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Abstract: When a straight cylindrical conductor of finite length is electrostatically charged, its
electrostatic potential φ depends on the electrostatic charge qe, as expressed by the equation L(qe) = φ,
where L is an integral operator. Method of moments (MoM) is an excellent candidate for solving
L(qe) = φ numerically. In fact, considering qe as a piece-wise constant over the length of the
conductor, it can be expressed as a finite series of weighted basis functions, qe = ∑N

n=1 αn fn (with
weights αn and N, number of the subsections of the conductor) defined in the L domain so that φ

becomes a finite sum of integrals from which, considering testing functions suitably combined with
the basis functions, one obtains an algebraic system Lmnαn = gm with dense matrix, equivalent to
L(qe) = φ. Once solved, the linear algebraic system gets αn and therefore qe is obtainable so that
the electrostatic capacitance C = qe/V, where V is the external electrical tension applied, can give
the corresponding electrostatic capacitance. In this paper, a comparison was made among some
Krylov subspace method-based procedures to solve Lmnαn = gm. These methods have, as a basic
idea, the projection of a problem related to a matrix A ∈ Rn×n, having a number of non-null elements
of the order of n, in a subspace of lower order. This reduces the computational complexity of the
algorithms for solving linear algebraic systems in which the matrix is dense. Five cases were identified
to determine Lmn according to the type of basis-testing functions pair used. In particular: (1) pulse
function as the basis function and delta function as the testing function; (2) pulse function as the basis
function as well as testing function; (3) triangular function as the basis function and delta function as
the testing function; (4) triangular function as the basis function and pulse function as the testing
function; (5) triangular function as the basis function with the Galerkin Procedure. Therefore, five Lmn

and five pair qe and C were computed. For each case, for the resolution of Lmnαn = gm obtained,
GMRES, CGS, and BicGStab algorithms (based on Krylov subspaces approach) were implemented
in the MatLab® Toolbox to evaluate qe and C as N increases, highlighting asymptotical behaviors
of the procedures. Then, a particular value for N is obtained, exploiting both the conditioning
number of Lmn and considerations on C, to avoid instability phenomena. The performances of the
exploited procedures have been evaluated in terms of convergence speed and CPU-times as the
length/diameter and N increase. The results show the superiority of BcGStab, compared to the other
procedures used, since even if the number of iterations increases significantly, the CPU-time decreases
(more than 50%) when the asymptotic behavior of all the procedures is in place. This superiority is
much more evident when the CPU-time of BicGStab is compared with that achieved by exploiting
Gauss elimination and Gauss–Seidel approaches.
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1. Introduction

As it is well known, electrostatic problems are classified according to the equations that describe
them. These equations could be differential (ordinary or partial derivative), integral, or both.
Most electrostatic problems can be represented by an abstract equation [1,2]

LF = h (1)

in which L is an operator (differential, integral, or integro-differential), h is the known excitation or
source, and F is the unknown function to be determined. For solving the problem (1), it is usually
transformed into an equivalent algebraic problem

Lα = g, (2)

in which L is an algebraic matrix [2–4]. As it is well known, modern computers have created the
conditions for developing numerical resolution methods for a wide class of problems lacking an
analytical solution. Among them is the MoM which, initially introduced by Harrington [1,2], solves (1),
transforming it into an equivalent algebraic formulation.

With this aim, the unknown is expanded using a known set of functions (the basis functions),
and Equation (1) is then projected on another set of functions (the testing functions). The basis functions
can be the same as the testing functions (Galerkin method) or chosen differently. Specifically, the choice
of basis and testing functions determine, on the one hand, the formulation of the elements of the
algebraic matrix L and, on the other, influences the speed of convergence of the methods employed to
solve (2) [3,5]. However, the MoM transforms (1) into (2), where L is usually dense [1,3,6,7].

With this purpose, the MoM has been used with excellent results [8–10]. Specifically, the pulse and
delta functions, respectively, as the basis and testing functions, have been used to solve (1) according
to the observation that the choice of the basis and testing functions substantially influences the desired
level of accuracy [1,11,12].

The scientific literature is rich concerning the study of qe distributions and C computations
through the MoM in which different basis and testing functions are exploited [10,13–19]. For example,
in [14], related to a single cylindrical conductor, the qe distribution was studied, and the C were
studied when different basis and testing functions were exploited (pulse, delta, triangular functions).
However, in these works, the solutions were obtained by exploiting only direct techniques for solving
the (2) [17,19].

In this paper, starting from [14], the problem of the distribution of qe on a cylindrical metallic
conductor of finite length as well as the calculation of the related C was addressed when an external
electric voltage V was applied. In particular, once the geometry of the problem was defined and the
source and observation points fixed, the problem was formulated in terms of electrostatic potential
φ by means of an integral formulation. Then, the basis and testing functions were defined and qe

developed in terms of a finite set of basis functions fn, n = 1, . . . , N,

qe =
N

∑
n=1

αn fn, (3)

with weights αn. Applying the MoM, φ provides an equation with unknown N. However, choosing N
points of independent observations on the surface of the conductor, we arrive at a formulation of
N × N algebraic system

Lmnαn = gm (4)
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in which the elements of the dense matrix Lmn, characterized by integral formulations, depend on
the choice of basis and testing functions fn and wm, with n = 1, . . . , N and m = 1, . . . , N and gm

depending on wm. The following five pairs of basis and testing functions were used: pulse and delta
functions; pulse and pulse functions; triangular and delta functions (point matching); triangular and
pulse functions; and triangular and triangular functions. Once the five dense matrices L were obtained
(one for each pair of basis and testing function) by means of the MoM application, the corresponding
linear algebraic systems were solved by using different Krylov subspaces methods because they are
the most suitable for solving algebraic problems such as (2) in which L is dense and characterized
by a large dimension [20–23]. In the past, Krylov subspaces have been widely exploited in both
theoretical and applied areas. In particular, in mathematics, excellent works have been produced
through the application of Krylov subspaces for solving sparse linear systems [21,23], for solving
sequences of linear systems [24], and for obtaining the solution in quadratic-bilinear differential
systems [25,26]. Furthermore, excellent works have been produced by applying the Krylov subspace
for the resolution of sequences of non-linear structural problems [27] and for the topological problems
of optimization [28]. Finally, the interest of a lot of researches focused on the Krylov subspaces for linear
infinite-dimensional systems [29]. In the physical domain, Krylov subspaces have been exploited for
solving a lot important equations such as the Dirac equation [30] and problems with matrix exponential
operators [31]. Moreover, several works exploiting Krylov subspaces have been produced for solving
practical problems. For example, in the chemical domain, preconditioned Krylov subspaces methods
have been applied to evaluate the variational density [32,33]. On the other hand, in engineering,
in particular, electromagnetics, many papers have been published concerning Krylov subspaces [34,35].
In particular, many efforts have been made to solve integral equations for scattering electromagnetic
fields [36], for solving a class of tensor equations [37], and for large Lyapunov equations [38]. Moreover,
even in the theory of electrical circuits, Krylov subspaces have been applied to obtain good performance
in terms of simulations [39,40]. Although the scientific literature in the electromagnetic field is very
rich in works in which Krylov subspaces have been successfully used, it lacks information regarding
the application of Krylov subspaces for the computation of the electric charge and electrostatic capacity
on electrical conductors. This is mainly due to the fact that in the literature, the calculation of these
parameters often takes place through the usual solvers of linear systems since online computing was
often not required. However, nowadays, real-time applications are increasingly frequent so that the
usual solvers of linear systems do not offer high performances in terms of time-saving. Therefore, it is
now essential to use solvers with computational complexity compatible with the times of real-time
applications. In this context, the idea of the present work matures, which aims to compute the
distribution of both electrostatic charge and capacity of conductors subjected to an external potential
difference V using the methods based on Krylov subspaces, which notoriously offer computational
complexity compared to the usual solver [21,23].

In this work, the generalized minimal residual method (GMRES), conjugate gradient squared
(CGS) and biconjugate gradient stabilized (BicGStab) techniques have been implemented on an Intel
Core 2 CPU 1.45 GHz machine and MatLab® R2017a, to solve the linear systems with dense matrix
obtained by the MoM application to the electrostatic problem mentioned above to evaluate their
performances by calculating the time consumed and the number of necessary iterations. Finally,
the comparison was carried out both with two usual solution techniques for linear algebraic systems
(Gauss elimination and Gauss–Seidel). The results obtained highlighted the superiority of the BicGStab
procedure compared to the other approaches used. In particular, as the size of the problem increases,
the number of iterations required by BicGStab, compared to the other procedures used, increases,
but the CPU-time considerably reduces. Specifically, the highest CPU-time obtained with BicGStab
(25.9 s) is less than (a) 46.1% of the highest CPU-time obtained with the CGS procedure (48.0254 s);
(b) 27.91% of the highest CPU-time obtained with the GMRES procedure (35.92 s); (c) 81.93% of the
highest CPU-time obtained with Gauss elimination (143.34 s), and (d) 93.1% of CPU-time detected
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with the Gauss-Seidel procedure (377.7439 s). Finally, since L in all studied cases is ill-conditioned,
this suggests the need to consider and develop suitable pre-conditioners.

The remaining part of the paper is structured as follows: Section 2 describes the electrostatic
problem under study: once the geometry of the conductor is defined (Section 2.1), the formulation
of the electrostatic problem is detailed in Section 2.2. Section 3 offers a brief overview of the MoM
to transform (1) into (2) and presents the sets of functions exploited as basis functions and testing
ones. Section 4 develops the expansion of the electrostatic charge density in terms of basis functions
and formulates the algebraic matrix following the MoM approach. Sections 4.1–4.5 show how the
individual elements of the algebraic matrix can be obtained when different pairs of basis and testing
functions are exploited. Then, once the algebraic systems are obtained, Section 5 offers a detailed
overview of the Krylov subspace approach for solving high-dimensional linear systems. Again,
Sections 5.2–5.8 describe the characteristics of each procedure exploited in this work and based on
Krylov subspaces. The most significant numerical results are described and commented in detail in
Section 6. Finally, some conclusive observations and possible future developments conclude the work
(see Section 7).

2. The Electrostatic Problem

2.1. Geometry

Let us consider a system of Cartesian axes Oxyz wherein the x axis is represented by the longitudinal
symmetry axis of a cylindrical conductor occupying a region of R3 (Ω is the source region).

As shown in Figure 1, a cylindrical circular conductor is characterized by the length L and radius
a. On the surface (plane xz) are located the observation points pointed by r = (x, 0, a), while the source
points, on axis x, are pointed by r′ = (x′, 0, 0) so that |r− r′| =

√
(x− x′)2 + a2 6= 0.

Figure 1. Cylinder with length L and radius a. r′ and r are the position on which the potential φ

(observation point) is evaluated and the position of the charge distribution on the cylinder, respectively
(source point).

2.2. Formulation

As known, the electrostatic potential φ(x), computed at any point r due to any electrostatic charge
qe located at r′ (see Figure 1), can be written as [1,2,5].

φ(x) =
∫

Ω

1
4πε

qe(x′)
|r− r′|dΩ =

∫
Ω

1
4πε

qe(x′)√
(x− x′)2 + a2

dΩ. (5)

Remark 1. If we know qe, we can compute the electric potential everywhere. Instead, if we know the electric
potential but not the qe, Equation (5) becomes an integral equation as L(qe(x′)) = φ(x) for an unknown charge
density so that L is an integral operator. Then, the problem must be solved numerically. The MoM is an excellent
candidate for solving L(qe(x′)) = φ(x) numerically [5,6].
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3. The Method of Moments: A Brief Overview

3.1. Backgrounds

Once (1) is obtained, the procedure for applying the MoM involves the following three steps:

1. the first step involves discretization of (1) into a matrix equation exploiting basis functions (or
expansions) and weighting functions (or testing);

2. the evaluation of the matrix elements is obtained;
3. the matrix equation is solved to obtain the parameters of interest.

Concerning the expansions of f , a series of functions fn defined in the L domain are considered
so that

f ≈
N

∑
n=1

αn fn (6)

where the αn are the constants to be determined. We will call fn the basis functions or
expansion functions.

Remark 2. To obtain the exact solution from (6), it is necessary to use an infinite sum and choose fn(x′) as a
complete set of basic functions. However, we will consider (6) with a finite summation, without being bound to
choose a complete system for fn(x′). On the other hand, fn(x′) must be linearly independent and chosen so that
(6) approximates f (x′).

Substituting (6) into L f = g, we get

g ≈ L
( N

∑
n=1

αn fn

)
=

N

∑
n=1

αnL( fn) (7)

where the residual R is

R = g−
N

∑
n=1

αnL( fn). (8)

We introduce a series of weighting functions (also called testing functions), w1, w2, . . . , wN , in the
range of L and, assuming a suitable internal product of L fn(x′) with wm, define it as follows:

Definition 1. [Inner Product or Moment] Let us define an inner product or moment between a basis function
fn(r′) and a testing or weighting function wm(r) as follows:

< wm, fn >=
∫

wm
wm(r) ·

∫
fn

fn(r′)dr′dr (9)

in which the integral is surface, volume, or line depending on both the basis and testing functions.

It is required that the inner product of each wm with the residual function be zero so that

N

∑
n=1

αn < wm,L( fn) >≈< wm, g > (10)

which results in the N × N matrix with element < wm,L( fn) >. Then, the system can be matricially
written as follows:

[Lmn][αn] = [gm] (11)
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in which

[Lmn] =

< w1,L( f1) > < w1,L( f2) > ...
< w2,L( f1) > < w2,L( f2) > ...

... ... ...

 , [αn] =

α1

α2

...

 , [gm] =

< w1, g >

< w2, g >

...

 . (12)

Obviously, if [Lmn] is not singular, then the unknowns αn are as follows:

[αn] = [Lmn]
−1[gm], (13)

in order that f (x′) can be reconstructed by Equation (6).

Remark 3. Usually, L is a large matrix so that the usual methods (direct or iterative) for solving linear algebraic
systems struggle to obtain the solution in a reasonable time, requiring the use of alternative procedures for solving
(13). The procedures for solving linear systems based on Krylov subspaces are a valid alternative to the classic
resolution methods, as they ensure reduced computation times even in the presence of large matrices [21,23].

3.2. Point Matching

We applied the boundary conditions by testing the integral equation in a series of discrete points
on the conductor. This is equivalent to using a delta function as a weighting function wm(r) = ∆(r).
This procedure (point matching or point collocation), in evaluating the elements of the matrix, does not
require any integral in the range of the test function but only that related to the pulse function.
However, the boundary conditions are met only in discrete locations across the domain of the solution,
allowing it to assume a different value at points other than those used for testing.

3.3. Galerkin Procedure

The choice of the testing function is decisive for obtaining a good solution. According to the
Galerkin approach, basis functions can also be used as testing functions with the definite advantage of
applying the boundary conditions in the whole domain of the solution than in discrete points.

Remark 4. It is worth noting that, as in the following, Galerkin testing refers to a testing procedure where the
set of testing functions is the same as the set of basis functions. However, in this work, even when the same
type of functions are used as basis and testing functions, the sets are different since the testing functions are
translated with respect to the basis functions. Thus, in this work, Galerkin testing is not used. Then, we shall
use the term “pseudo-Galerking procedure”.

3.4. The Set of Functions

3.4.1. Pulse Functions

Dividing the domain into N + 1 points with N sections, the Pulse function is defined as follows:{
fn(x) = 1 xn ≤ x ≤ xn+1;

fn(x) = 0 elsewhere.
(14)

The pulse functions represent a simple approximation of the solution on each section (Figure 2a).
However, they can only simplify the computation of the elements of the matrix L. Since the derivative
of the pulse functions is the delta function ∆, they cannot be used when L contains a derivative with
respect to x.



Mathematics 2020, 8, 1431 7 of 37

3.4.2. Delta Function

As known {
∆(x) = singular if x = 0;

∆(x) = 0 elsewhere.
(15)

It is worth noting that ∆(x) is not a function but it represents a distribution.

3.4.3. Piecewise Triangular Functions

Triangular functions, unlike the pulse functions, extend over two adjacent segments and vary
from zero in the external points while it is equal to the unit in the center (Figure 2b). Specifically,
dividing the domain into N + 1 points and N sections will result in an N − 1 triangular basis function.
Generally, a triangular function is defined as follows: fn(x) = x−xn−1

xn−xn−1
; xn−1 ≤ x ≤ xn

fn(x) = xn+1−x
xn+1−xn

xn ≤ x ≤ xn+1.
(16)

These functions can also be used when L contains derivatives with respect to x.

(a) (b)

Figure 2. (a) Pulse functions and (b) triangular functions.

4. The [Lmn] Formulations

Let us divide the conductor into N ∈ N sections with length ∆x valuable as ∆x = L
N . In addition,

let us consider N + 1 points xm = m∆x, m = 1, 2, . . . , N at the ends of each section so that Ω = [0, L].
We highlight that within each section, the charge density has a constant value. Then, qe(x′) is the
piece-wise constant over the length of the conductor. Therefore, according to (6), we write the following:

qe(x′) =
N

∑
n=1

αn fn(x′) (17)

Hence, substituting (17) into (5), we obtain

φ(x) =
∫

Ω

1
4πε

qe(x′)√
(x− x′)2 + a2

dx′ =
1

4πε

N

∑
n=1

αn

∫ n∆x

(n−1)∆x

fn(x′)√
(x− x′)2 + a2

dx′ (18)
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from which

4πεφ(x) = α1

∫ ∆x

0

f1(x′)√
(x− x′)2 + a2

dx′ + α2

∫ 2∆x

∆x

f2(x′)√
(x− x′)2 + a2

dx′ + . . .+ (19)

+αN−1

∫ (N−1)∆x

(N−2)∆x

fN−1(x′)√
(x− x′)2 + a2

dx′ + αN

∫ N∆x

(N−1)∆x

fN(x′)√
(x− x′)2 + a2

dx′.

Equation (19) defines an equation in N unknowns. To solve it, we must obtain N equations in
N unknowns. Then, we need to choose N independent observation points xm on the surface of the
conductor (each one at the center of a conductor section). Therefore, if the boundary condition is
φ = V = constant, we write the following:

4πεV = α1
∫ ∆x

0
f1(x′)√

(x1−x′)2+a2
dx′ + . . . + αN

∫ N∆x
(N−1)∆x

fN(x′)√
(x1−x′)2+a2

dx′

. . .

4πεV = α1
∫ ∆x

0
f1(x′)√

(xN−x′)2+a2
dx′ + . . . + αN

∫ N∆x
(N−1)∆x

fN(x′)√
(xN−x′)2+a2

dx′
(20)

which represents a system in the form (11). In addition, according to (9), the local weighted average
is formed on each xm by exploiting a local testing function wm, which is centered at xm so that the
system (20), with m = 1, . . . , N, can be rewritten, if V is not constant on x, in the following way:

4πε
∫ ∆x

0 w1(x)V(x)dx =

= α1
∫ ∆x

0

∫ m∆x
(m−1)∆x

w1(x)· f1(x′)√
(x1−x′)2+a2

dxdx′ + . . . + αN
∫ ∆x

0

∫ m∆x
(m−1)∆x

w1(x)· fN(x′)√
(x1−x′)2+a2

dxdx′

. . .

4πε
∫ N∆x
(N−1)∆x wN(x)V(x)dx =

= α1
∫ ∆x

0
wN(x)· f1(x′)√
(xN−x′)2+a2

dx′ + . . . + αN
∫ N∆x
(N−1)∆x

wN(x)· fN(x′)√
(xN−x′)2+a2

dx′

(21)

in which the individual elements Lmn and the vector gm are, respectively,

Lmn =
∫ n∆x

(n−1)∆x

∫ m∆x

(m−1)∆x

wm(x) · fn(x′)√
(xm − x′)2 + a2

dxdx′ (22)

gm = 4πε
∫ m∆x

(m−1)∆x
wm(x)V(x)dx. (23)

Remark 5. Once qe is obtained by (17), C is easy to compute as follows:

C =
qe

V
. (24)

In this work, the approach described above will be applied to exploit the following sets of basis
and weighting functions:

1. In the first case, we present the study carried out that exploits the pulse function as the basis
function, and as the testing function, the delta function will be considered as required in the
point-matching approach;

2. In the second case, following the pseudo-Galerkin procedure, the pulse function will be exploited
as the basis function as well as the testing function;

3. In the third case, the triangular function will be exploited as the basis function, while the delta
function will be exploited as the testing function (point-matching approach);

4. In the fourth case, the triangular function will be considered the basis function while the pulse
function will be exploited as the testing function;
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5. Finally, in the fifth case, the triangular function will be considered the basis function as well as
the testing function according to the pseudo-Galerkin approach.

4.1. First Case: Pulse Function as Basis Function and Delta Function as Testing Function (Point Matching)

Taking into account the pulse function defined in Section 4.5 (see Figure 2a) and the delta function
defined in Section 3.4.2, the individual elements Lmn, according to (22), can be easily written as follows:

Lmn =
∫ n∆x

(n−1)∆x

1√
(xm − x′)2 + a2

dx′. (25)

After the numerical integration of (25), the following expression is determined [14]:

Lmn = log
(xn+1 − xm) +

√
(xn+1 − xm)2 − a2

(xn−1 − xm) +
√
(xn − xm)2 − a2

, (26)

in which xn+1 = xn + ∆x and xn−1 = xn − ∆x. Thus, according to (23), gm can be written as

gm = Vm = 4πε
∫ m∆x

(m−1)∆x
∆(x)V(x)dx = 4πεV. (27)

Therefore, by means of (13), we obtain αn so that qe(x′) can be computed, exploiting (17). Finally,
exploiting (24), the electrostatic capacity C is easily evaluated.

4.2. Second Case: Pulse Function as Basis Function as well as Testing Function

Exploiting the pulse function as the basis and testing functions as well, the individual elements
Lmn, according to (22), can be easily computed as follows:

Lmn =
∫ n∆x

(n−1)∆x

∫ m∆x

(m−1)∆x

fn(x′ − x) · fm(x′ − x)√
(x− x′)2 + a2

dxdx′. (28)

After performing the integration, we obtain [14]:

Lmn =
√
(xm+1 − xn+1)2 − a2 + (xm+1 − xn+1) · log

(√
xm+1 − xn+1 − a2 − xm+1 + xn+1

)
− (29)

−
√
(xm − xn+1)2 − a2 − (xm − xn+1) · log

(√
(xm − xn+1)2 − a2 − xm + xn+1

)
−

−
√
(xm+1 − xn−1)2 − a2 − (xm+1 − xn−1) · log

(√
(xm+1 − xn−1)2 − a2 − xm+1 + xn−1

)
+

+
√
(xm−1 − xn−1)2 − a2 + (xm−1 + xn−1) · log

(√
(xm−1 − xn−1)2 − a2 − xm−1 + xn−1

)
.

in which xn+1 = xn + ∆x, xn−1 = xn − ∆x, xm+1 = xm + ∆x and xm−1 = xm − ∆x. Then, gm,
as required in (23), becomes

gm = Vm = 4πε
∫ m∆x

(m−1)∆x
fm(x′ − x)V(x)dx = 4πε∆xV (30)

in which fm(x′− x) is defined as in Section 4.5. Further, in this case, by exploiting (13), we easily obtain
αn, from which qe(x′) is evaluable by means of (17). Finally, exploiting (24), C is easily obtainable.

4.3. Third Case: Triangular Function as Basis Function and Delta Function as Testing Function
(Point Matching)

The triangular function spans over two adjacent sections and varies from 0 at the corner points of
the section to 1 at the centre point of the section. Obviously, the function overlaps by one section so
that the triangles give a piece-wise linear variation of the solution among sections (see Figure 2b).
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Remark 6. When the basis function is the triangular function, qe(x′) expansion becomes

qe(x′) =
NN

∑
n=1

αn fn(x′) (31)

with fn(x′) defined as described in Section 3.4.3. Moreover, the charge distribution along the conductor, when
the triangular basis functions are considered, has a span of 2∆x (twice as long as the Pulse case).

The cylindrical conductor, in this case, is divided into N sections whose width is e ∆x = L/N
and N + 1 points, xm = m∆x, located at the end points of these sections (see Figure 2b). Obviously,
the basis function at the first and last sections must be a half triangle because the charge density at the
edges shoots up. For the triangular function as the basis function and the delta function as the testing
function, the individual elements Lmn, according to (22), become:

Lmn =
∫ xn

xn−1

(
x′ − xn−1

∆x

)
1√

(xm − x′)2 + a2
dx′ +

∫ xn+1

xn

(
xn+1 − x′

∆x

)
1√

(xm − x′)2 + a2
dx′. (32)

After performing the integration of (32), Lmn assumes the following form [14]:

Lmn =
xn+1
∆x

[
log

(√
a2 + (xn+1 − xm)2 + xn+1 − xm

)
(√

a2 + (xn − xm)2 + xn − xm

) ]
− (33)

− xn−1
∆x

[
log

(√
a2 + (xn − xm)2 + xn − xm

)
(√

a2 + (xn−1 − xm)2 + xn−1 − xm

)]−
− 1

∆x

[
xm
√

a2 + (xn+1 − xm)2 log(2(
√

a2 + (xn+1 − xm)2 + xn+1 − xm) ) + a2 + (xn+1 − xm)2√
a2 + (xn+1 − xm)2

]
−

− 1
∆x

[
xm
√

a2 + (xn−1 − xm)2 log(2(
√

a2 + (xn−1 − xm)2 + xn−1 − xm)) + a2 + (xn−1 − xm)2√
a2 + (xn−1 − xm)2

]
+

+
2

∆x

[
xm
√

a2 + (xn − xm)2 log(2(
√

a2 + (xn − xm)2 + xn − xm)) + a2 + (xn − xm)2√
a2 + (xn − xm)2

]

in which, as usual, xn+1 = xn + ∆x and xn−1 = xn − ∆x. Finally, as required in (23), gm becomes

gm = Vm = 4πεV. (34)

As explained in the previous sections, exploiting (13), we determine αn so that qe(x′), by means
of (17), is computable. Therefore, by (24), C is computed.

4.4. Fourth Case: Triangular Function as Basis Function and Pulse Function as Testing Function

In this case, the expression provided by (22) is integrated considering the pulse testing function
and replacing xm with x on which the integration is performed. The expression for the individual Lmn

can be written in the following compact form:

Lmn =
xn+1

∆x
(A1mn − A2mn)−

xn−1

∆x
(A2mn − A3mn)−

1
∆x

A4mn −
1

∆x
A5mn +

2
∆x

A6mn (35)

in which Aimn, for i = 1, 2, . . . , 6, are computed as follows [14]:
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A1mn =
√

a2 + (xm+1 − xn+1)2 −
√

a2 + (xm−1 − xn+1)2+ (36)

+ log

[(√
a2 + (xm+1 − xn+1)2 − xm+1 + xn+1

)(xm+1−xn+1)

(√
a2 + (xm−1 − xn+1)2 − xm−1 + xn+1

)(xm−1−xn+1)

]

A2mn =
√

a2 + (xm+1 − xn)2 −
√

a2 + (xm−1 − xn)2+ (37)

+ log

[(√
a2 + (xm+1 − xn)2 − xm+1 + xn

)(xm+1−xn)

(√
a2 + (xm−1 − xn)2 − xm−1 + xn

)(xm−1−xn)

]

A3mn =
√

a2 + (xm+1 − xn−1)2 −
√

a2 + (xm−1 − xn−1)2+ (38)

+ log

[(√
a2 + (xm+1 − xn−1)2 − xm+1 + xn−1

)(xm+1−xn−1)

(√
a2 + (xm−1 − xn−1)2 − xm−1 + xn−1

)(xm−1−xn−1)

]

A4mn =
1
2

log

[(√
a2 + (xm+1 − xn+1)2 − xm+1 + xn+1

)(x2
m+1−x2

n+1)

(√
a2 + (xm−1 − xn+1)2 − xm−1 + xn+1

)(x2
m−1−x2

n+1)

]
+ (39)

+
1
4
(3xm+1 + xn+1)

(√
a2 + (xm+1 − xn+1)2

)
−

−1
4
(3xm−1 + xn+1)

(√
a2 + (xm−1 − xn+1)2

)
+

+
a2

4
log

[(√
a2 + (xm+1 − xn+1)2 + xm+1 − xn+1

)
(√

a2 + (xm−1 − xn+1)2 + xm−1 − xn+1

)]

A5mn =
1
2

log

[(√
a2 + (xm+1 − xn−1)2 − xm+1 + xn−1

)(x2
m+1−x2

n−1)

(√
a2 + (xm−1 − xn−1)2 − xm−1 + xn−1

)(x2
m−1−x2

n−1)

]
+ (40)

+
1
4
(3xm+1 + xn−1)

(√
a2 + (xm+1 − xn−1)2

)
−

−1
4
(3xm−1 + xn−1)

(√
a2 + (xm−1 − xn−1)2

)
+

+
a2

4
log

[(√
a2 + (xm+1 − xn−1)2 + xm+1 − xn−1

)
(√

a2 + (xm−1 − xn−1)2 + xm−1 − xn−1

)]
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A6mn =
1
2

log

[(√
a2 + (xm+1 − xn)2 − xm+1 + xn

)(x2
m+1−x2

n)

(√
a2 + (xm−1 − xn)2 − xm−1 + xn

)(x2
m−1−x2

n)

]
+ (41)

+
1
4
(3xm+1 + xn)

(√
a2 + (xm+1 − xn)2

)
−

−1
4
(3xm−1 + xn)

(√
a2 + (xm−1 − xn)2

)
+

+
a2

4
log

[(√
a2 + (xm+1 − xn)2 + xm+1 − xn

)
(√

a2 + (xm−1 − xn)2 + xm−1 − xn

)]

where xm+1 = xm + ∆x and xm−1 = xm − ∆x. Therefore, gm is given by

gm = Vm = 4πε∆xV (42)

and, as usual, by (13), we obtain αn so that qe(x′), exploiting (17), is carried out. Finally, by (24),
C is computed.

4.5. Fifth Case: Triangular Function as a Basis Function with the Galerkin Procedure

In the last case, the individual Lmn is determined as follows:

Lmn =
∫ xn

xn−1

∫ xm

xm−1

( x′ − xn−1

∆x

)( x− xm−1

∆x

) dx′dx√
a2 + (x− x′)2

+ (43)

+
∫ xn+1

xn

∫ xm+1

xm

(
xn+1 − x′

∆x

)(
xm+1 − x

∆x

)
dx′dx√

a2 + (x− x′)2
.

The integration of (43) is quite complicated. However, after long mathematical steps, it is possible
to express it in in the following compact form:

Lmn = Amn − Bmn − Cmn + Dmn, (44)

where

Amn =
xn+1

(∆x)2 (A1mn − A2mn)−
xn−1

(∆x)2 (A2mn − A3mn)− (45)

− 1
(∆x)2 (A4mn − A5mn) +

2
(∆x)2 A6mn,

Bmn =
xn+1

(∆x)2 (B1mn − B2mn)−
xn−1

(∆x)2 (B2mn − B3mn)− (46)

− 1
(∆x)2 (B4mn − B5mn) +

2
(∆x)2 B6mn,

Cmn =
xm−1xn+1

(∆x)2 (C1mn − C2mn)− (47)

xm−1xn−1

(∆x)2 (C2mn − C3mn)
xm−1

(∆x)2 (C4mn + C5mn − C6mn)
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Dmn =
xm−1xn+1

(∆x)2 (D1mn − D2mn)− (48)

− xm−1xn−1

(∆x)2 (D2mn − D3mn)−
xm+1

(∆x)2(
D4mn + D5mn − D6mn).

Each term in (45)–(48) is specifiable as follows:

A1mn =
1
4
(xm + 3xn+1)

√
a2 + (xm − xn+1)2− (49)

−1
4

a2 log

[ √
a2 + (xm − xn+1)2 + xm − xn+1√

a2 + (xm−1 + xn+1)2 + xm−1 − xn+1

]
+

+
1
2
(x2

m − x2
n+1) log

(√
a2 + (xm − xn+1) − xm + xn+1

)
−

−1
4
(xm−1 + 3xn+1)

√
a2 + (xm−1 − xn+1)2−

−1
2
(x2

m−1 − x2
n+1) log

(√
a2 + (xm−1 − xn+1)2 − xm−1 + xn+1

)

A2mn =
1
4
(xm + 3xn)

√
a2 + (xm − xn)2− (50)

−1
4

a2 log

[ √
a2 + (xm − xn)2 + xm − xn√

a2 + (xm−1 + xn)2 + xm−1 − xn

]
+

+
1
2
(x2

m − x2
n) log

(√
a2 + (xm − xn) − xm + xn

)
−

−1
4
(xm−1 + 3xn)

√
a2 + (xm−1 − xn)2−

−1
2
(x2

m−1 − x2
n) log

(√
a2 + (xm−1 − xn)2 − xm−1 + xn

)

A3mn =
1
4
(xm + 3xn−1)

√
a2 + (xm − xn−1)2− (51)

−1
4

a2 log

[ √
a2 + (xm − xn−1)2 + xm − xn+1√

a2 + (xm−1 + xn−1)2 + xm−1 − xn−1

]
+

+
1
2
(x2

m − x2
n−1) log

(√
a2 + (xm − xn−1) − xm + xn−1

)
−

−1
4
(xm−1 + 3xn−1)

√
a2 + (xm−1 − xn−1)2−

−1
2
(x2

m−1 − x2
n−1) log

(√
a2 + (xm−1 − xn−1)2 − xm−1 + xn−1

)

A4mn =
1
3

log

[
(
√

a2 + (xm − xn+1)2 − xm + xn+1)
(x3

m−x3
n+1)

(
√

a2 + (xm−1 − xn+1)2 − xm−1 + xn+1)
(x3

m−1−x3
n+1)

]
+ (52)

1
9

√
a2 + (xm − xn+1)2 · (a2 + 4x2

m + xmxn+1 + 4x2
n+1)−

−1
9

√
a2 + (xm−1 − xn+1)2(a2 + 4x2

m−1 + xm−1xn+1 + 4x2
n+1)
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A5mn =
1
3

log

[
(
√

a2 + (xm − xn−1)2 − xm + xn−1)
(x3

m−x3
n−1)

(
√

a2 + (xm−1 − xn−1)2 − xm−1 + xn−1)
(x3

m−1−x3
n−1)

]
+ (53)

+
1
9

√
a2 + (xm − xn−1)2 · (a2 + 4x2

m + xmxn−1 + 4x2
n−1)−

−1
9

√
a2 + (xm−1 − xn−1)2(a2 + 4x2

m−1 + xm−1xn−1 + 4x2
n−1)

A6mn =
1
3

log

[
(
√

a2 + (xm − xn)2 − xm + xn)(x3
m−x3

n)

(
√

a2 + (xm−1 − xn)2 − xm−1 + xn)
(x3

m−1−x3
n)

]
+ (54)

1
9

√
a2 + (xm − xn)2 · (a2 + 4x2

m + xmxn + 4x2
n)−

−1
9

√
a2 + (xm−1 − xn)2(a2 + 4x2

m−1 + xm−1xn + 4x2
n)

B1mn =
1
4
(xm+1 + 3xn+1)

√
a2 + (xm+1 − xn+1)2− (55)

−1
4

a2 log

[√
a2 + (xm+1 − xn+1)2 + xm+1 − xn+1√

a2 + (xm + xn+1)2 + xm − xn+1

]
+

+
1
2
(x2

m+1 − x2
n+1) log

(√
a2 + (xm+1 − xn+1) − xm+1 + xn+1

)
−

−1
4
(xm + 3xn+1)

√
a2 + (xm − xn+1)2−

−1
2
(x2

m − x2
n+1) log

(√
a2 + (xm − xn+1)2 − xm + xn+1

)

B2mn =
1
4
(xm + 3xn)

√
a2 + (xm − xn)2− (56)

−1
4

a2 log

[ √
a2 + (xm − xn)2 + xm − xn√

a2 + (xm−1 + xn)2 + xm−1 − xn

]
+

+
1
2
(x2

m − x2
n) log

(√
a2 + (xm − xn) − xm + xn

)
−

−1
4
(xm−1 + 3xn)

√
a2 + (xm−1 − xn)2−

−1
2
(x2

m−1 − x2
n) log

(√
a2 + (xm−1 − xn)2 − xm−1 + xn

)

B3mn =
1
4
(xm+1 + 3xn−1)

√
a2 + (xm+1 − xn−1)2− (57)

−1
4

a2 · log

[√
a2 + (xm+1 − xn−1)2 + xm+1 − xn+1√

a2 + (xm + xn−1)2 + xm − xn−1

]
+

+
1
2
(x2

m+1 − x2
n−1) · log

(√
a2 + (xm+1 − xn−1) − xm+1 + xn−1

)
−

−1
4
(xm + 3xn−1)

√
a2 + (xm − xn−1)2−

−1
2
(x2

m − x2
n−1) log

(√
a2 + (xm − xn−1)2 − xm + xn−1

)
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B4mn =
1
3

log

[
(
√

a2 + (xm+1 − xn+1)2 − xm+1 + xn+1)
(x3

m+1−x3
n+1)

(
√

a2 + (xm − xn+1)2 − xm + xn+1)
(x3

m−x3
n+1)

]
+ (58)

+
1
9

√
a2 + (xm+1 − xn+1)2 · (a2 + 4x2

m+1 + xm+1xn+1 + 4x2
n+1)−

−1
9

√
a2 + (xm − xn+1)2(a2 + 4x2

m + xmxn+1 + 4x2
n+1)

B5mn =
1
3

log

[
(
√

a2 + (xm+1 − xn−1)2 − xm+1 + xn−1)
(x+1m3−x3

n−1)

(
√

a2 + (xm − xn−1)2 − xm + xn−1)
(x3

m−x3
n−1)

]
+ (59)

+
1
9

√
a2 + (xm+1 − xn−1)2 · (a2 + 4x2

m+1 + xm+1xn−1 + 4x2
n−1)−

−1
9

√
a2 + (xm − xn−1)2(a2 + 4x2

m + xmxn−1 + 4x2
n−1)

B6mn =
1
3

log

[
(
√

a2 + (xm+1 − xn)2 − xm+1 + xn)
(x3

m+1−x3
n)

(
√

a2 + (xm − xn)2 − xm + xn)(x3
m−x3

n)

]
+ (60)

+
1
9

√
a2 + (xm+1 − xn)2 · (a2 + 4x2

m+1 + xm+1xn + 4x2
n)−

−1
9

√
a2 + (xm − xn)2(a2 + 4x2

m + xmxn + 4x2
n)

C1mn =
√

a2 + (xm − xn+1)2 −
√

a2 + (xm−1 − xn+1)2+ (61)

+ log

[
(
√

a2 + (xm − xn+1)2 − xm + xn+1)
(xm−xn+1)

(
√

a2 + (xm−1 − xn+1)2 − xm−1 + xn+1)(xm−1−xn+1)

]

C2mn =
√

a2 + (xm − xn)2 −
√

a2 + (xm−1 − xn)2+ (62)

+ log

[
(
√

a2 + (xm − xn)2 − xm + xn)(xm−xn)

(
√

a2 + (xm−1 − xn)2 − xm−1 + xn)(xm−1−xn)

]

C3mn =
√

a2 + (xm − xn−1)2 −
√

a2 + (xm−1 − xn−1)2+ (63)

+ log

[
(
√

a2 + (xm − xn−1)2 − xm + xn−1)
(xm−xn−1)

(
√

a2 + (xm−1 − xn−1)2 − xm−1 + xn−1)(xm−1−xn−1)

]

C4mn =
1
2

log

[
(
√

a2 + (xm − xn+1)2 − xm + xn+1)
(x2

m−x2
n+1)

(
√

a2 + (xm−1 − xn+1)2 − xm−1 + xn+1)
(x2

m−1−x2
n+1)

]
+ (64)

+
1
4
(3xm + xn+1)

√
a2 + (xm − xn+1)2−

−1
4
(3xm−1 + xn+1)

√
a2 + (xm−1 − xn+1)2+

+
a2

4
log

[ √
a2(xm − xn+1)2 + xm − xn+1√

a2 + (xm−1 − xn+1)2 + xm−1 − xn+1

]



Mathematics 2020, 8, 1431 16 of 37

C5mn =
1
2

log

[
(
√

a2 + (xm − xn−1)2 − xm + xn−1)
(x2

m−x2
n−1)

(
√

a2 + (xm−1 − xn−1)2 − xm−1 + xn−1)
(x2

m−1−x2
n−1)

]
+ (65)

+
1
4
(3xm + xn−1)

√
a2 + (xm − xn−1)2−

−1
4
(3xm−1 + xn−1)

√
a2 + (xm−1 − xn−1)2+

+
a2

4
log

[ √
a2(xm − xn−1)2 + xm − xn−1√

a2 + (xm−1 − xn−1)2 + xm−1 − xn−1

]

C6mn =
1
2

log

[
(
√

a2 + (xm − xn)2 − xm + xn−1)
(x2

m−x2
n)

(
√

a2 + (xm−1 − xn)2 − xm−1 + xn)
(x2

m−1−x2
n)

]
+ (66)

+
1
4
(3xm + xn)

√
a2 + (xm − xn)2−

−1
4
(3xm−1 + xn)

√
a2 + (xm−1 − xn)2+

+
a2

4
log

[ √
a2(xm − xn)2 + xm − xn√

a2 + (xm−1 − xn)2 + xm−1 − xn

]
.

D1mn =
√

a2 + (xm+1 − xn+1)2 −
√

a2 + (xm − xn+1)2+ (67)

+ log

[
(
√

a2 + (xm+1 − xn+1)2 − xm+1 + xn+1)
(xm+1−xn+1)

(
√

a2 + (xm − xn+1)2 − xm + xn+1)(xm−xn+1)

]

D2mn =
√

a2 + (xm+1 − xn)2 −
√

a2 + (xm − xn)2+ (68)

+ log

[
(
√

a2 + (xm+1 − xn)2 − xm+1 + xn)(xm+1−xn)

(
√

a2 + (xm − xn)2 − xm + xn)(xm−xn)

]

D3mn =
√

a2 + (xm+1 − xn−1)2 −
√

a2 + (xm − xn−1)2+ (69)

+ log

[
(
√

a2 + (xm+1 − xn−1)2 − xm+1 + xn−1)
(xm+1−xn−1)

(
√

a2 + (xm − xn−1)2 − xm + xn−1)(xm−xn−1)

]

D4mn =
1
2

log

[
(
√

a2 + (xm+1 − xn+1)2 − xm+1 + xn+1)
(x2

m+1−x2
n+1)

(
√

a2 + (xm − xn+1)2 − xm + xn+1)
(x2

m−x2
n+1)

]
+ (70)

+
1
4
(3xm+1 + xn+1)

√
a2 + (xm+1 − xn+1)2−

−1
4
(3xm + xn+1)

√
a2 + (xm − xn+1)2+

+
a2

4
log

[√
a2(xm+1 − xn+1)2 + xm+1 − xn+1√
a2 + (xm − xn+1)2 + xm − xn+1

]
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D5mn =
1
2

log

[
(
√

a2 + (xm+1 − xn−1)2 − xm+1 + xn−1)
(x2

m+1−x2
n−1)

(
√

a2 + (xm − xn−1)2 − xm + xn−1)
(x2

m−x2
n−1)

]
+ (71)

+
1
4
(3xm+1 + xn−1)

√
a2 + (xm+1 − xn−1)2−

−1
4
(3xm + xn−1)

√
a2 + (xm − xn−1)2+

+
a2

4
log

[√
a2(xm+1 − xn−1)2 + xm+1 − xn−1√
a2 + (xm − xn−1)2 + xm − xn−1

]

D6mn =
1
2

log

[
(
√

a2 + (xm+1 − xn)2 − xm+1 + xn−1)
(x2

m+1−x2
n)

(
√

a2 + (xm − xn)2 − xm + xn)(x2
m−x2

n)

]
+ (72)

+
1
4
(3xm+1 + xn)

√
a2 + (xm+1 − xn)2−

−1
4
(3xm + xn)

√
a2 + (xm − xn)2+

+
a2

4
log

[√
a2(xm+1 − xn)2 + xm+1 − xn√
a2 + (xm − xn)2 + xm − xn

]
.

As usual, xn+1 = xn + ∆x, xn−1 = xn − ∆x, xm+1 = xm + ∆x and xm−1 = xm − ∆x. Finally, gm is
computed as

gm = Vm = 4πεV

{ ∫ xm

xm−1

( x− xm−1

∆x

)
dx +

∫ xm+1

xm

( xm+1 − x
∆x

)
dx

}
(73)

so that, after integration, we obtain

gm = Vm =
4πε

∆x
V

{
x2

m −
x2

m−1
2
−

x2
m+1
2
− xm−1(xm − xm−1) + xm+1(xm+1 − xm)

}
. (74)

Therefore, once gm is determined, by means of (13), we carry out αn so that qe(x′), exploiting (17),
is computable. Finally, by (24), C is computed.

Remark 7. As previously noted, whatever the basis function and the chosen test functions, the modeling
of the problem under study leads to the formulation of the linear algebraic problem (11) whose resolution is
imperative for the calculation of the electrostatic charge density (and therefore electrostatic capacity). The usual
resolution methods, direct (such as the Gauss elimination method) or iterative (such as the Gauss–Seidel method),
although applicable in all the cases studied, do not take into account the fact that the matrix L is large with high
dimensions. Therefore, we will focus on some methods of solving large linear systems based on Krylov subspaces.

5. High-Dimension Linear Systems Resolution: A Krylov Subspaces Approach

5.1. Iterations in Krylov Subspaces

Definition 2. Let us consider A ∈ RN×N and b ∈ RN . For r = 1, 2, . . . , we define the Krylov subspace with
index r generated by A and b, the set

Kr := span(b, Ab, A2b, ..., Ar−1b) ⊂ RN . (75)

Projection methods in Krylov subspaces consist of projecting a problem of size N into a smaller
Krylov subspace [21,23]. They then determine, for each r, an approximate solution x(r) of the linear
system Ax = b, which belongs to the subspace Kr. Krylov methods can be divided into four different
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classes that lead to different algorithms and that represent the different optimality criteria to choose
the vector x(r):

(1) Ritz–Galerkin approach: construct the vector x(k) such that the corresponding residual is
orthogonal to the Krylov sub-space with index k, i.e.,

b− Ax(k)⊥Kr; (76)

(2) The residual minimum norm approach: identify x(k) for which the Euclidean residual norm
‖b− Ax(k)‖2 is minimum on Kr;

(3) Petrov–Galerkin approach: find x(k) such that b− Ax(k) is orthogonal to some subspace of size
k;

(4) The least norm error approach: determine

x(k) ∈ ATKk(AT , b) (77)

(Krylov subspace with index k generated by AT and b) so the Euclidean norm of error ‖x(k)− x‖2

is minimal.

It has been observed that these optimality criteria lead to different algorithms; in particular,
the Ritz–Galerkin approach can lead to the conjugate gradient and Lanczos methods. The second
approach leads to the meetings of generalized minimal residual (GMRES) and minimal residual
(MINRES). However, these two approaches have the disadvantage of being very slow, especially in
the case of non-symmetric systems, and computationally expensive to determine the approximate
solution. Moreover, this problem is solved by considering other subspaces for the orthogonal condition
(as in the Petrov-Galerkin method). The third approach leads to the bi-conjugate gradient (Bi-CG) and
quasi-minimal residual (QMR) methods while the fourth is not immediate, but for A = AT , it leads
to the symmetric LQ (SYMMLQ) method. To identify the approximation x(l) of the solution, it is
necessary to determine a basis for the Krylov subspace of index l, which can be extended to subspaces
of increasing size.

Remark 8. We observe that the basis for the Krylov subspace l-dimensional Kl is

{b, Ab, A2b, ..., Al−1b}. (78)

This base turns out to be numerically unstable because as l increases, the vectors Alb tend to dominate
the eigen vector and therefore tend to be linearly independent. One could think of considering this base
non-orthogonal and orthogonalize it later, but this could lead to strong ill-conditioning. The problem, therefore,
arises in replacing this unstable base with an orthogonal or orthonormal base that characterizes the Krylov
procedure used.

5.2. Conjugate Gradient (CG) as Krylov Method

It is possible to demonstrate that the CG method is characterized by an iteration in Krylov
subspaces and therefore can be considered as a Krylov method [21,23]. In fact, the following
theorem holds:

Theorem 1. Let us suppose to apply the CG method to the linear system Ax = b, with A symmetrical and
positive defined. If the initial vector is x(0) = 0, then the method proceeds until the residue r(k) is canceled and
the following identities hold, for l = 1, . . . , k, for the Krylov subspaces:

Kl := span(b, Ab, . . . , Al−1b) = span(x(1), . . . , x(l)) = (79)

= span(p(0), . . . , p(l−1)) = span(r(0), . . . , r(l−1)).
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Furthermore, the residuals are orthogonal for every l (r(t))Tr(j) = 0, j = 0, 1, . . . , l − 1 and the research
directions are A-conjugated, (p(l))T Ap(l) = 0, j = 0, 1, . . . , l − 1.

As can be seen from Theorem 1, the CG method constitutes the base of Kl numerically unstable (78)
with the base constituted by the A-orthogonal directions {p(0), . . . , p(l−1)}.

Let us introduce the following definition:

Definition 3. Under the assumption that A is a symmetric and definite positive matrix, and therefore,
the eigenvalues of A are all positive or equivalently xT Ax ≥ 0 for each vector x ∈ RN not null, the function
‖ · ‖A defined by

‖ · ‖A =
√

xT Ax (80)

is the so-called A− norm.

It can, therefore, be shown that the generic iteration x(l) of the CG method has an important
optimality property. The following result holds:

Theorem 2. The vector x(l) minimizes in Krylov subspace Kl the A-norm of the error, i.e., it turns out that

x(l) = arg min
x∈Kl
‖x∗ − x‖A, (81)

where x∗ is the exact solution of the linear system. Moreover, if

e(l) = x∗ − x(l) (82)

then we have
‖e(l)‖A ≤ ‖e(l−1)‖A, ∀l. (83)

5.3. The Arnoldi Method

The Arnoldi Iteration

The Arnoldi method is a Krylov subspace projection method for non-Hermitian matrices.
This procedure, introduced as a method for reducing a dense matrix in the form of Hessenberg,
allows to obtain a matrix factorization. Arnoldi iteration allows us to build a base {q1, . . . , ql} for the
Krylov subspaceKl consisting of vectors orthonormal to each other, replacing the numerically unstable
base (78). This can be done by applying the Gram–Schmidt orthogonalization method, obtaining a
factorization of A ∈ RN×N in the form

AQl = Ql+1Ĥl , (84)

where
Ql ∈ RN×l , |l+1 ∈ RN×(l+1) (85)

and Ĥl ∈ R(l+1)×l . The procedure can be summarized in the following steps:

1. The algorithm starts by means of an arbitrary vector q1 whose norm is 1;
2. For k = 2, 3, . . . qk = Aqk−1; in addition, for j = 1, . . . , k− 1

hj,k−1 = q∗j qk (86)

and
qk = qk − hj,k − qj; (87)
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3. Then,
hk,k−1 = ‖qk‖ (88)

and
qk =

qk
hk,k−1

. (89)

4. The algorithm breaks down when qk is a null vector or, alternatively, each of its components is
less than a fixed tolerance. This occurs when the minimal polynomial of A is of degree k.

Remark 9. It is worth noting that the j-loop projects the components of qk on the directions of q1, . . . , qk−1
ensuring the orthogonality of all the generated vectors.

5.4. GMRES Method

This method consists of iteratively constructing an orthonormal base, through the Arnoldi method,
for the Krylov space Kl , with l = 1, . . . , n, approximating at each step the solution of the system x∗

with the vector x(l) ∈ Kl to minimize the 2-norm of the residual r(l) = b− Ax(l). Practically, if we set

x(l) = arg min
x∈Kl
‖b− Ax‖2, (90)

the solution is projected into the Krylov Kl subspace and is determined by solving a least squares
problem. We observe that for the properties of the Arnoldi iteration, the method, in many cases,
makes it possible to obtain a sufficiently accurate approximation of the system solution in a number of
steps much lower than N, despite being a method that ends in at most N steps. Let us see how we
proceed in an operational way, remembering that the matrix in the form of Hessenberg

Hl = QT
l AQl (91)

is the representation in the orthonormal base q1, . . . , ql of the orthogonal projection A on the Kl
subspace. In fact, taking a generic vector y ∈ Rl , the product Qly expresses a generic vector of Kl as a
linear combination of the elements of the orthonormal base considered. Therefore, one has

‖b− Ax‖ = ‖AQly− b‖. (92)

Taking into account that AQk = Qk+1Ĥk, we can write

‖AQly− b‖ = ‖Ql+1Ĥly− b‖, (93)

from which, being QT
l+1Ql+1 = Il+1 and observing that QT

l+1b = ‖b‖e1, we obtain

‖b− Ax‖ =
∥∥∥Ĥly− ‖b‖e1

∥∥∥. (94)

Thus, to solve the least squares problem x(l) = arg minx∈Kl ‖b− Ax‖2, it is possible to calculate
the solution y(l) of the minimization problem

min
y∈Rl

∥∥∥Ĥly− ‖b‖e1

∥∥∥, (95)

and calculate x(l) = Qly(l).
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Remark 10. The cost of the algorithm is that due to the Arnoldi method. Furthermore, it should be noted that
to calculate a new solution, it is necessary to memorize all the vectors of the base. Hence, the GMRES procedure
becomes too expensive and inefficient if the size of the Krylov subspace grows too much. A possible solution
to the problem is represented by restarting. It consists of stopping the algorithm when a certain size m of the
Krylov subspace is reached; we then calculate xm and start again with the algorithm with initial approximation
xm above. Furthermore, it is worth noting that restarting while increasing the number of iterations considerably
reduces the CPU-time.

5.5. The Biconjugate Gradient Method (BiCG)

CG is not suitable for non-symmetric systems because the residual vectors cannot be made
orthogonal with short recurrences [21,23]. While the GMRES method preserves the orthogonality of
the residues by exploiting extensive occurrences with a large storage demand, the BiCG procedure
replaces the orthogonal sequence of the residues with two further mutually-orthogonal sequences
without the need for minimization [23]. Together with the orthogonal residuals generated by the CG
procedure, the BiCG method constructs a second set of residuals in which the initial residual can
be chosen without particular constraints. Thus, the BiCG procedure requires two matrix-by-vector
products by A and by AT . The residuals form biorthogonal bases. Moreover, the corresponding
direction form biconjugate bases. Regarding convergence, the BiCG method provides the same results
as the CG method when positive defined systems are considered but with a considerable increase in
the computational cost for each iteration. If the matrices are not symmetrical in cases where there is a
significant reduction in the residual norm, the BiCG method is comparable, in terms of the number of
iterations, with the GMRES method. Furthermore, the convergence can be irregular and the procedure
could face breakdown phenomena which, among other things, can be avoided by means of appropriate
restart operations.

Remark 11. However, it is not always guaranteed that restarting the BiCG procedure improves performance;
in fact, while GMRES is guaranteed to converge in n steps, it is not ensured that the method is not subject to
stagnation using this technique.

Remark 12. To compare the performances obtained with the GMRES and BiCG is difficult. While GMRES
minimizes a residue by increasing the work to keep all the orthogonal residues with a consequent increase
in the demand for space in memory, the BiCG method does not minimize any residue, but its precision is
comparable to that obtained with the GMRES method at the cost of twice the quantity of matrix products per
vector for each iteration. However, no special memory efforts are required to generate the base vectors because
this procedure is based on the Lanczos biorthogonalization cheaper from the point of view of memory demand
than the orthogonalization of Arnoldi [21,23].

To increase the effectiveness of the BiCG method, several variants have been proposed, including
the CGS and the BiCGStab methods.

5.6. The CGS Method

This approach, proposed by Sonneveld [23], replaces the multiplication with AT in BiCG by
a second one with A and writes the residual by a square polynomial [21,23]. At each iteration,
the dimension of the Krylov subspace is increased by two units. Concerning the convergence, it is
almost twice as fast as BiCG, but even more erratic. If the computation wit hAT is impractical, CGS may
be attractive.

Remark 13. Increase in rounding errors and possible overflow could take place. This occurrence leads to a
preference for the BiCStab method.
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5.7. The BicGStab Method

Developed by Van der Vorst [21,23], this method avoids the often irregular convergence of CGS
by means of combining the CGS sequence with the steepest descent update, performing some local
optimization and smoothing. The procedure is based on writing the residual by a product between
two polynomials and formally constituted by the following steps:

(1) Firstly, we compute r0 := b− Ax0;
(2) Then, we set p0 := r0;
(3) For j = 0, 1, . . . until convergence we compute the following quantities

αj =
(rj, r0)

(Apj, r0)
; sj = rj −

αj

Apj
; ωj =

(Asj, sj)

(Asj, Asj)
; (96)

xj+1 = xj + αjpj + ωjsj; rj+1 = sj −ωj Asj;

β j =
(rj+1, r∗0)
(rj, r0)

αj

ωj
; pj+1 = rj+1 + β j(pj −ωj Apj).

5.8. Comparison between GMRES and BicGStab

It is not generally possible to say which of the two methods is more efficient. However, it is
possible to formulate the following hypothesis: as the number of elements in the matrix decreases,
the BicGStab algorithm should be faster. In fact, although there are two matrix-carrier products in
BiCGStab, these should have a limited cost in relation to the products performed many times and to
the high storage cost of GMRES. The time taken by the BicGStab algorithm is almost always shorter.
However, the GMRES algorithm performs fewer iterations (despite taking longer) than the BicGStab
algorithm as the number of non-zero elements increases. Finally, to influence the computational cost of
the GMRES algorithm, in addition to the products performed a large number of times, it could be the
high number of elements that must be stored.

Remark 14. It is worth noting that the matrices are often ill-conditioned. A pre-condition must therefore exist:
the results depend very much on the accuracy of the pre-condition.

6. Numerical Results

Lmn have been computed by (26), (29), (33), (35), and (44) exploiting, as described above,
pulse–delta, pulse–pulse, triangular–delta, triangular–pulse, and triangular–triangular basis-testing
functions, respectively. Once the matrix L was formed, the corresponding linear system was solved
by GMRES, CGS, and BicGStab procedures, comparing the results with those determined by Gauss
elimination and Gauss–Seidel methods to obtain the unknown qe on each section of the conductor.
Then, substituting the value of charge density from Equation (13) and the basis function, as described
in Sections 4.5 or 3.4.3, into Equations (17) and (24), qe and C are obtained. The following remark
justifies the use of the Gauss–Seidel iterative procedure.

Remark 15. We observe that the Gauss–Seidel iterative method is applicable in our cases because all the matrices
Lmn are all with dominant diagonal by rows. In other words:

|Lii| >
n

∑
j=1,j 6=i

|Lij|. (97)

This condition implies the non-singularity of the matrices, from which follows the uniqueness of the
solution [23].



Mathematics 2020, 8, 1431 23 of 37

6.1. Results Concerning the Values of Capacitance C & Instability Phenomena

The numerical values obtained for C for unit length (using different basis and testing functions)
exploiting the above-mentioned procedures are displayed in Figures 3a–c and 4a,b, respectively.
The trends highlight that C, for each procedure applied, assumes regular behavior when L

d < 20 while

a slight instability occurs when 20 < L
d < 40. This is due to the fact that the distribution of qe on the

conductor generates an electric dipole vector p which forms an angle θ with the electric field vector E.
It is proven that when θ 6= 0 instabilities occur until θ, due to the forces generated by E, becomes null.
This condition of instability occurs when 20 < L

d < 40 [2]. When L
d < 20 and L

d > 40, p and E are
almost parallel for which the instability is extremely reduced. However, the instability displayed in
each simulation has a limited amplitude and it is such as not to cause concern.

However, it is worth noting that whatever the numerical procedure used to solve the dense linear
system and whatever the basis-testing functions pair, for high values of the L/d ratio, C tends to
assume the same value. This is due to the fact that for increasing L/d, the mesh becomes denser,
and therefore, asymptotically, the numerical procedures applied provide the same results.

Regarding the convergence of the numerical data related to the electrostatic capacitance C are
displayed in Figures 5a,b and 6a–c. In particular, the trends of C versus N, when L

d ratio is equal to 400
for each basis testing functions pairs, are highlighted for each linear system resolution procedure used.

It should be noted that the Gauss elimination method provides values of C very close to each
other regardless of the basis-testing functions pair used, while the trend differs considerably with
the increase of the subsections while highlighting an obvious saturation behavior as N increases.
This is due to the fact that beyond 30 sections, the curve assumes a straight horizontal trend so that
the increase in the number of subsections affects the value of C. Similar behavior is exhibited by
the performance of the Gauss–Seidel method, even if saturation is obtained with fewer subsections.
Furthermore, by increasing the number of subsections, the mesh thickens considerably so that the
phenomenon of asymptoticity is felt according to which, whatever the numerical procedure adopted,
the values obtained tend to coincide.

Remark 16. As known, the capacitance of the thin straight wire (finite length) is given by [41]:

C =
2πε0L

Λ

{
1 +

1
Λ
(1− ln 2) +

1
Λ2

[
1 + (1− ln 2)2 − π2

12

]
+ o
( 1

Λ3

)}
(98)

or, numerically,

C = 4πε0
2L
Λ

{
1 +

0.6137056
Λ

+
1.086766

Λ2 + o
( 1

Λ3

)}
(99)

where C is the capacitance in (F), ε0 = 1
36π 10−9 is the permittivity of the free space(F/m) and

Λ = ln
(2L

d

)
. (100)

Generally, the values obtained by (98) is an underestimated value of the real value (because there are no
infinitesimals of order higher than Λ2); while the values obtained with the procedures based on the Krylov
subspaces appear to be slightly overestimated. However, as can be seen from the Figures 3a–c and 4a,b, as the
L/d ratio increases all the values obtained converge. However, even if the convergence is ensured for high
values of L/d (and therefore for large system dimensions) triangular–triangular function pairs converge with the
analytical values of capacitance obtained by Equation (98) at a smaller value of L/d making this pair of functions
more attractive than the other pairs. It is worth noting that, even if this pair has a higher computational effort
than the other pairs of functions, it provides values that are closer to real values, making this pair of functions
more attractive than the other pairs. It is worth noting that, even if this pair has a higher computational cost than
the other pairs of functions, it provides values of capacitance that are closer to real values starting from a smaller
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value of L/d. Therefore, the higher computational time required for performance with this pair of functions is
largely justified by the fact that the obtained capacitance values are more reliable.

(a) (b)

(c)

Figure 3. C vs. L/d ratio for each basis-testing functions with the (a) Gauss elimination procedure,
(b) Gauss–Seidel method and (c) GMRS algorithm.

(a) (b)

Figure 4. C vs. L/d ratio for each basis-testing functions with the (a) CGS algorithm and (b) BicGStab
procedure.
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(a) (b)

Figure 5. C vs. N when L/d ratio is equal to 400 for each basis and testing functions: (a) CGS and
(b) BicGStab algorithms.

(a) (b)

(c)

Figure 6. C vs. N when L/d ratio is equal to 400 for each basis and testing functions: (a) Gauss elimination;
(b) Gauss–Seidel procedures; (c) GMRES algorithm.

6.2. qe & Performance of the Procedures

Figures 7a–c and 8a,b show the trend of the electrostatic charge density on the conductor when
the L/d ratio is equal to 400 (when N = 10). There are no strong differences regarding the trend of the
charge density for unit length when different procedures for solving algebraic system are considered.
However, a slight instability is felt in the central area of the conductor, which is most evident when the
BicGStab algorithm is used. In contrast, the same methodology provides linear results at the ends of
the conductor.
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(a) (b)

(c)

Figure 7. Charge density vs. L for L
d = 400 when (a) Gauss elimination procedure; (b) Gauss–Seidel

methods and (c) GMRES algorithm are exploited.

(a) (b)

Figure 8. Charge density vs. L for L
d = 400 when (a) CGS and (b) BicGStab algorithms are exploited.

Remark 17. The procedure based on Krylov subspaces, however, even if they exhibit the same behavior as
the Gauss elimination procedure and Gauss–Seidel method with an increase of N (for the phenomenon of
asymptoticity), show a more regular behavior before saturation, regardless of the pairs of basis and testing
functions used. Furthermore, the distance between the curves for small N are not evident, especially when the
BicGStab algorithm is applied, which provides very similar values of C. This is due to the fact that BicGStab,
although requiring a higher number of iterations than the other procedures, converges more quickly, as evidenced
by the CPU-time obtained. From this analysis, there is no doubt that a key role is played by the number of
subsections N that determine the performance of individual procedures as well as trends in the values of C.
Hence, the need to formulate appropriate selection criteria for N.
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6.3. Selection Criteria for N

Let us introduce the following two definitions.

Definition 4 (norm matrix). As known, a matrix norm is a norm on the vector space Km×n of all matrices of
size m× n with entries in a field K. In particular, it is a function [23]

‖ · ‖ : Km×n → R (101)

such that it satisfies the following properties:

1. ‖A‖ ≥ 0, ∀A ∈ Km×n;
2. ‖A‖ = 0 if only if A = 0m×n;
3. ‖αA‖ = |α| ‖A‖, α ∈ K, ∀A ∈ Km×n;
4. ‖A + B‖ ≤ ‖A‖+ ‖B‖, ∀A, B ∈ Km×n.

Definition 5 (matrix norm induced by vector norms). Let us consider a vector norm ‖‖̇ on Km. Then,
any A ∈ Km×n induces a linear operator from Km to Kn with respect to the standard bases. So, the corresponding
induced norm on Km×n of A ∈ Km×n is defined as follows [23]:

‖A‖ = sup{‖Ax‖ : x ∈ Kn, ‖x‖ = 1} = sup

{
‖Ax‖
‖x‖ : x ∈ Kn, x 6= 0

}
. (102)

For 1 ≤ p ≤ +∞, the induced norm is as follows [23]:

‖A‖p = sup
x 6=0

‖Ax‖p

‖x‖p
. (103)

In particular, if p = 2, it is proved that [23]:

‖A‖2 =
√

λmax(A∗A) = σmax(A), (104)

in which σmax(A) represents the largest singular value of matrix A (the square root of the largest eigenvalue of
the matrix A∗A in which A∗ is the conjugate transpose of A).

Once the matrix norm has been introduced in Definition 4 , two criteria are exploited to choose N.
The first criterion acts on the conditioning number of L, K. In particular, for each value of the L/d ratio
and for each pair of basis and testing functions,

K(N) = ‖L(N)‖ · ‖L−1(N)‖ ≥ 1, (105)

depending on N, is computed. Thus, setting
{

maxN

[
(K(N)) L

d =15
, (K(N)) L

d =20
, (K(N)) L

d =25
, (K(N)) L

d =30
, (K(N)) L

d =60

]
j

}
j ∈ {‘Pulse–Delta’, ‘Pulse–Pulse’, ‘Triangular–Delta’,

‘Triangular–Pulse’, ‘Triangular–Triangular’}

(106)

in stability conditions gives us the first choice of N. For example, Figure 9 depicts the trend of
K(N) depending on N for each basis and testing functions when L/d = 60. In this case, the value
41 represents the lower value for N obtained by this criterion when L/d ratio varies, highlighting that,
sometimes, instability arises even if N is a small value. However, strong instability is more evident
when N increases.
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Remark 18. We observe that increasing N also increases the number of unknowns and therefore also increases
the degree of freedom of the system. This means that λmax in (104) becomes more and more extreme. This leads
to a trend of K(N) which, starting from 1 when N = 1, grows with evident instability when N ≥ 42.

Figure 9. K(L) vs. N with different B/T functions.

The second criterion acts on C. Specifically, for each procedure exploited (Gauss elimination,
Gauss–Seidel, GMRES, CGS and BicGStab) and for each L/d ratio, C is evaluated when N
increases. Then,

min
{

maxN

[{
(C(N)) L

d =15, (C(N)) L
d =20, (C(N)) L

d =25, (C(N)) L
d =30, (C(N)) L

d =60

}
k

]
j

}
k ∈ {‘Gauss Elimination’, ‘Gauss–Seidel’, ‘GMRES’, ‘CGS’, ‘BicGStab’}

j ∈ {‘Pulse–Delta’, ‘Pulse–Pulse’, ‘Triangular–Delta’,

‘Triangular–Pulse’, ‘Triangular–Triangular’}

(107)

in the stability condition, gives us the second choice of N. Finally, the quantity obtained taking the
minimum value between (106) and (107) gives us the definitive number of subsection N. In our study,
we obtained N ∼= 41.

Remark 19. We note that the choice of N, understood as a minimum between the values obtained by applying
the two criteria described above, is also dictated by the fact that for high values of N, the values of C do not
undergo appreciable variations.

6.4. Convergence Speed & CPU-Time

The performance of each procedure was also assessed by the convergence speed computation
expressed in terms of ‖R‖ as the number of iterations increased. In particular, for each L

d considered,
exploiting an Intel Core 2 CPU 1.45 GHz machine and MatLab® R2017a, the trends of ‖R‖were plotted
as a function of the number of iterations as both the subspace-based approach of Krylov used (GMRES,
CGS, and BicGStab) and for each pair of basis-testing functions. The obtained results, as shown in
Figures 10a–c and 11a,b, relating to L

d = 2000, showed, in logarithmic scale and in all the cases studied,
a higher convergence speed of the BicGStab procedure compared to the other approaches.

Remark 20. It is worth noting that in the case of Triangular–Delta as basis-testing functions and for a low
number of iterations, the performances of the three approaches are to be considered equivalent (see Figure 10c).
This is due to the fact that in this specific case, the number of subsections is higher providing a better
approximation for ‖R‖ without the need, for the GMRES procedure, to resort to restarting.

However, to get complete assessments about the convergence speed of each exploited procedure,
the results obtained in terms of ‖R‖ versus the number of iterations must be compared with the
CPU-times obtained. Therefore, for each L

d , the CPU-times and number iterations have been computed
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for GMRES, CGS, and BicGStab and for each pair basis-testing function. In particular, Tables 1, 2,
3, 4 and 5 display the performance of GMRES in terms of CPU-times as L

d increases, for each pair
of basis-testing functions, respectively. Analyzing Table 1, relating to the Pulse–Delta pair, it can be
seen that, with the variation of L

d , the restarting procedure allows to obtain more CPU-time content

even, if the number of iterations increases. However, for high values of L
d , the CPU-time increases

considerably, but in any case, the values obtained are significantly below the values obtained through
the methods of Gauss elimination and Gauss–Seidel (see Tables 6 and 7) in which the calculation
times for high values of L

d are extremely dilated so that the performance of the Gauss elimination and
Gauss–Seidel methods are not suitable for any real-time applications. The same observations can be
extended to the case of the pulse–pulse, triangular–delta, triangular–pulse, and triangular–triangular
pairs (see Tables 2, 3, 4 and 5) where, even if the CPU-time increases for high values of L

d and becomes
more evident, they are still significantly below the values obtained through the Gauss elimination
and Gauss–Seidel methods. The performance of the CGS procedure can be considered similar to
that of GMRES, as can be seen from the comparison between Tables 1, 2, 3, 4, 5 and 8 for which
the GMRES and CGS procedures, depending on L

d , can be considered equivalent. Both approaches
appear slow and expensive in terms of CPU-time since they are applied to linear systems in which the
matrices, in addition to being dense, are also non-symmetric. Furthermore, in the GMRES approach,
both the Arnoldi iteration and the memorization of all the vectors of the base for the calculation of
a new solution worsen the performance. However, the restarting operation partly overcomes this
drawback and, even if the number of iterations increases, the CPU-time decreases. It is worth noting
that, in these cases, convergence is always guaranteed [23]. Even if the number of iterations increases,
BicGStab performs better than the other approaches by providing ‖R‖ below tolerance by an higher
number of iterations but with a very lower CPU-time (see Table 9). In particular, as the elements
of the matrix increase, the BicGStab procedure is faster than the GMRES procedure. Furthermore,
by increasing the number of non-null elements of the matrix, GMRES presents a lower number of
iterations but is more time-consuming than the iterations required by the BicGStab procedure which,
although being in large numbers, require a lot less time to run. Finally, the performance obtained
showed, whatever L

d , an increase in calculation times when the pair triangular–triangular functions as
basis-testing functions are considered compared to the other pair basis-testing functions. However,
the increase in CPU-times, for these pairs of basis-testing functions, slightly affect performance
providing the best performance, taking into account both the CPU-times and the number of iterations
to obtain ‖R‖ below the tolerance threshold especially with regard to the BicGStab procedure, which
requires half of the iterations to break down ‖R‖ below the tolerance threshold.

Remark 21. We observe that GMRES minimizes the residual at each iteration. However, as displayed in
Figures 10a–c and 11a,b, sometimes the residual increases from one iteration to the next. This is due to the
restarting procedure [23].

Finally, the application of the Gauss elimination method and the Gauss–Seidel algorithm did not
offer performances comparable with the methods based on Krylov subspaces since the CPU times
obtained were much higher, highlighting the non-competitiveness. This is essentially due to the
fact that the Gauss elimination method and the Gauss–Seidel algorithm do not take into account the
dimension of the matrix of each algebraic system.
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(a) (b)

(c)

Figure 10. ‖R‖ vs. number of iterations for GMRES. CGS and BicGStab algorithms: (a) pulse–delta (b)
pulse–pulse (c) triangular–delta functions as basis-testing functions.

(a) (b)

Figure 11. ‖R‖ vs. number of iterations for GMRES. CGS and BicGStab algorithms: (a) triangular–pulse
(b) triangular–triangular functions as basis-testing functions.
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Table 1. GMRES: CPU-time (s) and #iterations for pulse–delta basis-testing functions as L
d changes.

GMRES

Pulse–Delta
L/d Iterations CPU-Time Restarting Iterations CPU-Time

6 2 2.0140 3 2.0090
10 2 2.1400 3 2.0190
15 2 2.2813 3 2.2217
20 2 2.2501 3 2.2307
25 3 2.1875 5 2.1755
30 3 2.3281 5 2.1875
60 3 2.6719 5 2.5313

100 5 2.5469 7 2.3906
250 6 2.7969 8 2.6875
500 6 4.0938 8 3.9063

1000 7 11.0000 8 10.2656
2000 8 48.6719 9 32.2188

Table 2. GMRES: CPU-time (s) and #iterations for each pair pulse–pulse basis-testing functions as
L
d changes.

GMRES

Pulse-Pulse
L/d Iterations CPU-Time Restarting Iterations CPU-Time

6 2 2.7969 3 2.6063
10 2 2.8438 3 2.6094
15 2 3.0156 3 3.0125
20 2 2.6875 3 2.6399
25 3 2.3906 3 2.2501
30 3 2.0910 3 2.0154
60 3 2.6719 4 2.5750
100 4 2.6999 4 2.8910
250 4 3.1406 4 3.0694
500 4 4.1875 5 3.9219

1000 5 9.3438 6 7.2344
2000 6 34.3281 7 32.7344

Table 3. GMRES: CPU-time (s) and #iterations for triangular–delta basis-testing functions as L
d changes.

GMRES

Triangular–Delta
L/d Iterations CPU-Time Restarting Iterations CPU-Time

6 2 2.7344 3 2.5781
10 2 2.7656 3 3.0156
15 2 2.5625 3 2.4844
20 3 2.7188 3 2.2500
25 3 2.7969 4 2.3281
30 3 2.7813 4 2.2344
60 3 2.6406 4 2.1875
100 3 2.6719 4 2.6250
250 4 3.4625 4 3.3906
500 4 4.3281 5 3.4375

1000 5 8.6250 6 8.5938
2000 6 42.7813 7 37.3750
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Table 4. GMRES: CPU-time (s) and #iterations for triangular–pulse basis-testing functions as L
d changes.

GMRES

Triangular-Pulse
L/d Iterations CPU-Time Restarting Iterations CPU-Time

6 2 2.8281 3 3.0625
10 2 3.1250 3 2.9844
15 2 2.5313 3 2.2344
20 3 2.5938 3 2.2031
25 3 2.2384 4 2.1875
30 3 3.0000 4 2.1563
60 3 2.4375 4 2.3594
100 4 3.2344 5 2.9688
250 4 2.7344 5 2.7188
500 5 3.5156 6 3.4250

1000 6 9.7969 7 9.1250
2000 6 34.2500 7 31.0587

Table 5. GMRES: CPU-time (s) and #iterations for triangular–triangular basis-testing functions as
L
d changes.

GMRES

Triangular–Triangular
L/d Iterations CPU-Time Restarting Iterations CPU-Time

6 2 2.0589 3 2.0358
10 2 2.0825 3 1.9875
15 2 2.1875 3 2.0987
20 3 2.5156 3 2.1719
25 3 2.6250 4 2.2656
30 3 2.1406 4 2.3594
60 3 2.4063 4 2.4001

100 4 2.7656 5 24844
250 4 2.4219 5 2.4089
500 5 4.3125 6 3.8281
1000 6 8.5156 7 7.7188
2000 6 35.9219 7 33.4688

Table 6. Gauss elimination: CPU-time (s) for each pair basis-testing functions as L
d changes.

Gauss Elimination

Pulse–Delta Pulse–Pulse Triangular–Delta Triangular–Pulse Triangular–Triangular
L/d CPU-Time CPU-Time CPU-Time CPU-Time CPU-Time

6 0.0313 0.0156 0.0156 0.0156 0.0156
10 0.0156 0.0163 0.0169 0.0173 0.0174
15 0.0434 0.0436 0.0433 0.0469 0.0521
20 0.0625 0.0691 0.0729 0.0785 0.0873
25 0.0794 0.0749 0.0757 0.0789 0.0798
30 0.0813 0.0836 0.0849 0.0875 0.0899
60 0.2313 0.2156 0.2515 0.2790 0.2873

100 0.3290 0.3334 0.3512 03586 0.3599
250 0.6250 0.6094 0.6406 0.6563 0.7344
500 2.0781 2.0625 2.4375 2.3125 2.4219

1000 15.7188 17.0625 17.9063 17.6563 18.2031
2000 115.6875 117.3281 117.8125 122.5781 143.3438
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Table 7. Gauss–Seidel: CPU-time (s) and number of iterations for each pair basis-testing functions as
L
d changes.

Gauss–Seidel

Pulse–Delta Pulse–Pulse Triangular–Delta Triangular–Pulse Triangular–Triangular
L/d CPU-time CPU-time CPU-time CPU-time CPU-time

6 0.0078 0.0093 0.0099 0.0089 0.0080
10 0.0145 0.0130 0.0096 0.0117 0.0159
15 0.0192 0.0195 0.0148 0.0171 0.0216
20 0.0245 0.0279 0.0314 0.0301 0.0317
25 0.0305 0.0377 0.0288 0.0313 0.0399
30 0.0443 0.0437 0.0534 0.0829 0.0827
60 0.1476 0.2309 0.2284 0.2378 0.1849

100 0.4046 0.5806 0.4640 0.5668 0.5505
250 3.0992 4.4617 4.9277 5.4185 6.4172
500 16.0497 18.5411 21.9452 20.6219 20.8443
1000 63.5523 74.6598 71.0213 80.4083 72.5813
2000 326.7238 311.5719 321.5325 352.0632 377.7439

Table 8. CGS: CPU-time (s) and number of iterations for each pair basis-testing functions as L
d changes.

CGS

Pulse- Pulse- Triangular-
Delta Pulse Delta

L/d Iterations CPU-Time Iterations CPU-Time Iterations CPU-Time

6 2 2.0151 2 2.7841 2 2.6999
10 2 2.1235 2 2.8891 2 2.7391
15 2 2.2789 2 3.0045 2 2.5701
20 2 2.2124 2 2.6587 2 2.7089
25 3 2.1822 3 2.3924 3 2.7899
30 3 2.3214 3 2.0892 3 2.7796
60 3 2.6745 3 2.6752 3 2.6498
100 5 2.5402 5 2.6905 5 2.6746
250 6 2.7912 6 3.1382 6 3.4601
500 6 4.1598 6 4.1926 6 4.3301

1000 7 11.0548 7 9.3875 7 8.6254
2000 8 48.0254 8 34.0369 8 42.9816

Table 8. Cont.

CGS

Triangular- Triangular-
Pulse Triangular

L/d Iterations CPU-Time Iterations CPU-Time

6 2 2.8101 2 2.5147
10 2 3.1341 2 2.0799
15 2 2.5401 2 2.1798
20 2 2.5899 2 2.5124
25 3 2.2322 3 2.6212
30 3 2.9971 3 2.1427
60 3 2.4301 3 2.3983

100 5 3.2314 5 2.7691
250 6 2.7391 6 2.4290
500 6 3.5149 6 4.3259

1000 7 9.9782 7 8.5203
2000 8 34.9311 8 35.9315
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Table 9. BicGStab: CPU-time (s) and number of iterations for each pair basis-testing functions as
L
d changes.

BicGStab

Pulse- Pulse- Triangular-
Delta Pulse Delta

L/d Iterations CPU-Time Iterations CPU-Time Iterations CPU-Time

6 5 0.2188 5 0.3438 5 0.4531
10 12 0.2656 11 0.5156 14 0.3125
15 28 0.2969 20 0.4844 21 0.2656
20 48 0.1563 48 0.1496 38 0.1094
25 59 0.2500 64 0.2500 93 0.2188
30 134 0.1250 50 0.1406 181 0.4219
60 130 0.500 868 0.6094 286 0.3125
100 189 0.3438 307 0.3906 204 0.3281
250 98 0.5313 851 0.7969 95 0.4219
500 317 0.8906 251 0.5156 325 0.6875

1000 304 1.3125 320 1.3906 143 0.8906
2000 468 24.8281 799 25.8439 924 24.4219

Triangular- Triangular-
Pulse Triangular

L/d Iterations CPU-Time Iterations CPU-Time

6 5 0.3987 5 0.4193
10 16 0.2188 16 0.2982
15 26 0.2656 27 0.0938
20 67 0.2656 63 0.2188
25 65 0.2969 90 0.1875
30 197 0.2656 141 0.1406
60 135 0.3750 344 0.3281

100 191 0.4063 179 0.5625
250 449 0.7969 115 0.3750
500 416 0.7656 235 0.5625
1000 395 1.5938 113 0.5781
2000 1013 25.5000 1023 25.9243

7. Conclusions and Perspectives

In this paper, an in-depth comparison among some Krylov subspace method procedures for solving
the algebraic linear systems with dense matrix deriving from the application of the MoM for calculating
the distribution of the electrostatic charge and the related capacitance of a straight cylindrical conductor
of finite length have been presented. Five cases have been identified according to the type of basis-testing
functions pair used: (a) pulse function as the basis function and delta function as the testing function
(point matching); (b) pulse function as the basis function as well as testing function; (c) triangular function
as the basis function and delta function as the testing function (point matching); (d) triangular function as
the basis function and pulse function as the testing function; (e) triangular function as the basis function as
well as the testing function. For the resolution of the five algebraic linear systems thus obtained, GMRES,
CGS, and BicGStab algorithms (all based on Krylov subspaces approaches) have been exploited to achieve
the electrostatic charge distribution on the surface of the conductor and capacitance. Numerical results
demonstrate the superiority of the BicGStab algorithm in terms of reducing the number of iterations
required to reduce the residual norm below the selected tolerance against a reduced increase in CPU-time
for each iteration compared to the other considered procedures. In particular, as the size of the matrix
increases (due to the increase in the number of subsections of the mesh), the number of iterations required
by the BicGStab procedure, compared to the other procedures used, increases significantly but with a
significantly reduced CPU-time consumed. In fact, the CPU-time value obtained with BicGStab (25.9
s) is 46.1% lower than the highest CPU-time obtained with the CGS procedure (which is around 48 s)
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while it is reduced by 27.91% of the highest CPU-time value obtained with the GMRES method (which is
around 36 s). Again, it is reduced by 81.93% of the CPU-time value obtained with the Gauss elimination
method (around 143 s), and is reduced by 93.1% compared to the higher CPU-time obtained by the
Gauss–Seidel iterative procedure. This confirms the indisputable superiority of the BicGStab procedure
compared to the others used because, even if it requires a greater number of iterations, it performs them
in a considerably more contained time. This research can be considered as an important step especially
for a realtime application that requires quick approaches. Finally, the fact that L matrices suffer from
the problem of poor conditioning in all cases, in the future, it is desirable to use “ad-hoc” preconditions
capable of eliminating (or at least reducing) the effects of this problem.
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Abbreviations

The following abbreviations are used in this manuscript:

EM electromagnetic problems
L differential, integral, or integro-differential operator
h excitation source
f unknown function to be determined
L algebraic sparse matrix
MoM method of moments
qe electrostatic charge distribution
C electrostatic capacitance
GMRES generalized minimal residual method
CGS conjugate gradient squared
BicGStab biconjugate gradient Stabilized
Oxyz system of Cartesian axes
x longitudinal symmetry axis of the cylindrical conductor
Ω source region
L length of the conductor
a radius of the conductor
r′ vector pointing the observation points
r vector pointing the source points
φ(x) electrostatic potential
ε permittivity of the free space
αn constants to be determined
fn basis functions or expansion functions
R residual
N number of sections of the conductor
wm, m = 1, . . . , N weighting or testing functions
∆(x) Dirac Delta
V electrical voltage
Lmn individual elements of the matrix L
Kr Krylov subspace with index r
Kk(AT , b) Krylov subspace with index k generated by AT and b
K conditioning number
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