
mathematics

Article

Recovering of the Membrane Profile of an
Electrostatic Circular MEMS by a Three-Stage Lobatto
Procedure: A Convergence Analysis in the Absence of
Ghost Solutions

Mario Versaci 1,* , Giovanni Angiulli 2 and Alessandra Jannelli 3

1 Dipartimento di Ingegneria Civile Energia Ambiente e Materiali (DICEAM), Mediterranea University,
Via Graziella Feo di Vito, I-89122 Reggio Calabria, Italy

2 Dipartimento di Ingegneria dell’Informazione Infrastrutture Energia Sostenibile (DIIES), Mediterranea
University, Via Graziella Feo di Vito, I-89122 Reggio Calabria, Italy; giovanni.angiulli@unirc.it

3 Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra (MIFT),
Messina University, Viale F. Stagno d’Alcontres, I-98166 Messina, Italy; ajannelli@unime.it

* Correspondence: mario.versaci@unirc.it; Tel.: +39-0965-8752273

Received: 25 February 2020; Accepted: 27 March 2020; Published: 1 April 2020

Abstract: In this paper, a stable numerical approach for recovering the membrane profile of a 2D
Micro-Electric-Mechanical-Systems (MEMS) is presented. Starting from a well-known 2D nonlinear
second-order differential model for electrostatic circular membrane MEMS, where the amplitude of
the electrostatic field is considered proportional to the mean curvature of the membrane, a collocation
procedure, based on the three-stage Lobatto formula, is derived. The convergence is studied, thus
obtaining the parameters operative ranges determining the areas of applicability of the device
under analysis.

Keywords: electrostatic membrane MEMS devices; 2D nonlinear second order differential model;
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1. Introduction and Problem Statement

At present, micro-components are essential in the embedded engineering applications.
In particular, micro-transducers’ and micro-actuators’ results are of paramount importance due to
their role of micro-devices’ interfaces [1,2]. In recent years, circular membrane MEMS technology has
been exploited to this aim in a wide variety of technological fields such as thermo-elasticity [2–4],
microfluidics [2,5–7], electroelasticity [8–12], and biomedical engineering [13–15]. The focus on this
geometry can mainly be attributed to the availability of theoretical models in both steady-state and
dynamical conditions (see [16–18] and references within). However, it is worth noting that these
models, even though they are very detailed, are often characterized by implicit structures so that the
explicit solutions are not often obtainable. As a consequence, analytical and/or algebraic conditions
ensuring both existence, uniqueness, and regularity of the solution should be achieved [19], in such
a way that computational results provided by numerical procedures can be checked for validating
their correctness and thus avoiding possible ghost solutions. We remember that the ghost solutions
are numerical solutions in convergence conditions that do not respect both analytical existence and
uniqueness conditions [20,21]. On these bases, in this study, we have focused our attention on a
simplified 2D circular membrane MEMS actuator in which the membrane, anchored to the edges of a
fixed plate, deforms towards another fixed plate because of an applied external electrical voltage [22,23].
During the deformation of the membrane, the electrostatic field E generated inside the device can be
considered locally orthogonal to the membrane tangent line, so that the modulus |E| depends (locally)
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on the distance between the membrane and the upper disk [19,22,23]. Accordingly, |E| results in being
proportional to the curvature of the membrane, which, being a surface in R3, is represented by its mean
curvature H(r) (where r is the radial coordinate). The analytical model derived from these premises
turns out to be a boundary value problem (BVP) with radial symmetry [22]. Precisely, it consists of
a nonlinear ordinary second-order differential equation (ODE) whose independent variable is the
profile of the membrane u(r) (characterized by a singularity 1/r) with suitable conditions on both u(r)
and du(r)/dr appropriately chosen. This BVP has been studied in [22] where an algebraic condition
ensuring the existence of the solution (depending on both V and the electromechanical properties of
the material constituting the membrane) has been derived. Considering that the shooting procedure
usually used to solve this model in some cases shows instability, in this study, we have overcome
this issue by implementing a suitable collocation procedure based on the three-stage Lobatto formula
[24]. Then, after a suitable rearranging of the analytical model described above, the convergence
of the proposed numerical procedure has been studied. In this way, the ranges of validity of the
characteristic parameters (which depend on both V and by the electromechanical properties of the
material constituting the membrane) have been derived. This has made it possible to obtain, on
the one hand, the avoiding of ghost solutions and, on the other hand, the identification of the area
of applicability of the device, once the material constituting the membrane has been chosen (and
vice versa). Furthermore, the numerical simulations have allowed for highlighting the ranges of the
characteristic parameters in which instabilities of the membrane take place.

The paper is organized as follows. Section 2 reports a brief description of the membrane
micro-actuator under study. Section 3 reviews some theoretical models considered as a starting
point for the deduction of the model analytically studied in [22] in which |E| ∝ H(r). In Section
4, details on the previous points are provided. Furthermore, Section ?? shows an important result
of existence, represented by an algebraic inequality. In Section 5, the applicability of the numerical
procedure is demonstrated. The numerical implementation of the procedure, based on the three-stage
Lobatto IIIa formula, is presented in Section 6. To facilitate the application of the numerical procedure,
in Section 7, a re-elaborated version of the model is presented. In Section 8.1, the characteristic
ranges of the operational parameters determining the convergence of the numerical approach are
presented, while, in Section 8.2, a discussion about the instability phenomena and the ranges according
to the analytical condition of uniqueness of the solution is provided. Section 8.3 makes evident the
characteristic ranges of values (depending on V) ensuring both convergence and stability. In Section 9,
the ghost solution areas are discussed. In Section 10, the existing links among electromechanical
properties of the membrane V and the fields of applicability of the device are highlighted. Finally, in
Section 11, some conclusions and future perspectives are given.

2. Electrostatic Circular MEMS Device: A Brief Description

The device under study, shown in Figure 1, is constituted by two parallel disks (both fixed), whose
radius is R, and distance, d, each other. Moreover, a circular membrane, with the same radius, is
clumped on the edge of the lower disk, but, when a voltage V is externally applied, it is free to deform
towards the upper disk [22]. Then, E is generated inside the device and, by it, an electrostatic pressure,
pel = 0.5ε0|E|2, with ε0 permittivity of the free space, arise deflecting the membrane. In addition, the
mechanical pressure p is proportional to pel generating a displacement at the center of the membrane,
u0 equal to (R2/4T)p, where T is the radial mechanical tension of the membrane [25]. Then, as shown
in [22], u0 ≈ pel that is u0 = kpel , where k is a constant of proportionality.

Remark 1. It is worth nothing that u0 is a very important quantity in electrostatic. In fact, the electrostatic
capacitance (Cel), co-energy function (W ′), electrostatic charge on the membrane (q), electrostatic force ( fel), and
|E(r)| are dependent on u0. In particular, we can write (for details, see [2,22,25]):

fel = 0.5
εoπR2V2

(d− u(r))2 (1)
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pel ≈
fel

πR2 = 0.5
ε0V2

(d− u(r))2 (2)

u0 =
kε0V2

2(d− u(r))2 (3)

Figure 1. Representation of an electrostatic circular membrane MEMS device: the membrane is
deformed towards the upper disk while the lower disk is at potential V = 0.

3. Electrostatic Membrane MEMS Actuator: Some Mathematical Backgrounds

The starting point of the model studied in [22] is the well-known steady-state model largely
studied in [19]. Specifically, a MEMS device consisting of two parallel metallic plates, where the lower
one (at u(x) = 0, ∀x ∈ Ω = [0.5, 0.5]) is fixed and the other one (at u(x) = 1, ∀x ∈ Ω = [0.5, 0.5]),
subjected to a voltage V, is deformable but anchored at their edges, is considered. The model is:

∆2u(x) = λ1 f1(x)
(1−u(x))2

0 < u(x) < 1 in Ω,

u = ∆u− d̂uν, on ∂Ω, d̂ ≥ 0,

(4)

in which the existence of at least a solution has been studied exploiting Steklov boundary condition
obtaining Dirichlet and Navier boundary ones. In (4), f1 represents a bounded function that depends
on the dielectric properties of the material constituting the deformable plate, and λ1 is a function
depending on V. Moreover, uν denotes the outer normal derivative of u on ∂Ω. It is worth nothing that,
in (4) d̂ = 0, one obtains the Navier boundary conditions; if d̂ = ∞, one obtains the Dirichlet boundary
conditions. Model (4) has been exploited in several works [3,26] in the following dimensionless
version: 

d2u(x)
dx2 = − λ2

(1−u(x))2

u(L) = u(L) = 0
(5)

where L is the semi-length of the dimensionless device in order to propose a version of the model
where λ2 is a parameter related to the external voltage V as follows:

λ2 =
ε0V2L2

2d3T
(6)

in which ε0 represents the permittivity of the free space, T is the mechanical tension of the membrane,
and d is ten distance between the two parallel plates. It is worth nothing that

ε0L2

2d3T
(7)
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in (6) represents the parameter that takes into account the electro-mechanical properties of the material
constituting the membrane. In (5), the quantity λ2

(1−u(x))2 is physically proportional to |E|2, so that it
makes sense to write:

θ|E|2 =
λ2

(1− u(r))2 (8)

with θ being a parameter of proportionality. Then, in [19], since E is locally orthogonal to the tangent
straight line of the membrane, |E| has been considered proportional to the curvature K of the membrane
itself. Thus, taking into account that

K(x, u(x)) =

∣∣∣ d2u(x)
dx2

∣∣∣√
(1 + (u(x))2)3

(9)

|E|2 became

|E|2 = [µ(x, u(x), λ)]2[K(x, u(x))]2 =

[
λ

1− u(x)

]2

[K(x, u(x))]2 (10)

with µ(x, u(x), λ) ∈ C0([−L, L] × [0, 1) × [λmin, λmax]), and model (4), in [19] assumed the
following form:

d2u(x)
dx2 = −θ|E|2 = −θ

[
λ

1−u(x)

]2
[K(x, u(x))]2 = −θ

[
λ

1−u(x)

]2
{ ∣∣∣ d2u(x)

dx2

∣∣∣
√

(1+(u(x))2)3

}2

u(−L) = u(L) = 0

(11)

obtaining [19]: 
d2u(x)

dx2 = − 1
θλ2

(
1 +

(
du(x)

dx

)2)3
(1− u(x))2 in Ω = [−1, 1]

0 < u(x) < 1

u = 0 on Ω

(12)

in which the singularity 1
(1−u(x))2 present in (5) is not here explicitly evident. In this model, the

membrane has replaced the deformable plate, and |E| has been considered as proportional to the
curvature of the membrane itself. The achieved results highlighted that the analytical uniqueness
condition depended on the electro-mechanical properties of the material constituting the membrane,
while the numerical solutions, obtained by a shooting procedure, highlighted the range of θλ2 ensuring
convergence of the procedure (without ghost solutions). Moreover, the shooting approach has been
compared with the well-known Keller-box scheme getting an optimal range of θλ2 (in the absence of
ghost solutions).

4. A New 2D Model for Electrostatic Circular Membrane MEMS: |E| in Terms of Mean Curvature

In [22], the attention was focused on a 2D circular membrane MEMS actuator, exploited in several
biomedical and industrial applications, characterized by an axial symmetry in the geometry of the
membrane. In particular, considering the z-axis as a rotation one, the profile u of the membrane has
been thought as a surface generated by a vertical rotation of a curve C around z located in the first
quadrant, when R ≥ r ≥ 0. In such conditions, u was only dependent on r transforming the 2D
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problem under study into a 1D one replacing x by r. In such a way, ∆2u(x) in (4) reduced into its radial
part, so that (4) became: 

d2u(r)
dr2 + 1

r
du(r)

dr = − λ2
1(r) f1(r)

(1−u(r))2 = λ2(r)
(1−u(r))2

u(R) = 0
du(0)

dr = 0

(13)

in which the singularity 1/r appeared. As shown in [22], λ2/(1− u(r))2 ∝ |E|2 so that model (13) in
[22] has been rewritten as follows:

d2u(r)
dr2 + 1

r
du(r)

dr = −θ|E|2; θ ∈ R+

u(1) = 0
du(0)

dr = 0.

(14)

In particular, θ has been supposed, for physical reasons, to be a continuous function depending on
r ∈ Ω = [−R, R]. Moreover, K(r, u(r)) represented the curvature of the deformed membrane, so that

|E| = µ(r, u(r))K(r, u(r)), (15)

with
µ(r, u(r)) = λ/(1− u(r)− d∗) ∈ C0([−R, R]× [0, 1)× [λmin, λmax]) (16)

represented the proportionality function. Finally, model (14) became (see [22]):
d2u(r)

dr2 + 1
r

du(r)
dr = −θ|E|2 = −θµ2(r, u(r))K2(r, u(r)) = −θλ2 K2(r,u(r))

(1−u(r)−d∗)2 θ ∈ R+

u(1) = 0
du(0)

dr = 0,

(17)

where K(r, u(r)), being in 2D formulation, becomes the mean curvature. As shown in [22], the mean
curvature of the membrane, H(r), exploiting some procedures based on differential geometry concepts,
can be easily written as

H(r) = −
(

1
r

du(r)
dr

+
d2u(r)

dr2

)
, (18)

so that model (17) became:
d2u(r)

dr2 + 1
r

du(r)
dr = −θ

λ2 H2(r)
(1−u(r)−d∗)2 = −θ λ2

(1−u(r)−d∗)2

[
−
(

1
r

du(r)
dr + d2u(r)

dr2

)]2

θ ∈ R+

u(1) = 0
du(0)

dr = 0

(19)

from which 

d2u(r)
dr2 = − 1

r
du(r)

dr −
(1−u(r)−d∗)2

θλ2

u(R) = 0
du(0)

dr = 0

0 < u(r) < d

(20)

in which d∗ represents the critical security distance, ensuring that the deflection of the membrane does
not touch the fixed upper plate. In [22], the following result of existence of at least one solution for (20)
has been presented and proved as well.
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Remark 2. It is worth nothing that the mathematical models that adhere to the physical reality of MEMS
are extremely complex and do not allow analytical studies on them. Therefore, it is necessary to implement
some simplifications in the geometry of the MEMS device so that the simplified model obtained can be studied
mathematically. It follows that the qualitative assessments obtained from the mathematical study of the model (20)
(which is a simplified model) will hardly agree with any experimental data but will give (qualitative) indications
of the behavior of the MEMS device characterized by simplified geometry.

Theorem 1. Let us consider the model (20). Moreover, let u1(r) and u2(r) be two functions, both defined in
[0, R] and twice continuously differentiable, in order that u1(r) < u2(r). In addition:

d2u1(r)
dt2 +

1
r

du1(r)
dr

+
(1−u1(r)− d∗)2

θλ2 > 0 (21)

d2u2(r)
dr2 +

1
r

du2(r)
dr

+
(1−u2(r)− d∗)2

θλ2 < 0 (22)

for r ∈ (0, R). Furthermore, let 1
r

du(r)
dr + (1−u(r)−d∗)2

θλ2 be a continuous function obviously, (except for r = 0)
satisfying the Generalized Lipschitz condition

K1(r)(u(r)− v(r)) + L2(r)
(du(r)

dr
− dv(r)

dr

)
≤ F

(
r, u(r),

du(r)
dr

)
− F

(
r, v(r),

dv(r)
dr

)
≤ (23)

≤ K2(r)(u(r)− v(r)) + L1(r)
(du(r)

dr
− dv(r)

dr

)
,

where K1(r), k2(r), L1(r) and L2(r) are continuous functions. Moreover, F
(

r, u(r), du(r)
dr

)
= 1

r
du(r)

dr +

(1−u(r)−d∗)2

θλ2 . in U × (−∞,+∞), with U = {(r, u) : 0 < r < R ∧ u1(r) ≤ u(r) ≤ u2(r)}. If
du1(0)

dr ≥ du2(0)
dr , u1(R) = u2(R) = 0, and

θλ2 >
R2d∗2

2V2ε0k
, (24)

where ε0 is the permittivity of the free space and k is the constant of proportionality between the electrostatic
pressure pel and the displacement at the center of the membrane u0 ( u0 = kpel), there exists at least one solution
for the problem (20).

Remark 3. It is worth remembering that, as explained in [22], the greater k is, the lower the value of θλ2 will
be, so that the concavity of the membrane will rise (see (24)). However, even if (20) admits at least one solution,
as specified in Theorem 1, its uniqueness has not been ensured (see Theorem 2 in [22]).

5. On the Applicability of the Numerical Procedure

As well known, the BVPs are much harder to solve than IVPs [27]. Unlike IVPs that have a unique
solution, a BVP may not have a solution, or may have a finite number, or may have infinitely many.
Moreover, BVPs defined on an infinite or semi-infinite interval are usual. The classical numerical
approaches for solving BVPs are the shooting method and the collocation one. The first one combines a
numerical method based on the solution of IVPs for ordinary differential equations (ODEs) and one for
the solution of nonlinear algebraic equations. The main difficulty with the shooting method is that a
perfectly well-behaved BVP can require the integration of IVPs that are not stable. This means that the
solution of a BVP can be insensible to the changes in the boundary values, yet the solutions of the IVPs
of shooting are sensible to the changes in the initial values. On the other side, the collocation methods
are efficient and reliable tools, though, often, the underlying method may not be appropriate for high
accuracies and for problems with hardly sharp changes in their solutions. The authors have used the
collocation with piecewise polynomial functions and found it an appropriate method for solving the
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singular BVP under study because only a coefficient is singular and the solutions are smooth [27].
Then, they propose the collocation method implemented in the bvp4c routine in Matlab. The bvp4c
solver is a code that implements the three-stage Lobatto IIIa formula. This is a collocation formula, and
the collocation polynomial provides a C1 continuous solution that is fourth-order accurate uniformly
in the whole computational domain. Finite difference methods for BVPs are proposed in [28].

6. The Exploited Numerical Approach: A Scheme with the Three-Stage Lobatto IIIa Formula

This procedure solves a system of ODEs in the following form [24]:{ du(r)
dr = F(r, u(r))

g[u(a), u(b)] = 0
(25)

where g[u(a), u(b)] = 0 represents the boundary conditions.

Remark 4. Generally, (25) can be written as du
dr = F(r, u(r), p) in which p represents a vector of unknown

parameters. However, for our purposes, the system can be written as (25) (for more details, see [24]).

In this work, the authors have exploited the MatLab R© R2017a bvp4c solver (Natlick, MA, USA),
running on an Intel Core 2 CPU 1.45 GHz machine (Santa Clara, CA, USA) because:

1. it implements a collocation technique exploiting a piecewise cubic polynomial, S(r), whose
coefficients are determined by the requirement that S(r) be continuous on (a, b);

2. the mesh and the estimation of the error are both based on the evaluation of the residual of S(r);
3. the control of the residual is particularly useful to handle poor guesses for the mesh and the

solution as well;
4. the computational complexity to obtain the Jacobian is reduced;
5. being a vectorized solver, it reduces the run-time vectorizing F(r, u(r)).

Let us start with the following two definitions.

Definition 1 (step-size definition). Let hm be the step-size computed as rm+1 − rm in the mesh-grid 0 = a =

r0 < r1 < ... < rn = b = R.

Definition 2 (midpoint & midpoint approximation). Let us denote by rm+1/2 the midpoint of (rm, rm−1).
In addition, let us indicate by um+1/2 the approximation of u(r) at rm+1/2.

Remark 5. The cubic polynomial S(r) satisfies the boundary conditions in (25) that is g[S(a), S(b)] = 0.
Moreover, ∀(rm, rm+1) of the mesh, the subdivision 0 = a = r0 < r1 < ... < rn = b = R is considered, and
S(r) collocates at the ends of the sub-interval and the midpoint. Obviously, S(r) is continuous at the endpoints
of each sub-interval.

This collocation approach is totally equivalent to the three-stage Lobatto IIIa implicit Runge–Kutta
procedure [24].

Then, after pressing the previous definitions, we are able to show the fourth-order Lobatto IIIa
formula as follows:

um+1/2 = um + hm

[
5
24

F(rm, um) +
1
3

F(rm+1/2, um+1/2)−
1

24
F(rm+1, um+1)

]
(26)

um+1 = um + hm

[
1
6

F(rm, um) +
2
3

F(rm+1/2, um+1/2)−
1
6

F(rm+1, um+1)

]
. (27)
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Remark 6. Obviously, when the procedure is applied to a quadrature problem, it reduces to the well-known
Simpson formula:

um+1 = um +
hm

6

[
F(rm, um) + F(rm+1, um+1)+ (28)

+4F

{
rm+1/2,

um+1 + um

2
+

hm

8
[F(rm, F(rm, um)− F(rm+1, um+1)]

}]
.

Remark 7. It is worth noting that the global discretization error of the procedure only contains even power of the
step-size. This occurrence makes the method particularly attractive for both extrapolation and deferred correction.

Remark 8. We observe that S(r), together its derivatives, satisfies the following condition [24]:{
S(l)(r) = u(l)(r) +O(h4−l), l = 0, 1, 2, 3

∀r ∈ (a, b).
(29)

In addition, at each intermediate point, S(r) satisfies the Equations (25) at the midpoint of each interval justifying
the term "collocation polynomial". Moreover, MatLab R© chooses the form of S(r) by determining any unknown
parameters. Finally:

S′(rm) = F[rm, S(rm)] (30)

S′(rm+1/2) = F[rm+1/2, S(rm+1/2)] (31)

S′(rm+1) = F[rm+1, S(rm+1)] (32)

Conditions (30)–(32) are nonlinear equations iteratively solved by a linearization procedure; then,
the linear equation solver of MatLab R© is used. Moreover, if necessary, the cubic polynomial can be
evaluated ∀r ∈ (a, b) by the bvpval function.

Remark 9. It is worth noting that a BVP could have more than one solution so that the users should supply a
guess for both the solution and the initial mesh. Then, the solver is able to adapt the mesh to achieve a solution
with a reduced number of mesh points.

Obviously, a good guess is often tricky so that the solvers control the residual defined as follows.

Definition 3 (the residual). The residual in a ODE is defined as follows:

res(r) = S′(r)− F[r, S(r)]. (33)

In addition, in the boundary conditions, it can be written as g[S(a), S(b)].

Remark 10. We observe that, if res(r) is small, then S(r) can be considered as a good solution. In addition, if
the problem is well-conditioned, small res(r) implies that S(r) is next to u(r).

7. A More Suitable Writing of the Analytical Model

The two-point BVP under study (20) is singular with respect to the independent variable at the
initial point r = 0, due to the division by zero of the first term on the right-hand side of (20). We must
deal with the singularity in the coefficient at r = 0 because the bvp4c solver always evaluates the ODEs
at the endpoints. For this problem, we show how providing the correct value at the singular point
is enough for computing the numerical solution. By the theoretical results presented in the previous
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sections, a smooth solution is expected. Indeed, symmetry implies that this smooth solution has a
derivative that vanishes at the origin r = 0. This physical condition allows for demonstrating that

lim
r→0

1
r

du(r)
dr

=
d2u(0)

dr2 , (34)

so that the singular term in the ODE is well defined at the origin for a well-behaved solution. Then, if
we let r → 0 in the equation, we find that

d2u(0)
dr2 = −d2u(0)

dr2 − (1− u(0)− d∗)2

θλ2 (35)

and, solving for d2u(0)
dr2 , we obtain the value that must be used for evaluating the ODEs at the point

r = 0
d2u(0)

dr2 = −1
2
(1− u(0)− d∗)2

θλ2 . (36)

To solve the problem under study (20) by means of the collocation method, we rewrite it as a
system of first order ODEs of the form

du1(r)
dr = u2(r), 0 ≤ r ≤ R

du2(r)
dr = − 1

r u2(r)− (1−u1(r)−d∗)2

θλ2

u1(R) = 0, u2(0) = 0

(37)

by setting u1(r) = u(r) and u2(r) = du1(r)
dr = du(r)

dr with the supplementary condition given by
Equation (36) at initial point r = 0.

8. On the Convergence of the Numerical Procedure: Characteristic Ranges of θλ2 and V2k

8.1. Characteristics Ranges of θλ2

As specified above, when an external V is applied, the membrane inside the device moves towards
the upper disk. The higher is the applied V, the closer the membrane to the upper disk will be. In
addition, instability phenomena of the membrane can arise when V grows too much; so that it is
important to know the range of V generating instability. However, V is linked to θλ2 by inequality
(24). Then, it follows that knowing the behavior of the membrane when θλ2 increases gives us, once
both d∗ and k are fixed, the range of V producing instability of the membrane in absence/presence of
ghost solutions.

Remark 11. It is interesting to observe that θλ2, being dependent on both the electromechanical properties
of the material constituting the membrane and V, once the ranges of stability/instability of the membrane are
known, it is possible to know the operation parameters in convergence area respecting (24) and the engineering
areas of applicability of the device.

Here, it is reasonable to set k = 1. In other words, we consider that pel and p are totally equivalent.
This makes sense because, when V is externally applied, |E| and pel are generated inside the device. If
we suppose that the losses are negligible, then pel = p (that is, k = 1). Moreover, we set d∗ = 10−9

because lower values of d∗ do not make sense from a physical point of view. The numerical procedure
has been applied for different values of θλ2 and u1 = 0.1 and u2 = 0 as initial guesses. All the
simulations have been carried out by bvp4c MatLab R© solver on an Intel Core 2 CPU 1.45 GHz
machine, using both the default relative and absolute error tolerances. Moreover, the optimal number
of grid points, on the computational domain [0, R] = [0, 1], has results of 100. In fact, by a greater
number of grid points, the performance of the numerical procedure, qualitatively did not improve.
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Moreover, by numerical experiments, we obtain different solutions starting by different initial guesses.
The following three cases hold:

1. ∀θλ2 ∈ (10−6,+∞) the numerical procedure converges, and no problem arises, and instabilities

do not occur. In other words, when θλ2 increases starting from 10−6, d2(u)
dr2 in (20) increases

more and more (from negative values towards zero), so that the concavity of the deformed
membrane more and more decreases avoiding instabilities next to the edge of the membrane.
This is confirmed by the condition (24), which ensures the existence of the solution for (20). In fact,
from (24), the higher θλ2 is, the lower V2 will be; that is, increasing θλ2, the membrane does not
deform too much as if a low external V is applied. Figure 2 displays an example of recovering
of the membrane when θλ2 = 0.5, with initial guesses u1 ≤ 2.446 and u2 = 0. Being V reduced,
the membrane moves towards the upper disk just a little so that instability phenomena do not
appear. It is worth noting the symmetry of the first derivative with respect to (0, 0). The behavior
of the procedure is different when the initial guess of u1 increases (with u2 = 0). In this case, the
solution is very different with respect to the previous cases. In fact, Figures 3–5 show examples
of recovering of the membrane with θλ2 = 0.5 and with an initial guess for u1 belonging to
[2.447, 2.453], [2.454, 9.474], [9.63, 12.7], and [15.1, 19.978], [9.475, 9.62], [12.71, 15] and [19.979, ∞),
respectively (initial guess for u2 is zero). In particular, increasing the initial guess for u1 and
u2 = 0, the recovering of the membrane results in being erratic but still symmetrical (see Figure 3)
until the profile assumes a bell-shape (see Figure 4). The erratic behavior of the solution appears
again when the initial guess increases (see Figure 5). However, it is worth noting that, even if
in Figures 3–5 show simulations that make sense from a numerical point of view, they are not
realistic because the achieved profile u1 is greater than d.

2. ∀θλ2 ∈ (0, 10−7), the numerical procedure does not work. It means that (1−u(r)−d∗)2

θλ2 in (20)

increases too much, (theoretically (1−u(r)−d∗)2

θλ2 → ∞ as θλ2 → 0), so that the numerical procedure
is forced to stop because the Jacobian matrix becomes singular.

3. ∀θλ2 ∈ [10−7, 10−6] strong instabilities take place. In this case, even if the numerical procedure
does not stop, instabilities next to the edge of the recovered membrane occurred. Figures 6 and
7 display two examples of recovering of the membrane when θλ2 ∈ [10−7, 10−6] highlighting
strong instabilities of the membrane. In particular, Figure 6 has been achieved setting u1 =

0.1 and θλ2 = 5 · 10−7, while Figure 7 has been obtained setting u1 = 1.2 and θλ2 = 10−6.
Obviously, depending on the considered initial data, the values of θλ2 change for which one has
no instabilities.
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Figure 2. Recovering of the membrane by using the bvp4c MatLab R© solver: θλ2 = 0.5, u1 ≤ 2.446,
u2 = 0.

Figure 3. Recovering of the membrane by using the bvp4c MatLab R© solver: θλ2 = 0.5, 2.447 ≤ u1 ≤
2.453, u2 = 0.
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Figure 4. Recovering of the membrane by using the bvp4c MatLab R© solver: θλ2 = 0.5, 2.454 ≤ u1 ≤
9.474, 9.63 ≤ u1 ≤ 12.7 and 15.1 ≤ u1 ≤ 19.978, u2 = 0.

Figure 5. Recovering of the membrane by using the bvp4c MatLab R© solver: θλ2 = 0.5, 9.475 ≤ u1 ≤
9.62, 12.71 ≤ u1 ≤ 15 and u1 ≥ 19.979, u2 = 0.

Remark 12. In the resolution of BVPs, an important aspect concerns the choice of initial conditions.
The difficulty therefore lies in choosing suitable initial conditions that lead to a convergence of the method.
Usually, if you know the progress of the solution, they are chosen in such a way as to be as accurate as possible,
especially to achieve convergence and calculation time that is not too long. It starts by assigning values and
proceeding with testing until the solution we expect is found. The results shown in Figure 3 highlight a
non-convergence of the method; this is due to not "good" initial values. Furthermore, the different acceptable
solution (Figures 2 and 4) obtained with different initial values show how the BVPs cannot admit a single
solution. (We only consider Figure 2 because the solution of the model must be lower than 1).
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8.2. Order of Magnitude of θλ2 According to the Analytical Condition of Uniqueness of the Solution

From inequality (24), setting d∗ = 10−9, k = 1 and ε0 ≈ 10−12, we can write:

θλ2 >
R2d∗2

2V2ε0k
≈ (10−6)2(10−9)2

V210−12k
=

10−18

V2k
(38)

from which:

θλ2 >
10−18

V2k
. (39)

8.3. Characteristic Ranges of V2k

Taking into account inequality (39), and remembering that, for θλ2 ≤ 10−6, the numerical
procedure converges in stability conditions, we can write:{

θλ2 > 10−18

V2k

θλ2 ≥ 10−6
(40)

from which: {
V2k > 10−18

θλ2

θλ2 ≥ 10−6.
(41)

Finally, from (41), it follows that V2k ≤ 10−12. Then, the range of V2k ensuring both convergence
and stability is V2k ∈ (0, 10−12].

As shown above, ∀θλ2 ∈ (0, 10−7), the numerical procedure does not work. In other words, the
numerical procedure does not converge. In this case, it makes sense to write:{

θλ2 > 10−18

V2k

θλ2 ≤ 10−7
(42)

so that {
V2k > 10−18

θλ2

θλ2 ≤ 10−7.
(43)

Then, from (43), one can write V2k ≥ 10−11, so that, ∀V2k ∈ [10−11,+∞), the numerical procedure
does not converge.

If the numerical procedure converges with instability phenomena, θλ2 ∈ [10−7, 10−6]. In this case,
we can write: {

θλ2 > 10−18

V2k

10−7 < θλ2 < 10−6
(44)

for which it follows: {
V2k > 10−18

θλ2

10−7 < θλ2 < 10−6
(45)

obtaining that, ∀V2k ∈ (10−12, 10−11), the numerical procedure converges even if instability
phenomena can occur next to the edges of the membrane.

9. Highlighting the Ghost Solutions’ Areas

To show the ghost solution areas, we start form the analytical inequality (39). Moreover, from
equalty (3), we can write:

V2k =
2u0(d− u(r))2

ε0
(46)
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that, combining with equality (3), becomes:

θλ2 >
10−18ε0

2 u0(d− u(r))2 . (47)

Considering that the order of magnitude of ε0, u0 and (d − u(r))2 are 10−12, 10−9 and 10−9,
respectively, from the inequality (47), we can write:

θλ2 >
10−18ε0

2u0(d− u(r))2 ≈
10−1810−12

2 10−910−9 ≈ 10−12. (48)

Then, it follows that the analytical condition (3) can be written as θλ2 > 10−12. Finally, ∀θλ2 ∈
(0, 10−12], any solutions can be considered as ghost solutions. However, because ∀θλ2 ∈ (0, 10−7], the
numerical procedure does not converge; then, it follows that each numerical solution achieved is not a
ghost solution. The results discussed in this Section are summarized in Table 1.

Table 1. Convergence and stability areas.

No Convergence Convergence & Instability Convergence & Stability

θλ2 ≤ 10−7 10−7 < θλ2 < 10−6 θλ2 ≥ 10−6

V2k ≥ 10−11 10−12 < V2k < 10−11 V2k ≤ 10−12

No Ghost Solutions if θλ2 > 10−12 No Ghost Solutions No Ghost Solutions

Figure 6. Recovering of the membrane achieved by u1 = 0.1 and θλ2 = 5 · 10−7: strong instabilities
take place next to the edge of the membrane.
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Figure 7. Recovering of the membrane achieved by u1 = 1.2 and θλ2 = 5 · 10−5: strong instabilities
take place next to the edge of the membrane.

10. Electromechanical Properties of the Membrane, Applied Voltage, and Ghost Solutions:
Engineering Areas of Applicability of the Device

As discussed above, θλ2 is very important for convergence of the numerical procedure and for its
physical meaning as well. In particular, θ represents the proportionality between |E| and λ2

(1−u(r))2 [20]:

θ|E|2 =
λ2

(1− u(r))2 . (49)

Moreover, λ2 depends on both V and the electromechanical properties of the material constituting
the membrane. In fact, λ2 can be expressed as follows [20]:

λ2 =
ε0V2(2R)2

2d3T
= ρV2, (50)

where ρ = ε0(2R)2

2d3T (ρ takes into account the electromechanical properties of the material constituting
the membrane) and T is the mechanical tension of the membrane. Then, combining equality (49) with
equality (50), we obtain:

θ|E|2 =
λ2

(1− u(r))2 =
ε0V2(2R)2

2d3T(1− u(r))2 =
ρV2

(1− u(r))2 . (51)

In addition, multiplying (51) by λ2 and taking into account the (50), we achieve:

θ|E|2λ2 =
ε0(2R)2

2d3T
V2λ2

(1− u(r))2 = ρ
V2λ2

(1− u(r))2 = ρ2 V4

(1− u(r))2 (52)

obtaining

θλ2 =
4ε2

0R4

d6T2
V4

(1− u(r))2|E|2 . (53)
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Considering that, in dimensionless conditions, (1− u(r))2 < 1, d = R = 1 and |E|2 < sup{|E|2},
from (53), the following inequality makes sense:

θλ2 =
4ε2

0
T2

V4

(1− u(r))2|E|2 >
ε0V4

4T2 sup{|E|2} (54)

As known, θλ2 can be expressed as (for details, see [19,20]):

θλ2 =
ε0V4

4T2(1− u(r))2|E|2 (55)

from which, it follows that:

θλ2 =
ε0V4

T2(1− u(r))2|E|2 >
ε0V4

T2 sup{|E|2} . (56)

If the non convergence of the numerical procedure occurs, it makes sense to write the following
chain of inequalities:

10−7 > θλ2 >
ε0V4

T2 sup{|E|2} (57)

so that we can write:
ε0V4

T2 sup{|E|2} < 10−7. (58)

Then, from (58), we can obtain:

T >

√
ε0V2√

10−7 sup{|E|2}
(59)

or
V4

[sup{|E|2}]2 <
T210−7

ε0
. (60)

Once the intended use of the device has been chosen (that is, once the pair {V, sup{|E|2} has been
fixed), from the inequality (59), inf{T} is computable. In other words, once {V, sup{|E|2} has been
chosen, the material of the membrane is selected. Conversely, if the material of the membrane has
been chosen (that is T has been fixed), it is possible to achieve the pair {V, sup{|E|2} satisfying the
inequality (60) (that is the intended use of the device).

11. Conclusions and Perspectives

In this paper, a numerical approach based on a three-stage Lobatto technique for recovering the
profile of the membrane in an electrostatic circular MEMS is proposed. Mainly exploited as a numerical
collocation technique for the resolution of BVPs, this procedure has been preferred to shooting methods
because it usually requires the integration of IVPs being heavily unstable. The proposed numerical
procedure has been applied to a well-known 2D nonlinear second-order differential model related
to a circular membrane MEMS actuator in which the amplitude of the electrostatic field has been
locally expressed in terms of the mean curvature of the membrane. The study of the convergence
properties of the proposed method has allowed for highlighting the ranges of characteristic parameters
(depending on both V and electromechanical properties of the material constituting the membrane)
that ensure that the method can achieve convergence with or without instabilities. Furthermore,
exploiting an algebraic inequality governing the existence of the solution for the differential model, the
ranges of parameters (depending on the externally applied voltage) that ensure convergence (with or
without instabilities) bringing out the ghost solutions’ areas have been evaluated. Finally, an algebraic
inequality has been obtained, which allows for managing the choice of the intended use of the device
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once the electromechanical properties of the material constituting the membrane have been selected
(and vice versa). The results we have obtained can be considered as encouraging. The tests have
shown that the recovering of the membrane profile (in the absence of ghost solution, and a condition
of convergence without instability) reach a maximum value at the center of the membrane of not less
than 0.3, thus proving that the membrane offers an excellent response to the applied external voltage.
Furthermore, the tests carried out have shown that the non-convergence area is extremely limited, thus
guaranteeing a wide range of applicability of the device in industrial applications. However, we point
out that the presence of instabilities makes the numerical approach not yet optimal, requiring further
effort to reduce the instability zone as much as possible. This will be the subject of a future work.
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Abbreviations

The following abbreviations are used in this manuscript:

R radius of the device
V applied voltage
E electrostatic field
|E| magnitude of the electrostatic field
r radial coordinate
H(r) mean curvature
u(r) profile of the membrane
d distance between the fixed plates
pel electrostatic pressure
ε0 permittivity of the free space
p mechanical pressure
T mechanical tension of the membrane
u0 displacement of the membrane at r = 0
k constant of proportionalitycbetween pel and u0

Cel electrostatic capacitance
W ′ co-energy function
q electrostatic charge
fel electrostatic force
f1 bounded function depending on the dielectric properties
λ1 function depending on V
θ continuous function depending on r
λ2 function depending both V and the electromechanical

properties of the material constituting the membrane
z axe of symmetry
∆2() bi-Laplacian operator
K(r, u(r) curvature
µ(r, u(r)) function of proportionality
d∗ critical security distance
u1(r), u2(r) under and over solutions
U {(r, u) : u1(r) ≤ u(r) ≤ u2(r)}
p vector of unknown parameters
g boundary conditions
S(r) cubic polynomial
hm step-size
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res residual
MEMS Micro-Electro-Mechanical Systems
BVP Boundary Value Problem
ODE Ordinary Differential Equation
IVP Initial Value Problem
bvp4c MatLab Subroutine to solve BVPs
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