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Abstract. Electromagnetic metamaterials (MMs) are artificial composites that exhibit exceptional physical
characteristics. Their design, which relies on the retrieving of the effective medium parameters, is usually
a very time-consuming process because of the high number of full-wave simulations involved in this task.
To alleviate the related computational burden, we propose to use a Multi-fidelity Surrogate Modelling
(MFSM) approach. Numerical results demonstrate that this methodology turns out to be promising for a
quick evaluation of the scattering parameters from which the effective constitutive parameters of a MM
are retrieved, as shown by two numerical examples.
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1 Introduction

Because of their uncommon physical characteristics and
variety of potential applications, a huge research activ-
ity about electromagnetic Metamaterials (MMs) has been
carried out by the scientific community during the last
decades [1], [2]. In essence, a MM consists of a lattice
of elementary inclusions hosted in a dielectric medium
[1–4]. Being these objects (and their mutual distances) far
smaller than the wavelength of the outer excitation field,
a MM is usually modelled as a continuous media charac-
terized by an effective electrical permittivity εeff (f) and
a magnetic permeability µeff (f) [1], [2], despite the limi-
tation of this approach [5].

The design process of a MM, which consists of as-
signing it a well-defined effective medium parameters fre-
quency behaviour, is carried out through the optimiza-
tion of a suitable cost function [6–10]. By recovering the
effective constitutive parameters for a MM through the
knowledge of related scattering matrix, its unit cell geom-
etry is shaped until an extremum for the cost function is
reached [6–10]. Very recently, to overcome the computa-
tional burden usually involved in this process, the Surro-
gate Model (SM) paradigm has been proposed [10], [11].
A SM is a reasonably accurate and computationally light
numerical model that can be used instead of the exact,
but computationally expensive, numerical model derived
from the physics of the phenomenon under analysis in all
those design tasks where a great number of simulations are
required [12], [13]. Even if running a physical model at a

high level of precision and exploiting the data it provides,
it is a possible strategy to build a SM, often the generation
of these data results to be very time-consuming [13]. The
Multi-Fidelity Surrogate Modelling approach (MFSM) al-
lows combining the requirement to generate data for train-
ing a SM with a reduced computational effort (at this pur-
pose running with different levels of accuracy the physical
model) with its modelling precision [13].

In this paper, we investigate the performances of the
MFSM approach in the perspective of a quick evaluation
of the scattering parameters for a MM in order to speed
up the overall computation process related to the compu-
tation of its effective constitutive parameters µeff (f) and
εeff (f). The paper is organized as follows: in section 2,
we briefly discuss of the SM techniques by using Kernel
methods [14]. The choice to use kernels as SMs in this
work is mainly due to their ability to model in a more
effective way the non-linear input-output relationship oc-
curring in complex devices and systems, compared with
other SM techniques, and by the fact that they are less
prone to the curse of dimensionality [14]. In section 3, an
account of the MFSM approach is given. Numerical re-
sults are shown in section 4. Finally, in section 5 some
considerations are drawn.

2 Surrogate Modelling and Kernels

In microwave and optical engineering, procedures as sta-
tistical analysis, yield-driven design, parametric design,
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Table 1. Kernel and assigned parameters used in this study

Name Kernel Parameters

Gaussian exp(−ε2||x− x′||2) ε = 3.0

Matérn
Ka
d/2−β(ε||x−x′||)

(ε||x−x′||)d/2− ε = 4.0, β = 2
aKd/2−β is the modified Bessel function [14].

optimization require a high number of accurate full-wave
numerical computations. Although the modern micropro-
cessor technology provides more and more powerful CPUs,
the above processes very frequently represent a bottle-
neck towards the efficient design of high-performance sys-
tems and devices [12]. In this frame of reference, the Sur-
rogate Modelling approach is useful to reduce the CPU
time involved in these tasks, by replacing the accurate
high-fidelity (HF) simulations based on Maxwell equa-
tions discretization by projective methods (i.e. Method
of Moments, Finite Element Method, Finite Difference
Method) [16] with a suitable numerical model, the so-
called Surrogate Model (SM), computationally lighter and
faster to evaluate [12], [13]. Neural networks, fuzzy neu-
ral networks, linear regression models, and Kriging meth-
ods [17–21] are examples of SMs usually employed to this
aim.

Kernels methods, exploited in a number of fields rang-
ing from approximation theory to machine learning [14],
provide a more general framework in which the Surrogate
Modelling approach can be set, looking at it like a scat-
tered data fitting problem, i.e. given the set {xi, yi}Ni=1
where the elements xi ∈ Rd are called data sites and the
elements yi ∈ R are called data values (which represent
the set of the input-output pairs related to the physical
model computer simulations runs required to analyze a
given system or device), the objective is to find a func-
tional relationship P(·) such that P(xi) = yi, i ∈ 1, . . . , N .
Taking into account of the result of the Haar-Mairhubert-
Curtis theorem [14], P(·) can be written as a linear com-
bination of suitable basis functions, K(·,x1), . . . ,K(·,xN ),
which depend from the data sites, named kernel functions,
as

P(x) =

N∑
p=1

αpK(x,xp) x ∈ Rd (1)

Evaluating the expansion coefficients as α = K−1y, with
(K)i,p = K(xp,xi) and y = (y1 · · · , yN )t, we can write the
kernel interpolant (1) as

P(x) = ξt(x)K−1y (2)

with ξ(x)t = (K(x,x1), . . . ,K(x,xN )), obtaining, in this
way, a model for the HF data input-output relationship.
For a deeper discussion of kernel methods and surrogate
modelling the reader can refer to [14] and references within.

3 The Multi-fidelity Surrogate Modelling
approach

To provide a response comparable with that of the physi-
cal model we want to emulate, a SM often need of a large
amount of HF data, often heavy to obtain in term of CPU
time. The Multi-Fidelity Surrogate Modelling (MFSM)
approach allows to alleviate this problem by combining
between them a large amount of low fidelity (LF) data,
computed in a fast way running the physical model with
a low level of resolution, with few HF samples, this time
evaluated by using a high level of resolution, in a reason-
able CPU time [13].

Two are the possible approaches for realizing an MFSM:
the deterministic and the probabilistic one. Following [13],
the MFSM based deterministic approach can be concisely
described through a two-step procedure. In the first step,
two sets of data are collected: the set of LF data TSLF =
{xi, yLFi }Ni=1 and the set of HF data TSHF = {xi, yHFi }Mi=1
(with M � N), which are obtained by executing the com-
putational model based on the physical model in a low-
fidelity (LF) and a high-fidelity (HF) modality (the dif-
ferent levels of fidelity can be usually obtained acting on
the level of discretization of the computational domain).
At this stage, a SM, denoted in the following as SMLF ,
can be built using the TSLF data, if necessary [10]. In the
second step, a suitable SM able to correct the response
provided by the LF model (or by the SMLF previously
developed), is developed. This can be done by using the
dataset built on the difference among yLFi and yHFi cor-
responding to the points x(i) ∈ TSLF

⋂
TSHF . In other

words, we have that

HF(x) = SMLF (x) + δ(x) (3)

thus realizing the so-called additive correction multi-fidelity
model. The SM δ(x) is called additive function or discrep-
ancy function. Alternatively, the ratio between yHFi and
yLFi corresponding to the points x(i) ∈ TSLF

⋂
TSHF , can

be exploited. Accordingly, we have that

HF(x) = ρ(x)SMLF (x) (4)

thus realizing the so-called multiplicative correction multi-
fidelity model. The SM ρ(x) is called multiplicative func-
tion. A comprehensive correction approach

Fig. 1. Unit cell layout for the µ-negative MM composed by
square ring resonators from [23]: outer ring length = 3 mm;
rings widths = 0.25 mm; gap size = 0.5 mm; distance between
rings = 0.5 mm. Substrate characteristics: εr = 3.84, thickness
= 0.25 mm.
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HF(x) = ρ(x)SMLF (x) + δ(x) (5)

where both ρ(x), and δ(x), are employed, is also possible.

Probabilistic approach includes Bayesian and Co-Kriging
techniques [9]. The reader interested to these last methods
can refer to [12], [22] and references within.
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Fig. 2. Average modelling error versus the number of high
fidelity data points exploited to build the discrepancy function
δ(f) for the MFSM calculations of the scattering parameters of
the µ-negative MM of Fig.(1): red curve: GRNN; black curve:
Matérn kernel; blue curve: Gaussian kernel (yellow curve: Low
fidelity average modelling error).

Table 2. Scattering parameters average modelling error using
np = 35 HF samples for the µ negative MM of Fig.1.

Real Part - S11
LF 8.304%

MF GRNN Matérn Gaussian
Add. 4.813% 3.084% 3.223%
Mul. 13.182% 13.623% 16.055%
Dir. 10.711% 4.545% 12.085%

Imaginary Part - S11
LF 19.143%

MF GRNN Matérn Gaussian
Add. 10.332% 5.268% 5.563%
Mul. 14.974% 11.163% 15.197%
Dir. 24.384% 10.849% 16.729%

Real Part - S21
LF 9.718%

MF GRNN Matérn Gaussian
Add. 5.860% 3.783% 4.049%
Mul. 7.038% 5.998% 12.094%
Dir. 16.73% 4.302% 11.583%

Imaginary Part - S21
LF 10.398%

MF GRNN Matérn Gaussian
Add. 5.639% 2.831% 2.957%
Mul. 9.925% 8.185% 11.695%
Dir. 13.287% 6.923% 13.41%

4 Results

In this section, numerical results relevant to the perfor-
mances provided by an MFSM approach based on the
additive correction compared with those provided by the
multiplicative correction, and by a standard SM made
up exploiting a suitable set of high fidelity data (HF-
SM), are given. The Matérn and the Gaussian kernels [14]
have been selected to implement the discrepancy function
δ(f), the multiplicative function ρ(f), and the HF-SMs
exploited in our study. Their functional expression and
the values of the related parameters are reported in Ta-
ble 1 1. Furthermore, a more classical approach based on
neural network theory, by using a generalized regression
neural network (GRNN) (which is commonly employed in
approximation theory) [24], has been exploited, and its
performances compared with those of the kernels above
mentioned. The Kramers-Kronig retrieving algorithm de-
scribed in [15] has been used to recover the effective consti-
tutive parameters εeff (f), µeff (f) from the knowledge of
the scattering parameters for all the MMs structures con-
sidered in this work. All the numerical simulations have
been carried out by using the Matlab environment and
the toolbox package developed in [16]. The average mod-
elling error measure

‖R̄(f)− R̂(f)‖
‖R̄(f)‖

%, (6)

1 ε is the shape parameter, β controls the kernel smoothness
and d is the space dimension [14] (d=1 in this case) [14].
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Fig. 3. Real and imaginary parts of the scattering parame-
ters over the frequency range from 0 Hz to 20 GHz for the µ-
negative MM of Fig.(1): top left side: Re(S11), top right side:
Im(S11). Bottom left side: Re(S21), bottom right side: Im(S21).
Red line: High fidelity result, Blue line: low fidelity result, black
diamond: additive correction based MFSM result.

with R̄(f) and R̂(f) denoting the HF and the MFSM (or
the SM) response, respectively, has been used as criterion
to assess the quality of the different approaches considered
in this work [22].

As a first case, we have considered a µ-negative MM
composed by the periodic arrangement of square split ring
resonators [23] (Fig. (1) reports the unit cell geometrical
dimensions and the substrate dielectric characteristics).
The structure has been simulated using the software An-
sys Hfss, running on an Intel Xeon DP E5405 Quad Core
2.0 based workstation, with 20 GB of main memory. The
scattering parameters S11, S21 have been computed in the
frequency range from 0 Hz to 20 GHz. Following what has
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Fig. 4. Retrieved effective µeff (f) for the µ-negative MM of
Fig.(1)

been stated in section 3, the different levels of fidelity has
been obtained using different mesh sizes: 2505 tetrahedra
for the LF case, and 32051 tetrahedra for the HF case, re-
spectively. Fig. (2) shows the behaviour of the scattering
parameters average modelling error as a function of the
number np of high fidelity data points (evenly sampled
over the considered frequency range) exploited to build
the discrepancy function δ(f) employed in (3). Although
the average error decreases as the number of high fidelity
points increases, it can be noticed that this trend results to
be quite erratic for all the modality of implementation for
the discrepancy function δ(f) (the exploited kernels’ pa-
rameters are reported in Table 1, whereas the spread fac-
tor for the GRNN was 0.9 [24]). Setting a threshold not ex-
ceeding the 6% as a tolerable value for the overall average
modelling error (this value represents a trade-off between
the obtained accuracy and the time needed to evaluate
the HP samples required to train δ(f)), the best result for
both for the real and the imaginary part of the scatter-
ing parameters has been provided by the Matérn kernel,
in correspondence of a number of HF samples np = 35.
Table 2 shows the comparison among the scattering pa-
rameters average modelling errors provided by both the
additive and the multiplicative MFSMs and by the HF-
SMs developed in this study (these values are reported in
the rows labelled with ”Add”, ”Mul”, and ”Dir.”, respec-
tively, of table 2). The superiority of the additive MFSM
approach by using the Matérn kernel is apparent. Fig. (3)
show a graphical comparison among the real and imagi-
nary parts of the scattering parameters computed by both
the LF and HF surrogate models, and by the additive
MFSM model (all based on the Matérn kernel) exploit-
ing Np = 400 points over the frequency range from 0 Hz
to 20 GHz. It can be noticed as the MFSM results are
in very good agreement with the HF ones but obtained
with a computational time tMFSM = 4 min. and 22 sec.
(which is given by the sum between the computational
time involved by the LF computation, tLF = 32 sec., and
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Fig. 5. Three unit cells layout for the double negative MM
slab from [15]: outer ring resonator length = 2.2 mm; rings
widths = 0.2 mm; gap size = 0.3 mm; distance between rings
= 0.15 mm. Wire width = 0,14 mm. Substrate characteristics:
εr = 4.4, thickness = 0.75 mm.

the time required to set up the discrepancy function δ(f),
tδ = 3.50 min.) that is more than halved if compared with
the time tHF = 11 min. required by the HF computation
(the speed-up factor is equal to tHF

tMFSM
≈ 2.58). Fig. (4)

shows a graphical comparison between the real and the
imaginary part of the retrieved µeff (f), in a frequency
band around the first resonance, by using the LF, the HF
and the MFSM computed scattering parameters, respec-
tively. As it can be observed, the MFSM result is better
closer to the HF equivalent permittivity than the LF one.

As the second case of study, we have considered a
double-negative MM realized by the periodical arrange-
ment of three split-ring resonators and three metallic wires
reciprocally interleaved [15] (the geometrical dimensions
and the substrate dielectric characteristics are reported in
Fig. (5)). Considering that this MM structure was three
times thicker than the previous one [15], the different levels
of fidelity have been realized by using, in this case, a num-

Table 3. Scattering parameters average modelling error using
np = 81 HF samples for the double negative MM of Fig.5.

Real Part - S11
LF 18.527%

MF GRNN Matérn Gaussian
Add. 14.655% 1.312% 1.506%
Mul. 19.788% 13.407% 15.359%
Dir. 18.065% 2.319% 2.279%

Imaginary Part - S11
LF 27.517%

MF GRNN Matérn Gaussian
Add. 22.075% 5.547% 4.807%
Mul. 119.131% 109.945% 134.256%
Dir. 27.094% 2.437% 2.846%

Real Part - S21
LF 25.7756%

MF GRNN Matérn Gaussian
Add. 20.814% 1.384% 2.293%
Mul. 51.876% 26.042% 29.068%
Dir. 24.612% 2.045% 2.367%

Imaginary Part - S21
LF 24.985%

MF GRNN Matérn Gaussian
Add. 20.617% 5.112% 4.456%
Mul. 201.486% 123.533% 168.325%
Dir. 23.863% 3.081% 2.951%
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Fig. 6. Average modelling error versus the number of high
fidelity data points exploited to build the discrepancy func-
tion δ(f) for the MFSM calculations of the scattering parame-
ters of the double negative MM of Fig. (5): red curve: GRNN;
black curve: Matérn kernel; blue curve: Gaussian kernel (yellow
curve: Low fidelity average modelling error).

ber of tetrahedra far larger than in previous case (58548
tetrahedra for the LF simulations and 198727 tetrahedra
for the HF simulations, respectively). Fig.(6) reports the
behaviour of the scattering parameters average modelling
error. We can note that it has a more regular trend com-
pared with that of Fig.(2). In correspondence of the value
np = 81, the Gaussian kernel provides the best trade-off
result in term of overall average modelling error (also for
this MM structure the error has been subjected to the
constraint not to exceed the 6% threshold), although, on
the basis of the results shown in Table 3, the performances
of the MFSM are comparable with those provided by the
HF-SM built exploiting the same Gaussian kernel. Fig.(7)
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Fig. 7. Real and imaginary parts of the scattering parameters
over the frequency range from 0 Hz to 20 GHz for the double
negative MM of Fig.(5): top left side: Re(S11), top right side:
Im(S11). Bottom left side: Re(S21), bottom right side: Im(S21).
Red line: High fidelity result, Blue line: low fidelity result, black
diamond: additive correction based MFSM result.

shows a graphical comparison among the real and imagi-
nary parts of the scattering parameters provided by both
the LF and HF surrogate models, and by the additive
MFSM model (all based on the Gaussian kernel) exploit-
ing Np = 400 points over the frequency range from 0 Hz to
20 GHz. Also, here, the MFSM provides results that are
in very good agreement with the HF ones but obtained
quicker. Precisely, the MFSM computational time tMFSM

was of 2 hours and 5 minutes (this time resulted by the
sum between the computational time related to the LF
computation, tLF = 31 min., and by the time required
to set up the discrepancy function δ(f), tδ = 1.44 hours),
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Fig. 8. Retrieved effective parameters for the double negative
MM of Fig.(5). Top: εeff (f). Bottom: µeff (f).

whereas the computational time tHF was of 5 hours and 38
minutes, with a speed-up factor equal to tHF

tMFSM
≈ 2.46).

Finally, fig.(8) shows a comparison among the real and the
imaginary part of εeff (f) and µeff (f) retrieved by using
the LF, HF and the MFSM computed scattering param-
eters, in a frequency interval around the first resonance.
Also, for this last case, the MFSM and HF results are very
close to each other.

5 Conclusions

In this work, an MFSM approach has been considered in
order to retrieve the effective electromagnetic parameters
of a MM slab quickly. This methodology has been vali-
dated, considering two examples of MM structures.

Two kinds of kernels have been exploited to this pur-
pose, the Matérn, and the Gaussian, respectively. Their
performances have been compared with those provided by
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a standard way to realize a SM. At this purpose, a GRNN
has been employed. The results obtained in term of com-
putational saving by using the additive MFSM approach
is quite promising, although controversial in the case of
thick MM slab. Because of their simplicity, in this study,
only the additive and multiplicative MFSMs methods have
been exploited. A comparison with other Multi-fidelity ap-
proaches (i.e., Co-Kringing) and an analysis of the influ-
ence of the parameters ε and β will be considered in a
future work.
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