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Abstract: The evaluation of the cutoff wavenumbers of metallic waveguides can be related to the
numerical resolution of a suitable nonlinear eigenproblem defined on the domain C described by
the contour of its transverse cross section. In this work, we show that the symmetries of C can be
exploited to obtain a block diagonal matrix representation of the nonlinear eigenproblem, which
enables a remarkable reduction in the computational effort involved in its resolution.
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1. Introduction

The computation of the cutoff wavenumbers of metallic waveguides is a classic problem in
electromagnetic engineering [1]. It is well known that the knowledge of these parameters plays a
paramount role in the design of a significant number of microwave and millimetre waves devices as
power combiners, transducers, T-junctions, and mode transformers [2]. In recent decades, renewed
interest in the subject, mainly focused on the treatment of guiding structures with an arbitrarily shaped
transverse cross section, has been shown by researchers, and several numerical procedures have been
proposed for the evaluation, for example, [3–5] and the references within. In [6], it was demonstrated
that these parameters coincide with the eigenvalues γ of a suitable nonlinear eigenproblem of the
form [7]

A(γ) f = 0, (1)

where the operator A(γ) is defined as a boundary integral equation having as its domain the contour
C described by the transverse cross section of the guiding structure. The main feature of this approach,
as discussed in [8], is the absence of spurious (or ghost) solutions. In [9], it was shown that these
nonlinear eigenvalues can be reliably computed by means of the Singular Value Decomposition (SVD)
applied to the homogeneous matrix system arising by the discretization of the operatorial Equation (1).
Although effective, the SVD approach is time consuming due to its asymptotic computational cost on
the order of O( 8

3 n3) [10]. In [11], one of the present authors proposed a quick numerical procedure
for computing the nonlinear eigenvalues γ based on the use of both the QR decomposition and an
adaptive technique for their localization. In this paper, an enhancement of the approach described
in [11] obtained by means of group theory is presented with the aim of computing, in a fast and effective
manner, the cutoff wavenumbers of metallic waveguides characterized by a symmetric transverse
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cross section. Group theory has been applied with success in the context of electromagnetic theory and
applications, e.g., eddy current analysis [12], electromagnetic scattering [13], antenna theory [14],
microwave engineering [15], microwave imaging [16], plasmonics [17], and metamaterials [18].
Inspired by [13,19], the approach we propose exploits the symmetries of C to obtain a block diagonal
matrix representation of the operator A(γ), thereby reducing the computational effort involved in
the use of the procedure [11]. The paper is organized as follows. In Section 2, we provide a brief
account of the main concepts concerning the formulation of the cutoff wavenumbers of a metallic
waveguide as nonlinear eigenvalues of a suitable nonlinear eigenproblem [6] and of the numerical
technique described in [11] for its resolution. In Section 3, we present elements of group theory
and group representation theory that are essential to understanding the rationale of the proposed
approach. In Section 4, we demonstrate how the theoretical results given in Section 3 can be used to
enhance the computational performance of the technique [11] to compute the cutoff wavenumbers
of metallic waveguides with symmetry. For this purpose, guiding structures characterized by a
symmetric transverse cross section that is invariant (i) to reflection operations about the orthogonal
planes intersecting the propagation axis, and (ii) to the rotation operation of π radians around this
axis, have been considered. In Section 5, numerical results are discussed. Conclusions are provided in
Section 6.

2. Cutoff Wavenumbers as Nonlinear Eigenvalues

2.1. Nonlinear Eigenproblem Formulation

Following [6], we consider a metallic waveguide with PEC walls filled by a medium with dielectric
permittivity ε and magnetic permeability µ, characterized by an transverse cross section along the
ẑ-axis. The problem of the computation of the cutoff wavenumbers κc of this structure can be stated as
follows: the electric field E(r) inside the metallic waveguide can be expressed as

E(r) = −jωA(r)−∇φ(r), (2)

where the vector potential A(r) and the scalar potential φ(r) are given by [8]

A(r) =
µ

4j

∮
C

H2
0(κ|r− r′|)J(r′)dl′, (3)

φ(r) =
1

4ωε

∮
C

H2
0(κ|r− r′|)∇′ · J(r′)dl′, (4)

where C is the contour of the waveguide cross section, H2
0(·) is the Hankel function of second kind

and zero order, κ = ω
√

εµ is the wavenumber, j is the imaginary unit and r′ and r are the source and
position vectors, respectively. The boundary conditions on the waveguide walls are

n̂× (jωA(r) +∇φ(r)) = 0, (5)

where n̂ is the unit vector orthogonal to the surface of the PEC walls. Equation (5) can be written in
operatorial form as [6]

L(J) = 0. (6)

2.2. Nonlinear Eigenvalues Computation

The operatorial Equation (6) defines a nonlinear eigenproblem of the form (1), where the cutoff
wavenumbers κc are the nonlinear eigenvalues γ [6,10]. By applying the method of moments [1] to (6),
it is reduced to a homogeneous matrix equation of the form

[L(κ)] Ī = 0. (7)
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In principle, the computation of the nonlinear eigenvalues of Equation (7) requires a search for
the values of the parameter κ for which the matrix [L(κ)] becomes singular, i.e., the values κ = κc

for which
det ([L(κc)]) = 0 (8)

holds [6,9,11]. From a numerical perspective, a more stable and accurate way to ascertain the singularity
of [L(κc)] is the Singular Value Decomposition (SVD) for [L(κc)] [9,10]. Exploiting the fact that the
smallest singular value σn of [L(κ)] corresponds to the Euclidean distance between the matrix [L(κ)]
and the set {[H]} of all the matrices with rank n− 1 [10], the cutoff wavenumbers κc can be evaluated
by searching for the zeros of the function Ω(κ) = σn([L(κ)]) over the domain for κ. However,
as discussed in [11], due to discretization errors, this search has to be accomplished on the minima
of the function Ω(κ). To save computational time, an algorithm for rapid evaluation of nonlinear
eigenvalues is presented in [11]. The algorithm is based on the definition of an auxiliary function Ψ(κ)

that is able to locate all the minima of Ω(κ) while being computationally less expensive to evaluate
than Ω(κ). This result is obtained by (i) exploiting the QR decomposition (instead of the SVD) of
the matrix [L(κ)] = [Q(κ)] [R(κ)] (where [Q(κ)] is a unitary matrix and [R(κ)] is a upper triangular
matrix), (ii) choosing a suitable algorithm to estimate the smallest singular value of a triangular
matrix (considering the fact that σn([R(κ)]) = σn([L(κ)])) [11], and (iii) exploiting a suitable adaptive
technique to evaluate Ψ(κ). The adaptive method requires two levels of resolution rmin and rmax to be
fixed and a tolerance τ for evaluating the function Ψ(γ). The computation stops when all the minima
of Ψ(γ) remain unchanged between two computational steps of the evaluation procedure. The overall
asymptotic computational cost of the algorithm is O(n0

4
3 n3 + n0), where n is the order of the matrix

[L(κc)] and n0 = 2k (rmin ≤ k ≤ rmax) is the number of sample points used to compute the function
Ψ(κ) in the domain for κ (see [11] for a detailed discussion of these points).

3. Basic Concepts and Definitions of Group Theory and Group Representation Theory

A symmetry operation can be defined as a transformation applied to an object that leaves its
geometric structure indistinguishable from its initial configuration [20,21]. For an object that exhibits
some degree of symmetry, several symmetry operations can be defined. The set of all these operations
yields an abstract algebraic structure called the symmetry group, whose properties are described by
group theory [20,21]. In the following, we provide a brief review of the elements of group theory and
group representation theory that are essential to understanding the rationale of the approach adopted
in this study to reduce the computational effort related to the computation of the cutoff wavenumbers
κc of metallic waveguides with symmetries.

3.1. Basics of Group Theory

An abstract group (or simply a group) [20] is an algebraic structure composed of a non-empty set
G of abstract elements αi, i = 1, 2, 3, . . . , rigged with a binary operation �, that fulfils the following
four axioms:

1. ∀(αi, αj) ∈ G, αi � αj ∈ G (closure property)

2. ∀(αi, αj, αk) ∈ G, (αi � αj)� αk = αi � (αj � αk) (associative property)

3. ∃αe ∈ G : ∀αi ∈ G, αe � αi = αi � αe = αi (existence of the identity element)
4. ∀αi ∈ G ∃α−1

i ∈ G : αi � α−1
i = α−1

i � αi = αe (existence of the inverse element)

Group G is called an abelian group if its binary operation � is commutative. The number of
elements of G (its cardinality, |G|) gives the order of group G. In the following, only groups with finite
order are considered. An abstract element αi ∈ G is the conjugate of the abstract element αj ∈ G if
αj = αkαiα

−1
k with αk ∈ G. The set C of all the elements that are conjugated to each other forms a

conjugacy class C, and n = |C| denotes its cardinality. The number P of conjugacy classes Ci belonging
to a given group G is P ≤ |G|. Finally, the sets Ci, i ∈ 1, . . . , P are disjoint to each other [20,21].
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3.2. Basics of Group Representation Theory

Roughly speaking, group representation theory enables the description of the operations on
the elements αi, i = 1 . . . , |G| belonging to the abstract group G in terms of matrices and linear
transformations [20,21]. From a formal perspective, if G can be placed in correspondence with the
group Ḡ of linear operators T(αi) on Hilbert space H, then H is called the carrier space for G [20].
By selecting a set of n linearly independent functions { f j}n

j=1 ∈ H, each T(αi) can be represented as
a square matrix [T(αi)] of order n. The set G ′ of all these matrices (which is a group itself) defines a
representation of dimension n for G [20,21]. As matrices [T(αi)] belonging to the same conjugacy class
C ′i , i ∈ 1, . . . , P′ are related to each other by a similarity transformation (see the definition of conjugate
elements given in Section 3.1), they are characterized by the same trace [20,21]. This number determines
the character of class C ′i , and it is denoted by the symbol χ(C ′i ) [20,21]. A given representation G ′ can be
reducible or irreducible: if all the elements [T(αi)] ∈ G ′ can be transformed into a block diagonal form
[T̄(αi)] by a linear transformation [U]

[T̄(αi)] = [U]−1[T(αi)][U] i ∈ {1, · · · , |G|}, (9)

G ′ is called a reducible representation; otherwise, it is called an irreducible representation. Every abstract
group G is characterized by a finite number of irreducible representations G irr

k that coincides with
the number P′ = P of its classes [20]. From this latter result, we have that all the matrices [T(αi)]

belonging to a reducible representation G ′ can always be expressed as a direct sum of the matrices
[T(αi)]

irr
k ∈ G

irr
k , k = 1, . . . , P as follows:

[T̄(αi)] =
P⊕

k=1

mk[T(αi)]
irr
k , (10)

where the symbol ⊕ stands for the operation of the direct sum and the coefficients mk indicate the
number of times the matrices [T(αi)]

irr
k , k = 1, . . . , P recur in [T̄(αi)] [20]. They are given by

mk =
1
|G|

P

∑
i=1

n′iχ(C ′i )χ(C irr
k )
∗
, (11)

where n′i and χ(C ′i ) are the cardinality and the character of the i-th class C ′i belonging to G ′, respectively,
and χ(C irr

k )
∗ is the complex conjugate of the character of the k-th class belonging to G irr

k . A reducible
representation Ḡ ′ in which all the elements are in the form given by the Equation (5) is called
fully reduced. One way to directly obtain an n-dimensional fully reduced representation Ḡ ′ for the
abstract group G is to exploit a suitable set of basis functions {sj}n

j=1 called the symmetry-adapted basis
functions [21]. This set can be built by applying the following projection operators to each element of
the set of linear independent functions { f j}n

j=1 initially exploited to obtain the reducible representation
G ′ [13,20]

Pk =
dirr

k
|G|

P

∑
i=1

χ([T(αi)]
irr
k )∗T(αi) k = 1, . . . , P, (12)

where dirr
k is the dimension of the irreducible representation G irr

k and χ([T(αi)]
irr
k )∗ is the conjugate

of the character for class C irr
k containing the element [T(αi)]

irr
k . Finally, if an operator L commutes

with all the linear operators belonging to the group Ḡ, its matrix representation [L], obtained by using
the symmetry-adapted basis functions {sj}n

j=1, has to commute with all the elements [T̄(αi)] ∈ Ḡ ′.
Accordingly, [L] must have the same block diagonal structure as that of these elements [20].

.
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4. Computation of Cutoff Wavenumbers of Metallic Waveguides with Symmetries

In the following, we apply the theoretical results discussed in Section 3 to reduce the
computational effort involved in the computation of the cutoff wavenumbers of metallic waveguides
by using the nonlinear eigenproblem formulation (7) via the algorithm described in Section 2.2 [11].
Specifically, we consider metallic guiding structures characterized by a transverse cross section with
two symmetry axes (û1, û2) orthogonal to the direction of propagation ẑ (see Figure 1). Denoting
the operations of reflection about the planes ẑ-û1, û2-ẑ with the symbols σ and σ′, respectively,
the operation of rotation of π radians around the ẑ-axis with the symbol C2, and the identity operation
with the symbol e, we have that the set {e, C2, σ, σ′} yields a group G known as the point symmetry
group C2ν [20,21]. As C2ν is an abelian group, the number of classes P coincides with the group
cardinality |G| = 4. Each class Ci, i = 1, . . . , 4 contains a distinct element of C2ν, so ni = 1. Furthermore,
C2ν has four irreducible representations G irr

k , k = 1, . . . , 4, which are all one-dimensional [20,21].
Table 1 shows the characters of the four classes belonging to the four irreducible representations G irr

k .
A reducible representation G ′ can be obtained by considering the action of each element of C2ν on
the set of the subsectional basis functions { f i

j (r
′)}4,p

i=1,j=1 (The following convention is adopted for
numbering these functions: the index i specifies the quadrant of the plane (û1-û2) on which the basis
function is defined, and the index j specifies the order of the subsectional basis function [13].) (with
p ∈ N+) used to discretize the relation (5) via the method of moments [13,19]. The representation G ′
is abelian, with P′ = P = 4 and n′i = 1, i = 1 . . . 4. Table 2 shows the characters of the four classes
belonging to G ′. The representation G ′ can be reduced on the basis of the considerations given in
Section 3.2. By inserting the values of |G|, P′, and n′i given above and the values of the characters
reported in Tables 1 and 2 into relations (11) and (12), we obtain that all the elements [T̄(α)] of the fully
reduced representation Ḡ ′ can be written as block diagonal matrices of order 4p as

[T̄(α)] =


[TG irr

1
(α)] 0

[TG irr
2
(α)]

[TG irr
3
(α)]

0 [TG irr
4
(α)]

 , (13)

where α ∈ {e, C2, σ, σ′}. The diagonal sub-matrices [TG irr
k
(α)], k = 1, . . . , 4 of order p have the form

[TG irr
k
(α)] =

 [T(α)]irr
k 0

. . .
0 [T(α)]irr

k

 , (14)

i.e., they are given by the direct sum of the irreducible matrices [T(α)]irr
k , k = 1, . . . , 4 taken mk = p

times [20]. Using the arguments stated in [13,22,23], the operator-valued function L of (6) commutes
with all the elements of the group C2ν. This property, as clearly stated in Section 3, indicates that (6)
can be reduced to a homogeneous matrix system of the form (7) with coefficient matrix [L̄(κ)] reduced
into block diagonal form by means of the Galerkin method [24], with the set of symmetry-adapted
basis functions {si

j(r
′)}4,p

i=1,j=1 generated by applying the projection operators

P1 =
1
4
[
T(e) + T(σ) + T(C2) + T(σ′)

]
(15)

P3 =
1
4
[
T(e)− T(σ) + T(C2)− T(σ′)

]
(16)

P3 =
1
4
[
T(e) + T(σ)− T(C2)− T(σ′)

]
(17)

P4 =
1
4
[
T(e)− T(σ)− T(C2) + T(σ′)

]
(18)
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given by (13) to the set of the sub-sectional basis functions { f i
j (r
′)}4,p

i=1,j=1 used to obtain a reducible
representation for the group C2ν. Due to the commutability constraint, the coefficient matrix [L̄(κ)]
must have the same block form as that of the elements [T̄(α)], i.e.,

[L̄(κ)] =


[A(κ)] 0

[B(κ)]
[C(κ)]

0 [D(κ)]

 , (19)

whose submatrix elements have the form

A(κ)mn = 〈s1
m(r), L(s

1
n(r
′))〉 =∮

C
s1

m(r) ·
[
n̂×

(
jωA1

n(r
′) +∇φ1

n(r
′)
)]

dl (20)

B(κ)mn = 〈s2
m(r), L(s

2
n(r
′))〉 =∮

C
s2

m(r) ·
[
n̂×

(
jωA2

n(r
′) +∇φ2

n(r
′)
)]

dl (21)

C(κ)mn = 〈s3
m(r), L(s

3
n(r
′))〉 =∮

C
s3

m(r) ·
[
n̂×

(
jωA3

n(r
′) +∇φ3

n(r
′)
)]

dl (22)

D(κ)mn = 〈s4
m(r), L(s

4
n(r
′))〉 =∮

C
s4

m(r) ·
[
n̂×

(
jωA4

n(r
′) +∇φ4

n(r
′)
)]

dl, (23)

where the terms A1
n(r′), A2

n(r′), A3
n(r′), A4

n(r′), φ1
n(r′), φ2

n(r′), φ3
n(r′), and

φ4
n(r′) are, respectively, the potentials related to the symmetry-adapted basis functions

s1
n(r′), s2

n(r′), s3
n(r′), s4

n(r′), n = 1, . . . , p, and the symbol 〈·, ·〉 denotes the inner product [6]
(a full account of the numerical treatment of the matrix elements (20)–(23) for the TE and TM modes
can be found in [8] and will be not repeated here). Accordingly, the eigenproblem (19) is composed
of four nonlinear eigenproblems of order n = p. As can be easily verified, the overall asymptotic
computational complexity involved in the numerical resolution by means of the algorithm described
in [11] is O

(
n0

16
3 n3 + 2n0

)
, where n = p. If we compare this result with O

(
n0

4
3 n3 + 2n0

)
, where

n = 4p, that is, the required overall computational complexity for solving the eigenproblem (8), it is
evident that (for large p) a theoretical speed-up by a factor of 16 is achieved.

Table 1. Character table for the irreducible representations G irr
k of C2ν.

Girr
k χ([T(e)]irr

k ) χ([T(C2))]
irr
k

k = 1 1 1
k = 2 1 1
k = 3 1 −1
k = 4 1 −1

Girr
k χ([T(σ)]irr

k ) χ([T(σ′)]irr
k )

k = 1 1 1
k = 2 −1 −1
k = 3 1 −1
k = 4 −1 1
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Figure 1. Geometric effect of the C2ν symmetry operations.

Table 2. Character table for the reducible representation G ′ of C2ν.

G′ χ([T(e)]) χ([T(C2))]

4p 0

G′ χ([T(σ)]) χ([T(σ′)])

0 0

5. Numerical Results

The procedure described in Section 4 is implemented in computer code using MATLAB c©. As a
case study, we consider the computation of the cutoff wavenumbers κc for the following metallic
waveguides (see Figure 2 for details), (i) coaxial, (ii) rectangular with rounded corners, and (iii) double
ridged, which are characterized by a transverse cross section with a symmetry degree described by the
symmetry group C2ν. All the numerical computations are performed on an Intel Xeon DP E5405 Quad
Core 2.0 workstation with 20 GB of main memory. Numerical results for the cutoff wavenumbers
for the TE and TM modes are obtained and compared with those published in the literature [5,25,26].
The values of the parameters rmin, rmax, and τ employed in the numerical computations are 6, 11,
and 10−3, respectively. We exploited a number of symmetry adapted basis functions equal to p = 24
in the case of coaxial waveguide, p = 16 in the case of rectangular waveguide with rounded corner,
and p = 32 in the case of double ridged waveguide. Tables 3–5 show that a good agreement is achieved
for all the considered guiding structures. The differences are very small and always less than 0.3%.
The computational time involved to obtain these numerical results was of 0.92 s, 0.85 s, and 1.1 s
for each frequency point for the TM case, while was of 1.96 s, 1.71 s, and 2.4 s for each frequency
point for the TE case. The computational speed-up (when compared with the numerical simulations
conducted by [11] without the use of the group theoretical approach) ranges between factors of 9
and 11. From a practical perspective, these speed-up values can be considered to be close to the
expected theoretical speed-up predicted by the considerations given in Section 4, thus demonstrating
the usefulness of exploiting symmetry to reduce the computational effort involved in the calculation of
the cutoff wavenumbers.
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Figure 2. Symmetric waveguides considered in the present work: (Top) coaxial waveguide (r = 1 cm,
a = 0.5 cm, b = 0.25 cm, [5]), (Middle) rectangular waveguide with rounded corners (a = 0.1 cm,
b = 0.2 cm, [25]), (Bottom); double-ridged waveguide (a = 1.27 cm, b = 1.016 cm, c = 0.508 cm,
d = 0.3683 cm, [26]).

Table 3. Cutoff wavenumbers κc [rad·cm−1] for the coaxial waveguide.

Mode This Work [5] [8]

TE1 1.7377 1.7356 1.7407
TE2 3.0387 3.0313 3.0441
TE3 4.2363 4.2180 4.2199
TM1 3.8956 3.8998 3.8919
TM2 4.1739 4.1749 4.1666
TM3 4.5784 4.5944 4.4450

Table 4. Cutoff wavenumbers κc [rad · cm−1] for the rectangular waveguide with rounded corners.

Mode This Work [25] [27]

TE10 85.8943 86.71 86.8
TE01 166.7438 167.48 166.9
TE20 168.7157 169.68 170.4
TE11 201.2376 201.46 201.4
TM11 179.6737 180.91 178.6
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Table 5. Cutoff wavenumbers κc [rad · cm−1] for the double-ridged waveguide.

Mode This Work [25] [26]

TE10H 1.4987 1.5097 1.434
TE10T 3.1945 3.1932 3.168
TE20T 6.2091 6.2218 6.192
TE30H 6.7567 6.7629 6.705
TE11T 7.0241 7.0123 6.975

6. Conclusions

In this paper, a group theoretical approach to reducing the computational effort related to the
evaluation of the cutoff wavenumbers of symmetric metallic guiding structures using a nonlinear
eigenvalue problem formulation has been presented. To illustrate, in a simple way, that the group
theoretical machinery works, we have tested our approach on metallic waveguides with a transverse
cross section described by the symmetric point group C2ν. The numerical results demonstrate that
a significant improvement in the computational performance related to the use of the algorithm
described in [11] can be obtained in this way. To conclude, we note that the proposed approach can be
used without any substantial changing to the method of addressing waveguides characterized by a
transverse cross section with any kinds of symmetries.
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