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Monitoring the vegetation vigor in heterogeneous citrus and olive 1 

orchards. A multiscale object-based approach to extract trees’ crowns 2 

from UAV multispectral imagery 3 

 4 

Abstract 5 

Precision agriculture (PA) constitutes one of the most critical sectors of remote sensing applications that allow 6 

obtaining spatial segmentation and within-field variability information from field crops. In the last decade, an 7 

increasing source of information is provided by unmanned aerial vehicle (UAVs) platforms, mainly equipped with 8 

optical multispectral cameras, to map, monitor, and analyze, temporal and spatial variations of vegetation using 9 

ad hoc spectral vegetation indices (VIs). Considering the centimeter or sub-centimeter spatial resolution of UAV 10 

imagery, the geographic object-based image analysis (GEOBIA) approach, is becoming prevalent in UAV remote 11 

sensing applications. In the present paper, we propose a quick and reliable semi-automatic workflow implemented 12 

to process multispectral UAV imagery and aimed at the detection and extraction of olive and citrus trees’ crowns 13 

to obtain vigor maps in the framework of PA. We focused our attention on the choice of GEOBIA data input and 14 

parameters, taking into consideration its replicability and reliability in the case of heterogeneous tree orchards.  15 

The heterogeneity concerns the different tree plantation distances and composition, different crop management 16 

(irrigation, pruning, weeding), and different tree age, height, and crown diameters. The proposed GEOBIA 17 

workflow was implemented in the eCognition Developer 9.5, coupling the use of multispectral and topographic 18 

information surveyed using the Tetracam µ-MCA06 snap multispectral camera at 4 cm of ground sample distance 19 

(GSD). Three different study sites in heterogeneous citrus (Bergamot and Clementine) and olive orchards located 20 

in the Calabria region (Italy) were provided. Multiresolution segmentation was implemented using spectral and 21 

topographic band layers and optimized by applying a trial-and-error approach. The classification step was 22 

implemented as process-tree and based on a rule set algorithm, therefore easily adaptable and replicable to other 23 

datasets. Decision variables for image classification were spectral vegetation indices (NDVI, SAVI, CVI) and 24 

topographic layers (DSM and CHM). Vigor maps were based on NDVI and NDRE and allowed to highlight those 25 

areas with low vegetative vigor. The accuracy assessment was based on a per-pixel approach and computed 26 

through the F-score (F). The obtained results are promising, considering that the resulting accuracy was high, with 27 

F-score ranging from 0.85 to 0.91 for olive and bergamot, respectively. Our proposed workflow, which has proved 28 

effective in datasets of different complexity, finds its strong point is the speed of execution and on its repeatability 29 

to other different crops with few adjustments. It appears worth of interest to highlights that it requests a working 30 

day of two good skilled operators in geomatics and computer image processing, from the on-field data collection 31 

to the obtaining of vigor maps. 32 

 33 

Keywords: multispectral unmanned aerial vehicles (UAVs) imagery; multiresolution segmentation; Precision 34 

Agriculture (PA); spectral Vegetation Indices (VIs); geographic object-based image analysis (GEOBIA); vigor 35 

maps. 36 
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1. Introduction  37 

Bergamot (Citrus bergamia, Risso) crops are mainly located on the Ionian sea coast in the province of Reggio 38 

Calabria (South Italy). The fruit was primarily cultivated for the extraction of essential oil from the peel to 39 

use it in the cosmetic, perfumery (Jin et al., 2016) and food industries (Pernice et al., 2009). Since 2001, these 40 

productions awarded the European protected designation of origin (PDO) label Bergamotto di Reggio 41 

Calabria – olio essenziale (“Bergamot of Reggio Calabria - essential oil”). In the food industry, an increasing 42 

interest has focused on the use of bergamot’s juice as a beverage and in a blend with other fruit juices (Giuffrè, 43 

2019). This interest is related to the antioxidant properties of juice, beneficial for health (Da Pozzo et al., 44 

2018). From the dried and processed waste is obtained the so-called pastazzo, which can be used as animal 45 

feed (Nesci and Sapone, 2014). Over 90% of the world’s bergamot production comes from Calabria while 46 

the remaining 10% from Africa (Côte d'Ivoire, Mali, Cameroon, Guinea) and South America (Argentina and 47 

Brazil) (Nesci and Sapone, 2014). Clementine (Citrus clementina Hort. ex Tan.) is one of the essential 48 

cultivated varieties of citrus mandarins in the Mediterranean Basin (Benabdelkamel et al., 2012). Italy is one 49 

of the largest producers in Europe, and its crops are located in the southern part of the country. Productions 50 

made in the Calabria region are labeled with the European protected geographical indication label 51 

“Clementine di Calabria” (Benabdelkamel et al., 2012). Olive (Olea europaea L.) crops represent a critical 52 

agricultural production in the Mediterranean Basin, and the Calabria region is one of the primary Italian olive 53 

oil producers. Moreover, olive crops can be considered as a distinctive trait of the historical rural landscape 54 

of the Mediterranean Basin (Di Fazio and Modica, 2018). 55 

To achieve an effective, sustainable environmental management of crop productions coupling with an 56 

improvement of agriculture competitiveness of the agriculture sector, precision agriculture (PA) 57 

methodologies and technologies currently represent a reliable and cost-effective approach (Solano et al., 58 

2019). The International Society for Precision Agriculture (ISPA), defines the PA as “a management strategy 59 

that gathers, processes and analyzes temporal, spatial and individual data and combines it with other 60 

information to support management decisions according to estimated variability for improved resource use 61 

efficiency, productivity, quality, profitability and sustainability of agricultural production 62 

(www.ispag.org/about/definition, last access 30 April 2020). PA that can be viewed as a management strategy 63 

aiming at implementing agronomic interventions in line with real crop needs and the biochemical and 64 

http://www.ispag.org/about/definition
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physical characteristics of the soil constitutes one of the most critical sectors of remote sensing applications 65 

(De Montis et al., 2017). 66 

As highlighted by several scholars, PA allows to increase crop productivity and farm profitability through 67 

the better management of farm inputs (Larson and Robert, 1991; Zhang et al., 2002) and using intensive data 68 

and information collection. In the framework of PA, remote sensing techniques allow obtaining spatial 69 

segmentation and within-field variability information from field crops (Sepulcre-Cantó et al., 2005). 70 

Traditionally, remote sensing has been associated with satellite platforms or manned aircrafts equipped with 71 

a series of sensors (Pajares, 2015) while, since the last decade, the advent of unmanned aerial vehicles 72 

(UAVs) platforms constitutes one of the primary sources of remote sensing imagery in PA. 73 

Moreover, continuous technological improvement concerns UAV platforms as well as the typology of 74 

mounted sensors in terms of radiometric resolution, weight, optical characteristics, etc. (Romero-Trigueros 75 

et al., 2017). Compared to satellite platforms, UAVs have the advantage of providing images with very high 76 

spatial and temporal resolution coupled with an ever-increasing radiometric resolution that is leading to a 77 

production cost efficiency. As highlighted by Benincasa et al. (2017), UAV surveys are more suitable than 78 

satellite remote sensing in cloudy conditions, in case of small surfaces and when a centimeter spatial 79 

resolution is needed. 80 

Typically, UAV applications in PA dealing with the following research issues: weed and disease detection 81 

(Abdulridha et al., 2019; Albetis et al., 2018; De Castro et al., 2018; De Castro et al., 2015; Maes and Steppe, 82 

2019; Pérez-Ortiz et al., 2016; Torres-Sánchez et al., 2015), assessment of vegetation coverage and typology 83 

(Ampatzidis and Partel, 2019; Candiago et al., 2015; Senthilnath et al., 2017), analysis, monitoring and 84 

assessment of biomass and vegetation vigor (Bendig et al., 2015; Díaz-Varela et al., 2015; W. Li et al., 2016; 85 

Malambo et al., 2018; Panagiotidis et al., 2017; Roth and Streit, 2018; Zarco-Tejada et al., 2014). The 86 

increasing interest of several scholars focused on the trees’ crown extraction from UAV imagery in the 87 

framework of PA applications (Caruso et al., 2019; Díaz-Varela et al., 2015; Koc-San et al., 2018; Ok and 88 

Ozdarici-Ok, 2018; Solano et al., 2019). 89 

Currently, UAVs equipped with multispectral cameras represent the most commonly exploited remote 90 

sensing systems in agriculture (Khanal et al., 2017). These systems have the advantage of being able to obtain 91 

spectral information in the red (R) and near-infrared (NIR) regions of the electromagnetic spectrum that allow 92 

deriving vegetation indices (VIs) useful for applications in PA (Yao and Qin, 2019). In the framework of PA, 93 
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remote sensing applications can provide essential information to map, monitor, and analyze temporal and 94 

spatial variations of vegetation vigor. Although an increasing number of VIs is currently available for PA 95 

applications, most of them are obtained combining information in R and NIR regions of electromagnetic 96 

spectrum. Beyond a high correlation with the biophysical parameters of plants, VIs have a reduced sensitivity 97 

to all those factors that hinder the interpretation of remote sensing data, such as soil background and 98 

atmosphere (Wójtowicz et al., 2016). 99 

In the last two decades, remote sensing technologies have been improved in order to be able to use more 100 

effective methods of extracting reliable and reusable information in the framework of PA applications 101 

(Solano et al., 2019). Among these techniques, the geographic object-based image analysis (GEOBIA) 102 

approach, that allows detecting geographical entities through the definition and the analysis of object-images 103 

instead of single pixels (Blaschke, 2010; Hay and Castilla, 2008), is becoming prevalent in UAV remote 104 

sensing ( Li et al., 2016). Moreover, the GEOBIA approach allows capturing the rapid change of geographic 105 

objects in very high-resolution UAV imagery, including the shadow effect of trees, typically higher than in 106 

satellite or aerial imagery, due to a larger parallax effect considering the lower distance between the surveyed 107 

objects and the sensor.  108 

GEOBIA defines a typology of a digital remote sensing image analysis approach that studies geographical 109 

entities through the definition and analysis of object-based instead of single pixels (Blaschke, 2010; Blaschke 110 

et al., 2014; Hay and Castilla, 2008). Image objects are objects that can be visually distinguished in the image 111 

and made up of groups (or clusters) of neighboring pixels that share a common context or meaning, such as 112 

pixels that join together to form the canopy of a tree or crops in a field (Chen et al., 2018). GEOBIA 113 

demonstrated effectiveness in classifying weeds, herbaceous (De Castro et al., 2018, 2017, Peña et al., 2015, 114 

2013, 2012; Pérez-Ortiz et al., 2016, 2015), and tree species (Csillik et al., 2018; Díaz-Varela et al., 2015; 115 

Koc-San et al., 2018; Ozdarici-Ok, 2015; Solano et al., 2019). 116 

Within the scientific and technological framework briefly outlined, the present paper has a twofold research 117 

objective. The first one is devoted to showing a quick and reliable semi-automatic workflow implemented to 118 

process multispectral UAV imagery. The proposed workflow is aimed at the detection and extraction of olive 119 

and citrus trees’ crowns in the framework of PA with the final production of vigor maps showing the 120 

vegetative state of the tree crowns. The second one focuses on the choice of GEOBIA data input and 121 

parameters reliable in the case of heterogeneous tree orchards. The heterogeneity concerns the different tree 122 
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plantation distances, the different crop management (irrigation, pruning, weeding, etc.), the different crop 123 

composition, and on the different tree age, height, and crown diameters. The proposed GEOBIA workflow 124 

was implemented in the eCognition Developer 9.5 (Trimble Inc., 2019), coupling the use of multispectral 125 

(radiometric bands and their different combinations/ratios) and topographic information. Three different 126 

study sites in heterogeneous citrus (Bergamot and Clementine) and olive orchards located in the Calabria 127 

region (Italy), were provided.  128 

The structure of this paper is as follows. In Section 2, we provided a brief description of the three analyzed 129 

study sites. Section 3 deals with materials and methods, providing details about data acquisition, data 130 

processing workflow, GEOBIA procedures, the analyzed VIs, and about the implemented accuracy 131 

assessment procedure. In Section 4, the results of segmentation, classification, trees extraction processes, 132 

accuracy assessment, and final vigor maps produced, are presented and discussed. Finally, Section 5 deals 133 

with conclusions and future research outlooks. 134 

 135 

2. Study sites 136 

All three-study sites are located in the province of Reggio Calabria (Calabria, Italy) (Fig. 1), A1 and A2 in 137 

Antonimina municipality (38°15’52’’ N, 16°11’12’’ E, 111 m a.s.l., and 38°16’’12’’ N, 16°11’ 04’’ E, 193 138 

m a.s.l., respectively), study site B in the municipality of Palizzi (37° 55’ 06’’ N, 15° 58’ 54’’ E, 4 m a.s.l). 139 

Study A1 is a 15-year  even-aged (3.5 m height) citrus orchard (clementine, Citrus x clementina) with a 5m 140 

x 5m single-tree planting distance covering an area of 4.6 ha. The study site A2 covers 7.12 ha and is a 20-141 

year even-aged specialized olive orchard with a 6m x 6m single-tree planting distance. Both orchards are 142 

managed according to organic farming methods. The study site B is an uneven-aged citrus orchard (bergamot, 143 

Citrus bergamia) with long windbreak barriers made up of olive trees, and covering an area of 7.9 ha. This 144 

orchard is particularly heterogeneous, being composed of trees with age ranging from 5 years (1.5 m height) 145 

to 25 years (4 m height). 146 
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 147 

Fig. 1. Geographic location and representative photos of the three study sites, A1 (Clementine), A2 (Olive), and 148 
B (Bergamot and olive) orchard. 149 

3. Materials and Methods 150 

The proposed workflow can be synthesized according to the following methodological steps: UAV data 151 

acquisition; pre-processing (photogrammetric reconstruction, orthorectification, and mosaicking, radiometric 152 

and statistical analyses of UAV imagery, derivation of topographic layers); processing (object-based image 153 

segmentation, derivation of vegetation indices (VIs), image classification and tree crowns extraction, 154 

accuracy assessment) (Fig. 2). 155 

 156 
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 157 

Fig. 2  - Workflow of the proposed methodology for the vegetation monitoring at tree crown detail from unmanned 158 
aerial vehicles (UAVs) multispectral imagery in heterogeneous citrus and olive orchards. 159 

3.1 Surveys Equipment 160 

UAV surveys were carried out with the Multirotor G4 Surveying-Robot (Service Drone GmbH), a multirotor 161 

equipped with six high-efficiency electric brushless motors, gimbal and flight control with a dual 32-bit 162 

processor, able to correct the position 512 times per second of flight, thus ensuring a much more stable flight 163 

(Fig. 3). The imagery was captured by the µ-MCA06 snap, a multispectral camera with a global shutter sensor 164 

produced by Tetracam Inc. (Chatsworth, USA). The µ-MCA06 snap consists of 6 individual 1.3 megapixel 165 

CMOS sensors (4:3 format, 1280 x 1024 pixels) with interchangeable bandpass filter housed in one unit, one 166 

named as “master,” responsible for synchronizing the other named as “slaves” (Tab. 1).  167 
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Tab. 1. Tetracam µ-MCA06 snap (Global shutter) sensor characteristics bands specification (wavelength and 168 
bandwidth). 169 

Geometry of lens Sensors Bands 

Central 

band 

wavelength 

[nm] 

Bandwidth 

[nm] 

Focal Length (fixed lens) 9.6 mm 

Horizontal Angle of View 38.26° 

Vertical Angle of View 30.97° 

Ground sample distance (GSD) 40.0 mm 

and field of view (FOV) 51.5 m x 41.25 m 

at 80 m of flight height 

Master (0) Near-Infrared 1 (NIR1) 800 10 

1 Blue (B) 490 10 

2 Green (G) 550 10 

3 Red (R) 680 10 

4 Red-edge (RE) 720 10 

5 Near-Infrared (NIR2) 900 20 

 170 

 171 

 172 

Fig. 3. Upperside (1), the UAV Multirotor G4 Surveying-Robot (Service Drone GmbH) equipped with Tetracam 173 
µ-MCA06 snap multispectral camera; camera mounted on UAV gimbal and ready to capture images (2). Lower 174 
side (3), a graphical scheme shows how the UAV takes into account the 3D morphology of the surveyed area, 175 
guaranteeing a constant height of flight and (4) a 3D view of a flight plan. 176 

 177 

Each sensor has a dimension of 6.66 mm x 5.32 mm with a pixel size of 4.8 microns and a focal length of 178 

9.6 mm (fixed lens). Images are stored as single shots of 1.3 megapixels per bands, exposing the entire image 179 

at the same instant in time, at either 8 or 10 bit, giving a total of 7.8 megapixels across the six bands. The µ-180 

MCA06 snap was equipped with its own global navigation satellite system (GNSS), the FirePoint 100 GPS. 181 

3.2 Data acquisition and pre-processing 182 

Flight missions were planned with the UAV Planner 3D (www.alto-drones.com, last access 31 January 2020), 183 

a commercial plugin available for version 2 of QGIS, and that allows us to take into account the 3D 184 

http://www.alto-drones.com/
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morphology of the study area (Fig. 3). All flights were carried out with 80 m above ground level (a.g.l) of 185 

flight height, a field of view (FoV) of 51.5 x 41.25 m, ground sample distance (GSD) of 4 cm, and with 2.5 186 

m s-1 of cruise speed (Tab. 2). To ensure a high quality of the obtained imagery, overlap and side lap were 187 

set at 80% and 75%, respectively. Within each study site, 50 cm x 50 cm white polypropylene panels and 188 

covering two quadrants, using black cardboard to locate the point, were used as ground control points (GCPs), 189 

were distributed. Every GCP was georeferenced in the field, using the Leica GS12 RTK-GNSS, in the 190 

coordinate system WGS84/ETRF1989 UTM33N (EPSG 32633) (planimetric accuracy ±2.5 cm, altimetric 191 

accuracy ±5 cm).  192 

 193 

Tab. 2 - Flight and UAV dataset characteristics. 194 

ID Date 

Flight 

height 

[a.g.l.] 

Take-off 

time 

[UTC+1] 

Speed 

[m s-1] 

N° of 

flights 

Total 

duration 

[min] 

Surveyed 

area  

[ha] 

Photos 

[n°] 

Overlap 

[%] 

Sidelap 

[%] 

RMSE [m] 

X Y Z 

A1 2016/11/16 80 m 12:00 2.5 2 38 4.6 1026 80 75 0.05 0.05 0.08 

A2 2017/02/15 80 m 12:00 2.5 2 40 7.12 1878 80 75 0.07 0.07 0.1 

B 2018/09/17 80 m 11:00 2.5 2 49 7.9 2825 80 75 0.03 0.03 0.09 

 195 

With the aim to calibrate the conversion of the original digital numbers (DN) to band reflectance, three 50 196 

cm x 50 cm polypropylene calibration panels (in white, black, and grey) were placed on the field. During the 197 

flight, for each of them, the reflectance was recorded with the Apogee M100 spectroradiometer. The grey 198 

panel was chosen as reference, and its reflectance value in correspondence of each central band was extracted.  199 

These values were used, together with radiometric correction parameters written in the EXIF metadata of the 200 

images, to compute the radiometric calibration of each pixel, allowing to generate the reflectance maps. UAV 201 

images were acquired in the *.RAW native format then converted to 10-bit TIFF format using PixelWrench 202 

II (version 1.2.4, Tetracam, Inc., Chatsworth, USA). Data pre-processing was implemented in Pix4Dmapper 203 

(Pix4D SA, Switzerland) Pro 4.3 that allows managing the alignment, stacking, and radiometric calibration 204 

of the original single band images as camera rigs systems. Internal camera orientation was performed based 205 

on the camera specification and the alignment parameters provided by Tetracam (X and Y translation, 206 

rotation, and scaling). External orientation was firstly based on the GNSS geotags recorded for each shot and 207 

further improved through the GCPs positions. Then, classical digital photogrammetry processes based on 208 

structure from motion (SfM) and aerial triangulation were carried out obtaining sparse and dense 3D clouds, 209 

digital surface model (DSM), digital terrain model (DTM) and canopy height model (CHM). After the 210 
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radiometric calibration, a reflectance orthomosaic for each of the six-layer bands was obtained and then 211 

stacked into a six-band orthomosaic (B, G, R, RE, NIR1, NIR2). 212 

3.3 Radiometric analyses and statistics of collected datasets 213 

Before proceeding with image processing, the radiometric characterization of datasets and correlation 214 

analysis of bands was performed using pairwise scatter plots based on Pearson’s correlation coefficient (rij) 215 

according to eq. 1 and organized as scatter plots matrix.    216 

𝑟𝑖𝑗=
𝐶𝑜𝑣𝑖𝑗

𝜎𝑖𝜎𝑗
  (eq. 1) 217 

𝐶𝑜𝑣𝑖𝑗 =
∑ (𝐷𝑁𝑖𝑘− 𝐷𝑁̅̅̅̅̅𝑖)(𝐷𝑁𝑗𝑘−𝐷𝑁̅̅̅̅̅𝑗)𝑁

𝑘=1

𝑁−1
      (eq. 2) 218 

Where Covij (eq.2) is the covariance of layer bands i and j, DNik the digital numbers (i.e., the cell value of 219 

each pixel), 𝐷𝑁̅̅ ̅̅
𝑗 is the mean of the DNs in the specific band (i and j) while σi and σj are their standard 220 

deviations calculated as follows (eq. 3). 221 

𝜎𝑖(𝑗) = √∑ (𝐷𝑁𝑖(𝑗)−𝐷𝑁̅̅̅̅̅𝑖(𝑗) )
2𝑁

𝑘=1

𝑁−1
             (eq. 3) 222 

The dataset was analyzed in Python, employing the pandas library and using the rasterio toolbox to read and 223 

implement the data array of input data. As input data (i.e., the layer bands), we used the six spectral bands B, 224 

G, R, RE, NIR1, NIR2 plus DSM, and CHM, that we concatenated in a unique data frame through the NumPy 225 

library. To perform correlation analysis, we used scipy and numpy libraries while the implementation of the 226 

scatters plots, and the final correlation matrix was based on the matplotlib and seaborn libraries. The graphical 227 

representation of scatter plots was improved using a kernel density estimation (KDE) with a Gaussian kernel. 228 

3.4 Image segmentation 229 

The first phase of a GEOBIA procedure is the segmentation of the original image into separate, non-230 

overlapping regions (Aguilar et al., 2016) and extracted as vectorial objects. This process is a fundamental 231 

pre-requisite for classification/feature extraction (Drǎguţ et al., 2014). Segmentation consists of the 232 

partitioning of objects into smaller entities in the creation of new ones and the alteration of the morphology 233 

of the existing ones according to precise rules. Concerning the approaches in performing the segmentation, 234 

two different ways are possible: a top-down strategy, which involves cutting large objects into small objects, 235 

and the bottom-up strategy that merges small objects to form larger ones. In the present research, we adopted 236 
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a bottom-up strategy, the multiresolution segmentation (Baatz and Schape, 2000), implemented in eCognition 237 

Developer 9.5. Multiresolution segmentation is an optimization process that, for a certain number of image 238 

objects, minimizes the average heterogeneity and maximizes their respective homogeneity (Trimble Inc., 239 

2019). This algorithm first identifies single objects of the size of a pixel and then merges them with other 240 

neighboring objects according to a criterion of relative homogeneity. This criterion measures the level of 241 

homogeneity within each object. The procedure continues selecting another image object’s best neighbor and 242 

proceeds until no further image object mergers can be realized without infringing the maximum allowed 243 

homogeneity of an image object (Trimble Inc., 2019). The result of a good image classification process is 244 

affected mainly by the process quality of segmentation, which in turn depends on the choice of segmentation 245 

parameters values (El-naggar, 2018). 246 

Several criteria should be accurately evaluated to obtain proper segmentation (El-naggar, 2018). The 247 

homogeneity criterion derives from the combination of the spectral and shape properties of the initial object 248 

and of that obtained by the merging process. Color homogeneity results from the standard deviation of 249 

spectral colors, while the shape homogeneity derives from the deviation of a compact (or smooth) shape. 250 

Homogeneity criteria can be established by two parameters: shape and compactness. The shape parameter 251 

determines the importance on the segmentation of the shape of the segmented objects with respect to the 252 

color and can assume a value between 0 and 0.9. Shape and color are two interrelated, and their weight is 253 

chosen by the user: the higher the weight of the first, the lower the weight of the second in the segmentation, 254 

and vice versa  (Drǎguţ et al., 2010). Compactness determines the influence of shape respect to the 255 

smoothness. This parameter can be defined by the product of width and length calculated on numbers of 256 

pixels (El-naggar, 2018).  257 

Several scholars demonstrated the importance of the scale parameter in determining the final size and 258 

dimension of the resulting objects (Drǎguţ et al., 2014; Ma et al., 2017). Inserting higher values or smaller 259 

values of scale parameter larger and smaller objects are obtained, respectively. The scale parameter defines 260 

the maximum allowed heterogeneity with regard to the weighted image layers for the obtained image objects 261 

(Trimble Inc., 2019). Therefore, datasets of homogeneous environments will lead to larger segments and vice 262 

versa (El-naggar, 2018). Moreover, in implementing a segmentation process, a different weight can be 263 

assigned to each of the different input data (i.e., band layers). In our proposed workflow, orthoimages were 264 

segmented using a multiresolution algorithm and adopting an equal weight for all band layers. Layers used 265 
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in this phase were spectral bands B, G, R, RE, NIR1, NIR2, and the DSM in study site A1 while, in the study 266 

sites A2 and B, the NIR2 band has been excluded, considering its very close correlation with the NIR1 band 267 

(0.99). The optimal multiresolution segmentation parameters were obtained by applying a trial-and-error 268 

approach (Aguilar et al., 2016). As reported in Prošek et al. (2019) and Kaufman (1994), the visual 269 

interpretation of segmentation is an effective method to assess the quality of the obtained results. In the study 270 

site A1, segmentation settings were as follows: weight 1 for all layers, scale parameter 60, shape and 271 

compactness 0.1 and 0.5, respectively. In the study site A2, displaying the image in the different band 272 

combinations, and on the basis of a better distinction from the rest of the image of canopies and their own 273 

shadows, a different weight was assigned to the different layers bands. Higher (band weight = 2), for NIR1, 274 

RE, DSM and DTM, lesser (band weight = 1) for B, G and R bands. The scale parameter has been assigned 275 

a value of 200, while the shape and compactness parameters have been assigned a value equal to 0.7. In the 276 

study site B, the segmentation settings were 1, 85, 0.5 and 0.1 for band weights, scale, shape and compactness, 277 

respectively. 278 

3.5 Derivation of Vegetation indices (VIs) and topographic elevation layers 279 

A reliable radiometric measurement of vegetation vigor can be obtained combining the information provided 280 

by some specific regions of the electromagnetic spectrum, such as those characterizing the curve between 281 

the maximum absorption of photosynthetic pigments (Jones and Vaughan, 2010). VIs are derived from the 282 

math combination of two or more bands with the aim to obtain useful information on specific vegetation 283 

properties (e.g., chlorophyll) in the R region and the maximum dispersion in RE and NIR regions per single-284 

pixel (Campbell and Wynne., 2011). VIs, developed since the 1970s (Glenn et al., 2008), have been widely 285 

recognized to have good sensitivity for the detection and monitoring of vegetation (Barrett and Curtis, 2013). 286 

 In the present research, six VIs were derived (Tab. 3): normalized difference vegetation index (NDVI), 287 

normalized difference red edge vegetation index (NDRE), soil-adjusted vegetation index (SAVI), green 288 

normalized difference vegetation index (GNDVI), green and red normalized difference vegetation index 289 

(GRNDVI), chlorophyll vegetation index (CVI).  290 

In addition, two topographic elevation layers were derived, the DSM (Digital Surface Model) entered as input 291 

while the DTM (Digital Terrain Model) was used to calculate the CHM (Canopy Height Model) (Popescu, 292 

2007). NDVI is one of the most widely used indices derived from the multispectral information and is 293 
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calculated by the normalized ratio between the Red and NIR bands (Rouse et al., 1974). The index that can 294 

assumes values between -1 and 1 measures healthy vegetation utilizing the highest chlorophyll absorption 295 

and reflectance regions and is useful to characterize canopy growth or vigor (Xue and Su, 2017). NDVI is 296 

very sensitive to background factors, such as the shade and the brightness of the vegetation canopies and soil 297 

backgrounds. For this reason, Huete (1988) developed the SAVI index with the aim to minimize the effects 298 

of soil background on the vegetation signal by inserting a constant soil adjustment factor L in the original 299 

formula of NDVI (Taylor and Silleos, 2006). L, which is a function of vegetation density, can assume values 300 

between 0 and 1, depending on the vegetation amounts. In the presence of shallow vegetation, the value of L 301 

suggested is 1, while a value of 0.5 is used for intermediate levels of vegetation. Obviously, when the value 302 

of L is 0, SAVI corresponds precisely to the NDVI. NDRE has a range of values from -1 to 1 and formula 303 

similar to that of NDVI but exploits the sensitivity of the vegetation to the RE by replacing the R. GNDVI 304 

(Gitelson et al., 1996) was proposed using a G band rather than the R band as in the classic NDVI and has 305 

been developed for the estimation of leaf chlorophyll concentration. CVI (Vincini et al., 2007) was initially 306 

proposed as a broad-band VI sensitive to leaf chlorophyll content and insensitive to LAI variation. The 307 

index’s formula was obtained from that of green SR multiplying the G/NIR ratio by R/G ratio. R/G ratio, 308 

developed by Gamon and Surfus (1999), has been used to estimate foliage development in canopies. 309 

GRNDVI was developed together with a series of indices in whose formulas the R band of NDVI formula 310 

was substituted with several combinations of R, G, and B bands to verify the response and capability to 311 

estimate LAI of these indices (Wang et al., 2007).  312 

 313 

Tab. 3 - Formulation of the six vegetation indices (VIs) used in the present research. 314 

Index denomination Index formula References 

 

Normalized Difference Vegetation 

Index (NDVI) 

 

(𝜌𝑁𝐼𝑅1 −  𝜌𝑅𝑒𝑑) 

(𝜌𝑁𝐼𝑅1 +  𝜌𝑅𝑒𝑑)
 (Rouse Jr. et al., 1974) 

Normalized Difference Red Edge 

Vegetation Index (NDRE) 

(𝜌𝑁𝐼𝑅1 −  𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒) 

(𝜌𝑁𝐼𝑅1 +  𝜌𝑅𝑒𝑑𝐸𝑑𝑔𝑒)
 (Barnes et al., 2000) 

Soil-Adjusted Vegetation Index 

(SAVI) 

(𝜌𝑁𝐼𝑅1 −  𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅1 + 𝜌𝑅𝑒𝑑 + 𝐿)
(1 + 𝐿) (Huete, 1988) 

Green Normalized Difference 

Vegetation Index (GNDVI) 

(𝜌𝑁𝐼𝑅1 −  𝜌𝐺𝑟𝑒𝑒𝑛) 

(𝜌𝑁𝐼𝑅1 +  𝜌𝐺𝑟𝑒𝑒𝑛)
 (Gitelson et al., 1996) 

Chlorophyll Vegetation Index 

(CVI) 
𝜌𝑁𝐼𝑅1

𝜌𝑅𝑒𝑑

(𝜌𝐺𝑟𝑒𝑒𝑛 ∗ 𝜌𝐺𝑟𝑒𝑒𝑛)
 (Vincini et al., 2007) 
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Green and Red Normalized 

Difference Vegetation Index 

(GRNDVI) 

𝜌𝑁𝐼𝑅1 − (𝜌𝑁𝐼𝑅1 + 𝜌𝑅𝑒𝑑) 

𝜌𝑁𝐼𝑅1 + (𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑅𝑒𝑑)
 (Wang et al., 2007) 

*ρ is the reflectance at the given wavelength. 315 

 316 

3.6 Image Classification and trees’ crowns extraction 317 

The classification was based on a rule set implemented in eCognition as an automated process-tree, therefore 318 

adaptable and replicable to other datasets. It was based on the algorithm Assign Class that allows assigning 319 

a class to an object which falls within one or more chosen conditions (or rules), based on values attributed to 320 

features (e.g., threshold values of VIs and topographic layers). Therefore,  working as a masking-approach, 321 

as shown in De Castro et al. (2018) and Peña-Barragán et al. (2012). In our case, the classification was 322 

performed by assigning, to each target land-use class, different threshold values for each of the different input 323 

layers and VIs (Tab. 4). In the case study A1, the classification was implemented for four classes: “citrus”, 324 

“buildings and roads”, “other vegetation”, and “bare soil”. Being this dataset derived from  UAV flights 325 

carried out at midday, and in November, the presence of shadows can be considered as irrelevant. Therefore 326 

it was decided not to create a specific class for these objects. The classification algorithm was set to start with 327 

the class “buildings and roads” using SAVI values ≤ 0.1. “Citrus” were classified using SAVI ≥ 0.7 and CHM 328 

≥ 1.6, while “Other vegetation” was classified using CHM values higher than 6. All unclassified objects were 329 

classified as “bare soil”. In the case study A2, the classification was implemented for five classes: “olive”, 330 

“shadows” (due to the different sun position with respect to the horizon line in the month of February), 331 

“buildings and roads”, “other vegetation” and “bare soil”. “Olive trees” were identified using CVI values 332 

≥1.5 and CHM ≥ 1.5, while “Shadows” were classified using the NIR1 band. “Building and roads” were 333 

classified using SAVI values ≤ 0.1 and CHM ≥ 1.1. “Other vegetation” was classified, taking into 334 

consideration their larger canopy size (≥ 30 m2) than olive trees. Unclassified objects were inserted in the 335 

class “bare soil”. 336 

Also, in the study site B, the classification was implemented for five classes: “Citrus”, “olive”, “shadows”, 337 

“other vegetation” and “bare soil”. Since the citrus orchard is uneven-aged, there were significant differences 338 

in the size of the trees’ canopies, we subdivided the image into parcels (Fig. 4). This choice is further justified 339 

by the presence of many olive trees constituting long windbreak barriers in the citrus orchard. Therefore, the 340 

orthomosaic was divided into ten parcels based on the layout scheme of the irrigation sectors that roughly 341 
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correspond to the different plantation age of bergamot trees. In detail, in sectors 4-6 and 7, trees are 5 years 342 

old. This operation was performed using the open-source software QGIS, creating a specific thematic layer 343 

subsequently imported in eCognition. For this study site, using threshold values of SAVI between -0.16 and 344 

0.45, all the vegetation, without distinguishing between the two species present (olive and bergamot), was 345 

inserted in a temporary class called “vegetation”. In sectors 1 to 5 and 7, characterized by the presence of 346 

olive trees, these were identified using DSM and NDVI ≥ 0 and CVI ≥ 1.3, reclassifying the above-mentioned 347 

class. The remaining objects belonging to this class were reclassified as “Citrus”. Anything object that did 348 

not belong to the temporary class “vegetation”, was classified as “bare soil”. Finally, by establishing a 349 

threshold value in the NIR1 band, from the three classes “bare soil”, “olive” and “citrus”, we extracted those 350 

objects belonging to the “shadows” class.  351 

 352 

 353 

Fig. 1 - Map showing the study site B with, highlighted in red, the ten parcels identified according to the irrigation 354 
scheme arranged for the bergamot orchard. 355 

 356 

3.7 Accuracy assessment 357 

The approach used in this work was based on the comparison of the total number of correctly detected crown 358 

pixels by classification algorithm with a reference vector data. The reference segments for each image were 359 

manually digitized by on-screen photointerpretation from UAV true-color orthophotos. Differently to other 360 

research works (Ok et al., 2013; Solano et al., 2019; Koc-San et al., 2018), to obtain a comprehensive picture 361 

of the implemented approach, we digitized all the trees’ crowns following in the three analyzed study sites. 362 
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The evaluation metrics used in this work were described and used in several previous studies, each of which 363 

has given different descriptions. This aspect had already been clarified by Shufelt (1999) and Ok et al. (2013) 364 

which said that the specific definitions of this approach are subject to varying interpretations. Some of these 365 

works used an approach object-based (Ok et al., 2013; Ok and Ozdarici-Ok, 2018; Ozdarici-Ok, 2015; Solano 366 

et al., 2019) in which the validation took place by means of an overlap percentage threshold between the 367 

image objects, classified by the algorithm, and the reference segments. In these researches, the object-based 368 

evaluation approach was used in cases where the objects were clearly separable from each other and had 369 

well-defined edges. In our case, to cope with the heterogeneity of the tree crowns structure in some parts of 370 

the images, a pixel-based accuracy assessment was implemented. Superimposing trees’ crowns with the 371 

reference vector data, each pixel into one of the three distinct accuracy categories defined below (Goutte and 372 

Gaussier, 2005; Ok et al., 2013; Shufelt, 1999; Sokolova et al., 2006):  373 

 True Positive (TP): when a pixel is labeled as a tree by the classification algorithm and corresponds to a 374 

tree in the reference vector data (pixel correctly classified). 375 

 False Negative (FN): when a pixel is labeled in the reference vector data as a tree but it not labeled as a 376 

tree by the classifier (pixel not detected). 377 

 False Positive (FP): indicates a pixel labeled as a tree by the classifier, but that does not correspond to 378 

any of the pixels labeled by the reference vector data (pixel erroneously detected). 379 

To evaluate the accuracy, the number of TP, FP, and FN pixels were counted for each image. Then the Recall 380 

(r), Precision (p), F-score (F) and Branching Factor (BF) metrics are computed, using the following 381 

equations (eq. 4-5-6-7) (Goutte and Gaussier, 2005; Li et al., 2012; Ok et al., 2013; Shufelt, 1999; Sokolova 382 

et al., 2006): 383 

𝑟 =  
∥ 𝑇𝑃 ∥

∥ 𝑇𝑃 + 𝐹𝑁 ∥
     (eq. 4) 384 

𝑝 =  
∥ 𝑇𝑃 ∥

∥ 𝑇𝑃 + 𝐹𝑃 ∥
   (eq. 5) 385 

𝐹 = 2 ∙
𝑟∙𝑝

𝑟+𝑝
   (eq. 6) 386 

BF =  
∥ 𝐹𝑃 ∥

∥ 𝑇𝑃 ∥
  (eq. 7) 387 

The r parameter, measuring the fraction of pixels that were correctly denoted as object pixels by the 388 

algorithm, allows to represents the omission error (derived from 1-r). The parameter p is indicating the 389 

correctness of detected crowns, and then, in the same way, it is representative of the commission error 390 
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(1-p).  F measures the overall accuracy through the harmonic mean of commission and omission errors. The 391 

values of r, p, and F vary from 0 to 1. In order to obtain a higher F, both r and p should be high. For example, 392 

if all of the trees are correctly segmented, the values of r and p are 1, resulting in F being equal to 1 (Goutte 393 

and Gaussier, 2005; Li et al., 2012; Shufelt, 1999; Sokolova et al., 2006). The BF is a measure of the degree 394 

to which an algorithm over classifies background pixels with the target label (i.e., tree crown in our case). If 395 

the classifier never “over-delineates” the extent of any reference segment, its branching factor value is 0. If 396 

every classified pixel in the image scene is wrongly labeled, the BF is equal to 1 (Shufelt, 1999). All these 397 

measures taken together give a clear and objective picture of a classification algorithm performance (Shufelt, 398 

1999). 399 

4.   Results and discussions 400 

4.1 Geometric and radiometric characteristics 401 

All consecutive images of the three datasets were processed via aerial image triangulation with the geo-402 

tagged flight log and the GCPs’ coordinates through the software Pix4D Mapper. 3D densified point clouds, 403 

DSM, DTM, and for each band reflectance orthomosaics for each spectral band were generated. For DSM 404 

and orthomosaics, the obtained GSD was comprised between 4.1 and 4.3 cm pixel-1. As far as the method 405 

applied in the three datasets is concerned, the scenario is different, prior to proceeding with the classification 406 

step, for each study site, a correlation analysis between all input layers was performed through the Pearson’s 407 

correlation coefficient (rij) and implemented in a scatter plots matrix (Figg. 5, 6 and 7). Moreover, to have a 408 

comprehensive view of the spectral correlation between the six derived VIs, we analyzed it on the whole 409 

datasets as a correlation matrix (provided as supplementary material).  410 

Referring to the whole datasets, in the study site A1 (Fig. 5), high correlations of SAVI with NDVI (0.99), 411 

GNDVI (0.95), and GRNDVI (0.98) were evident. SAVI was very important in the classification of 412 

“buildings and roads” and then for classification of the “citrus trees” class, coupled with the CHM, and using 413 

a threshold value ≥ 0.7. NDRE showed a high correlation with GNDVI (0.89) and low correlations with 414 

NDVI (0.77), SAVI (0.77), and CVI (0.78).   415 

 416 
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 417 

 418 

Fig. 5 – Study site A1. Scatter plot matrix showing all bivariate relationships between the input layer bands. For 419 
each scatterplot, implemented using the 2D kernel density estimate (KDE) with a Gaussian function, the 420 
correlation line (in red) was provided. The main diagonal reports the histograms showing the frequency distribution 421 
of pixel values. In the upper half-matrix, Pearson’s correlation (R) coefficients for all pairwise combinations of 422 
variables are reported. 423 

 424 

Observing correlation matrices on input data of the study site A2 (Fig. 6), there were evident high correlations 425 

between the NIR bands and the RE (0.88) and between the two NIR bands (0.99). This last significant 426 

correlation led to the choice to exclude the NIR2 band as an input layer from the segmentation phase onwards.  427 

 428 
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 429 

 430 

Fig. 6 - Study site A2. Scatter plot matrix showing all bivariate relationships between the input layer bands. For 431 
each scatterplot, implemented using the 2D kernel density estimate (KDE) with a Gaussian function, the 432 
correlation line (in red) was provided. The main diagonal reports the histograms showing the frequency distribution 433 
of pixel values. In the upper half-matrix, Pearson’s correlation (R) coefficients for all pairwise combinations of 434 
variables are reported. 435 

 436 

In study site B (Fig. 7), examining the correlations of the input data, it is possible to highlight a high 437 

correlation between NIR and RE bands (0.88) and between the two NIR bands (0.99). Also, for this study 438 

site, the NIR 2 band was excluded as an input layer from the segmentation phase onwards. As far as the VIs 439 

are concerned, the correlation of SAVI was very high with GRNDVI (0.96) and NDVI (0.99), while there 440 

was no significant correlation of CVI with others VIs. 441 
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 443 

 444 

Fig. 7 - Study site B. Scatter plot matrix showing all bivariate relationships between the input layer bands. For 445 
each scatterplot, implemented using the 2D kernel density estimate (KDE) with a Gaussian function, the 446 
correlation line (in red) was provided. The main diagonal reports the histograms showing the frequency distribution 447 
of pixel values. In the upper half-matrix, Pearson’s correlation (R) coefficients for all pairwise combinations of 448 
variables are reported. 449 

 450 

CVI and SAVI were essential for the correct classification of the olive and bergamot species. NDRE showed 451 

a high correlation with GNDVI (0.93), NDVI (0.86), and SAVI (0.86). 452 

 453 
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4.2 Image classification, tree crown extraction and accuracy assessment 454 

The image classification was based on six land use classes, “citrus”, “olive”, buildings and roads”, “other 455 

vegetation”, “bare soil” and “shadows” (Fig. 8). In the study site A1, the identification of the class “buildings 456 

and roads” allowed to isolate from the rest of the image elements of no interest using SAVI. For the trees’ 457 

classification, the minimum height of the objects was identified by means of verification of CHM’s values. 458 

All trees were included in the “citrus” class by combining the SAVI index with CHM. The third class created, 459 

called “other vegetation”, included different tree species, distinguishable from citrus trees, as they are larger 460 

in canopy size. Other vegetation was identified based on CHM values higher than those used for citrus trees 461 

class. The part of the image excluded from the first three classes was assigned to the class “Bare soil”. 462 

 463 

 464 

Fig. 8 - Land use maps of the three study sites obtained applying the implemented image object classification 465 
workflow. A1(Clementine), A2 (Olive), and B (Bergamot and Olive). 466 

 467 

In the study site A2, the classification of “Olive trees” was performed using CVI combined with CHM in 468 

order to avoid the attribution of the class to some specific regions of grass sensitive to the used VI. About 469 

“Shadows”, the use of the NIR1 band allowed to easily classify them, while “Building and roads” were 470 

isolated from the rest of the image by combining the CHM with the SAVI. In the case of “Other vegetation”, 471 
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this class was easily identified based on a larger canopy size than the elements classified in “Olive trees”. 472 

Unclassified objects were included in the class “Bare soil”. 473 

The dataset B was the most complex, and the largest of the three analyzed study sites and is occupied by two 474 

species (olive and bergamot) that coexist in several parts of the orchard. Olive trees can be found separately 475 

from the bergamot orchard at the right end of the image, while in the remaining part, they act as a windbreak. 476 

The latter are not of the same age and consequently have different heights and sizes of the canopies. The 477 

same trees were not properly pruned, and, as a result, most of the canopies of larger trees touch on one or 478 

more sides. On the contrary, there are small trees (especially in the sectors 4-6 and 7) whose canopies reveal 479 

relevant portions of bare soil. Given this situation of heterogeneity characterizing the entire image in different 480 

aspects, it was decided to subdivide it by grouping the bergamot trees based on the layout scheme of the 481 

irrigation sectors that roughly correspond to the different plantation age. The differences in height between 482 

the trees within the individual sectors led to the decision to classify only using VIs. Initially, the entire tree 483 

vegetation was classified without distinction of species, using a temporary class, “Vegetation class”, 484 

operating by sectors with different threshold values of SAVI. Depending on the presence of bare soil or grass, 485 

a value of 1 or 0, respectively, was set as factor L in SAVI’s formula. Then, the isolation of the olive trees 486 

from the rest of the orchard’s trees was done using the SAVI (L=1) in the sector (1) where olive trees have a 487 

regular plantation scheme and the CVI where olive trees served as a windbreak barrier (2-5, and 7).  488 

The proposed method, tested on the three datasets, is based mainly on the identification of characteristics of 489 

spectral response that allows enhancing the detection and classification of an object of interest (citrus trees 490 

in dataset A1, olive trees in dataset A2, and both species in dataset B). Further measures could provide useful 491 

information on the classification step but were not considered since, as explained, for example, in Laliberte 492 

and Rango (2009), it is time-consuming to compute several features during the object-based analysis. This 493 

method, which has proved effective in datasets of different complexity, finds its strong point is the speed of 494 

execution and on its repeatability to other different crops with few adjustments. As far as the processing 495 

speed is concerned, the net of the time needed to obtain the orthomosaics, the time is taken in total for the 496 

three datasets, was 4 hours. Of which one hour was used for each of the first two datasets, A1 and A2, 497 

including visual analysis of images, followed by segmentation and classification. The remaining time was 498 

requested by the dataset B. Indeed, the time requested for the manual digitizing of the reference canopies 499 

(explained below), and for the verification of the accuracy of the results, is not added to the total computation 500 
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time of the entire process. As for the repeatability of the proposed method in other contexts, it is worthy of 501 

interest to consider the obtained accuracy on the three datasets in the crown extraction phase. Results showed 502 

that most of olive and bergamot's trees were correctly classified and extracted in all the three analyzed study 503 

sites. . 504 

Concerning the obtained accuracy, Fig. 9 shows the extracted trees when they were overlaid on the reference 505 

data, and provided for each dataset. The green color (TP) indicates the correctly detected trees’ crowns 506 

according to the manual digitization, and that represents the reference data. The yellow color (FP) denotes 507 

crowns that were found by the algorithm, where there was no tree in the reference data. The red color (FN) 508 

represents missing crowns, i.e., where the algorithm did not detect tree canopies or parts of trees, and which 509 

were instead present in the reference data. As can be found analyzing the results reported in Tab. 4, in study 510 

site A1, the value of r (omission error) is 0.80, while the p value (commission error) is 0.94. The F that takes 511 

into account both r and p is 0.86. In the study site A2, where the classification concerned only olive trees, r 512 

is 0.81, and p is 0.89., while the F is 0.85. In the study site B, the values of r, p, and F are 0.96 (F-score of 513 

bergamot trees is 0.91 and that of olive trees 0.85), 0.84 and 0.90, respectively.  514 

Analyzing the precision in identifying and extracting the trees’ canopies, the best results in terms of 515 

percentage of TP pixels and F, among all the three analyzed datasets, were obtained in the study site B 516 

(81.66% and 0.90, respectively). The percentage of FP was also the highest of the three datasets (15.22%) 517 

and is mainly found in zones where there was a short distance between canopies, and there was, at the same 518 

time, a thick layer of grass. The percentage of FN was the lowest (3.12%) concerning the failure of the 519 

classifier in identifying parts of canopies and some trees on edge the image, at the top of the image, where 520 

there is, of course, a distorting effect, and some trees in sector 3, where some tiny trees can be found. 521 

FN pixels represent 18.5% and 16.65% in the study sites A1 and A2, respectively. This is due to both the 522 

sporadic presence of canopies identified by the classifier and the error caused by the surrounding grass of 523 

background in identifying the canopy along the edges. As shown in Koc-San et al. (2018), it is difficult when 524 

the background’s spectral values are similar to those of trees (i.e., grass). Moreover, in the study site A2, 525 

considering the parameters used for the classification (CHM > 1.5 and CVI > 1.5), tiny olive trees with a low 526 

vegetation vigor, were not correctly identified and classified. 527 

Given the complexity and heterogeneity of the classified orchards and considering that we adopted a pixel-528 

based accuracy assessment, the obtained results can undoubtedly be considered as very satisfactory.  529 
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 530 

 531 

 532 

Fig. 9 – Maps showing a visual picture of the obtained accuracy in the analyzed three study sites [A1 (Clementine), 533 
A2 (Olive) and B (Bergamot and Olive)], using the onscreen digitized canopy boundaries as reference data. 534 
Reference crowns (Rc) are in blue, true positives (TP) are in green, false negatives (FN) in red, and false positives 535 
(FP) in yellow. 536 

 537 

Tab. 4 - Results and accuracy indicators of the trees’ crowns extraction (TP, true positives; FP, false positives; 538 
FN, false negatives; r, recall; p, precision; branching factor, BF). 539 

Study site *TP *FP *FN r p BF F-score 

A1 
5,600,825 

(76.75%) 

345,273 

(4.75%) 

1,350,538 

(18.5%) 
0.80 0.94 0.06 0.86 

A2 
2,093,729 

(74.25%) 

256,891 

(9.10%) 

470,206 

(16.65%) 
0.81 0.89 0.12 0.85 

B (Bergamot) 
10,018,331 

(83.3%) 

1,612,542 

(13.4%) 

397,518 

(3.3%) 
0.96 0.86 0.16 0.91 

B (olive) 
2,021,941 

(74.47%) 

631,225 

(23.25%) 

61,879 

(2.28%) 
0.97 0.76 0.31 0.85 

B (overall) 
12,040,272 
(81.66%) 

2,243,767 
(15.22%) 

459,397 
(3.12%) 

0.96 0.84 0.18 0.90 

   * TP, FP, and FN are expressed in numbers of pixels. 540 
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 541 

Moreover, it appears worth of interest to highlight that the TP category (i.e., crowns correctly detected and 542 

extracted), contains only pixels correctly classified, differently from an object-based accuracy assessment. In 543 

this latter case, all polygons, whose overlap area with the reference area is higher than a minimum threshold 544 

value (i.e., Ok and Ozdarici-Ok, 2018; Rutzinger et al., 2009), are classified as TPs, therefore also containing 545 

pixels not correctly classified. Moreover, also referring to the F-score observed in the study site A2 (0.85), 546 

and comparing these results with those reported by other scholars (Ok and Ozdarici-Ok, 2018; Ozdarici-Ok, 547 

2015), in more regular and well-managed orchards, our results can be considered very promising. The same 548 

consideration can be made by comparing the results of this work with those obtained by using other methods 549 

including convolutional neural networks, LiDAR’s data and algorithms based on the use of DSMs (Csillik et 550 

al., 2018; Li et al., 2012; Mohan et al., 2017; Ok and Ozdarici-Ok, 2018).  551 

On the other hand, the results obtained in study site B (the more complex among the three analyzed), with an 552 

overall F-score of 0.90 and with an FN comprised between 2.28% and 3.3%, strongly corroborated our 553 

proposed methodology. Our results suggest that our proposed workflow can allow us to classify and extract 554 

trees’ crowns in an easier, faster, and more effective way in well-managed orchards.  555 

To better understand the results of the trees’ canopy extraction, we analyzed the average spectral profile of 556 

reference crowns (Rc), TP, FP, and FN (Fig. 10).  557 

 558 
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 559 

Fig. 10 - Meanspectral profiles of reference crowns (Rc) (in blue), true positives (TP) (in green), false negatives 560 
(FN) (in red), and false positives (FP) (in yellow) in the analyzed three study sites, A1 (Clementine), A2 (Olive) 561 
and B (Bergamot and Olive). 562 

 563 

In study site A1, FP has the same mean radiometric profile of TP and Rc, while TP differs only in the NIR1 564 

band. Similarly, in the study site A2, the spectral behavior of FN and FP is the same and very near to that of 565 

TP and Rc. Therefore, these objects were easily misclassified. Analyzing the mean spectral behavior in the 566 

study site B, the situation is quite different. FN and FP have the same spectral behavior but further to that of 567 

TP and Rc, compared to study sites A1 and A2. Several of them are located where the bergamot and olive 568 

tree canopies touch each other and on the border of the study side, where the number of overlapping images 569 

of the orthomosaic was lower than the rest of the image. 570 

4.3 Vegetation indices (VIs) and vigor maps 571 

Vigor maps were produced after a correlation analysis of the six VIs and only referring to olive and citrus 572 

trees (Fig. 11).  573 

 574 
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 575 

Fig. 11 - Correlation matrix between the six selected vegetation indices (VIs) implemented only using the class of 576 
trees (bergamot, clementine, and olive) as input data. 577 

 578 

For each study site, two vigor maps were produced (Figs. 12 and 13). Observing correlation matrices on VIs 579 

applied on trees’ crowns in the study case A1, a high correlation there was between, GNDVI and GRNDVI 580 

(0.97), GNDVI and NDRE (0.91) while the correlation is not very high between GNDVI and NDVI (0.79). 581 

NDVI corresponds to SAVI (1) but is low correlated with NDRE (0.59). For these reasons, NDRE and N 582 

were chosen for the production of vigor maps of the orchards. 583 

In the study-site A1, the NDVI map (Fig. 12) highlights the presence of two distinct zones of the citrus 584 

orchard. One where the clementine trees show a reduced vegetative vigor and with index values ranging 585 

between 0.4 and 0.65 and one with NDVI values, comprised between 0.7 and 0.9, shows a better tree vigor. 586 

NDRE (Fig. 13) takes average vigor values between 0.2 and 0.3 in most parts of the citrus orchard. The 587 

lowest values, highlighted in red in the vigor maps (Figg. 12 and 13), are found where, being the foliage less 588 

dense, the soil of the background appears. 589 
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As for the case study A2 observing correlation matrices on VIs applied on trees’ crowns, there were evident 590 

high correlations between the NDVI, GNDVI, and GRNDVI. At the same time, SAVI and CVI had no 591 

significant correlations with the other VIs. The olive orchard was classified using the CVI coupled with 592 

CHM, as in the case of study site A1, while shadows and buildings were identified using the NIR band and 593 

the SAVI coupled with the CHM. GNDVI was a good correlation with NDRE (0.89), NDVI (0.89), SAVI 594 

(0.89), and a very high correlation with GRNDVI (0.98). SAVI was a high correlation with GNDVI (0.89) 595 

and GRNDVI (0.96) and NDVI (1). NDRE showed a high correlation with GNDVI (0.89) and low 596 

correlations with NDVI (0.77), SAVI (0.77), and CVI (0.76).  As in the previous dataset, NDRE and NDVI 597 

were chosen to map vigor in this study site. 598 

The NDVI vigor map (Fig. 12) showed that the vegetative status of the olive grove is not good, with values 599 

ranging from 0.15 to 0.7. Therefore, highlighting the vegetative stress of this orchard, planted in unsuitable 600 

land characterized by a very clayey and compact soil. The NDRE vigor map (Fig. 13), on the other hand, 601 

assuming low to medium values, ranging between 0.2 and 0.3, confirms what has already been highlighted 602 

by the NDVI index.  603 

Considering correlation matrices on VIs applied on trees’ crowns in case study B, similar correlations to 604 

those concerning the indices applied on the entire scene were verified with regard to the NDVI, but there is 605 

an apparent low correlation between NDRE and NDVI (0.63). Therefore these two indices were chosen to 606 

map vigor. The NDVI vigor map (Fig. 12) still proves to be suitable for monitoring the health status of the 607 

vegetation. In particular, in the lower part of the image and on the right, where both bergamot and olive trees 608 

are closer to the sea, and where the vegetative vigor is lower than the rest of the image, the NDVI assumed 609 

values between 0.15 and 0.5. The highest values, as well shown on the map, can be found in sector 5, with 610 

values comprised between 0.75 and 0.9.  611 

 612 
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 613 

Fig. 12 - Vegetative vigor maps of the three analyzed study sites [A1 (Clementine), A2 (Olive), and B (Bergamot 614 
and Olive)] based on the Normalized Difference Vegetation Index (NDVI) values.  615 

 616 

Looking at the NDRE (Fig. 13) map, the contrast between the vegetative vigor of olive trees and bergamot 617 

trees is evident. While olive trees are characterized by NDRE values from 0.25 and up, the highest value for 618 

bergamot trees is 0.25 and can be found only in sectors 5 and 8. As also shown by the NDVI, the lowest 619 

values of NDRE are in the lower part of sector 4 and in the middle between sectors 2 and 1, which are the 620 

areas closest to the sea. 621 

Besides, two aspects cannot be overlooked. The first one concerns the size of the analyzed study sites, 622 

comprised from 4.6 to 7.9 ha, and whose surface is comparable to operational conditions. The second aspect 623 

also concerns an operational issue. The time needed for the complete implementation of our proposed 624 

workflow, from the on-field data collection to the obtaining of vigor maps, can be estimated in one working 625 

day of two good skilled operators in geomatics and computer image processing. All data processing was 626 

implemented in a workstation with the following characteristics: OS MS Windows 10 Pro, CPU Intel dual 627 

Xeon E5-2687W v2, 64 GB RAM DDR3 1866 MHz, GPU NVIDIA K6000. 628 

 629 
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 630 

 631 

Fig. 13 - Vegetative vigor maps of the three analyzed study sites [A1 (Clementine), A2 (Olive), and B (Bergamot 632 
and Olive)] based on the Normalized Difference Red Edge Vegetation Index (NDRE) values. 633 

 634 

5. Conclusions 635 

In the present research work, we propose a quick and reliable semi-automatic workflow implemented to 636 

process multispectral UAV imagery and aimed at the detection and extraction of olive and citrus trees’ 637 

crowns in the framework of precision agriculture PA. As confirmed by Solano et al. (2019), in the GEOBIA 638 

approach, the extraction of the trees takes advantage in orchards characterized by regular planting patterns 639 

with minimal overlap between the canopies. In our work, we demonstrated that the high spatial resolution of 640 

UAV allows overcoming these limitations. Moreover, the use of a UAV platform, coupled with a 641 

multispectral camera as Tetracam µ-MCA06 Snap, has proved to be flexible and reliable in obtaining the 642 

photogrammetric reconstruction at the farming scale. Therefore, using high-resolution contents from UAV 643 

data, more focused analyses were performed only on the cultivated areas, excluding ground and shadows, in 644 

order to obtain a reasonable reconstruction of the orchards and the description of the crop conditions. 645 
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On the other hand, to obtain good results, good quality of UAV field surveys is a need. As highlighted in 646 

discussing the obtained accuracy, the correct UAV flight planning has a crucial role in obtaining good results, 647 

and the same is true of measures taken in the field, such as the laying of GCP. In our case, referring to study 648 

sites A2 and B, a higher buffer beyond the orchard boundary could have improved the accuracy in extracting 649 

the trees’ crowns. In this regard, we suggest providing a buffer distance of at least 20 m outside the surveyed 650 

area. In the proposed workflow, we focused our attention also in simplifying the classification step and on 651 

the speed of execution. First, visual interpretation is applied to UAV imagery to acquire prior knowledge of 652 

the imagery (Ma et al., 2015). Concerning the segmentation step, scale parameters were chosen for generating 653 

segmented objects that represent real objects (Blaschke, 2010), single canopies in our case. As far as the 654 

classification is concerned, we proposed an unsupervised approach that has the advantage not to provide a 655 

training phase, and therefore the need for the selection of training samples set for training the classifier (Ma 656 

et al., 2015). The novelty of the proposed approach relies, therefore, on its speed, replicability, and reliability 657 

demonstrated with promising results in three different datasets. Agricultural environments may be more 658 

uniform than natural ones (Csillik et al., 2018). However, the present work has, among other things, dealt 659 

with the application of the proposed approach on a case (especially in dataset B) of heterogeneous tree 660 

orchards. The heterogeneity concerns different tree plantation distances and composition, different crop 661 

management, and different tree age, height, and crown diameters, therefore, resulting in the high spatial 662 

variability of the scene. 663 

Following our promising results, we think that our methodology can be used in different orchards worldwide, 664 

setting the segmentation parameters properly, and after a spectral analysis. As also demonstrated by our 665 

experience and by those we cited in this paper, the use of topographic data (DSM, CHM), helps to improve 666 

the obtained results. Indeed, in implementing our workflow, we took into account its operational application. 667 

It appears worth of interest to highlights that it requests a working day of two good skilled operators in 668 

geomatics and image processing, from the on-field data collection to the obtaining of vigor maps. In this 669 

regard, for its application in different conditions of those analyzed in the present research, the time needed 670 

for its complete implementation can be estimated in one working day of two good skilled operators in 671 

geomatics and image processing. These characteristics are in line with the need of the PA to provide 672 

information, in a short space of time, useful to guide farmers' decisions. 673 

 674 
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Figure captions 912 

Fig. 1. Geographic location and descriptive photos of the three study sites, A1 (Clementine), A2 (Olive) and B 913 
(Bergamot and olive) orchard. 914 

Fig. 2  - Workflow of the proposed methodology for the vegetation monitoring at tree crown detail from unmanned 915 
aerial vehicles (UAVs) multispectral imagery in heterogeneous citrus and olive orchards. 916 

Fig. 3. Upper side (1), the UAV Multirotor G4 Surveying-Robot (Service Drone GmbH) equipped with Tetracam 917 
µ-MCA06 snap multispectral camera; camera mounted on UAV gimbal and ready to capture images (2). Lower 918 
side (3), a graphical scheme showing how the UAV takes into account the 3D morphology of the surveyed area, 919 
guaranteeing a constant height of flight and (4) a 3D view of a flight plan. 920 

Fig. 4 - Map showing the study site B with, highlighted in red, the ten parcels identified according to the irrigation 921 
scheme arranged for the bergamot orchard. 922 

Fig. 5 – Study site A1. Scatter plot matrix showing all bivariate relationships between the input layer bands. For 923 
each scatterplot, implemented using the 2D kernel density estimate (KDE) with a Gaussian function, the 924 
correlation line (in red) was provided. The main diagonal reports the histograms showing the frequency distribution 925 
of pixel values while, in the upper half-matrix, Pearson’s correlation (R) coefficients for all pairwise combinations 926 
of variables are reported. 927 

Fig. 6 - Study site A2. Scatter plot matrix showing all bivariate relationships between the input layer bands. For 928 
each scatterplot, implemented using the 2D kernel density estimate (KDE) with a Gaussian function, the 929 
correlation line (in red) was provided. The main diagonal reports the histograms showing the frequency distribution 930 
of pixel values while, in the upper half-matrix, Pearson’s correlation (R) coefficients for all pairwise combinations 931 
of variables are reported. 932 

Fig. 7 - Study site B. Scatter plot matrix showing all bivariate relationships between the input layer bands. For 933 
each scatterplot, implemented using the 2D kernel density estimate (KDE) with a Gaussian function, the 934 
correlation line (in red) was provided. The main diagonal reports the histograms showing the frequency distribution 935 
of pixel values while, in the upper half-matrix, Pearson’s correlation (R) coefficients for all pairwise combinations 936 
of variables are reported. 937 

Fig. 8 - Land use maps of the three study sites obtained applying the implemented image object classification 938 
workflow. A1(Clementine), A2 (Olive) and B (Bergamot and Olive). 939 

Fig. 9 – Maps showing a visual picture of the obtained accuracy in the analyzed three study sites [A1 (Clementine), 940 
A2 (Olive) and B (Bergamot and Olive)], using the onscreen digitized canopy boundaries as reference data. 941 
Reference crowns (Rc) are in blue, true positives (TP) are in green, false negatives (FN) in red, and false positives 942 
(FP) in yellow. 943 

Fig. 10 - Average spectral profiles of reference crowns (Rc) (in blue), true positives (TP) (in green), false negatives 944 
(FN) (in red), and false positives (FP) (in yellow) in the analyzed three study sites, A1 (Clementine), A2 (Olive) 945 
and B (Bergamot and Olive). 946 

Fig. 11 - Correlation matrix between the six selected vegetation indices (VIs) implemented only using the class of 947 
trees (bergamot, clementine and olive) as input data. 948 

Fig. 12 - Vegetative vigour maps of the three analyzed study site [A1 (Clementine), A2 (Olive) and B (Bergamot 949 
and Olive)] based on the Soil-Adjusted Vegetation Index (SAVI) values. 950 

Fig. 13 - Vegetative vigour maps of the three analyzed study site [A1 (Clementine), A2 (Olive) and B (Bergamot 951 
and Olive)] based on the Normalized Difference Red Edge Vegetation Index (NDRE) values.  952 
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Table captions 953 

Tab. 1. Tetracam µ-MCA06 snap (Global shutter) sensor characteristics bands specification (wavelength and 954 

bandwidth). 955 

Tab. 2 - Flight and UAV dataset characteristics. 956 

Tab. 3 - Formulation of the six vegetation indices (VIs) used in the present research. 957 

Tab. 4 - Results and accuracy indicators of the trees’ crowns extraction (TP, true positives; FP, false positives; 958 

FN, false negatives; r, recall; p, precision; branching factor, BF). 959 
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