isernia et al., 1997, Isernia et al., 2001], and provide the correct result 

only for an initial estimate that lies in the attraction basin of the solution.  

As it not possible to foresee in general whether or not the initial guess 

is ‘good’, regularization schemes are introduced in order to defeat the ill-

posedness of the problem, as well as the occurrence of false solutions. In this 

respect, the regularization techniques described in Section I.4.1 are widely 

adopted. As these latter work by imposing constraints on the contrast 

function, the choice of the most suitable one depends on the expected 

contrast properties (for instance, smoothness, piecewise constant behavior 

and so on). 

In this Section, different from the schemes recalled above, a novel 

strategy is explored, in which the non-linearity and ill-posedness of the 

problem are tackled by acting on the contrast sources and without relying on 

a priori information on the contrast function. Rather, even if deeply different, 

it may be related to the Subspace Optimization Method (SOM) [Chen, 2010], 

as also SOM pursues the inversion stability by acting on the auxiliary 

unknown.  
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In particular, it is again explored the possibilities offered by a set of VE, 

capable to induce contrast sources that are circularly symmetric, (in terms of 

spatial distribution of these sources, not of their shape or topology) with 

respect to some properly chosen points within the ROI. In particular, the VE 

are exploited in conjunction with the popular CSI scheme [van den Berg and 

Kleinman, 1997], which tackles the problem by looking for both the unknown 

contrast 	 and the auxiliary unknown z (see Appendix D for more details). 

 

2.2.1 A new contrast source regularization scheme 

 

Let us assume that eq. (1.8) is applied to the whole imaging domain Ω. 

Then, let ��-, . . . , ��� be a set of � pivot points for which the equation is 

solved (in a regularized sense) and denote with ~Ö, . . . , ~� the sets of 

corresponding coefficients. Now, it is possible to recast the original scattering 

equation (1.4) and (1.5) in terms of the obtained VE in which a circular 

symmetry of the contrast sources around the selected pivot points is 

expected. With respect to the devised VE, the CSI scheme (D.1) is now recast 

in terms of the recombined data, as follows:  

 

Φ×Ø{	,z(-), … ,z(�)}
= xÇz(�) − 	ℰ!(�) − 	1!bz(�)cÇG̀

Çℰ!(�)ÇG̀
�

�y-
+ xÇℰR(�) − 12bz(�)cÇ�GÇℰR(�)Ç�G

r
¥y- +Φ{z(-), … ,z(�)} 

(2.13) 

and equipped with an additional regularizing term Φ that account for the 

peculiar structure of the enforced virtual contrast sources, which reads:  

 

Φ{z(-), … ,z(�)} = xÙ� ÚÛz(�)Û¢� Ú`
G�

�y- , E ∈ ℐ��{E|}	 
(2.14) 
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where ¢� is the angular coordinate of a local polar reference system centered 

in �� which spans the circular neighborhood ℐ��{E|}, and ÜÙ�Ý-�are non-

negative parameters controlling the relative weight of such a regularization 

term.  

The penalty term (2.14) is a way to enforce the expected contrast 

sources properties by minimizing the angular variation of each z(�) around 

the pertaining pivot point ��. It is important to note that, with respect to 

DARE, the currents must not be necessarily focused (it is sufficient they are 

circularly symmetric), which implies a significant enlarging of the range of 

applicability.  

Notably, the functional Φ encourages also the research of circularly 

symmetric non radiating sources, while angularly varying (radiating and non-

radiating) contrast sources are instead neglected, as they are expected to be 

small. However, angularly varying currents are herein penalized, but not 

strictly forbidden. 

 

2.2.2 Implementation of the penalty term 

 

While the reader is referred to Appendix D and to [Isernia et al., 1997] 

for the general structure of the optimization procedure, the implementation 

of the new regularization term in the framework of a gradient-projection 

optimization is detailed in the following. 

The expression of the gradient and the line search parameter for the 

functional Φ{z(-), … ,z(�)}, defined in (2.14), within a conjugate gradient 

scheme is analytically derived following the approach in [Isernia et al., 1997]. 

The gradient of the penalty term Φ respect to z(�) is computed by using the 

following definition: 

 

∆Φz(�) = 〈∇Φz(�) , ∆z(�)〉 
(2.15) 
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where 〈∙,∙〉 denotes the scalar product and ∆Φz(á) is the variation of Φ� due 

to an increment of z(�). Then by considering the expression of Φ, it follows 

that: 

∆Φz(�) = Ù� 〈Ûz(�)Û¢� , ÛΔz(�)Û¢� 〉 + ã. ã. 
(2.16) 

where ã. ã. stands for the conjugate of the first addendum. By taking into 

account the properties of the involved differential operator [Kantorovich and 

Alkilov, 1977], the eq. (2.16) can be rewritten as: 

 

∆Φz(�) = Ù� 〈− ÛGz(�)
Û¢�G , Δz(�)〉 + ã. ã. 

(2.17) 

Then, by comparing eq. (2.15) and (2.17) it follows: 

 

∇Φz(�) = −2Ù� ÛGz(�)
Û¢�G  

(2.18) 

To obtain the line search parameter, let us consider the behavior of the 

functional (2.14) along an arbitrary line whose direction is given by z(�) +
�Δz(�) so that: 

 

Φbz(�) + �Δz(�)c = xÙ� 〈Ûz(�)Û¢� + � ÛΔz(�)Û¢� , Ûz(�)Û¢� + � ÛΔz(�)Û¢� 〉�
�y-  

(2.19) 

Due to the nature of the involved operator, eq. (2.19) can be rewritten as a 

second degree algebraic polynomial, i.e.: 

 Z(�) = ãG�G + ã-� + ãV 

(2.20) 

 

wherein: 
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ãG = xÙ� ÚÛΔz(�)Û¢� Ú`
G�

�y-  

ã- = 2ℛ$xÙ� 〈Ûz(�)Û¢� , ÛΔz(�)Û¢� 〉�
�y-  

ãV = xÙ� ÚÛz(�)Û¢� Ú`
G�

�y-  

 

Note that both (2.18) and (2.20) the circular neighborhood ℐ��{E|}, as 

defined in (2.14), acts to take into account the localized nature of the 

regularizing penalty term. 

 

A. On the choice of Ù� and ¤� 

To set the parameters appearing in the inversion procedure (the pivot 

points ��, the weight Ù�, and radius ¤�), one takes advantage of the fact that 

our design equation (1.8) also provides an estimate of the unknown targets’ 

support simply obtained by plotting the norm of the solution over the ROI. 

In particular, the normalized indicator function defined in (1.10) is used. 

About the choice of the pivot points ��, see the guidelines given in the 

Section 1.5. 

To select the suitable radius ¤� of the circular domain ℐ�� , it is worth 

recalling that the contrast source must have the same support Σ as the 

scatterer [Catapano et al., 2007b, Crocco et al., 2013]. Hence, the maximum 

allowed value for the radius ¤� will be ruled by the distance between �� and 

the estimated boundary of the scatterer. Note this means that circular domain 

of different radius (and extent) will be adopted for the different pivot points, 

depending on the distance from the boundary. In particular, the closer the 

pivot point to the (estimated) borders of the scatter, the smaller the radius of 

the corresponding ℐ��.  

Similar arguments can be exploited for the choice of Ù�. In particular, 

since the contrast source’s support is constrained onto Σ, it is expected that 
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the induced current for �� close to the estimated boundary will not show an 

exact circular symmetry with respect to �� [Catapano et al., 2007b, Crocco et al., 

2013]. This physical observation corresponds to what is foreseen by LSM 

theory, according to which the energy of the solution ‖v�‖�G blows up when �� approaches the boundary of the scatterer [Colton et al., 2003]. Accordingly, 

an automatic way to select Ù� is devised by relying on the LSM indicator. In 

particular, Ù� is set equal to the value obtained by normalized indicator 

function defined in (1.10) in the relevant ��. Note this allows to set values of 

Ù� in the range ]0, 1]. 

 

2.2.3 Method’s assessment 

 

In this subsection an assessment of the proposed regularized method is 

given. In particular, a ring-shaped scatterer which is known to be critical for 

the LSM [Catapano et al., 2007b, Crocco et al., 2013] is considered.  

To deal with such a case, the simulated data are corrupted with a 

random Gaussian noise with +'¤ = 15a�. The filamentary currents used as 

transmitting and receiving probes are evenly displaced in angle on a 

circumference of radius ¤ = 3.3	λ, the background medium is vacuum, and 

the number of probes is fixed equal to � = 	' = 21 according to [Bucci and 

Isernia, 1997]. The considered lossy dielectric ring is shown in figs. 2.4(a)-(b). 

The parameters for this example are Q	 = 	2.5, � = 	0.025, 'Ð = 64	 × 	64.  

Due to the multiple connection of the support and the circular 

symmetry of the contrast profile, the LSM fails in retrieving the actual shape, 

but it can provide an image of the target’s convex hull [Cakoni and Colton, 

2006, Catapano et al., 2007b, Crocco et al., 2013], as indeed shown in fig. 2.4(c). 

As a consequence, many of the selected pivot points do not lie within the 

actual target support. With respect to these points, the radius ¤�, see figs. 

2.4(d)-(f), is set equal to λ/2, λ/3, and λ/6, respectively.  

It is interesting to note that the final achieved result correctly guesses 

both the actual target’s shape and its permittivity (see figs. 2.4(g)-(h)) and 

corresponds to an MSE of 21%.  
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Such a result is only in apparent contradiction with the map in fig. 

2.4(c). In fact, it has to be stressed that, differently from the standard theory 

of LSM, (where eq.(1.8) is used to appraise the shape) in our case eq. (1.8) is 

just used to enforce a circular symmetry of the contrast source. As a 

consequence, differently from DARE approach, in the present case the pivot 

points do not need to belong to the actual scatterer support. Rather, it is 

sufficient to have an estimation of the target’s convex hull and that VE are 

able to enforce some circularly symmetric contrast source around each of the 

selected pivot points. 

 

 

 

 
                     (a)                                            (b)                                          (c) 

 
                    (d)                                            (e)                                            (f) 

 
                                            (g)                                            (h) 

Figure 2.4. Numerical assessment of RCSI. The ring-shaped scatterer. (a) Real part and (b) 
imaginary part of the contrast profile; (c) Normalized logarithmic LSM indicator map with 

the selected pivot points superimposed as dots; (d) visual sketch of the circular region ℐ�� for 

the innermost pivot point with a contour plot of the actual scatterer support; (e) same as (d), 
but for the inner pivots; (f) same as (d), but for the outermost pivot points; (g) real part and 
(h) imaginary part of the retrieved contrast. 
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2.3 A distorted iterated virtual experiments method 

 

As briefly discussed in the Section I.4, in literature different strategies 

exist to counteract the non-linearity of inverse scattering problem. Among 

them, the standard DBIM, originally proposed by Chew and Wang [Chew and 

Wang, 1990], overcomes this difficulty by considering a series of intermediate 

linearizations based on DBA [Devaney and Oristaglio, 1983]. The outline of this 

approach can be summarized in the following steps:  

 

a) solution of the inverse scattering problem for a first estimation of the 

contrast function by using the BA where the homogeneous Green’s 

function is considered;  

b) solution of the forward problem and computation of the Green’s 

function in the investigated domain and at the observation points, 

considering the last estimated contrast function as reference scenario;  

c) updating of the data equation by substituting the field and the Green’s 

function calculated at step b), and solution of the inverse scattering 

problem by DBA to refine the profile distribution;  

d) return to step (b) and comparison the field obtained by the last 

reconstructed distribution function and the measured data. If the 

difference is less than a set threshold or is larger than the difference at 

the previous iteration, the procedure terminates, otherwise the cycle is 

repeated until the solution is convergent. 

 

Note that at each iteration DBIM involves the solution of a forward 

problem to update the background field as well as the Green’s function. In 

general, the final outcome of the procedure depends on the starting point, 

obtained by considering BA, i.e. H = H!, as well as on the validity of the 

intermediate linearizations based on DBA. 

As recalled in the Section 1.6.1, recently, a new linear approximation, 

which relies on the emerging framework of the VE, has been introduced. In 

particular, in [Di Donato et al., 2015a] a quantitative criterion to foresee the 

method’s applicability is derived to show the effectiveness of the method in 
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imaging non-weak targets and in outperforming the linearized inversion 

method based on the standard BA approximation. On the other hand, its 

limitations, with respect to target with increasing values of the refractive index 

and electrical dimensions of the scatterer, are highlighted. 

In order to further extend the validity of the considered linear 

approximation, a further possibility offered by scattering conditioning 

enforced by means of the VE framework is introduced and discussed in this 

Section. In particular, inspired by DBIM, an iterative method is proposed, 

wherein, besides updating the Green’s function, each iteration involves the 

design of new ad hoc VE, the recasting of the problem in terms of these latter 

and its solution by means of VE based linear approximation. Notably, this 

procedure takes into account the nature of the scatterer from the first step 

and at each step. Therefore, this new iterative method is expected to 

outperform the standard DBIM. 

 

2.3.1 New iterated scheme 

 

In the same spirit of DBIM, the proposed iterative procedure, called 

Distorted Iterated Virtual Experiments method (DIVE), involves successive 

linearizations, but each linearization is based on properly designed VE. Each 

new design of the VE implies a new conditioning of the scattering 

phenomena. DIVE procedure can be summarized in five steps, as follows.  

 

1) Initialization: a first estimation 	V of the contrast function is done by 

using the linear approximation recalled in Section 1.6.1, where the 

homogeneous Green’s function is used3.  

2) Forward Scattering Solution, calculation of Green’s function: the forward 

scattering problem pertaining to the last reconstructed object 	À is solved in 

order to update the background field HTÀ, that is the total field arising in 	À, 

and the anomalous field ∆HSÀ, that is the difference between HS and the field 

                                                 
3 Note that on the basis of a priori information the proposed iterative procedure could 
consider other more favorable starting guesses. 
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scattered by 	À Next, the Green’s function ^TÀ with 	À as the background 

permittivity is numerically computed by exploiting the reciprocity theorem. 

3) Convergence control: in order to check the convergence of the iterative 

algorithm, a stopping rule is considered by defining the relative residual error 

(RRE) at \ ä iteration as ¤¤HÀ = Ç∆HSÀÇG ‖HR‖Gå . If ¤¤HÀ is less than a 

set threshold (10�æ) or is larger than the ¤¤HÀ�-, the procedure terminates 

and the solution of the underlying problem is represented by 	À. Otherwise, 

the iterative procedure continues until stopping criterion is fulfilled. 

4) Identification of the contrast perturbations and new design of virtual experiments: 

in order to localize and identify possible perturbations and corrections Δ	À 

respect to the last reconstructed profile 	À, the Distorted Linear Sampling 

Method (LSM) is exploited and the relevant FFE is solved in case of partially 

known scenario, i.e.: 

 

xv�À{E|}	∆HRÀ(��, E)r
�y- = ^TÀ{E, E|},						E ∈ Γ 

(2.21) 

wherein v�À are the unknown coefficients computed at \ ä iteration required 

to implement the \ ä set of VE. As discussed in Chapter 1, the energy of the 

coefficients v�À provides an estimation of the shape of Δ	À. In particular, the 

support indicator ΥÀ normalized over the sampling grid is defined as:  

 

ΥÀ{E|} = uçè-V‖v�À‖ − uçè-V‖v�À‖�"%���	(uçè-V‖v�À‖ − uçè-V‖v�À‖�"%) 
(2.22) 

Then, the pivot points �� belonging to the estimated anomaly support 

are selected and finally the VE are built. 

5) Solution of the distorted virtual scattering problem and update of the solution:  

The relevant data equation (1.2) is reformulated in case of partially 

known scenario and recast in term of VE as follows: 
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∆ℰRÀ{E, E|} = ]^TÀ(E, E_)
`

∆	À(E)ℰÀ{E_, E|}aE_ = 123∆	ÀℰÀ4 
(2.23) 

where ∆ℰRÀ and ℰÀ are the anomalous and total fields arising in the VE, 

respectively. Unlike the DBIM, the total field ℰÀ in equation (2.23) is not 

approximated by considering only the background field, but also by taking 

into account the contribution of the anomaly by means of the field 

approximation introduced in Section 1.6.1.  

After solving the distorted linear inverse problem, a new profile is 

generated by adding the reconstructed corrections to the current reference 

scenario, i.e. 	À�- =		À + ∆	À.  

6) Return to step 2. The iteration continues until the stopping criterion is 

fulfilled. 

The proposed imaging scheme is shown in the flowchart of fig. 2.5. 

 

 

Figure 2.5 The Flowchart describing the DIVE method. 
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Both in step 1) and 5), a regularized solution of an ill-posed problem is 

sought. For this purpose, in this section the well-known Truncated Singular 

Value Decomposition (TSVD) [Bertero and Boccacci, 1998] is used. The 

truncation index NT, which represents the regularization parameter of this 

inversion scheme, is determined by exploiting the Picard plot technique 

[Hansen, 1990, Hansen and O’Leary, 1993], in particular by identifying the index 

of the singular value corresponding to a change of slope, related to the 

transition from a solution dominated by regularization error to the one 

dominated by the noise error. 

 

2.3.2 Method’s assessment 

 

The results in [Crocco et al., 2012a] show that the linear inversion method 

recalled in Section 1.6.1 has a limit for its applicability in the case of objects 

with |\�|a > 7.70, being \� and a the wavenumber and diameter of the 

homogeneous lossy scatterer, respectively.  

In this Section, in order to demonstrate the capability of the new 

iterative method to extend and outperform the linear method in [Crocco et al., 

2012a], the kite scatterer, similar to the one analyzed in [Di Donato et al., 

2015a], is considered. In particular, the leading dimension of the kite is �, 

while the permittivity and the conductivity are, respectively, equal to 2 and 0.1 

S/m. 

The target is positioned inside a square domain of side L = 2.16	� 

discretized in 'Ð = 42 × 42 cells (see fig 2.6(a)-(b)). Moreover, a number of 

receivers and transmitters equal to 24, both located on a circumference Γ of 

radius R = 1.66	�, is considered. The scattered field data are corrupted with a 

random Gaussian noise with SNR = 25	dB.  

In figs. 2.6(e)-(h) the LSM indicator ΥÀ for \ = 0 and \ = 1 are 

shown. As it can be seen in fig 2.6(e), at the first step the LSM is able to 

identify the support of the target and the pivot points are selected inside it, 

thus allowing the design of the VE. Nevertheless, the linear approximation 

does not work fine, as witnessed by figs. 2.6(c)-(d). For \ = 1, the new design 
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of VE is realized on the basis of the new LSM map in fig 2.6(h), which allows 

to identify the support of the searched variation Δ	-. By iterating the design 

of VE, the proposed method in conjunction with TSVD is able to 

progressively correct the first reconstruction 	V and finally obtain a 

satisfactory and quantitative reconstruction with err=20% after a number of 

iterations equal to 13 (see figs 2.6(f)-(g)). During the iterative procedure NT = 

[90, 81, 105, 86, 113, 78, 109, 89, 73, 84, 109, 88, 64]. 

For the sake of comparison, the same analysis is performed by using 

the DBIM (see figs. 2.6(i)-(j)), achieving an unsatisfactory retrieved profile 

corresponding to err=115%. In particular, the truncation indices NT is set 

equal to the index of the first singular value whose magnitude is 15 dB below 

that of the leading one.  

For more details on the number of iterations, err and RRE see Table I 

and figs. 2.6(k)-(l).  

 

 
 err (k=0) err RRE # iterations 

DBIM-TSVD 0.90 1.15 0.12 3 
DIVE-TSVD 0.77 0.20 0.01 13 

 
Table I. Numerical assessment of DIVE. The kite target: details of the inversion procedures. 
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                    (a)                                           (b)   

 
                    (c)                                          (d)                                          (e) 

 
                    (f)                                          (g)                                           (h) 

 
                    (i)                                           (j) 

 
                                          (k)                                                       (l) 

Figure 2.6. Numerical assessment of DIVE. The kite target: (a) real part and (b) imaginary 
part of the reference profile. LSM indicator maps with the selected pivot points 
superimposed on it, for k=0 (e) and k=1 (h). Real part and imaginary part of the initial 
estimation (c)-(d) and of the final reconstruction (f)-(g). Real part and imaginary part of the 
retrieved contrast function with DBIM (i)-(j). The RRE versus iterations respectively for 
DIVE (k) and DBIM (l), respectively. 
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2.4 Assessments against experimental and single frequency 
data 

 

In this Section the three proposed methods are assessed against the 

Institute Fresnel experimental data [Belkebir and Saillard, 2001, Belkebir and 

Saillard, 2005], which are usually adopted to benchmark inverse scattering 

procedures.  

As compared with the previous examples using simulated data, the 

Fresnel experiments introduce the additional difficulty of dealing with a 

partially aspect limited configuration. As a matter of fact, Fresnel targets are 

probed by primary sources that completely surround them, but, for each 

source position, the fields are measured by moving the receiving probe along 

a 240° arc, excluding the 120° degree angular sector centered on the incidence 

direction of the source [Belkebir and Saillard, 2001, Belkebir and Saillard, 2005]. 

In particular, both the targets of the 2001 and 2005 Fresnel dataset are 

considered, in particular: 

- the TwinDielTM target [Belkebir and Saillard, 2001], which consists of two 

identical dielectric cylinders of radius 1.5 cm and relative permittivity 3 ± 0.3; 

- the FoamDielIntTM target [Belkebir and Saillard, 2005], which is a 

piecewise inhomogeneous dielectric target made by two nested, non-

concentric, circular cylinders, a high contrast inner one (Q = 3 ± 0.3) 

and a low contrast outer one (Q = 1.45); 

- the FoamTwinDielTM target [Belkebir and Saillard, 2005], in which a 

circular cylinder having the same dimensions and features of the high 

contrast core is placed in contact with the FoamDielIntTM target. 

The complete description of the targets and the measurement set-up 

can be found in [Belkebir and Saillard, 2001, Belkebir and Saillard, 2005].  

For the first test bed, ' = 36 illumination directions and � = 49 

measurements for each view are considered, for the second one ' = 72 and � = 61, and for the third target ' = 18 and � = 241. As the database 

provides the incident field only at the receiving locations, the incident fields 

inside the imaging domain are modeled by means of a multipole expansion 
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whose coefficients are evaluated trough a least square fitting procedure at the 

measurement locations (where the measured incident field is available). By 

taking into account the dimension of the antenna's aperture, such a 

superposition results in 19 Hankel functions as proposed in [Crocco and Isernia, 

2001]. 

Typically, Fresnel data are tackled by using iterative inversion 

procedures and multiple frequency data (see for instance [Abubakar et al., 

2005, Gilmore et al., 2009, van den Berg et al., 2003, Crocco and Isernia, 2001, Crocco 

et al., 2005]). Hence, the capability of successfully handling them with 

monochromatic data is indeed very significant. For this reason, it is important 

to underline that the reconstructions reported in the following (and also in 

the next Chapter) are obtained by using just single frequency data. Moreover, 

no a priori information on the unknown contrast is enforced through 

regularization (in particular, no constraint is enforced on the admissible values 

of permittivity and conductivity) but for the algebraic method in which 

‘physical feasibility’ arguments are necessarily used in order to select the 

correct root. Note this is a significant difference with respect to several 

previous contributions, such as for instance [Abubakar et al., 2005, Gilmore et 

al., 2009]. 

Tables II-IV summarize the details of the inversion procedures for the 

three considered targets, i.e., the adopted frequency, the size of the imaging 

domain, which is a square of side i, the actual size of the data matrix 

processed in the design step. In fact, to build the VE and cast the 

corresponding scattering equations for each target, the multiview-multistatic 

data matrix is obtained by means of an under sampling of the original data in 

which the unavailable entries are replaced with zeros.  

The inversion procedure for each method is the same outlined in the 

previous Sections. In particular, for the RCSI method, the radii ¤� in terms of 

the background wavelength are selected according to Section 2.2.2 equal to: 

• �/2, �/3 and �/8, for innermost, inner and outermost points, 

respectively, in the TwinDielTM target; 

• �/3, �/5 and �/10, for innermost, inner and outermost points, 

respectively, in the FoamDielTM target; 
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• �/2, �/4 and �/8, for innermost, inner and outermost points, 

respectively, in the FoamTwinDielTM target. 

Moreover, during the iterative procedure of DIVE the truncation 

indices NT are set equal to: 

• NT = [140, 117, 90, 148, 106, 91, 126, 115, 154, 122, 131, 142] for the 

TwinDielTM target; 

• NT = [47, 55, 36, 51, 40, 47, 35, 46, 51, 55] for the FoamDielTM target; 

• NT = [86, 86, 73, 96, 72, 50, 74, 34, 67, 68, 83, 69, 48] for the 

FoamTwinDielTM target. 

As it can be observed in the figures 2.7-2.9, the dielectric permittivity 

values of the different targets are accurately and quantitatively retrieved by 

means of all the three methods. By comparing the different reconstructions, 

one must take into account the following considerations. 

• DARE approach is able to give back better imaging results in term of 

shape of the targets, as they are different from zero only inside the 

estimated target support, which is implicitly assumed as a priori 

information. In fact, for each pivot point the local value of the 

contrast is reconstructed and, so, the inversion is localized, while in 

RCSI and DIVE the reconstruction concerns the entire ROI.  

• No a priori information on the target’s nature is enforced when 

DIVE and RCSI are exploited, and no regularization is enforced on 

the contrast function in RCSI. 

• Opposite to DARE which involves an inversion procedure very fast 

(only few minutes), DIVE and RCSI are iterative and, so, they require 

a much larger computational burden (up to a thirty minutes). 

 

In particular, concerning the TwinDielInt (see fig. 2.7), both DARE and 

RCSI are able to retrieve accurately the shape of the two cylinders, opposite 

to DIVE which, nevertheless, starting form a completely wrong first 

estimation 	V, see fig. 2.7(f)-(g), is able at the end to successful retrieved the 

two cylinders. On the other hand, the permittivity is better envisaged by 
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means of DARE and DIVE, while RCSI slightly underestimates the real part 

of the contrast profile. 

The FoamDielInt target represents an extremely challenging case for 

DARE approach, as the contrast profile exhibits an abrupt discontinuity of 

the electromagnetic features, thus violating the assumption underlying the 

approximation introduced in Section 2.1.1. As it can be seen, despite the 

above mentioned difficulties, DARE method is still able to successfully image 

the unknown target, although overestimates in dimension the inner cylinder, 

with respect to RCSI and DIVE. This is probably due to the adopted linear 

interpolation (see fig. 2.8). Note in this example, in order to better emphasize 

the different feature of the three methods, the retrieved profiles are shown in 

different color scales. 

Finally, the TwinFoamDielInt data set is processed by consider only 

DIVE and RICS, in order to compare the two iterative methods. As it can be 

observed in fig. 2.9, the DIVE method slightly overestimates the 

electromagnetic properties of the targets and underestimates the dimension of 

the outer cylinder, if compared with the RCSI. This is probably due to the 

contrast regularization exploited in order to solve the underlying ill-posed 

linear problem. As it will be shown in the next Chapter, another kind of 

contrast regularization can improve the performance of the DIVE method.  

 

In conclusion, the three proposed methods are viable for a large class of 

targets. In particular, the results obtained by processing Fresnel experimental 

data have shown that the new proposed approaches are actually capable, by 

only using monochromatic data, of successfully imaging targets which have 

been so far processed in the literature taking advantage of frequency diversity 

and/or enforcing some priori information on the target.  
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                                                                      (a) 

 
                                              (b)                                          (c) 

 
                                            (d)                                           (e) 

 
                                            (f)                                           (g) 

 
                                            (h)                                            (i) 

Figure 2.7. Validation of VE based methods with the Fresnel TwinDielTM target data: (a) 
Reference profile. Real part and imaginary part of the retrieved contrast function with DARE 
(b)-(c), RCSI (d)-(e) and DIVE (f)-(i). In particular (f)-(g) is the initial estimation and (h)-(i) is 
the final reconstruction. 
 

 Frequency[GHz]  ìí3îï4 data matrix 
[ð × ñ4 

VE-DARE 6 15 72x36 
VE-RCSI 6 15 72x36 
DIVE-TSVD 6 15 72x36 

 
Table II . The Fresnel TwinDielTM target: details of the inversion procedures. 
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                                                                      (a) 

  
                                             (b)                                            (c) 

 
                                            (d)                                           (e) 

 
                                             (f)                                            (g) 

 
                                             (h)                                         (i) 

Figure 2.8. Validation of VE based methods with the Fresnel FoamDielIntTM target data: (a) 
Reference profile. Real part and imaginary part of the retrieved contrast function with DARE 
(b)-(c), RCSI (d)-(e) and DIVE (f)-(i). In particular (f)-(g) is the initial estimation and (h)-(i) is 
the final reconstruction. 
 

 Frequency[GHz]  ìí3îï4 data matrix 
[ð × ñ] 

VE-DARE 4 12.5 45x36 
VE-RCSI 4 12.5 45x36 
DIVE 4 12.5 23x18 

Table III . The Fresnel FoamDielIntTM target: details of the inversion procedures. 
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                                                                        (a) 

 
                                            (b)                                            (c) 

 
                                            (d)                                            (e) 

 
                                            (f)                                            (g) 

Figure 2.9. Validation of VE based methods with the Fresnel FoamTwinDielIntTM target 
data: (a) Reference profile. Real part and imaginary part of the retrieved contrast function 
with RCSI (b)-(c) and DIVE (d)-(g). In particular (d)-(e) is the initial estimation and (f)-(g) is 
the final reconstruction. 
 

 Frequency [GHz]  ìí	3îï4 data matrix 
[ð × ñ4 

VE-DARE 4 17.5 45x18 
VE-RCSI 4 17.5 45x18 

Table IV . The Fresnel FoamTwinDielIntTM target: details of the inversion procedures. 
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2.5 Future extensions 

 

The inversion procedures proposed in this Chapter are just some of the 

many possibilities offered by the framework of VE. As a consequence, the 

question arises of how it is possible to further improve the introduced 

approaches and develop new and even more performing approaches. 

First of all, the applicability of the three methods is limited by the range 

of validity of the design step, i.e. the LSM. As a consequence, one can exploit 

the improvements that have been recently achieved in the capability of 

estimating the shape of the unknown targets [Crocco et al., 2013], as well as the 

possibility of improving the focusing achieved via LSM by resorting to an ex-

post constrained convex optimization [Crocco et al., 2012c] or considering 

other focusing procedures. 

Second, future developments will aim at extending the methods, or 

better at exploiting their underlying concepts, in the more challenging 2D and 

3D vectorial scenario, where the brought advantages would become even 

more important.  

Third, one can exploit the new methods in conjunction with other 

inversion methods.  

In particular, an interesting aspect for DARE is the chance of 

considering hybridizations with the ‘classic’ iterative inversion methods based 

on local optimization, by using the obtained results to build a very convenient 

starting point, thus allowing to avoid the occurrence of false solutions. On the 

other hand, the application of a local optimization technique starting from the 

algebraic method solution could provide a further refinement of the solution 

especially when the algebraic method does not work under its ideal conditions 

(i.e., smoothly varying contrast function). 

Concerning RCSI, if the problem has an elevate degree of non-linearity, 

so the contrast function assumes very large values and/or the dimensions of 

the scattering system increases, the penalty term inducing the research of 

circularly symmetric currents could be not able to reduce as much as possible 

the occurrence of false solutions. In these cases, an interesting possibility 

would be to test the performances of the technique in conjunction with 
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regularization technique acting on the contrast function. Better robustness 

and further improvements of the achievable results and reconstruction 

capabilities are indeed expected, similar to what has been recently observed 

when exploiting SOM in conjunction with Multiplicative Regularization (MR) 

[Song et al., 2015]. 

Also for DIVE inversion unsatisfactory performances are observed 

when the contrast function becomes too large or the profile too complex, as 

in case of breast phantoms. This trouble could be solved by collecting more 

data, for instance multi frequency data. In this direction, one could develop 

DIVE method in conjunction with frequency hopping techniques.  

Fourth, further possibilities amount to develop other performing 

approaches by adopting some convenient and useful representation for the 

fields or the contrast sources, resembling the expected properties of the 

auxiliary unknowns enforced by the exploited conditioning. 

Finally, future work will also aim at building VE which try to enforce 

other properties rather than the circular symmetry on the scattered field or 

induced currents. For example, other kind of VE can be achieved by 

considering multipolar order terms in the solution of the LSM equation 

[Crocco et al., 2013]. Alternatively, the idea of recombining the total fields in 

order to obtain a constant virtual field could emphasize the contrast 

discontinuities which can be for instance useful for their identification inside 

unknown obstacles. 
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3 

Sparsity promoting methods for inverse 
scattering 

 

 

 

 

Introduction 

 
In the last years, compressive sensing (CS) has emerged as an 

increasingly relevant paradigm in signal processing and recovery community, 

as witnessed by the very large number of papers being published on the 

subject, and by the thousands of citations of the two basic papers [Donoho, 

2006, Candès et al., 2006] originating the area. As a matter of fact, part of the 

success of the CS paradigm comes from statements such as ‘the possibility of 

overcoming the Nyquist criterion’ or to achieve ‘super-resolution’ in a 

number of recovery (and imaging) problems. 

To provide these remarkable outcomes, CS exploits the concept of 

sparsity, where a signal is said to be sparse in a given basis, if it can be exactly 

represented by means of a few non-zero elements (whose indices are however 

unknown). A related concept is compressibility [Donoho, 2006]. A signal is 

compressible in a given basis if the magnitudes of the sorted coefficients 

observe power law decay. The faster is the magnitudes decay and more the 

signal is compressible. Roughly speaking, this implies that by using a 

sufficiently large number of non-zero coefficients the signal can be safely 

approximated without any significant information loss. Note a signal which is 

compressible to a dimension + is nothing but a + sparse signal plus some 

component outside of the different ℝó subspaces. Notably, in both cases of 

sparse and compressible signals one does not know a priori which elements 

of the representation are different from zero. 

Provided the proper expansion is used in order to guarantee a sparse or 

compressible representation of the unknown function, CS theory guarantees 

that an accurate retrieval of the unknown is possible even for a number of 
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data much lower than the overall number of basis coefficient, but sufficiently 

larger than the number of nonzero elements. 

In inverse scattering problems, it is commonplace that the number of 

independent data is much less than the original number of unknowns, and 

one has to tackle this difficulty by relying on additional information about the 

quantity to be retrieved. As such, the CS paradigm is definitely attractive, as it 

can both improve the accuracy of existing inversion procedures and/or drive 

the design of simpler (and hence cheaper) measurement set-ups than those 

foreseen in [Bucci and Isernia, 1997]. 

In addition, the sparsity requirement recalled above is actually 

applicable to most cases dealt with in inverse scattering problems. As a matter 

of fact, in several applications one can safely assume that not all of the voxels 

constituting the scenario are independent. This is for instance the case of two 

of the main fields of exploitation of microwave tomography, i.e., biological or 

biomedical monitoring and non-invasive inspection of man-made objects. In 

both cases, one can indeed assume that different homogeneous sub-regions 

constitute the scenarios. Hence, few parameters (with respect to the number 

of voxels in which discretize the ROI ) are required for an accurate recovery 

of the electromagnetic properties profile, so that the sparsity (or 

compressibility) assumption can be fulfilled, provided proper basis functions 

(possibly suggested by the application) are used to represent the unknown 

function.  

On the other side, in pursuing possible applications of CS to the area of 

inverse scattering, one fundamental difficulty comes into play, besides the 

choice of a convenient representation basis for the specific problem at hand. 

This is represented by the intrinsic non-linear nature of the electromagnetic 

inverse scattering problem. In fact, while CS theory is well developed and 

understood for the case of phenomena described through linear models, in 

inverse scattering problems the relationship between the unknown and the 

measurements is usually non-linear, so that a number of theoretical results are 

still missing.  

As a consequence, the exploitation of CS in inverse scattering has been 

so far restricted to cases where the scatterers are both sparse in space (point-
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like) and ‘weak’, so that the BA can be safely used [Poli et al., 2012, Ambrosanio 

and Pascazio., 2015]. More recently, the joint exploitation of CS, BA and total 

variation (TV) has been proposed to image extended targets [Oliveri et al., 

2014]. Unfortunately, the range of applicability of this linearized 

approximation is very limited, and the underlying assumptions are hardly met 

in the applications, thus strongly limiting the usefulness of these methods. 

More recent contributions have also investigated the possibility to take 

advantage from CS under the Rytov approximation [Oliveri et al., 2012], but 

their validity remains still limited. As a natural extension of the Born 

approximation, other contributions use sparsity constraint regularization 

combined with the Distorted Born Iterative Method [Desmal and Bagci, 2014, 

Azghani et al., 2015], which further extends applicability.  

In this respect, the first part of this Chapter aims at showing how it is 

possible to significantly enlarge the range of applicability of CS to inverse 

scattering problems by relying on the VE framework. In fact, as recalled in 

Section 1.6.1, by means of a proper pre-processing and re-arranging of the 

scattering experiments, it is possible to introduce a new effective field 

approximation which goes well beyond the range of validity of usual weak 

scattering approximations. 

Moreover, to move towards the effective CS-based procedures in 

general inverse scattering problems, two possible applications of CS to fully 

non linear inverse scattering problems are also introduced and discussed. In 

particular, the applicability of CS is first explored within the CSI scheme [van 

den Berg and Kleinman, 1997], which represents a very popular and effective 

reconstruction algorithms for inverse scattering.  

Successively, in the same spirit as for DBIM, iterated linearizations 

(based on the VE framework) of the scattering equation are considered, so 

that CS can be safely applied in each iteration. 
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3.1 The compressive sensing theory for an effective recovery 

 

Let us recall the basics of CS, considering a generic linear problem: 

 ô = õö 

(3.1) 

where ô is the ') × 1 data vector, ö is the '% × 1 vector that represents the 

unknown function, and õ is the ') × '% matrix which relates the unknown 

vector to the data vector4.  

Let us now suppose to adopt some convenient basis functions, so that 

the representation coefficients are sparse (i.e. only few coefficients are 

different from zero). In such situation, it is convenient to rewrite the linear 

problem as: 

 ô = õ÷0 = ø0 

(3.2) 

where ÷ is an '% ×'% matrix having the basis function as columns and 0 is 

the vector that contains the unknown coefficients of the representation. 

Notably, ù = ÷0 and also 0 = ÷úù. Finally, ø denotes the product of õ 

times ÷.  

According to CS theory, by taking advantage from the sparsity of the 

unknown coefficients 0, it is possible to solve the inverse problem even if ') 

is (much) less than '%	, but it is anyway sufficiently larger than the number + 

of coefficients different from zero (with + < ') < '%). In particular, the 

correct number of measurements '), necessary to obtain a faithful solution, 

is lower-bounded and has to satisfy the inequality ') ≥ ')′, where ')′ is 

proportional to + and to log' [Donoho, 2006].  

Note the exact reconstruction of a sequence of a +-sparse signal is 

possible when the number ') of measurement is sufficiently larger than +, 

but this result is only true in a probabilistic sense. Numerical analysis of 

                                                 
4 In literature usually the dimension of the data vector is referred to as M, while the one of 
the unknown vector is referred to as N. 
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canonical cases has suggested that a successful reconstruction is achieved in 

more than 50% of the cases when ') ≥ 	4+, and in more than 90% of the 

cases when ') ≥ 8+ [Donoho, 2006, Baraniuk., 2007].  

A very relevant non-intuitive circumstance is that it is not just the 

number of measurements which plays a role, as the kind of measurements 

which is performed plays a role as well.  

Intuitively, the matrix ø has to be deeply different from a subset of the 

identity matrix and should not cancel out any information about the original 

signal. In particular, the image of the columns of ÷ should be spread out in 

the domain defined by the rows of õ. As a matter of the fact, the larger this 

incoherence, the better the possibility to retrieve sparse signals by compressed 

measurements.  

Moreover, the matrix ø should approximately preserve the Euclidean 

length of S-sparse signals, so each S-sparse vector cannot be mapped in the 

null space of ø, and each S-sparse vector has to have a non-negligible image 

in the space of measurements. 

The exact requirements can be formalized by means of the so-called 

Restricted Isometry Property (RIP) [Baraniuk, 2007, Candès et al., 2006], which 

guarantees conditions for an exact recovery. 

Provided the above conditions are fulfilled, it is possible to solve the 

inverse problem ô = õö by means of the following optimization constrained 

problem [Donoho, 2006, Baraniuk, 2007]: 

 üýþ0 Ü‖0‖�ÖÝ 				Æ��9$ã;	;ç				‖ø0 − ô‖�D ≤ � 

(3.3) 

where ‖∙‖�Ö is the ℓ- norm and � is a positive parameter which depends on 

the level of required accuracy, on the level of noise on the data and on the 

error model.  

The problem in (3.3) is known as Basis Pursuit denoising (BPDN) or 

Least Absolute Shrinkage and Selection Operator (LASSO) problem 

[Tibshirani, 1996]. In eq. (3.3) the minimization of the ℓ- norm encourages the 

search of sparse solutions, while the constraint enforces the data consistency. 
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In other words, among all solutions which are consistent with the measured 

data within a given error, one searches the one which is sparsest.  

Note that, while the optimization problem should consider indeed the 

so called ℓV norm [Baraniuk, 2007], the relaxation into to ℓ--norm adopted in 

eq. (3.3) reduces the problem to a convex programming one, and it has been 

shown that the two formulations are equivalent for a very wide range of cases 

[Donoho, 2006, Candès et al., 2006].  

For a better understanding and for an original geometrical 

interpretation of CS theory, the reader is deferred to Appendix E. 

 

 

3.2 Compressive sensing and linearized inverse scattering 

 
The linearized model introduced in [Crocco et al., 2012a] and recalled in 

Section 1.6.1 is able to image targets out the range of validity of usual BA [Di 

Donato et al., 2015a]. As such, this new approximation allows to significantly 

enlarge the applicability of CS to inverse scattering problems. This new linear 

approximation is based on the VE framework and allows to recast the 

discretized version of the data equation (1.2) for different � pivot points, thus 

achieving a system of linear equations, which can be formally expressed as: 

 �0 = õ	ù 

(3.4) 

where �0 is the (� × �) × 1 data vector which contains the measured 

scattered field arisen in the VE, ù is the unknown function of the problem, 

i.e. the contrast function, organized into an 'Ð × 1 dimensional vector, and, 

finally, õ = õ�� is the (� × �) × 'Ð matrix which relates the unknown 

vector to the data vector. Note õ� is the discretized version of the integral 

radiation operator 12 and � contains the approximated total field arisen in 

the VE (see eq.(1.12)).  

In [Crocco et al., 2012a] the TSVD inversion scheme has been proposed 

as a way to fix the ill-posedness of the linearized inverse problems (3.4). In 
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the following, the CS theory is proposed as an alternative to TSVD, thus 

allowing nearly optimal reconstructions. 

 

3.2.1 CS inspired linear inversion 

 

Once the problem is properly linearized, the choice of a convenient 

representation basis, which allows to reduce as much as possible the number + of coefficients different from zero is the real key point. Obviously, it is 

appropriate and convenient to exploit all the available priori information 

about the kind and nature of the investigated scenario. 

In what follows, different possibilities are introduced in order to tackle 

the imaging of both point-like and extended targets.  

 

A. CS approach for point-like scatterers  

In order to solve the inverse scattering problem and retrieve the 

unknown profile, the investigated domain is usually discretized in a certain 

number of cells or pixels, according to the value of the used frequency and 

the expected maximum value of the permittivity and conductivity of the 

unknown object [Richmond, 1965].  

In a number of applications one can assume that the unknown targets 

are small and localized, and hence sparse in the usual pixel based 

representation. These cases include, but are not limited to, contrast agent 

aided breast cancer imaging [Scapaticci et al., 2014], intra-wall imaging of large 

areas [Ahmad and Amin, 2013] and differential imaging [Scapaticci et al., 2012a]. 

In these cases, by considering ÷ equal to the identity matrix, ø = õ and 0 = ù, the problem (3.3) can be reformulated as: 

 

üýþù Ü‖ù‖�ÖÝ 				Æ��9$ã;	;ç				‖�ù − �0‖�D ≤ � 

(3.5) 

where ù is the contrast function represented in pixel basis.  
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B. CS and Wavelets basis for extended scatterers 

In a number of cases, reasoning in term of pixels is not a convenient 

way to solve eq. (3.4) and it is more convenient to use a different basis. 

Amongst the different possibilities, the multi-resolution wavelet 

representation [Mallat, 1989, Mallat, 2008] is particularly attractive, as its 

capability to faithfully represent complex scenarios with few coefficients has 

been already demonstrated in many applications [Antonini et al., 1992, Chang et 

al., 2000, Li et al., 2013, Scapaticci et al., 2012b]. 

In light of the above reasoning, the problem (3.3) can be rewritten as: 

 

üýþ0 Ü‖0‖�ÖÝ 			Æ��9$ã;	;ç				‖õF0 − �0‖�D ≤ � 

(3.6) 

where F is the matrix which contains a wavelet basis and 0 is the vector 

containing the wavelet coefficients of the contrast function.  

 

C. CS and Total Variation for extended scatterers 

When the targets cannot be assumed to be small with respect to the 

probing wavelength, one may have the a priori information that the contrast 

profile is piecewise constant, which entails a sparse representation in terms of 

step functions, or, which is the same, it has a sparse gradient in the usual pixel 

representation. This happens indeed in a number of cases including non-

destructive testing, sub-surface sensing, geophysical probing, as well as a 

number of biomedical applications. Accordingly, problem (3.4) can be solved 

by: 

üýþù �‖íöù‖�Ö + ÇíôùÇ�Ö� 		Æ��9$ã;	;ç				‖�ù − �0‖�D ≤ � 

(3.7) 

where íö and íô are the discretized version of the partial derivatives 

evaluated with respect to the spatial variables 6 and O, respectively, i.e. the 

discretized version of the gradient along the coordinate directions. In other 

words, íöù and íôù are the 'Ð × 1 vectors containing the forward 

differences of the unknown function ù [Candès et al., 2008]. 
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Roughly speaking, the optimization problem now amounts to look for a 

solution whose gradient has the minimum ℓ- norm among all the contrast 

functions which are consistent, within a given error, with the measured data.  

The approach described in (3.7) is able to identify in a simple fashion 

the target discontinuities along two preferential directions, i.e. the directions 

parallel to the coordinate axes. Hence, discontinuities having different 

orientations are not always correctly identified, and the approach provides a 

kind of ‘squared’ reconstruction of the target.  

In order to counteract, at least in a partial fashion, the orientation 

dependence of the approach, a new objective function can be considered, 

which allows also to identify additional discontinuities located at + or – 45° 

with respect to the coordinate axes. Let define í	 as the discretized version 

of the directional derivative evaluated along the directions parallel to 6 = ±O. 

In other words, í	ù is the vector, which contains the forward differences 

along directions parallel to the principal and secondary diagonal of the matrix 

of pixels representing the unknown function ù. Accordingly, the eq.(3.7) is 

recast as: 

 

ï/
ù �‖íöù‖�Ö + ÇíôùÇ�Ö + ‖í	ù‖�Ö�				 
0���î�	��				‖õù − �0‖�D ≤ � 

(3.8) 

The optimization problem now amounts to look for a solution whose 

gradient evaluated also in the ‘oblique’ directions, has the minimum ℓ- norm 

among all the contrast functions fulfilling within a given error the data 

equation. 

Along the same lines of reasoning, a ‘corner identifier’ approach can be 

introduced for profiles where all discontinuities are parallel to 6 or O axis. In 

fact, the vector íöôù, which contains the discrete value of second mixed 

partial derivative, will correspond to S number of corners and so much less 

than the value achieved when using the gradient. For example, a rectangular 

homogeneous target will imply S=4 independently from its dimensions. As a 
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consequence, an approach based on such a derivative can identify more easily 

scatterers constituted by a superposition of squares and rectangles.  

When such a kind of qualitative information is available, an accurate 

quantitative reconstruction can be obtained by solving:  

 

ï/
ù �ÇíöôùÇ�Ö� 				0���î�	��				‖õù − �0‖�D ≤ � 

(3.9) 

It is worth underlying that the qualitative information which enables 

(and suggests) the use of (3.9) can be eventually achieved by a preliminary 

estimation (based, for instance, on the approach (3.7)). Saying it in other 

words, eq. (3.9) can be eventually seen as a possible ‘post processing’ 

technique. 

 

3.2.2 Numerical analysis 

 

In order to investigate the performances of the proposed CS inspired 

inversion techniques, some numerical examples with simulated data are 

considered in the remainder of this Section.  

In particular, all examples deal with scatterers belonging to the range of 

applicability of the approximation (1.12) [Di Donato et al., 2015a]. In each 

example the scattering equation is first linearized and then the solution is 

looked for by considering one of the above introduced approaches.  

 

A. On the choice of  � parameter  

The choice of the positive tolerance parameter � is a non-trivial issue. 

In fact, besides the level of required precision and the amount of noise on 

data, this parameter depends on the model error introduced by the field 

approximation (1.12). Of course, the larger the expected model error and 

noise on data, the larger the parameter �. 

In absence of model error, only the noise on data plays a role in the 

choice of �. In this case, if the measurement system specifications (in terms 

of dynamic range and +'¤) are known (which is a reasonable assumption), 
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the choice of � directly relates to the +'¤ [Lustig et al., 2008, Gurbuz et al., 

2009].  

On the contrary, when dealing with problems when the model error is 

unavoidably present (like the case at hand), the choice of � is not any more 

straightforward, as the model error can be hardly quantified a priori. 

On the other hand, also in presence of model error, it is possible to 

define an interval which � belongs to. In particular, the upper bound of this 

interval is represented by the ℓG norm of the data �0. As a matter of fact, in 

order to avoid the trivial solution, that is the null vector, � must be selected 

lower than ‖�0‖#Î, as with �	 ≥ ‖�0‖#Î the null vector could satisfy the 

constraint on the data and simultaneously minimize the objective function. 

Accordingly, in performing the numerical analysis, � is set such that � =
�&‖�0‖�D with �& < 1. The lower bound, instead, is dictated by the amount of 

noise on data. Then, �& is chosen inside this interval through an iterative 

optimization procedure, similarly to what is done in cross-validation strategies 

[Gurbuz et al., 2009, Zhang et al., 2012b, Boufounos et al., 2007]. In particular, �& is 
set equal to the smallest value which allows to obtain a feasible (where with 

feasibility one means the possibility to find a solution that satisfies the 

constraint on the data consistency). In fact, if �& is too small, the problem 

could be unfeasible, as the set identified by the data constrain could be an 

empty set and no solution could exists at all. 

 

B. Numerical examples 

In the following examples, one or more unknown objects are 

embedded into a square imaging domain Ω of side i. ' receivers and � 

transmitters, with ' = 	�, are located on a circumference Γ of radius ¤ = 4	λ. The number of cells 'Ð of the discretized domain is chosen 

according to the Richmond’s rule. Furthermore, the scattered field data are 

corrupted with a random Gaussian noise with different SNR levels.  

 

In the first example, five lossless point-like targets are considered (see 

fig. 3.1(a)). The imaging domain is discretized into 'Ð = 46 × 46 square 
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cells, while the inverse problem grid is 23 × 23 cells. Moreover i = 2�, ' = � = 21 and SNR = 10dB. By estimating the target support, fig. 1(b), it 

is possible to choose the more suitable approach. Accordingly, the approach 

described in 3.2.1.A is exploited and the result reported in figs. 3.1(c)-(d) is 

obtained. As it can be seen, the joint exploitation of VE and CS allows a very 

accurate reconstruction (�&=0.15 and err=0.26%). In order to understand the 

roles played by VE experiments and field approximation respectively, in figs. 

3.1(e)-(f) is reported the reconstruction obtained by using the VE and 

approximating the internal field with the incident one. As it can be seen, 

reconstructions appear to be considerably worse (�&=0.15 and err=10%). 

Notably, exploitation of the BA to the original data yields completely 

unreliable results. 

 

In the second example, three lossless squares embedded in a domain of 

side i = 3λ are considered. The domain is discretized into 'Ð = 50 × 50 

cells and the SNR is 20 dB, ' = � = 26. As the scatterers are not sparse in 

the pixel basis, see fig. 3.2(b), the approach (3.7) is used in order to retrieve 

the unknown profile. The result agrees with the reference contrast profile, as 

it can see in figs. 3.2(c)-(d) (�&=0.23 and err=8%). 

 

As a third example, the lossy profile in fig. 3.3(a)-(b) is presented. In 

this example, ' = � = 21, i = 2�, 'Ð = 32 × 32 and SNR = 20	a�. Also 

in this case, the CS based approach is exploited and the reconstruction is 

shown in figs. 3.3(d)-(f) (�&=0.16 and err=11%). For the sake of comparison, 

the reconstruction by means of TSVD was also performed in such a case, by 

considering the truncation index 'Á equal to 80. As it can be seen in figs. 

3.3(g)-(h), the retrieved profile is less accurate, especially for the imaginary 

part. As a matter of fact, CS is able to outperform the TSVD both in terms of 

shape and quantitative reconstruction of the electromagnetic features. 
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                                            (a)                                              (b) 

 
                                            (c)                                             (d) 

 
                                            (e)                                              (f) 

Figure 3.1. Numerical assessment of CS linearized approaches. The five lossless point-like 
scatterers. (a) Actual contrast profile. (b) LSM indicator map with the selected pivot points 
superimposed as dots. Contrast profile retrieved profile via the approach (3.5) (c) real and (d) 
imaginary part. The retrieved profile with approach (3.5) cast for just the virtual incident 
fields: (e) real and (f) imaginary part.  

 

 
                                            (a)                                             (b) 

  
                                            (c)                                              (d) 

Figure 3.2. Numerical assessment of CS linearized approaches. The three square target. (a) 
Actual contrast profile. (b) LSM indicator map with the selected pivot points superimposed 
as dots. The retrieved profile with approach (3.7): (c) real and (d) imaginary part.  
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                                           (a)                                              (b) 

 
                                           (c)                                               (d) 

 
                                           (e)                                               (f) 

 
                                            (g)                                              (h) 

Figure 3.3. Numerical assessment of CS linearized approaches. The slanted square target.
Contrast reference profile: (a) real part, (b) imaginary part. (c) LSM indicator map with the 
selected pivot points superimposed as dots. (d) The mean square error versus the number of 
iterations. The retrieved profile with approach (3.7): (e) real (f) imaginary part. The retrieved 
profile with TSVD: (g) real (h) imaginary part. 
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In the last example a square ring scatterer with Q = 	1.3 is considered 

(see fig. 3.4). In particular, 'Ð = 32 × 32, � = ' = 21, ¤ = 4�, i¯ =1.33�. The reconstruction by using the approach (3.7) already gives an 

accurate result (�& = 0.072	 and $�� = 8%) and suggests the scatterer at 

hand is in the class suitable for the corner identifier approach. Then, 

application of the formulation (3.9) allows a still better reconstruction as seen 

in figs 3.4(e)-(f), achieving an error as low as 1.5% (�& = 0.072	). 
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                                            (a)                                              (b) 

 
                                           (c)                                              (d) 

 
                                            (e)                                              (f) 

Figure 3.4. Numerical assessment of CS linearized approaches. The ring square example. (a) 
Real part of the contrast reference profile. (b) LSM indicator map with the selected pivot 
points superimposed as dots. The retrieved profile by means of the approach (3.7): (c) real 
and (d) imaginary part. The retrieved profile by means of the approach (3.9): (e) real and (f) 
imaginary part. 
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Many other examples confirm the interest of the proposed VE-CS 

based linearized method. 

 

 

3.3 Compressive sensing and nonlinear inverse scattering 

 
According to CS theory, given a linear problem wherein the unknown 

function ö can be assumed to be sparse, it can be solved by considering the 

well known Basis Pursuit denoising (see eq. (3.3)), or equivalently the 

following ℓ--norm constrained optimization problem: 

 

	���Ü‖õ	÷0 − ô‖�DÝ				Æ. ;.				‖0‖�Ö ≤ � 

(3.10) 
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or even the dual ℓ--norm penalized least squares problem: 

 

minÜ‖õ÷0 − ô‖�D + \‖0‖�ÖÝ	 
(3.11) 

where � is positive real number, which is related to the number and the 

power of the contributing nonzero elements of Æ, while \ is a positive 

parameters controlling the relative weight of the ℓ- regularization term. Note 

in equation (3.10) the optimization problem is organized in such a way to 

minimize the ℓG-norm of data-unknowns relationship by constraining the 

unknown function inside a limited space defined by the ℓ--norm constraint. 

In (3.11), the problem is instead faced by an unconstrained optimization 

scheme wherein the sparsity is enforced by a penalty function.  

Applications of CS to non linear inverse scattering have not been found 

in the literature (but for [Desmal and Bagci, 2014, Azghani et al., 2015]). For this 

reason, in this section two possible ways to exploit the CS theory are explored 

in conjunction with CSI. A further possibility is explored in the next Section 

with reference to the class of distorted iterated approaches.  

Let us suppose the unknown profile is sparse in some suitable basis Ψ. 

In order to improve the inversion results obtained by means of CSI and to 

make them both more reliable against the occurrence of false solutions as well 

as more robust with respect to ill conditioning, sparsity can be take into 

account during the inversion procedure, considering both the possibilities 

suggested in eqs. (3.10) and (3.11).  

In fact, with respect to the traditional CSI, sparsity can be enforced 

both by adding a ℓ--norm constraint, i.e. by limiting the research space of the 

unknown as well as by introducing a ℓ--norm term in the cost functional as 

penalization. The two strategies are detailed in the subsections which follow. 

 

3.3.1 Sparsity constrained scheme 

 

Inspired by approach (3.10), a ℓ--norm constraint limiting the space of 

research of the unknown can be included into the CSI scheme. More in detail, 
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the inverse problem is solved by researching the global minimum of the 

functional (D.1) inside the space defined by all the unknowns whose ℓ--norm 

of the coefficients of the representation basis Ψ is lower than a positive 

parameter �, i.e.: 

 min�,Ì Φ(I, 	) 			Æ��9$ã;	;ç		‖Æ‖ℓ� ≤ �			 
(3.12) 

The inclusion of the ℓ--norm constraint could allow to more easily fall 

into the right attraction basin, by avoiding to be trapped in a false solution 

during the minimization procedure. All local minima of functional (D.1) not 

belonging to the space of research defined by the constraint do not represent 

feasible solutions anymore. This can be simply explained by considering a 

generic monodimensional non quadratic cost functional, as the one in fig. 3.5. 

In fact, if one were so lucky to limits the space of research just at the right 

attraction basin, which is the one highlighted by the dashed line, the local 

minimum would exactly corresponded to the global optimum. 

 

 

Figure 3.5 Plot of a generic monodimensional and non quadratic cost functional. The 
different local minima correspond to different attraction basins.  

 

 

With respect to the standard CSI scheme, at each iteration the sparsity 

constraint implies a modification of the line minimization step along search 

direction. In particular, the minimization step length UÀ has to be chosen 

such to be a minimizer of problem (D.3) and such that the solution at the 
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next iteration belongs to the research space, i.e. ‖ÆÀ + U�ΔÆÀ‖ℓ� ≤ �. In 

other words, UÀ has to be lower than the distance � between the current 

solution ÆÀ and the boundary of the feasible solution set along the current 

descent direction, (identified by the gradient of the functional Φ with respect 

to 	).  

As performed in the hit step described in [Isernia et al., 2000], the 

distance � along the descent direction ��̂ is evaluated as: 

 

�:				ÇÆ(À) + ���̂Çℓ� = �		 
(3.13) 

At each iteration the solution of problem (D.3) is compared with the distance �. In particular, if UÀ is lower than �, the solution is updated according to 

(D.2) and it is still inside the feasible set. Otherwise, UÀ is set equal to �. This 

means that the solution belongs to the boundary of the feasible set.  

Unlike the case considered in [Isernia et al., 2000], the problem at hand is 

non-linear and, so, the solution does not necessary belong to the boundary of 

the feasible set. As a consequence, to avoid the stagnation of the 

minimization procedure on the boundary, the solution is projected inside the 

set defined by the sparsity constraint, by nullifying the coefficients whose 

magnitude is below the 20% of magnitude of the maximum coefficient. This 

is reasonable as the contrast function is expected to be sparse or 

compressible. 

 

3.3.2 Sparsity penalized scheme 

 

Rather than enforcing sparsity by means of a constraint, the solution of 

inverse problem can be also obtained by adding in the functional (D.1) a 

penalty term that accounts for the peculiar feature of the search contrast 

function, i.e.:  

 min�,R Φ(I, Æ) + Φ�(Æ) = Φ(I, Æ) + \‖Æ‖�Ö 

(3.14) 
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Unlike the previous approach which limits the space of search thus 

enhancing the possibilities to fall within the right attraction basin, in (3.14) the 

inclusion of the penalty term Φ� modifies the shape of the cost functional 

and its attraction basins. All local minima of (D.1) not satisfying the sparsity 

condition induced by the penalty term disappear when considering (3.14).  

The implementation of this new regularization term in the framework 

of a gradient-projection optimization is detailed in the following. The 

expression of the gradient for the functional (3.14) within a conjugate 

gradient scheme is analytically derived by following the approach in [Isernia et 

al., 1997]. The gradient of the penalty term Φ� respect to 0 is computed by 

using the following definition: 

 ∆Φ�R = 〈∇Φ�R, ∆Æ〉 
(3.15) 

where the variation ∆Æ gives rise to ∆Φ�R, which represents the variation of Φ�. Then by considering the expression of Φ�(Æ), it follows that  

 

∆Φ�R = \2 〈Æ-G, ∆Æ	Æ�-G〉 + ã. ã. = \2 〈Æ-G ªÆ�-G«∗ , ∆Æ	〉 + ã. ã. 
(3.16) 

where 〈∙,∙〉 denotes the scalar product, while ã. ã. stands for the conjugate of 

the first addendum. Then comparing eq. (3.15) and (3.16) it follows: 

 

∇Φ�R = \	 Æ|Æ| 
(3.17) 

On the other hand, even if for the gradient an analytical expression can be 

obtain, for the line search parameter UÀ it is not possible to reduce the 

problem (D.3) to the solution of an algebraic equation, due to the nature of 

the involved operator. So, unfortunately, the problem (D.3) must be 

numerically solved, thus increasing the computational burden.  

Let us observe that in many case of actual interest the targets are 

piecewise constant dielectric profiles and are sparse in term of the step 
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functions, as recalled in the Section 3.2. As a consequence, the penalty term 

can be modified in Φ�(	) = \‖º	‖ℓ� , where º is the vector containing the 

forward differences of the unknown function 	. In this case the analytical 

expression of the gradient is ∇Φ�R = −º �\	 ¯Ì|¯Ì|¡. 

 

3.3.3 Numerical validation 

 
In order to assess performances of the proposed approaches, let us 

consider two numerical examples dealing with simulated data. As usual, a 

number of measurements points � and transmitters ' is considered 

according to [Bucci and Isernia, 1997]. The receivers and transmitters are spaced 

on a circumference of radius R. The scattered field data is obtained by means 

of a full-wave forward solver based on CG-FFT procedure and corrupted 

with a random Gaussian noise with known SNR. 

Concerning the choice of the positive parameter \ controlling the 

relative weight of the u- penalty term in (3.14), an accurate numerical 

investigation has revealed that the optimal choice is on the order of the ratio 1/(2	'Ð	ºN�)	, where ºN� are the degrees of freedom of the problem at 

hand, i.e. the maximum amount of independent data. In such a way the 

penalty term is normalized respect to the number of independent data times 

the numbers of cells. The factor 2 depends on the presence of the gradient 

respect to both 6 and O axes. 

On the contrary, the choice of � parameter in eq. (3.12) influences the 

dimension of the search space. If it is too large, the set of feasible solutions 

could be too wide and the constraint would not influence the minimization 

procedure. On the other side, one cannot select a very small value, as the 

actual solution could not be included in such a small set. More in detail, the � 

parameter represents an upper bound for the energy in ℓ--norm of the 

coefficients of the considered representation basis. This latter is obviously 

unknown and it can be only estimated by considering some priori 

information. In the following the role of this parameter is analyzed by 



3.3    Section 

 
 

97 

considering two overestimations of the actual value of ℓ- energy of about 

30% and 95%.  

 
                                           (a)                                         (b) 

 
                                           (c)                                         (d) 

 
                                            (e)                                        (f) 

 
                                            (g)                                         (h) 

 
                                            (i)                                          (j) 

Figure 3.6. Numerical assessment of CS non linear approaches. The inhomogeneous 
square. (a) Real part and (b) imaginary part of the contrast reference profile. The retrieved 

profile with approach (3.12) (σ = 150, err=5%): (c) real and (d) imaginary part. The 

retrieved profile with approach (3.12) (σ = 100, err=4%): (e) real and (f) imaginary part. 

The retrieved profile with approach (3.12) and considering M = V = 14 (σ = 150, 
err=7%): (g) real and (h) imaginary part. The retrieved profile with approach (3.12) and 

considering M = V = 11 (σ = 150, err=16%): (i) real and (j) imaginary part. 
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In order to evaluate the robustness of the methods and show the 

possible advantages offered by sparsity regularizations, an analysis of the 

performances when varying the number of data exploited for the inversion 

procedure is also provided. In particular, a reduction of both the number of 

transmitters and receiver antennas are considered. 

The first numerical example is dealt with a lossy non-homogeneous 

square scatter, shown in figs. 3.6(a)-(b). The working frequency is 1^m¦, 

while the region of interest is a square of side L = 0.6	�, and the scatterer is 

hosted in free space. Moreover, R = 1.2	� and a number of antennas equal 

to � = � = 21 is initially considered. The data are corrupted by considering +'¤ equal to 10a�. The iterative procedure is initialized by using a back-

propagation solution.  

 
                                           (a)                                         (b) 

 
                                            (c)                                        (d) 

 
                                            (e)                                        (f) 

Fig. 3.7. Numerical assessment of CS non linear approaches. The lossy Austria profile. 
(a) Real part and (b) imaginary part of the contrast reference profile. The retrieved profile 
with approach (3.14) (k = 5·10-8, err=15%): (c) real and (d) imaginary part. The retrieved 
profile with approach (3.14) and considering M = V = 16 (k = 5·10-8, err=19%): (e) real 
and (f) imaginary part 
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The CSI is implemented by adopting the projection of the unknown 

contrast function onto wavelet Haar basis of level equal to 2, in order to 

obtain the sparsest target representation. The number of cells used to 

discretize the scenario are 'Ð = 32 × 32. Two different value of the � 

parameter (100 and 150) are considered in order to understand its role in the 

reconstruction procedure. Note that the ground truth ℓ--norm energy is 77. 

The contrast profiles retrieved by approach (3.12), and after a number 

of iterations equal to 1000, are reported in figs. 3.6 (c)-(f). The results are in 

agreement with the reference contrast profile with a negligible reconstruction 

error. 

To get a deeper understanding of the results, the reconstruction one is 

able to achieve when considering a reduced number of data is also checked. 

In particular a number of independent data equal to 98 (� = � = 14) and 

66 (� = � = 11) are considered. The reconstruction errors are about 7% 

and 16%, respectively. As it can be seen in figs. 3.6(g)-(j) enforcing sparsity 

allows the achievement of reliable results also in case of a significant 

reduction of the number of antennas. Note the number of DOF for the 

scenario at hand is about 231, which represents the maximum amount of 

independent data [Bucci and Isernia, 1997]. 

By analyzing other examples, it is revealed that approach (3.12) is 

strongly influenced by the adopted representation basis and is mainly suitable 

for very sparse contrast profile. In fact, if number of non zero elements S is 

large the space of research could be not restricted as much as possible and 

there could be again the risk of being trapped in false solutions. Moreover, 

the above discussed projections could continue without a solution 

convergence and the procedure could oscillate between different false 

solutions.  

In order to test the potentiality of the penalized CSI approach, in the 

second example the Austria profile is considered inside a domain divided into 'Ð = 64 × 64 cells. This profile is often used as benchmark in testing the 

inverse scattering inversion algorithm [Chen., 2010, Xu et al., 2015, van den Berg 

et al., 2003]. In this example, a more challenging case is considered due to the 

presence of losses (figs. 3.7(a)-(b)). The working frequency is 400�m¦, while 
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the region of interest is a square of side L = 2	�, and the scatterer is hosted 

in free space. Moreover, R = 3	� and at the beginning a number of antennas 

equal to � = ' = 25 is considered. The data are corrupted by considering a +'¤ equal to 20a�. The iterative procedure is initialized by using a back-

propagation solution and the profile is represented by using the step 

functions.  

The results, reported in figure 3.7 are very accurate also when 136 

number of independent data are collected (with a reduction of more than 2 

respect to the DOF), as witnessed by the synthetic error ($��=0.19). Note the 

result in figs. 3.7 (e)-(f) is really interesting if compared with [Chen., 2010] and 

[van den Berg et al., 2003], which process respectively a 16 × 32 and a 48 × 48 

scattered field data matrix. 

Many other examples have proved the considerable performances of 

approach (3.14) to deal with targets having both complex shapes and large 

values of contrast. However, if the problem at hand exhibits a larger degree of 

non linearity, the addition of the ℓ- penalty term in the cost functional (D.1) 

could not be able to compensate the presence of local minima, as also 

discussed for the RCSI method. In such a case, better robustness and 

performances could be observed by considering this approach in conjunction 

with ‘contrast sources’ oriented regularizations and scattering conditioning. 

 

 

3.4 CS-regularized distorted iterated virtual experiments 
method 

 

In Section 2.3, a novel iterative approach consisting in successive 

linearizations, based on the emerging framework of the VE, has been 

introduced and described. The concept of field conditioning is exploited 

within an iterative scheme, wherein the relevant Green's function and the VE 

are updated in order to achieve an approximated expression of the total field 

within the investigated domain. This approximation is then exploited in order 

to linearize the inverse scattering problem and refine the unknown contrast 

distribution at each iteration. 
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By exploiting the CS theory, such innovative approach can be further 

improved in order to achieve nearly optimal imaging of unknown targets. The 

CS theory involves the solution of a constrained optimization problem, which 

relies on an iterative procedure, so it implies a larger computational effort 

with respect to the TSVD, used in Section 2.3. However, this is a price which 

is worth being paid, as it offers interesting advantages both in term of 

achievable resolution as well as in terms of a potential reduction of the 

measurement apparatus complexity (as discussed in Section 3.3.3).  

In order to set the details of the method, and appreciate then actual 

performances, let us consider a piecewise constant target, which is of course 

sparse if represented in terms of step functions. The linearized inverse 

problem involved in step 5) of DIVE method (see Section 2.3.1) can be 

solved by rewriting the ‘orientation invariant’ approach (3.8), i.e.: 

 

ï/
∆ù� �Çí�	ù��ÖÇ�Ö + Çí 	ù��ÖÇ�Ö + Çí		ù��ÖÇ�Ö�				 0���î�	��				Çõ�∆ù� − ôÇ�D ≤ � 

(3.18) 

where ∆ù� = ù��Ö − ù�, ô is the data vector containing the differential 

scattered fields arising in the VE, and õ� is the matrix that relates at each 

iteration the unknown vector to the data vector according to the subsection 

2.3.1. Note for \ = 0 the first estimation of the contrast function is 

performed by considering the original approach in (3.8).  

It is worth observing that while the TSVD regularization adopted in 

Section 2.3 acts at each iteration on the perturbation ∆ù�, the CS inspired 

regularization (3.18) enforces sparsity on the whole contrast profile. 

In the following, in order to carry out a comparison with the TSVD, 

the same examples analyzed in Section 2.3.2 and 2.4, dealing with both 

numerical and experimental data, are considered. 
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3.4.1 Assessment with numerical and experimental data 

 

An important point for the CS regularization strategy is the choice of 

the suitable parameter � in (3.18), as also discussed in Section 3.2.2. 

Nevertheless, as DIVE is based on successive refinement of the contrast 

profile, it turns out to be more robust respect to the choice of �& parameter. 

As a consequence, in the following examples �& is considered constant 

during the iterative procedure. However, as in the initialization step a high 

amount of model error is expected and no priori information about the 

unknown scatterer is available, a larger value of � is chosen with respect to 

the one adopted for \ > 0. For instance in the example dealing with 

simulated data we consider �& = 0.50 for iteration \ = 0 and �& = 0.40 for \ > 0.  

Moreover, when dealing with Fresnel data, because of the aspect 

limited measurement configuration, a lower level of accuracy has to be 

required especially in case of undersampled data. Therefore, we use in the 

following, �& = 0.75 for \ = 0 and �& = 0.40 for \ > 0, in case of a larger 

number of data, while in case of undersampled data �& = 0.75 for \ = 0 and 

�& = 0.55 for \ > 0 are considered. 

 

For the kite target, the results are reported in fig. 3.8. The initial 

estimation 	V
 is reported in figs. 3.8(a)-(b), while the reconstruction obtained 

at the last iteration is shown in figs. 3.8(c)-(d). As it can be seen by comparing 

this latter with the reconstruction obtained with TSVD (see figs. 2.6(f)-(g)), 

the CS inspired inversion is able to obtain a nearly optimal reconstruction 

both in term of shape and electromagnetic properties, as also witnessed by 

the final reconstruction error equal to 4%. Moreover, the profile in the 

background region appears more homogeneous than the one in figs. 2.6(f)-

(g). In table V the number of iterations and the error metrics are summarized. 
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In order to evaluate the robustness of the methods and demonstrate the 

possible advantages offered by sparsity regularizations, let us consider, for the 

case of Fresnel data set, an analysis of the performances with a reduced 

number of data. In the following the total dimension of the processed data 

matrix is referred with K.  

 
                                       (a)                                         (b) 

 
                                       (c)                                        (d) 

 
                                                                        (e) 

Figure 3.8. Numerical assessment of DIVE-CS. The kite target: real part and imaginary part 
of the retrieved contrast function at the initial step (a)-(b) and at the last iteration (c)-(d). The 
RRE versus iterations for DIVE-CS(e). 
 

 err (k=0) err RRE # iterations 

DBIM-TSVD 0.90 1.15 0.12 3 
DIVE-TSVD 0.77 0.20 0.01 13 
DIVE-CS 0.46 0.04 0.004 5 

Table V. Numerical assessment of DIVE-CS. The kite target: overall details of the inversion 
procedures. 
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                                       (a)                                         (b) 

 
                                        (c)                                         (d) 

Figure 3.9. Validation of DIVE-CS with experimental data: the Fresnel TwinDielTM target 
at 6 GHz: (a)-(b) real part and imaginary part of the retrieved contrast function. (c)-(d) are the 
same of (a)-(b) for reduced number of processed data. 
 

 RRE # iterations 

DIVE-TSVD – K=72x36 0.06753 12 
DIVE-CS – K=72x36 
DIVE-CS – K=36x18 

0.06826 
0.05374 

5 
7 

Table VI . The Fresnel TwinDielTM: overall details of the inversion procedures. 
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For the TwinDielTM target the results are reported in fig. 3.9. The 

working frequency is 6 GHz and the side of the squared investigated area is 

0.15 m. The result is achieved by adopting both the original data set, 

constituted by 36 incident fields and 72 receivers per view, and a 18 × 36 

multiview-multistatic data matrix, obtained by undersampling the original 

data. As it can be seen, the reconstruction obtained by considering the CS 

tool emphasizes the remarkable improvements respect to the TSVD (see 

figs.2.7(h)-(i)). For more details on the number of iterations and final RRE 

see Table VI. 

For the FoamTwinDielTM target, the working frequency is set equal to 4 

GHz, and the side of the investigated area is 0.175 m. The results reported in 

fig. 3.10 are achieved by adopting both a 45 × 18 and 23 × 18 multiview-

multistatic data matrices. Again, the CS based inversion strategy allows to 

improve the reconstruction accuracy (fig. 3.10) with respect to the results 
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                                            (a)                                              (b)  

 
                                            (c)                                              (d) 

Figure 3.10. Validation of DIVE-CS with experimental data: the Fresnel FoamTwinDielIntTM 
target at 4 GHz: (a)-(b) real part and imaginary part of the retrieved contrast function. (c)-(d) 
are the same of (a)-(b) for reduced number of processed data. 
 

 RRE # iterations 

DIVE-TSVD - K=45x18 0.01669 17 
DIVE-CS - K=45x18 0.01419 7 
DIVE-CS - K=23x18 0.09123 6 

Table VII . The Fresnel FoamTwinDielIntTM: overall details of the inversion procedures. 
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achieved in Section 2.3 (figs. 2.9(f)-(g)). For more details on the number of 

iterations and RRE see Table VII.  

For the FoamDielIntTM target, the results, reported in fig. 3.11, are 

achieved by adopting 23 × 18 and 9 × 9 multiview-multistatic data matrices. 

The working frequency is 4 GHz and the side of the investigated area is 0.125 

m. As it can be seen, the CS tool is able to provide a nearly optimal 

reconstruction of the electromagnetic properties of both the two nested 

cylinders, also in case of more challenging case of extreme reduction of the 

data matrix. Note that the results in figs. 3.11 (c)-(d) is really surprising as the 

target is correctly retrieved even if a 9 × 9 scattered field data matrix is 

processed. For more details see Table VIII. 
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                                            (a)                                             (b)  

 
                                           (c)                                              (d) 

Figure 3.11. Validation of DIVE-CS with experimental data: the Fresnel FoamDielIntTM 
target at 4 GHz. (a)-(b) Real part and imaginary part of the retrieved contrast function. (c)-(d) 
are the same of (a)-(b) for reduced number of processed data.  
 

 RRE # iterations 

DIVE-TSVD - K=23x18 0.0182 10 
DIVE-CS - K=23x18 0.0188 5 
DIVE-CS - K=9x9 0.0354 6 

 
Table VIII . The Fresnel FoamDielIntTM: overall details of the inversion procedures. 
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3.5 Possible developments 

 

The inversion procedures proposed in this Chapter are just some of the 

many possibilities offered by the CS theory. In fact, this new paradigm is in 

continuous development and, so, new interesting possibilities and 

improvements are also expected. 

First of all, the proposed approaches are based on the sparsity 

assumption and so limited by the choice of a suitable basis. In this respect, 

the possibility of recovering signals from undersampled data has been recently 

investigated in the common situation where such signals are not sparse in an 

orthonormal basis or incoherent dictionary, but in a truly redundant 

dictionary [Candès et al., 2011]. In fact, there are numerous practical examples 

in which a signal of interest is not sparse in an orthonormal basis, and more 

often sparsity is expressed not in terms of an orthonormal basis but in terms 

of an overcomplete dictionary [Candès et al., 2011]. This means that the signal 

is expressed by means of	 some overcomplete dictionary, belonging to ℝ�×!, 

in which there are possibly many more columns than rows. The use of 

overcomplete dictionaries is now widespread in signal processing and data 

analysis, as there may not be any sparsifying orthonormal basis. Moreover, the 

research community has come to appreciate and rely on the flexibility and 

conveniences offered by overcomplete representations.  

Moreover, recently [Candès et al., 2008] has introduced the use of a new 

norm able to outperform the classical ℓ--norm in the term of fewer 

measurements for sparse signal recovery. The algorithm consists of solving a 

sequence of weighted ℓ--minimization problems where the weights used for 

the next iteration are computed from the value of the current solution. 

Superior gains are also achieved when the weighted ℓ--norm is applied to 

recover signals with assumed near-sparsity in overcomplete representations. 

Another possibility is offered by non-convex regularizer, which can 

promote sparsity more strongly than the ℓ--norm regularization, but generally 

leads to a non-convex optimization problem with non-optimal local minima. 

More recently in [Selesnick and Bayram, 2014, Selesnick et al., 2015] maximally 

sparse approaches are proposed, which require a suitable parametric non-



Sparsity promoting methods for inverse scattering 

 

108 

convex (sparsity-inducing) penalty function which are constrained so to 

ensure convexity of the total cost function. Examples of such functions are 

the logarithmic and the arctangent penalty [Selesnick and Bayram, 2014, Selesnick 

et al., 2015]. 

All these interesting possibilities could be explored in the near future in order 

to improve the performances of the technique proposed in this Chapter, both 

in the linear and non-linear framework. 
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NEW APPROACHES FOR MICROWAVE 
IMAGING IN BIOMEDICAL DIAGNOSIS 

AND SUBSURFACE PROSPECTIONS 
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4 

A compressive sensing approach for breast 
cancer microwave imaging enhanced by 
magnetic nanoparticles 

 

 

 

 

4.1 Introduction and relevance of the problem 

 
In the last years, the evidence that human tissues exhibit different 

electromagnetic properties at microwaves, depending on their typology and 

physio-pathological status, has given rise to a huge interest in MWI for 

medical applications. In particular, MWI has gained increasing interest in 

breast cancer diagnostics [Fear et al., 2002].  

However, recent studies on the electric properties of mammary tissues 

have outlined that the electric contrast between healthy fibroglandular tissues 

and cancerous ones may be not as high as initially thought [Lazebnik et al., 

2007]. As a consequence, in order to improve sensitivity and specificity of a 

microwave based diagnostic technique, the use of contrast agents, able to 

increase the contrast between fibroglandular healthy tissues and cancerous 

ones, has been introduced [Shea et al., 2010, Mashal et al., 2010, Chen et al., 

2010].  

In particular, Magnetic Nanoparticles have been recently considered 

[Bellizzi et al., 2011, Helbig et al., 2014], since they are already allowed for 

clinical use and, by exploiting biochemical targeting techniques [Leuschner et al., 

2006, Park et al., 2009], they present a unique capability of inducing a specific 

and selective contrast into tumoral tissues. As a matter of fact, the non-

magnetic nature of human tissues allows to pursue the cancer imaging 

through the reconstruction of a magnetic contrast, specifically associated to 

the tumor, embedded into a purely electric scenario. 

The feasibility of the technique has been already demonstrated through 

a wide numerical analysis involving anthropomorphic breast phantoms [Bucci 
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et al., 2014a, Scapaticci et al., 2014], as well as through preliminary experimental 

measurements [Helbig et al., 2014]. In particular, in [Scapaticci et al., 2014] an 

effective imaging procedure based on the TSVD has been proposed for the 

solution of the inverse problem underlying the technique. 

Notably, since only a low amount of MNP can actually reach cancerous 

cells, the inverse scattering problem arising in MNP enhanced MWI can be 

reliably described through a linear model [Bellizzi et al., 2011, Scapaticci et al., 

2014]. In addition, the selective targeting of MNP in the tumor implies that 

the unknown inclusion is small and localized, so it is intrinsically sparse in the 

voxel basis.  

Inspired by these peculiar features of MNP enhanced MWI for breast 

cancer diagnosis, in this Chapter the CS theory is exploited for the 

development of a novel imaging technique. More in detail, an ad hoc 

‘constrained’ CS algorithm is tailored for MNP enhanced microwave breast 

cancer imaging. In particular, the standard CS implementation (see eq. (3.3)) is 

enhanced by exploiting information on the maximum concentration of 

contrast agent that can be achieved in human tissues [Josephson et al., 1999]. 

In the Sections which follow, the potentialities of CS in overcoming the 

low-pass effect inherent to TSVD regularization, as well as in reducing the 

number of antennas are discussed. Both these aspects will be assessed in 

detail in 3D geometry, and a robustness analysis of the imaging procedure 

against a priori information will be also performed. 

 

 

4.2 Basics and math of MNP enhanced MWI 

 
A key feature of MNP enhanced microwave breast cancer imaging is 

the adoption of a differential measurement strategy [Bellizzi et al., 2011], which 

allows to extract the useful signal, i.e. the signal scattered by the targeted 

tumor, in a ‘smart’ way. In more details and as schematized in fig.4.1, by 

exploiting the possibility of modulating the magnetic response of MNP when 

they are exposed to an external polarizing magnetic field (PMF), the 

technique requires to perform two measurements with two PMF of different 
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intensities [Bellizzi et al., 2011, Bucci et al., 2014a]. Since the PMF does not 

perturb the electric scenario, i.e., the breast under test, the difference of the 

fields gathered at the two stages of the measurement is actually associated to 

the magnetic contrast variation into the tumor. 

 

 

Figure 4.1. Conceptual scheme of the differential measurements procedure adopted in MNP 
enhanced MWI to extract the useful signal. 

 

 

Due to the low magnitude of the magnetic contrast that can be induced 

within the tumor, it is possible to assume that the magnetic anomaly does not 

perturb the field due to the electric scenario. Hence, the relevant scattering 

phenomenon can be modeled by means of the distorted Born approximation 

[Devaney and Oristaglio, 1983]. 

Accordingly, by omitting some unessential factors, the � ×� 

differential scattering matrix ".0(E , Eï) (� being the number of adopted 

probes) is given by [Bellizzi et al., 2011, Scapaticci et al., 2014]: 

 

#.0(E , Eï) = ]$.ð(	Eï, E)` %ù&(E)'/(E, E )aE = (.ð%ù&		 
(4.1) 

In (4.1), Ω denotes the region hosting the breast, Eï denotes the 

receiving probe’s positions and E  is the vectors containing the positions of 

the transmitting antennas, with  ,ï = 1,… ,�. $.ð(	Eï, E) is the dyadic 

electric-magnetic Green’s function of the reference scenario, i.e., the electric 

field in Eï generated by an elementary magnetic source in E. '/(E, E ) is the 
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magnetic incident field into the electric scenario, i.e., the magnetic field 

generated by an electric source located in E  in the point E ∈ ¶, in presence 

of the breast, but without any magnetic anomaly. Due to the reciprocity 

principle, $.ð(	Eï, E) = '/Á(E, E ), where the superscript T denotes the 

transpose matrix. Finally, %ù& represents the differential magnetic contrast, 

i.e., the susceptibility variation due to the change of the PMF intensity 

between the two stages of the measurement.  

As it can be seen from (4.1), the data to unknown relationship is linear, 

since the operator (.ð does not depend on the unknown %ù& [Scapaticci et 

al., 2014]. Nevertheless, (.ð depends on the electric properties of the breast 

under test, which obviously are not known a priori, through the electric-

magnetic Green’s function $.ð or equivalently through the magnetic field '/. 
 

 

4.3 Effective recovery by ad-hoc compressive sensing 
approach 

 

As previously stated, the unknown differential magnetic contrast is 

intrinsically sparse in the voxel basis and the relationship between data and 

unknowns can be considered linear. As a consequence, CS theory can be 

exploited as an effective and reliable procedure to accurately image the 

induced magnetic anomaly. Accordingly, by exploiting CS theory, the properly 

discretized version of the linear problem (4.1) can be solved by rewriting the 

optimization in (3.5) as: 

 

min%ù& Ç%ù&Çℓ�Æ��9$ã;	;ç	Ç(.ð%ù& − %.0ÇℓÎ < � 

(4.2) 

Notably, the cardinality of the differential data %.0 can be (much) 

smaller than the overall number of voxels into which the investigated domain 

is discretized, but sufficiently larger than the number of nonzero elements of %ù&. 
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In order to exploit all the a priori information about the considered 

application, the standard LASSO problem in (4.2) is enhanced by considering 

a further constraint, that is: 

 

£%ù&£ < £%ù&£�"% 

(4.3) 

In fact, the maximum concentration of MNP which can be targeted 

into human tissues is known from biochemical studies [Josephson et al., 1999] 

and it is linearly related to the induced contrast variation [Bellizzi and Bucci., 

2013]. For this reason, it is reasonable to assume also the maximum amplitude 

of the magnetic contrast variation £%ù&£�"% induced in the tumor. 

The equation (4.3) is incorporated as a further constraint, which 

restricts the searching space of the unknown. As a consequence, among all 

solutions which are consistent with the measured data and which satisfies the 

upper bound on the absolute value of the magnetic contrast, one searches the 

sparsest one.  

The addition of this constraint (4.3) represents a kind of tailored 

implementation of CS for MNP enhanced microwave breast cancer imaging 

and, as observed in the numerical analysis reported in the following, the 

optimization problem greatly benefits of this additional constraint. 

 

 

4.4 Numerical validation 

 

The performance of the imaging strategy herein proposed are assessed 

with respect to two different anthropomorphic breast phantoms, derived 

from magnetic resonance images and taken from the Wisconsin University 

Repository [Zastrow et al., 2008]. In particular, the two phantoms which are 

taken into account are: 

• a heterogeneously dense breast (ID: 070604PA2), denoted in the 

following as Ph1. 
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• a scattered fibroglandular breast (ID: 012204), characterized by a 

high percentage of adipose tissue and denoted as Ph2. 

In both cases the breast is immersed in a homogeneous lossless 

matching medium, whose relative permittivity is QT 	= 	25.  

The adopted measurement configuration is depicted in fig. 4.2 and it 

consists of a 3 rings array of z-directed elementary dipoles working both in 

transmitting and receiving mode at a fixed frequency of 2 GHz. The array is 

centered with respect to the imaging domain and each ring, of radius 16 cm 

and containing 8 probes, is 3.5 cm far from the other one. Due to reciprocity, 

in such a configuration the total number of independent data is equal to 300 

[Bucci and Isernia, 1997]. 

In this Section, the tumor is modeled as a spherical inclusion of 1 cm in 

size, having the same electric features of the fibroglandular tissue (Q )� 	=	60, � )� 	= 	0.7). In Ph1 the inclusion is positioned at (0ã�; 	0ã�; 	1.2ã�), in fibroglandular tissue, while in Ph2 it lies at (0ã�; 	−1ã�; 	0ã�), across fatty and fibroglandular tissue. The transverse 

slices of the corresponding permittivity profiles, cutting the center of the 

tumors are shown in fig.4.3. A variation of the magnetic contrast between the 

two stages of the measurement of £%ù&£ = 0.0094	 is considered. Note that, 

according to the experimental results reported in [Bellizzi and Bucci, 2013], this 

differential magnetic contrast corresponds to a realistic MNP concentration 

of about 12mg/cm3. Accordingly, £%ù&£�"% is chosen equal to 0.01. 

The synthetic data for the described phantoms are simulated by using a 

full-wave forward solver based on a conjugate gradient FFT implementation 

of the method of moments. The imaging domain is discretized into 100 ×100 × 100 square cells (each cell is about 0.05 � in size, � being the 

wavelength in the background medium), while, in order to avoid inverse 

crime, the inverse problem grid is discretized with 64	 × 	64	 × 	64 cells 

(entailing a voxel size of about 0.078 �) [Richmond, 1965]. Moreover, an 

additive Gaussian noise on the scattered field with +'¤ = 20a� is 

considered.  

 



4.4    Section 

 
 

117 

 

Figure 4.2. Measurement configuration adopted in the breast cancer MWI. 

 

    

Figure 4.3 Transversal slices of the permittivity maps across the tumor for the two 
considered breast phantoms derived from magnetic resonance images and taken from the 
Wisconsin University Repository [Zastrow et al., 2008]: (a) Ph1, (b) Ph2. 

 

 

Note that, as highlighted also in [Bucci et al., 2014a] and [Scapaticci et al., 

2014], the level of the +'¤ equal to 20dB is chosen according to realistic 

levels of noise which can be tolerated in MNP enhanced MWI. More 

precisely, in [Bucci et al., 2014a] it has been demonstrated that the level of the 

useful differential signal is at least 70dB below the actually measured signal (at 

one stage of the measurement). This entails that, considering a +'¤ of 20dB 

on the differential signal corresponds a measurement requirement (in term of 

dynamic range) of at least 90dB, in order to reliably gather the useful signal. 

This requirement, although challenging, is already achieved in practice 

[Bourqui et al., 2012].  

The problem (4.2), with the addition of the constraint (4.3), is a convex 

one, thanks to the presence of the convex function ℓ- norm, and as such it 

can be solved by exploiting the vast theory on convex optimization.  
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In order to quantitatively assess the quality of the reconstructions, 

rather than the classical mean square error, two quantitative indexes are 

evaluated: the total reconstructed magnetic polarizability and the dimensional 

error5. The total reconstructed magnetic polarizability is the integral of the 

reconstructed magnetic contrast on the overall imaging domain [Scapaticci et 

al., 2014], i.e.: 

� = x %ù+&r,
�y- Δ� 

(4.4) 

where %ù+& denotes the retrieved magnetic contrast, Δ� the volume of the 

discretization cell, 'Ð the number of cells into which the domain is 

discretized. The correct estimation of the magnetic polarizability is of interest 

because it allows to appreciate the total amount of nanoparticles which is 

targeted, related to the tumor’s size and to the achieved MNP concentration 

[Bellizzi et al., 2011]. 

The dimensional error p- is defined as: 

p- = ��2Ð − ��2.��2.  

(4.5) ��2Ð and ��2. being the volume of the reconstructed and the reference 

magnetic anomaly, respectively. Note that for the estimation of ��2Ð, the 

normalized reconstructions are thresholded at 0.3.  

This metric allows to appreciate the performance of the method in 

reconstructing the volume of the anomaly. 

 

4.4.1 On the choice of CS parameters 

 
A. The role of the constraint on the maximum amplitude of the magnetic contrast 

The addition of constraint (4.3) further regularizes the problem (4.2) by 

restricting the searching space of the unknown, through the exploitation of 

reasonable a priori information. As a first validation of the proposed imaging 

                                                 
5It is worth remarking that a common defined mean square error is not suitable to evaluate 
point-like contrast functions, like the ones dealt with in this Chapter.  
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method, the role played by the constraint (4.3) on the maximum amplitude of 

the unknown magnetic contrast is assessed. To this end, the phantom Ph1 is 

considered and then the results obtained by applying an unconstrained CS 

implementation and those provided by the constrained method are compared. 

Moreover, in this first validation the exact knowledge of the electric features 

of the breast is assumed. 

The figure 4.4 shows the transversal slice of the retrieved absolute value 

of the induced magnetic contrast at z = {0.83, 1.07, 1.30, 1.54}	ã�. As it 

can be seen, the presence of the additional constraint (4.3) is crucial to obtain 

an accurate reconstruction of the inclusion. As a matter of fact, the 

unconstrained CS solution, while still allowing a satisfactory localization of 

the target, highly overestimates the amplitude of £%ù&£ (0.08 versus 0.0094) 

while underestimates the dimensions (see panel (a) of fig. 4.4). This is 

confirmed also by the high value of the dimensional error (p- = 0.87).  

Such a circumstance can be attributed to the maximal sparsity requirement, 

which concentrates the overall magnetic anomaly in much fewer voxels than 

in actual ground truth. 

On the contrary, the constrained solution (fig. 4.4(b)) appears more 

accurate, both qualitatively and quantitatively (in this case p- = 0). 

The exploited a priori knowledge of the level of induced contrast 

represents an upper bound for the case at hand. More precisely, the 

maximum contrast value of 0.01 is associated to the maximum (optimistic!) 

amount of nanoparticles that can be targeted. What can happen in practice is 

that a lower amount on MNP (and of the induced contrast) is achieved in the 

tumor, but for the way in which the problem is formulated, this would be still 

a possible solution of the implemented algorithm. Nevertheless, by taking 

into account that the knowledge of £%ù&£�"%could be not precise, it has 

been assessed how the method works when an error in the order of ±25% on 

the expected maximum contrast function is present, in order to test the 

robustness of constrained CS with respect to a wrong setting of constraint 

(4.3). From this numerical analysis no significant deterioration has been 

observed in the final reconstruction. The tumor is still localized and its 
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dimension is correctly retrieved, as confirmed by the dimensional index 

computed when considering an error on £%ù&£�"% of 25% and −25% (p- = 

0.22 and p- = 0.45, respectively). 

 

B. On the choice of δ parameter 

The � parameter depends on many factors, namely, the level of 

required precision, the amount of noise on data and the model error 

introduced by the estimation of $.ð(	Eï, E). Of course, the larger the 

expected model error and noise on data, the larger the parameter �. 

The choice of this parameter is not-trivial and for this reason the 

guidelines described in Section 3.2.2.A are followed. More in detail, the 

optimal � is chosen through an iterative optimization procedure as the 

smallest value which allows to obtain a feasible and localized solution. In fact, 

it is observed that the smallest � which allows a feasible solution, provides a 

reconstruction with randomly located high contrast voxels inside the domain 

of interest (while the searched target is known to be localized and sparse).  

As an example, in fig 4.5 a slice cutting the center of the tumor of Ph1 

at ¦ = 1.2	ã� is reported, when choosing the smallest � which provide a 

feasible solution. As it can be seen, although the target of interest is detected, 

there is the presence of many randomly located voxels different from zero, 

which are a clear indication of a wrong setting of �. 

 

4.4.2 Analysis of robustness against a priori information on the 
breast under test 

 
The relationship between the differential scattered field and the induced 

magnetic contrast, reported in (4.1), while being linear, depends on the 

electric properties of the breast under test through the electric-magnetic 

Green’s function $.ð and the magnetic field '/. In realistic cases, the exact 

knowledge of the electric scenario (and of the corresponding magnetic field 

inside it) is not available.  
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(a) 

 

(b) 

Figure 4.4. Numerical assessment of CS inspired approach for MNP enhanced MWI. 
Transversal slices of the retrieved absolute value of the induced magnetic contrast (Ph1): (a) 
via unconstrained implementation (b) by means of the constrained one. The black line 
indicates the actual contour of the tumor. 

 

 

Figure 4.5 Numerical assessment of CS inspired approach for MNP enhanced MWI. 
Transversal slice of the reconstructed magnetic contrast in when setting δ < δoptimal.  

 

 

Accordingly, reference scenarios with different degrees of accuracy are 

usually considered [Scapaticci et al., 2014]. In this Section the role played by a 

priori information on the breast under test on the constrained CS algorithm is 

evaluated. In particular, both Ph1 and Ph2 are taken into account and three 

reference scenarios are assumed, namely:  

• exact breast, that is the ideal (not realistic) case in which the breast 

under test is completely characterized; 

• accurate representation of the breast, in which the breast morphology 

is supposed exactly known, while the electric properties of the 
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adipose and fibro-glandular tissues are supposed to be constant and 

set according to the average values provided in [Lazebnik et al., 2007]. 

• empty system filled by a medium having the same properties as the 

coupling liquid. In this case no a priori information on the breast is 

assumed. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
Figure 4.6. Numerical assessment of CS inspired approach for MNP enhanced MWI. 3D 

Reconstructions of the absolute value of the induced magnetic contrast. (a) Ph1 and exact 

breast as reference scenario; (c) Ph1 and accurate reference breast; (e) Ph1 and empty system 

as reference profile; (b), (d) and (f) same as (a),(c) and (e) but for Ph2. 
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As mentioned in the Section 4.4.1.B, the fidelity of the reference 

scenario with the true one, affects the choice of �. By following the above 

detailed rule, it is assumed � = 0.1‖∆.0‖ℓÎ, when the exact breast is 

considered, � = 0.3‖∆.0‖ℓÎ, when the approximated breast is taken into 

account and � = 0.8‖∆.0‖ℓÎ when no a priori information is available. 

Corresponding reconstructions for both Ph1 and Ph2 are reported in Fig.4.6. 

As can be seen, also with no a priori information on the breast under test, 

constrained CS is able to provide accurate results, both in terms of detection 

and of quantitative imaging.  

For the considered examples, the values of P and p- are reported in 

Table IX. As can be seen, in all cases the estimated values of the magnetic 

polarizability are close to the actual one (4.8 mm3, obtained by multiplying the 

actual tumor’s volume times the magnetic contrast £%ù&£ = 0.0094	 induced 

by the assumed MNP concentration). The dimensional error also assumes 

satisfactory values, and in most cases it is close to zero, confirming that the 

constrained CS is able to reconstruct with high accuracy the volume of the 

anomaly. By considering the results presented in this Section, in the following 

the analysis will be limited to the assumption of the empty system. 

 

 

breast exact accurate Empty system 

 P [mm3] p0 P [mm3] p0 P [mm3] p0 

Ph2 5.27 0 3.81 0.25 4.08 0.2 
Ph1 5.7 0.12 4.55 0.025 3.75 0.25 

 

Table IX . Numerical assessment of CS inspired approach for MNP enhanced MWI: 
polarizability and volumetric errors 

 

 

4.5 CS inspired imaging strategy vs TSVD 

 

As previously discussed in the introduction, the use of CS theory also 

allows to significantly reduce the number of probe antennas and to retrieve 

‘high resolution’ reconstructions with respect to alternative techniques.  
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To fix ideas, in this Section performances of the CS inspired algorithm 

will be compared to those obtained by means of a TSVD procedure [Bertero, 

1989], previously considered in [Scapaticci et al., 2014].  

As a first comparison between the two techniques, it is worth recalling 

that in [Scapaticci et al., 2014] the TSVD fails in retrieving the actual magnetic 

polarizability when no a priori information on the breast is assumed. On the 

contrary, from Table IX and figs. 4.6(e)-(f) one can observe that the 

constrained CS succeeds in the same conditions. 

 

4.5.1 Reduction of the numbers of measurements 

 

In microwave medical imaging, the minimization of the number of 

adopted probes plays a crucial role. As a matter of fact, this would allow to 

minimize costs and dimensions of the system, as well as measurement time. 

Moreover, reducing the system complexity has a particular relevance for 

MNP enhanced MWI, wherein data are acquired through a two-stage 

differential measurement procedure. In fact, the acquisition has to be 

performed quickly enough to avoid any variation of the electric scenario 

between the two stages and this is obviously a challenging goal when the 

number of probes is very large. 

In the following, the possibility of reducing the number of probes while 

preserving the accuracy of the tumor reconstruction is assessed. In particular 

breast Ph2 is considered and a measurement configuration constituted by only 

12 probes on 3 rings (4 probes per ring, arranged as depicted in fig. 4.7(a)) is 

adopted. In this way, the total number of independent data is equal to 78 

[Bucci and Isernia, 1997].  

Results reported in fig. 4.7 demonstrate that constrained CS (panel (b)) 

allows a reliable and accurate recovery also with very few antennas. On the 

contrary, the TSVD reconstruction (reported in panel (c)) appears less 

accurate. This is due to the low amount of available data, which causes the 

occurrence of grating lobes. These observations are corroborated by the 

values of retrieved polarizability and dimensional error, computed for both 

the CS reconstruction (P = 3.82mm3 and p- = 0.22) and the TSVD one (P = 
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9.14mm3 and p- = 3.15). Note that for the computing of p-, the normalized 

TSVD images are thresholded at -3dB. 

Finally, it is worth noting that, due to the fact that the TSVD provides 

the minimum energy solution, the presence of grating lobes causes a 

considerable underestimation of the maximum value of the magnetic contrast. 

 

 
(a) 

   
 

                                  (b)                                                              (c) 
 

Figure 4.7. Numerical assessment of CS inspired approach for MNP enhanced MWI. 3D 
Reconstructions of the absolute value of the induced magnetic contrast exploiting 12 probing 
and receiving antennas and considering the background as reference profile. (a) New 
measurements configuration; (b) reconstruction via CS and (c) via TSVD. 

 

 

4.5.2 Super-resolution imaging 

 

In cancer imaging, the possibility of recovering with a high resolution 

the boundaries of the cancer is extremely important. As a matter of fact, the 

shape of the inclusion is associated to the degree of malignancy of the cancer, 

the more irregular the border the more aggressive the disease.  
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                                    (a)                                                         (b) 

 
(c) 

 
(d) 

Figure 4.8. Numerical assessment of CS inspired approach for MNP enhanced MWI. 3D 
Reconstructions of the absolute value of the induced magnetic contrast via CS (a) and via 
TSVD (b) (thresholded at -3dB). Transversal slices of the reconstructed differential magnetic 
contrast obtained via CS (c) and via TSVD (d). 

 

 

Accordingly, in order to appreciate the potential of the method in 

providing super resolution images, the case in which the tumor is modeled as 

an irregular structure (the actual magnetic polarizability P is equal to 8.69mm3) 

is analyzed. In particular, phantom Ph1 and the measurement configuration 

reported in fig .4.2 are considered. Again, for the sake of comparison, TSVD 

inversion is also performed. Corresponding results are shown in fig. 4.8. 

Panels (a) and (b) report the 3D reconstructions obtained via CS and TSVD, 

respectively. Panels (c) and (d) show the transversal slices at ¦ ={−0.35,−0.12, 0.12, 0.35}	ã� in which the tumor is located, and the actual 

contour of the cancer, which is superimposed as a black line. Such 
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reconstructions clearly demonstrate that CS outperforms TSVD as far as 

resolution is concerned, as it allows to appreciate with a satisfactory accuracy 

the irregular shape of the cancer, which is not possible from TSVD images. 

Moreover, the better quality of CS reconstruction with respect to the TSVD 

one is also witnessed by value of P and p- equal respectively to 6.78mm3 and 

0.2 for the CS reconstruction, 11.2mm3 and 0.26 for the TSVD reconstruction. 

 

 

4.6 Conclusions and discussion 

 

Magnetic nanoparticles have been recently proposed as contrast agent 

in breast cancer MWI. Once properly functionalized, MNP are able to 

concentrate in cancerous cells in a selective way, hence their adoption allows 

to face the cancer imaging as the reconstruction of a magnetic contrast into a 

purely electric scenario. In such a framework, the adoption of an effective and 

robust imaging algorithm represents a key-point for an accurate and specific 

breast cancer diagnosis.  

By relying on the fact that in MNP enhanced breast cancer MWI the 

problem to be solved is linear, and the unknown magnetic contrast is 

intrinsically sparse, an ad hoc CS algorithm has been developed, by exploiting 

the knowledge of the maximum concentration of MNP that can be targeted 

in human tissues.  

In particular, the potentiality of the CS approach is investigated in 3D 

geometry, as well as the robustness of the imaging procedure with respect to 

the lack of a priori information of the breast under test in order to assess its 

diagnostic performance in realistic conditions.  

The numerical results have shown that, provided that the parameter � 

is properly chosen, one can accurately image cancerous inclusions also in 

absence of any patient-specific information. On the other hand, an even 

rough knowledge of the electric properties of the breast can improve the CS 

results and this pushes towards a parallel line of research that is quantitative 

MWI techniques [Winters et al., 2009, Scapaticci et al., 2015], in order to retrieve 

the (approximate) distribution of the electric properties of patient’s breast. 
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As far as the comparison between the proposed CS strategy and TSVD 

imaging procedure is concerned, the main results of the analysis carried out in 

this Chapter can be summarized as follows. 

• As compared to the TSVD procedure, the CS inspired approach 

allows the achievement of reliable results with a smaller amount of 

data, involving a significant reduction of the number of antennas and 

the measurement apparatus complexity; 

• CS allows a more accurate imaging of the cancer in term of achievable 

resolution. In particular, the possibility to obtain a sort of super-

resolution is a crucial feature of the proposed imaging technique, as 

the shape of the inclusion is associated to the degree of malignancy of 

the cancer.  

Besides these interesting advantages, it is worth mentioning that the 

proposed inversion technique involves the solution of a constrained 

optimization problem, which relies on an iterative procedure, and thus more 

computationally demanding than TSVD. To overcome such a drawback, one 

could develop a step-wise procedure, in which the TSVD is first adopted to 

detect and localize the tumor, while the CS is explored to refine the 

reconstruction and pursue a high resolution image. Note that the first step 

can be performed in quasi real time, since the computationally intensive part 

of the algorithm (which involves the building and the SVD computation of 

the scattering operator) can be moved offline [Scapaticci et al., 2014]. Then, 

once the tumor is detected and localized, it is possible to reduce the imaging 

domain in the CS step and this allows a considerable reduction of the 

computational burden. 

Finally, although the assessment carried so far has been based on the 

accurate full-wave modeling of the electromagnetic phenomena and the 

experimentally measured response of MNP at microwaves, future work needs 

to validate the proposed technique with experimental data. Unfortunately, due 

to the fact that magnetic nanoparticles enhanced microwave breast cancer 

imaging has been only recently proposed and numerically validated, there is 

not yet the availability of experimental data and first experimental proofs-of-

concept are currently ongoing [Helbig et al., 2014, Bucci et al., 2014b]. Such first 
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experiments are mainly aimed at the simple detection of the differential signal 

due to magnetic nanoparticles and they have been not designed for imaging 

purposes.  
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5 

A compressive sensing approach for 
subsurface microwave imaging of non-weak 
buried targets 

 

 

 

 

5.1 Introduction 

 

Nowadays, tomographic approaches represent some of the most 

promising candidates for accurate inspections and explorations of the 

underground [Crocco and Soldovieri, 2011, Daniels, 2004, Pastorino, 2010, Persico, 

2014, Soldovieri and Crocco, 2011], thanks to the capability of quantitatively 

characterizing buried targets and scenarios that are not directly accessible with 

other sensing techniques. Moreover, microwave imaging allows to obtain 

reconstructions that are more reliable and readable than those achieved by 

using standard GPR data processing, which require human expertise and may 

show high probability of false alarms.  

However, as discussed in the Introduction, such a goal requires to cope 

with several difficulties. First of all, the underlying inverse scattering problem 

is both nonlinear and ill-posed. As a consequence, when dealing with the 

problem in its full non linearity, both local and global optimization techniques 

cannot assure the convergence to the ground-truth. 

On the other side, when a weak scattering approximation is adopted, 

one is usually unable to retrieve electromagnetic properties of the targets 

owing the impossibility to fulfill the model assumptions in any actual instance. 

As a result, linearized inversion strategies based on BA, so far exploited in 

GPR tomographic approaches, has been safely used just to perform target 

localization [Crocco and Soldovieri, 2003;Cui et al., 2001, Habashy et al., 1993, 

Soldovieri et al., 2007]. Moreover, neglected higher order interactions related to 

the adoption of weak scattering models may give raise to artifacts appearing 
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as false targets in the images. This limitation is more and more pronounced in 

the case of GPR surveys where data are collected just in reflection mode 

[Bucci et al., 2001b; Leone and Soldovieri, 2003].  

Moreover, even if the model assumptions (f.i. weak scatterers) are 

fulfilled, linearized models are unable to achieve quantitative reconstructions 

in the case of single frequency aspect limited measurement. Indeed, the 

relevant operator mapping the data-to-unknown relationship shows filtering 

properties which entail, among the other, a band-pass reconstruction (along 

the in-depth direction) of the actual targets’ profile [Di Donato and Crocco, 

2015, Leone and Soldovieri, 2003]. 

Concerning the ill-posedness of the problem, the regularization 

strategies usually adopted in least square optimization unfortunately allow to 

recover only an approximated, i.e. low-energy or smooth, version of the 

actual profile [Bertero and Boccacci, 1998, Pastorino, 2010, Persico, 2014, Soldovieri 

and Crocco, 2011]. 

In this respect, both the CS and VE, introduced in the previous 

Chapters, can come into play to counteract ill-posedness and non-linearity, 

respectively. In addition, as explained in Section 1.6, VE allows also to 

counteract the fact that both primary sources and measurement probes 

cannot be located inside the soil, so that just aspect limited data can be used.  

In the following, the above mentioned frameworks are mainly applied 

with respect to surface GPR surveys for quantitative characterization of 

dielectric targets and structures, by considering data measurement under a 

multiview-multistatic configuration6 and single-frequency data, which avoids 

the need of modelling frequency dispersivity of the soil. 

                                                 
6 Although this is not the usual arrangement adopted in the conventional GPR systems, it is 
worth noting that several emerging facilities have been developed and exploited in the last 
years [Bradford, 2008; Francese et al., 2009; Gerhards et al., 2008]; 
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5.2 Imaging non-weak and extended buried object 

 

With respect to the geometry considered in Section 1.1, the presence of 

the air-soil interface has now to be taken into account. As shown in fig. 5.1, 

the investigation domain Ω is placed at a given depth below it and it is probed 

by means of antennas located on the curve Γ along the x-axis, placed above 

the air-soil interface at given height. The antennas are modelled as filamentary 

currents oriented along the invariance axis O and again a multiview-multistatic 

measurement configuration is assumed. 

 
 

Figure 5.1. The geometry of the 2D subsurface problem and the adopted measurement 
configuration. The black circles and white triangles represent two or more transmitting and 
receiving antennas in a surface-GPR acquisition. 

 
 

Under the above assumptions and assuming a 2D geometry and electric 

field polarized along O, the equations (1.2) and (1.3) governing the scattering 

phenomenon are rewritten by taking into account the presence of the 

interface, i.e.: 

HR(�)(E) = \TG ]^-G(E, E_)
`

	(E_)H(�)(E_)aE_												E ∈ Γ 

(5.1) 

H(�)(E) = H!(�)(E) + \TG ]^GG(E, E_)
`

	(E_)H(�)(E_)aE_								E ∈ Ω 

(5.2) 
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where ^-G(E, E_) is the external Green’s function for the half space case, i.e., 

the field radiated in the medium 1 (the air) by an elementary source placed in 

the medium 2 (the soil), while ^GG(E, E_) is the internal Green’s function for 

the considered scenario, i.e., the field radiated in the medium 2 (the soil) by an 

elementary source placed in the same medium.  

With respect to eqs. (1.2) and (1.3), in the above equations the half 

space Green’s functions are now considered [Chew, 1995]. These latter can be 

computed by solving Green-Sommerfeld integrals by means of 1-D Fast 

Fourier transform [Crocco and Soldovieri, 2003]. 

 

A. A linear approach for quantitative subsurface imaging based on VE  

As described in Section 1.6., the design of circular symmetric VE allows 

to introduce an effective field approximation and to linearize the scattering 

eq. (5.1). In case of subsurface survey both the design equation (1.8) and the 

field approximation (1.12) must be readapted by taking into account the 

presence of the interface between air and soil. 

More in detail, the design equation for the VE is recast as: 

 

xv��
r

�y- HR(��, E) = ^-G{E, E|} 

(5.3) 

In particular, its solution is exploited in order to image the support 

indicator (see eq. 1.10) and choose P evenly spaced pivot points with respect 

to build the multipivot experiments. Then, for each VE, the data equation is 

recast and the approximated total field is computed according to: 

 

ℰ{E, E|} ≈ ℰ!{E, E|} + i�b^GG{E, E|}c 
(5.4) 

where ℰ and ℰ! are the virtual total and incident field (see (1.6) and (1.7)).  

Note that in the design equation (5.3) the original scattered field is 

recombined in order to fit at the measurements positions E ∈ Γ, the field 

radiated in the air by an elementary source placed in the soil. On the contrary, 
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in the field approximation (5.4), the unknown ℰ is approximated in each E ∈ Ω considering the field radiated in the soil by an elementary source placed 

in the same medium.  

 

B. A ‘fictitious measurements’ strategy for aspect limited data 

As discussed in Section 1.6, the achieved field conditioning allows to 

predict the value of the field in locations other than the measurement points, 

so that one can exploit a number of additional equations corresponding to 

‘fictitious measurements’ [Di Donato and Crocco, 2015].  

Accordingly, let us consider a fictitious curve Γ∗ (complementary to Γ) 

which surrounds the investigation domain and allows to locate measurement 

points into the soil. The value of the (virtually measured) scattered field at 

these fictitious locations would be given by 	^GG{EE∗, E|}, where EE and EE∗ 
denote the actual and the fictitious measurement points, respectively, as 

fictitious measurements are placed in the lower halfspace. According to the 

above, the virtual data equation can be suitably rewritten as: 

 

\TG ] 1̂T(E, E_)
`

	(E_)ℰ{E_, E|}aE_ = � ℰR{E, E|}	if		E = EE ∈ Γ					^GG{E, E|}	if		E = EE∗ ∈ Γ∗	 
(5.5) 

To take into account the dependence of the kernel of (5.5) from the 

different kind of measurement (the actual ones on surface and the fictitious 

one in the underground), the Green’s function is defined as: 

 

1̂T(E, E_) = � ^-G{E, E|}	if		E = EE ∈ Γ					^GG{E, E|}	if		E = EE∗ ∈ Γ∗	 
(5.6) 

that stands for the external or the internal Green’s function depending on the 

measurement at hand. In fig. 5.2, a sketch of the fictitious receivers, placed 

over the fictitious curve denoted with Γ∗, is depicted. 
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More in detail, two vertical and one horizontal dummy arrays are added 

with a total of F receivers on Γ∗. For the horizontal one both its length i% 

and number of antennas are set equal to the actual array and it is placed at 

depth ¦! from the interface. The vertical virtual arrays with length ¦! are 

placed perpendicular to the actual array and the number of antennas is set in 

such a way that the distance between the antennas is about 0.5	�.  

As discussed into Section 1.6.1, since the analytical prolongation (5.5) 

works fine outside the scatterers, a convenient choice of ¦! amounts to place 

the fictitious probes approximately at the same distance of that between the 

investigated domain and the actual probes. 

 

Figure 5.2. The virtual measurements setup. The black and white circles refer to actual and 
fictitious measurements, respectively, while the white triangles denote the transmitters. 

 
 

C. A Compressive Sensing based approach 

Once the problem is linearized and a number of additional equations 

corresponding to ‘fictitious measurements’ are added, the subsurface imaging 

can be carried out by considering the CS approach described in Section 

3.2.1.C. In fact, in many cases dealing with real life application the unknown 

contrast profile can be assumed to be piecewise constant, which entails a 

sparse representation in terms of step functions. 

According to eq. (5.5), the data vector with dimension 2 = (� + �) ×	� contains the � measured scattered fields and the � fictitious ones arising 

in the � virtual scattering experiments, while the matrix which relates the 
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unknown to data vector with dimension 2 ×'Ð is obtained by considering 

the linear approximation and additional fictitious measurements. 

 

 

5.3 Numerical assessments 

 

To give a proof of the performances achievable by means of the 

proposed method, three numerical examples concerned with GPR surveys are 

presented. In particular, it will be shown how field conditioning achieved by 

properly designed VE (including fictitious measurements) and CS regularized 

inversion (exploiting sparseness of the gradient of the unknown) allow to 

achieve quantitative imaging results. 

The first example consists of a wet soil whose electromagnetic 

properties exhibit a 5% random variation around the average values QT = 9 

and �T= 50 mS/m. It embeds two targets, the first one, having circular cross-

section, is a stone (Q = 6) while the second one is a plank (Q = 3) with a 

square cross-section. The rectangular imaging domain is 0.9	 × 0.3	�G wide 

(which corresponds to 3.6	� × 1.2	�) and is discretized into 78	 × 	26 cells. 

The antennas (' = � = 12), located at the air-soil interface, are evenly 

spaced of about �/2 and the working frequency is 400MHz.  

In the second example, two rectangular lossy targets with permittivity 

values representative of glass (Q- = 8, �- = 0) and porcelain (QG = 6.5, �G = 0 

respectively) are considered. The two objects are embedded in a dry soil 

whose electromagnetic. properties exhibit a 5% random variation around the 

average values QT = 3 and �T = 20 mS/m. Even in this case, the working 

frequency is 400MHz. The rectangular imaging domain is 0.9	 × 0.3	�G wide 

(which corresponds to 2.1	� × 	0.7	�) and it is discretized into 44	 × 	22 

cells. The probing array is made of ' = � = 8 evenly spaced antennas. 

The third example consists of three rectangular targets having the same 

size and different electromagnetic characteristics, buried in a dry soil with 

relative permittivity QT = 4 and conductivity �T = 1 mS/m. The first target is 

a void (Q- = 1, �- = 0), the second target is representative of a plastic mine 
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(QG = 2.5,	�G = 0) and the third has the dielectric properties of a stone (Q² = 

6, �² = 1m S/m). The working frequency is 400MHz. The imaging domain is 

a square region of side 1m (about 2.7	�), discretized into 64	 × 	64 cells. The 

probing array is made of ' = � = 8 evenly spaced antennas. 

The scattered field data are two different signal-to-noise ratio levels, 

SNR=30dB and SNR=10dB. 

To appraise the accuracy of the results, two error reconstruction 

metrics are used. The first one is the usual mean square error, which represent 

a global and synthetic parameter. In order to evaluate the fidelity of the 

reconstruction of the electromagnetic properties of a single object is defined 

the following error, i.e.: 

$���"% = ‖	‖j − ‖	Ï‖j‖	‖j  

(5.7) 

where 	 is the actual contrast profile, 	Ï the estimated one and ‖∙‖j the 

uniform norm. 

As described in the previous section, the inversion procedure consists 

of three steps. In the first step, the solution of eq. (5.3) is exploited in order to 

image the support indicator that, in the case of SNR = 30dB, is shown in figs. 

5.3(a), 5.4(a) and 5.5(a) for the three scenarios, respectively. Then, for each 

designed VE, the data equation is recast and the approximated total field is 

computed according to eq. (5.4).  

The second step takes advantage of the achieved field conditioning by 

means of the fictitious measurements. For the three scenarios at hand, the 

resulting fictitious measurement configurations are shown in figs. 5.3(b), 

5.4(b) and 5.5(b), respectively. In particular: 

• for the first scenario ¦! = −0.5m, i% = 1.5m and F = 20;  

• for the second scenario ¦! = −0.6m, i% = 1.5m and F = 12;  

• while for the third one ¦! = −1.5m, i% = 1.5m and F = 20. 

The last step is the optimization task via CS by means of eq.(3.7), in 

which the tolerance parameter � is set following the guideline in Section 

3.2.2.A. 
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To analyze the achievable performances of the method, in the second 

and third examples the obtained results are compared with the BA usually 

adopted in tomographic GPR imaging [Ambrosanio and Pascazio, 2015, Soldovieri 

and Crocco, 2011]. In particular, the simulated data are also processed by using 

a BA-CS approach, in particular eq. (3.7), but building the data-unknown 

matrix õ using the original incident fields and noisy scattered ones instead of 

the proposed approach based on VE.  

As it can be seen in figs. 5.3-5.5, the results confirm the extended 

validity range of the proposed linearization based on field conditioning, as 

well as the remarkable advantage of using this latter in conjunction with CS, 

especially in presence of a large amount of noise in the processed data. As a 

matter of fact, this allows obtaining reliable quantitative results both for 

permittivity and conductivity values (see Tables X and XI), outperforming the 

BA. 

 

Finally, in the third example, a performance analysis reducing the 

overall numbers K = 644 of processed data is also carried out in the case of 

VE-CS. In particular, the data reduction is achieved with a routine that extract 

uniformly random samples of the initial data-set. Figure 5.5 (which show only 

the retrieved permittivity, being the retrieved conductivity negligible) 

summarizes the results obtained in this case, confirming the robustness of the 

CS-based procedures. Of course, for the larger noise level (SNR=10dB) and 

undersampling rate (RF = 10 and K = 64) results are slightly worse in 

particular for the deepest target. 

In conclusion, these numerical results show the method is able to 

perform satisfactory characterization of buried targets having different 

dielectric properties in lossy soils, significantly outperforming the results 

achievable with the ‘state of the art’ standard approaches.  

These preliminary results, meant to address the feasibility of the overall 

strategy in the subsurface imaging, encourage future work towards 3D 

tomographic imaging and for testing the reconstruction capability against 

experimental data-set. 
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 SNR=30dB SNR=10dB 

 err $���"% err $���"% 

BA-CS 1.42 0.62 1.39 0.65 
VE-CS 0.64 0.02 0.65 0.04 

Table X. Numerical assessment of VE-CS approach for subsurface MWI: error metrics for 
the second example. 

 
 

 SNR=30dB SNR=10dB 

 err $���"% err $���"% 

BA-CS 0.82 0.7 0.83 0.55 
VE-CS 0.70 0.24 0.82 0.25 

VE-CS(RF=4) 0.69 0.35 0.84 0.38 
VE-CS(RF=10) 0.71 0.40 0.85 0.48 

Table XI . Numerical assessment of VE-CS approach for subsurface MWI: error metrics for 
the third example. 
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                                 (a)                                                                     (b) 

 
                                 (c)                                                                  (d) 

Figure 5.3 Numerical assessment of VE-CS approach for subsurface MWI. Example 1. (a) 
Logarithmic map of the LSM indicator with superimposed the pivot points and the contour 
of the reference profile, (b) virtual measurements setup. (c)-(d) Permittivity and conductivity 

of the retrieved profile by means of VE-CS (�&= 0.18) for SNR=30dB (err = 0.45, errmax = 
0.29). 
 

    
                                  (a)                                                                  (b) 

 
                                 (c)                                                                  (d) 

 
                                 (e)                                                                  (f) 

 
                                 (g)                                                                  (h) 

Figure 5.4 Numerical assessment of VE-CS approach for subsurface MWI. Example 2. (a) 
Logarithmic map of the LSM indicator with superimposed the pivot points and the contour 
of the reference profile, (b) virtual measurements setup. Permittivity and conductivity of the 

retrieved profile for SNR=30dB by means of (c)-(d) BA-CS (�& = 0.3) and (e)-(f) VE-CS (�& = 

0.15). (g)-(h) the same as (e)-(f) for SNR=10dB with �&= 0.17. 
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                                           (a)                                                (b) 

 
                                           (c)                                              (d) 

 
                                           (e)                                              (f) 

 
                                           (g)                                              (h) 

 
                                           (i)                                              (j) 

Figure 5.5 Numerical assessment of VE-CS approach for subsurface MWI. Example 2. (a) 
Logarithmic map of the LSM indicator with superimposed the pivot points and the contour 
of the reference profile, (b) virtual measurements setup. Permittivity of the retrieved profile 

by means of the CS with (c) BA (�& = 0.04), (d) VE (�&= 0.32), (e)-(f) VE with RF=4 (�&= 

0.28) and RF=10 (�&= 0.15), respectively for SNR=30dB. (g)-(j) the same as (c)-(f) for 

SNR=10dB with �&= 0.26 (BA-CS), �&= 0.33 (VE-CS), �&= 0.28 (RF=4) and �&= 0.24 (RF=10).
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Conclusions 
 

 

 

 

Summary of the contributions 

 

In this thesis, new paradigms and tools have been introduced to address 

the difficulties and the challenges to be faced in the solution of inverse 

scattering problems. Moreover, it has been demonstrated that the resulting 

imaging methods are capable to provide accurate and reliable results, from 

both a morphologic and radiometric point of view. 

More in detail, the contributions can be summarized as it follows. 

In the first part of the thesis, a new and original strategy for solving 

inverse scattering problems has been proposed and developed. In particular, 

by taking into account the linearity of the scattering phenomena with respect 

to the primary sources (that is, the sources of the incident fields probing the 

unknown scenario), it has been introduced the idea of using the pre-

processing of the collected data to design new experiments, which are 

referred to as Virtual Experiments, as they do not involve additional ‘physical’ 

measurements or experiments. In inverse scattering problems, the knowledge 

of internal fields (or contrast sources) plays a key role. The exact knowledge 

of these quantities would allow to consider a linear problem (rather than a 

non-linear one). On this line of reasoning, the VE have been designed in such 

a way to condition the total fields and the currents induced inside the targets, 

and this information has been exploited in the inversion procedure. Note the 

main difference with the existing solution strategies relies on the fact that this 

new kind of information does not descend, as usual, from some assumptions 

on the contrast function, but rather on some smart pre-processing. This 

represents a new way of thinking about inverse scattering solution which has 

led to effective and reliable methods, and could still lead to new ones. 



Conclusions 

146 

In this thesis, three new inversions strategies, DARE, RCSI and DIVE 

methods, have been introduced and discussed based on proper designed VE, 

which have been built by means of the generalized solution of the FFE (the 

equation underlying the well-known LSM). Obviously, the methods turn out 

to give back reliable and effective results as long as the LSM is able to 

condition the scattering phenomenon. Nevertheless, it is important to 

highlight that, in order to go beyond the range of applicability of the LSM, 

different design tools could be applied to condition the total fields or the 

contrast sources. 

More in detail, the core of the DARE method is an original 

approximation of the focused contrast sources arising in the designed VE. 

This introduced approximation, which exploits Bessel function’s 

multiplication theorem and takes also into account part of the non-radiating 

contrast sources, has allowed to recast the inverse problem through a diagonal 

system of algebraic equations and, so, to estimate the contrast function by 

means of the solution of third degree equations. Note this algebraic solution 

method is non iterative and extremely fast, as the solutions of each equation is 

independently computed in a closed form. This is an interesting point to 

address in the view of the future extension to 3D problems.  

In RCSI method has been considered an alternative way to enforce the 

circularly symmetric behavior on the contrast sources by simply adding an 

appropriate penalty term in usual CSI method. As such, the method is 

iterative and non-linear, as no approximation has been introduced and the 

scattering equations have been considered in their full non linearity. The 

paradigm underlying this method offers a different, possibly complementary, 

point of view to improve the inversion, as compared to more usual 

regularization methods that act on the contrast function, and opens the way 

to new methods to tackle the inverse scattering problem by acting on the 

auxiliary unknowns.  

In DIVE approach, the scattering conditioning has been enforced 

within an iterative procedure, wherein the Green's functions, VE and 

corresponding linear approximations have been updated at each step, in order 

to provide an effective approach to inverse scattering. More in detail, the 
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method involves at each iteration the field approximation introduced in 

[Crocco et al, 2012a], which in this thesis has been recalled and reinterpreted in 

the light of the recent developments. This approach has been proved to 

outperform the DBIM, as it takes implicitly into account at each iteration the 

nature of the obstacles through the VE redesign step.  

Second, in the thesis the CS theory has been exploited in order to 

obtain nearly optimal reconstruction and reduce the numbers of sensors 

involved in the measurements procedure, leading to a simpler and cheaper 

measurements set-up. In particular the CS theory, which up to now had been 

considered in the literature only within the usual Born or Rytov 

approximations, has been exploited in conjunction with VE. Moreover, for 

the first time, CS has been applied to inverse scattering problems by taking 

into account its full non-linearity.  

In particular, three novel CS-inspired inversion methods have been 

introduced and discussed in the thesis. Note that the applicability of CS 

theory and, so, the proposed methods is strictly depending on the assumption 

of sparsity, i.e. by the possibility to characterize the unknown contrast 

function by a suitable representation basis.  

The first one has exploited the field approximation, derived from the 

VE and introduced in [Crocco et al., 2012a], and explored the possibility of 

enforcing sparsity in different ways, by considering different representation 

basis types of the unknown. As such, this approach has turned out more 

versatile as it could be applied also to the case of extended target, which are 

non-sparse in the classical pixel basis and belong to the range of applicability 

of the VE based linear approximation [Di Donato et al., 2015a].  

The second approach has a wider range of validity as compared to the 

previous one, as it takes advantage from the above results by considering the 

VE and field conditioning in an iterative perspective, i.e. in conjunction with 

DIVE method. The joined conditioning on both the actual and auxiliary 

unknowns, realized by CS and VE, respectively, has led to beneficial effects 

on the reachable performances.  

The last method is an original revisiting in a non-linear framework of 

the CS theory, which up to now has been explored only in linear problems, 
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so, it could give the possibility to open the way to the application of the CS to 

general non-linear inverse problems. In particular, two innovative different 

strategies have been described and tested in conjunction with CSI scheme, 

wherein sparsity has been enforced by means of strict bounds on the space 

search while looking for a minimization of the involved cost functional, or by 

inserting an additional penalty term in the same functional.  

Note, unlike the first ones, these last approaches do not involve any 

approximations. On the other hand, as they consider the problem in its full 

non linearity, they could suffer from a large computational burden, especially 

the penalized scheme. Furthermore, if the problem is too challenging and the 

unknown contrast is not represented in a suitable basis, they could be trapped 

in false solutions. 

Finally, in the last part of the thesis, as a step for truly exploiting the 

potential of microwave imaging in real world applications, the outcomes 

reached in the first part, have been applied to two relevant applicative 

examples, i.e. breast cancer MWI enhanced by MNP, and subsurface imaging.  

More in detail, for the breast cancer MWI enhanced by MNPs ad hoc CS 

algorithm has been developed for the reconstruction of the unknown 

magnetic contrast induced into the tumor, wherein the knowledge of the 

maximum concentration of MNPs that can be targeted in human tissues has 

also been exploited to counteract ‘over-regularization’ induced by CS. From 

the numerical analysis, performed in realistic conditions in 3D geometry, it is 

pointed out that the adoption of this new tool allows to improve resolution 

and accuracy of the reconstructions, as well as to reduce the complexity of the 

required measurements set-up. 

For the subsurface MWI, both the results reached by means of VE and 

the CS have been conveniently adapted to the problem at hand. In particular, 

an effective strategy has been developed in order to obtain quantitative 

reconstructions of non-weak and extended targets and overcome the relevant 

information lack arising when data are gathered under aspect limited 

configuration [Di Donato and Crocco, 2015]. The numerical examples dealing 

with simulated data have shown that the proposed strategy significantly 

outperforms the results achievable with state of the art approaches. 
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Future developments 

 

Additional possible developments besides the ones analyzed at the end 

of each Chapter, are worth being mentioned. 

First, some interesting hybridizations are possible by suitably mixing the 

different introduced approaches. For instance, one could exploit the VE 

framework and, in particular the RCSI method, in conjunction with the CS-

inspired non-linear inversion method introduced in Section 3.3, acting 

simultaneously both on the actual and auxiliary unknowns. Alternatively, one 

could use as convenient starting point for this latter the outcomes of the 

DARE method, in order to better fall into the right attraction basin. 

Second, it is worth pointing out that all the introduced approaches have 

been discussed with reference to the canonical scalar electromagnetic TM 

case. Therefore, in order to progress towards real applications, all the devised 

approaches have to be extended to vectorial and tridimensional case. 

Third, many possible applications of microwave imaging (both 

qualitative and quantitative), besides the ones considered in the second part, 

could take benefit from the methodologies presented in this thesis.  

For instance, recently an emerging interest has been gained by the 

Electric Properties Tomography (EPT) [Balidemaj et al., 2015, Balidemaj et al., 

2013, Katscher et al., 2009]. EPT is an imaging modality to reconstruct the 

electric conductivity and permittivity inside the human body based on �-�field 

maps acquired by a magnetic resonance imaging (MRI) system. The main 

difference with respect to the standard inverse scattering problem considered 

in this thesis lies in the fact that an MRI system offers the unique situation in 

which the magnetic fields within the object of interest can be measured. 

Hence, every measured voxel can be considered as a virtual receiving antenna, 

and consequently the ill-posedness of the inverse problem can be reduced. 

Hence, the method has the potential to achieve high-accuracy permittivity and 

conductivity tissue maps of interior parts of the human body [Balidemaj et al., 

2015, Balidemaj et al., 2013]. In particular, in [Balidemaj et al., 2015] a MR-CSI-

EPT method (contrast source inversion-electric properties tomography) is 

introduced wherein the electric tissue properties are retrieved in an iterative 
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fashion based on a CSI approach. In this respect, the techniques presented in 

this thesis could be a valid alternative to the MR-CSI scheme and their 

applicability can be investigated in the near future.  

Finally, due to the analogy between electromagnetic and acoustic 

scattering phenomena, the developed paradigms and tools can be applied in a 

relatively easy fashion also to this different area of the engineering and 

physics, as well as to other wavefields. 
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Appendix A 

 

The series in (2.4), which allows to express the zero order Bessel 

function as a superposition of Bessel functions, is a power series respect to 

the variable 	�. By means of the Theorem of Cauchy-Hadamard [Di Bari and 

Vetro, 1998] it is possible to investigate on its convergence and compute the 

radius R which defines the convergence region by means of the following 

close formula: 

¤ = lim�→j
|t�||t��-| 

(A.1) 

wherein t� is the generic coefficient of the power series, having the following 

mathematical expression: 

t� = (−1)��! ª\T�2 «� ��(\T�) 
(A.2) 

By following eq. (A.1) and considering the properties of Bessel 

functions for � → ∞, the series (2.4) is proved to be convergent ∀	� ∈ ℂ as 

its radius R is equal to ∞ . In fact:  

 

¤ = lim�→j
|��(\T�)||��(\T�)| 2(� + 1)|\T�| = lim�→j

2(� + 1)$|\T�| 2(� + 1)|\T�| = ∞ 

(A.3) 

Another important parameter is represented by the remainder of the 

series (2.4) when it is truncated to the third term and only the terms for \ = 0,1,2 are considered, as in eq.(2.5). If a lossless background and lossless 

targets are considered, the series (2.4) has real coefficients and an alternating 

sign. Hence: 
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6xt�
j

�yV 	�� − xt�
G

�yV 	��6 < £t²	�²£ = 		�²3! ª\T�2 «² �²(\T�) 
(A.4) 

wherein the right-hand side represents a possible estimation of the upper 

bound for the fourth term of the series. Hence, truncation of eq. (2.4) implies 

a negligible error for a sufficiently small radius �. Moreover, eq. (A.4) allows a 

smart choice of ¤�. 

 

 

Appendix B 

 

An interesting question arises of how the three principal terms of the 

eq. (2.4) contribute to the radiated field. Starting to eq. (2.4), which relates the 

contrast source z to the local contrast function 		�, it is possible to extract 

an analytical expression for the radiative part of the currents inside the 

circular neighborhood 	ℐ��{E�}. In particular, as discussed in [Marengo et al., 

2000, Marengo and Ziolkowski, 2000, Devaney and Wolf, 1973], radiating 

(minimum energy) components of a source have to fulfill the Helmholtz 

equation in the background medium, so the radiating component z�®¯ can 

be identified as the projection of the z respect to the �V(\T�), where 

� = £E − E|£. More in detail: 

z�®¯{E, 	E�} ≈ 〈z{E, 	E�}, 	�V(\T�)	〉	�V(\T�) = 

�V� 7x(−1)��!
j

�yV ] ª	�\T2 «� ��(\T�)	�V(\T�)	ℐ´�
���-	a�	8 	�V(\T�) 

(B.1) 

Note, if the radius ¤� of the circular neighborhood tend to infinity, the 

integrals in eq. (B.1) would be equal to zero but for � = 0 and, so, the only 

radiating component would be represented by �V��V(\T�). As ¤� assumes a 

finite value, the integral are different from zero and are computable in closed 

form. In fact, being the local value of the contrast 	� constant inside 	ℐ�� and 

by changing the integral variable as 6 = \T�, the eq. (B.1) can be rewritten as: 
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z�®¯{E, 	E�}
≈ �V� 7x(−1)��!

j
�yV ª	�\T2 «� 1\T��G ] ��(6)	�V(6)À9��

V 6��-	a6		8 �V(\T�) 
(B.2) 

By exploiting the well-known properties of the Bessel function 

[Abramowitz and Stegun, 1964], that is: 

]:;(6)<¥(6)6;�¥�-a6 = 

6;�¥�G2(U + = + 1) �:;(6)<¥(6) + :;�-(6)<¥�-(6)¡ 

:;�-(6) + :;�-(6) = 2U6 :;(6) 
(B.3) 

where :;(6) and <¥(6) are two generic cylindrical function or order U and 

=, then: 

z�®¯{E, 	E�} ≈ �V� 7x(−1)��!
j

�yV ª	�\T2 «� ¤���G
2(� + 1) b��{\T¤�}�V{\T¤�}

+ ���-(\T¤�)�-(\T¤�)c		8 �V(\T�) 
(B.4) 

As in DARE method only the first three terms of the series (2.4) are 

considered, the expression of the radiating part can be truncated to the first 

three terms, as it follows. 

z�®¯{E, 	E�} ≈
�V� ¬��Î

± b�VG{\T¤�} + �-G{\T¤�}c − Ì�± ¤�G�-G{\T¤�} +
Ì�Î
±> \TG¤�±b�V{\T¤�}�G{\T¤�} + �-(\T¤�)�²(\T¤�)c	�V(\�)  

(B.5) 

Note that in eq. (B.5) all the three terms contribute to the radiating part of the 

current. An analysis on the amplitude of the field radiated by each term has 

pointed out that the more significant part is constituted by the first term. 
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By considering the radiating part of the different contributions, one may 

separate the radiating and non-radiating components of the contrast sources. 

In fact, the non-radiating component is defined as by the difference between 

z{E, 	E�} and z�®¯{E, 	E�}, that is: 

 

zr�®¯{E, 	E�} ≈ �V� x 1�!
j

�yV ª−	�\T2 «� {��	��(\T�) −?�®¯	�V(\T�)} 
(B.6) 

where: 

?�®¯ = ¤���G
2(� + 1) b��{\T¤�}�V{\T¤�} + ���-{\T¤�}�-{\T¤�}c 

 

 

Appendix C 

 

Let us substitute eq.(2.5) in eq.(2.8). By neglecting the integral over ℐ@̅Aone obtains: 

ℰR{E, E|} ≈ �V�Ü�� + ã�	� + a�	�GÝ 
(C.1) 

where: �� = 123�V(\T�)4 
ã� = 12 B−12\T�	�-(\T�)C 
a� = 12 B18 \TG�G	�G(\T�)C 

 

Note that in (C.1) E belongs to the measurement domain and the 

operator 1> is defined over	ℐ��{E|}. Moreover, since the contrast is 

assumed to be constant in ℐ��{E|}, it has been singled out from the integral 

operators.  

For a given pivot point, the coefficient �V�	in (C.1) is constant, as it 

does not depend on the measurement position. As such, for each pivot point, 
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it is possible to obtain an explicit expression for it, by averaging eq. (C.1) with 

respect to the � different measurements. In particular, a very compact 

expression for the reciprocal of �V� is obtained as: 

 1�V� ≈	 Ü�̧� + ã̅�	� + a̅�	�GÝ 
(C.2) 

where: 

�̧� = 1�D ��(�)ℰR{Eï/, E|}
s

!y-
 

ã̅� = 1�D ã�(�)ℰR{Eï/, E|}
s

!y-
 

a̅� = 1�D a�(�)ℰR{Eï/, E|}
s

!y-
	

where ��! ∈ Γ identifies the position of the different measurements.  

Let us now substitute equation (2.5) in equation (2.7). Similarly, the 

algebraic equation obtained is the following one: 

 E�	�² + ��	�G + F�	� + �� = 0 

(C.3) 

where: 

E� = 18 tV�1! G\TG£E − E|£G	�G(\T£E − E|£)H 
�� = −12tV�1!b\T£E − E|£	�-(\T£E − E|£)c 
F� = ℰ!{E, E|} + tV�1!b	�V(\T£E − E|£)c �� = −:V� 

Note in (C.3) E now belongs to the investigation domain. 
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If now one uses the equation (C.2) in equation (C.3), a final third degree 

polynomial expression can be obtained, where the only unknown is the 

contrast. In fact: ·̅�	�² + �̧�	�G + ¹̅�	� + º»� = 0 

(C.4) 

where:  

·̅� = ℰ!{E, E|}	a̅(�) + 181!b\TG�G	�G(\T�)c 
�̧� = ℰ!{E, E|}	ã̅� − 121!3\T�	�-(\T�)4 

¹̅� = ℰ!{E, E|}	�̧� + 1!3	�V(\T�)4 º»� = −1 

Equation (C.4) is a third degree polynomial equation in the only 

unknown 	�. Therefore, its solution allows to obtain the local value of the 

contrast in each pivot point. 

 

 

Appendix D 

 

The Contrast Source Inversion scheme [van den Berg et al.,1997, Isernia et 

al., 2004, Isernia et al., 1997] does not involve any approximation and tackles 

the inverse scattering problem in its full non linearity by contemporary 

looking for both the unknown contrast χ and the auxiliary unknown I. In 

particular, the problem’s solution is iteratively found by minimizing the 

following cost functional, which takes into account the data-unknowns 

relationship and the physical model, [Isernia et al., 2004, Isernia et al., 1997]: 

 

Φ{	,I(-), … ,I(r)} = Φ`{	,I(-), … ,I(r)} + Φ�{I(-), … ,I(r)} 

with 

Φ`{	,I(-), … ,I(r)} = x I(�)`ÇI(�) − 	H!(�) − 	1!bI(�)cÇG̀r
¥y-  
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Φ�{I(-), … ,I(r)} = x I(�)�ÇHR(�) − 12bI(�)cÇ�G
r

¥y-  

(D.1) 

where ‖∙‖ is the uG norm and I(�)` and I(�)� are normalization coefficients.  

Note the normalization term for the state equation I(�)` is usually set 

equal to the norm of the product of the contrast function times the incident 

field [van den Berg and Kleinman, 1997]. Although this seems a natural choice, it 

has the drawback of changing, in an unpredictable way, the metric at each 

iteration of the minimization process. For this reason, different from the 

usual CSI scheme in [van den Berg and Kleinman, 1997], in the following just the 

norm of the incident field is used as a normalization factor. More in detail, 

I(�)` = ÇH!(�)ÇG̀
 and I(�)� = ÇHR(�)Ç�G. 

As discussed in I.4, the functional (D.1) is a non-quadratic functional of 

the unknowns and usually depends on thousands of variables. For these 

reasons, globally effective minimization schemes do not exist for functions of 

so many variables and the gradient-based minimization scheme could be 

trapped in local minima. As a suitable compromise between convergence 

properties and computational as well as memory requirements, the problem 

of how to find the global minimum of (D.1) is pursued by following a quasi-

Newton minimization procedure, whose scheme is: 

 	(À�-) = 	À + UÀHÀ∇	À 

I(À�-) = IÀ + UÀHÀ∇WÀ 

(D.2) 

where \ and (\ + 1) denote the kth and the (k+1)th iteration, respectively, ∇	 

and ∇I are the gradient of the functional Φ with respect to 	 and I 

respectively, UÀ is a scalar factor that has to be evaluated at each iteration in 

order to guarantee the maximum decrease of the functional along the 

direction given by H∇W. Finally, H is defined accordingly to the Polak–

Ribiere scheme [Isernia et al., 1997].  
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The minimization of the cost function (D.1) does not involve an 

alternating optimization of the contrast function and the contrast source, but 

instead a joint updating of the two quantities by using the scheme (D.2) 

[Isernia et al., 1997]. This is a fundamental difference respect to [van den Berg et 

al.,1997]. Accordingly, the line minimization step UÀ is performed in a very 

efficient and precise manner as: 

 

UÀ = argminΦ{	À + UÀΔ	À,IÀ(-) + UÀΔIÀ(-), … ,IÀ(r) + UÀΔIÀ(r)} 

(D.3) 

where Δ	À and ΔIÀ represent the descent research directions considered at 

the kth iteration. Accordingly, the computation of UÀ is based on the 

minimization of a non quadratic functional, different from [van den Berg and 

Kleinman, 1997] which alternatively updates currents and contrast function 

and, so, considers the minimization of a parabolic functional, which admits 

only a minimum. This represents an important advantage of using approach 

(D.3), as it could open the way to possible ‘tunneling’, i.e. path from an 

attraction basin to a more convenient one. 

However, Equation (D.3) due to the nature of the involved operators 

implies the solution of a third degree algebraic equation which is available in a 

closed form [Isernia et al., 1997]. 

For more detail about the general structure of the optimization 

procedure and computation of the gradient of the functional Φ with respect 

to 	 and I, the reader is referred to [Isernia et al., 1997]. 

 

 

Appendix E 

 

Many tutorials have been written on the essentials of CS, and some of 

them have been written from scientists originating [Donoho, 2006, Candès et al., 

2006] or anyway contributing to the theory of CS [Baraniuk, 2007]. 

Nevertheless, a contribution can still be given to a possibly simple 

understanding of the basic tools and results, as well as to the introduction of 
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further point of views to the problem. To this end, by taking inspiration from 

(but modifying substantially) the geometrical point of view suggested in 

[Baraniuk, 2007], in this appendix a framework for simple understanding is 

developed on the basis on the properties of the sets determined from the data 

equation and the sparsity assumption. 

Such an approach allows to understand in a relatively easy fashion the 

rationale of the more widespread approaches to the recovery of sparse signals 

from compressed data. In fact, they can be interpreted as the search for an 

intersection amongst the sets determined from the data equation and from 

the sparsity assumption, respectively.  

 

E.1 Recovery of sparse signals: an intersection amongst 

(non) convex sets approach 

 

By the sake of simplicity, the problem is approached in a basis wherein 

the unknown signal is sparse, real signals and measurements are assumed, and 

the measurements are also supposed to be error-free. Let us separately discuss 

the geometrical information separately carried by the data equation ô = õö 

and by the sparsity assumption. In general case ö belongs to ℝrN , and ô 

belongs instead to ℝrO . 

About the geometrical meaning of the data equation, in those cases 

where ') = '% and õ has a full rank, the data equation identifies a single 

point in the space where the signal is sparse. On the other hand, in those 

cases wherein ') < '% (or, more simply, when the rank ')′ of � is less than 

')) it can be instead interpreted as a set of linear constraints in the same 

space. More precisely, these constraints will define a line if ')′ = '% − 1, a 

plane if ')′ = '% − 2, and an hyperplane if ')′ = 1. Whatever is the case, a 

convex set (or more precisely, a linear manifold) is defined in the space of the 

unknowns.  

In fig. E.1 the kind of possible solutions of the data equation is 

reported in the cases where '% = 3 and ')′ is equal to 3, 2 and 1 respectively 

((a), (b) and (c) respectively). 
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Concerning the geometrical meaning of the sparsity assumption, 

assuming that the signal is sparse simply means that it cannot be a whatever 

point of the space spanned by 6-, … . , 6rN , but it will be located along the 

axes of such a space (when + = 1), or on the different coordinate planes of 

such a space (when + = 2), or on the different subspaces of order three 

(when + = 3) and so on and so forth. Figure E.2 reports the allowed set of 

solutions for the cases where '% = 3 and S is equal to 1 and 2 respectively. 

Understanding of the kind of problems one will deal with can be 

acquired by intersecting the sets determined by the data equation and the 

sparsity assumption respectively. In order to take profit from geometrical 

intuition, one can develop the case '% = 3. Similar but less intuitive 

situations will occur in other cases. Leaving aside the trivial case ')′ = 3, 

where one of the two sets is a single point, one is left with four cases, namely: 

 

i. one independent measurement (')′ = 1) and + = 2; 

ii. one independent measurement (')′ = 1) and + = 1; 

iii. two independent measurements (')′ = 2) and + = 2; 

iv. two independent measurements (')′ = 2) and + = 1. 

 

In the first case, the solution is ambiguous amongst infinitely many 

possible solutions. In fact, (see fig. E.3 (a)) the solution may be any point 

along the lines determined from the intersection amongst the data plane (i.e. 

the green plane) and the three coordinate planes. The result is indeed obvious, 

as one cannot pretend to recover a signal characterized by at least two real 

numbers from a single real number. As a matter of fact, one expects in fact 

things will work when ')′ is at least as large as +, or preferably higher. 

In the second case, one has to intersect the plane determined from the 

data equation with the set constituted by the three coordinate axes (see fig. 

E.3(b)). As a consequence, three different solutions will be eventually found 

for a generic orientation of the plane, so that ö is not univocally determined. 

However, the ambiguity is limited amongst just three possible solutions.  
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(a) 

 
(b) 

 
(c) 

Figure E.1 CS ‘for dummies’. Sets defined by data equation for '% = 3 and ')_ = 3 (a), 2 (b) 

and 1(c). 

 

  

(a) (b) 

Figure E.2 CS ‘for dummies’. Sets defined by sparsity assumption for '% = 3 and + = 2(a) 
and 1(b). 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure E.3 CS ‘for dummies’. Intersections the sets determined by the data equation and the 
sparsity assumption. 
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In the third case, one has to intersect the data line with the set 

constituted by the three planes 6² = 0, 6G = 0, and 6- = 0. As a 

consequence (see fig. E.3(c)), two different solutions will be generally found, 

so that ö is not univocally defined.  

Cases (ii) and (iii) above indicate that a number of (independent) 

measurements as large as the degree of sparsity	+ is not sufficient to recover 

the unknown signal. Such a circumstance is indeed always true, as the + real 

measurements will allow to determine + real numbers, but then some 

additional information (besides data and sparsity) is needed to determine 

which +-ple of numbers (amongst the �'%+ ¡ possibilities) is the actual ground 

truth. Approximate arguments suggest that besides the + initial 

measurements, additional information equivalent at least to + integers 

(identifying locations) should be somehow collected or provided. As a 

consequence, one expects that a number of measurements in the order of 2+ 

or larger is actually needed.  

Examination of the fourth case above confirms indeed the above 

expectations. In such a case, one has to intersect the line determined by the 

data equation with the (non convex) set determined by the three coordinate 

axis (see fig. E.3(d)). Then, unless one is so unlucky that the data line belongs 

to one of the coordinate planes, the solution is univocally determined.  

Notably the orientation of the data line depends of the kind of 

measurements which one is performing, which emphasizes once more that 

besides ') or ')′ the kind of measurements which is being collected also 

plays a role.  

 

E.2 Looking for sparse signals: �| balls and a possible 

approach  

 

As sparse signals are of interest, it makes sense to introduce and exploit 

quantities able to emphasize the occurrence of sparse signals. To this end, it 
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makes sense to recall the definition of the ℓ� norm of the vector ö, which is 

given by: 

‖ö‖ℓ� = Px|6!|�rN
!y- Q

-/�
 

(E.1) 

which makes sense provided 7 > 0. Then, one can define an ‘ℓ� ball’ of 

radius R as: ‖ö‖ℓ� ≤ ¤ 

(E.2) 

Notably, as long as the usual Euclidean norm (7 = 2) is adopted, the 

boundary of the set defined by (E.2) is the usual sphere in case '% = 3, and a 

so-called hypersphere in case '% > 3. When different values of 7 are used, 

different domains are defined, which are depicted in case '% = 3 in fig. E.4. 

These domains are usually referred to as ℓ� balls of radius ¤.  

It is interesting to note that the set defined from (E.2) is a convex one 

as long as 7 ≥ 1, while it becomes non convex as soon as 7 < 1. In addition 

to that when 7 = 0.5, the set defined from (E.2) is constituted essentially by 

(a part of) the coordinate axes, and (a part of) the coordinate planes. Saying it 

in other words, balls of the kind (E.2) are constituted by just sparse signals 

when 7 → 	0.7 A better understanding can be gained by re-arranging eq. (E.2) 

into: 

x|6!|�r
!y- ≤ ¤� 

(E.3) 

which for 7 → 0, identifies 1-sparse signal for any finite value of R. If, 

however, R is allowed to tend to infinity, condition (E.3) can also be 

reformulated as: 

x|6!|�rN
!y- ≤ ¤R 

                                                 
7 Although our figures concern the case '% = 3, such a statements holds indeed true for 
any value of  '%. 
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(E.4) 

Notably, depending on the value of ¤R ,	eq. (E.4) will include (for 7 → 0) 

signals which are at most +-sparse when ¤R = +. 8 

Therefore, by taking inspiration from [Gubin et al., 1967], a possible way 

to formulate the recovery problem is that of looking for the intersection 

amongst the convex set (linear manifold) defined from the data equation and 

the set defined by (E.4). 

If the unknown signal is sparse and ¤R is sufficiently large, an 

intersection amongst the two sets will certainly exist. However, two relevant 

questions are left still open, i.e., 

• Is such an intersection unique or not? 

• How is it possible to find such an intersection? 

Both these issues are relevant, as a reliable (univocal) solution is looked 

for, but the computational complexity of the retrieval procedure is also of 

interest.  

It can be understood by very simple geometrical arguments that, as 

expected, the uniqueness of the intersection depends on three basic 

circumstances, which are  

i. the number of independent measurements; 

ii. the kind of measurements which is performed; 

iii. the expected sparsity properties of the solution. 

In fact, the larger the number of measurements, the smaller the convex 

set associated to the data equation, and hence the smaller the number of 

possible intersections. Analogously, the smaller +, the smaller the set 

associated to the sparse signal, and the smaller the number of intersections 

with the set determined from the data equation.  

 

 

 

 

                                                 
8 Note it is assumed |0|� = 0 when p→ 0 
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E.3 Finding sparse solutions: a formulation in terms of 

Convex Programming  

 

By further elaborating the point of view above, an effective approach to 

find the intersection, and hence sparse solutions for the initial problem õö = ô, is that of progressively enlarging the set determined from eq. (E.4) 

(i.e., enlarging ¤R) until an intersection exists with the data set. In a 

mathematical fashion, the problem is equivalent to: 

 

minx|6!|�rN
!y- 			Æ��9$ã;	;ç				øö = ô 

(E.5) 

In order to deal just with sparse signals, 7 should be as small as 

possible. Notably, besides looking for an intersection amongst ℓ� balls and 

data equation, formulation (E.5) also looks for the sparsest possible solution. 

On the other side, the set defined from eq. (E.4) is not convex as long as 7 <1, so that the optimization problem (E.5) is a hard one to deal with. In 

fact, the problem of finding the intersection amongst a number of non 

convex sets is known to be subject to ‘trapping’ problems [Gubin et al., 1967]. 

Also, it can be argued that the smaller 7, the harder the problem. Then, a 

suitable compromise, which implies some small price to be paid, is to 

consider the case where 7 = 1, i.e.,: 

 min 	‖ö‖�Ö 	Æ��9$ã;	;ç		øö = ô 

(E.6) 

In fact, such an optimization problem, which is commonly referred to a 

Basis Pursuit problem, is relatively easy to be solved, and it still allows to 

enforce sparsity assumptions. In fact, problem (E.6) is in the class of Convex 

Programming problems. Moreover, by paying some extra price in terms of 

the kind of measurements to be performed with respect to the case 7 → 0, 

uniqueness (and correctness) of intersections can still be granted (see fig. E.5 

for an intuitive explanation).  
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On the other side, the number of measurements which are needed 

keeps in the same order, so that the approach is considered to be ‘nearly 

optimal’ for sparse signal recovery (see [Candès et al., 2006] and [Donoho, 

2006]). 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure E.4: CS ‘for dummies’. ℓ�-balls for the cases p=3 (a), p=2 (b), p=1 (c) and p=0.5 (d) 

 

Figure E.5: CS ‘for dummies’. Intersection between ℓ- - ball and data set. As long as the 

data set is not parallel to any face or edge of the ℓ- - ball solution to (C.6) is unique, and 
corresponds to the solution of the original intersection problem. 
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