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Università degli Studi di Catania, Italy

floridia@dmi.unict.it

Communicated by Nicola Bellomo

Abstract

In this work we study the global approximate multiplicative controllability for a
weakly degenerate parabolic Cauchy-Robin problem. The problem is weakly degenerate
in the sense that the diffusion coefficient is positive in the interior of the domain and
is allowed to vanish at the boundary, provided the reciprocal of the diffusion coefficient
is summable. In this paper, we will show that the above system can be steered, in the
space of square-summable functions, from any nonzero, nonnegative initial state into
any neighborhood of any desirable nonnegative target-state by bilinear static controls.
Moreover, we extend the above result relaxing the sign constraint on the initial-state.
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1. Introduction.

Motivations.

In Control theory, boundary and interior locally distributed controls are
usually employed (see, e.g., [1], [2], [3], [4], [5], [6]). These controls are addi-
tive terms in the equation and have localized support. However, such models
are unfit to study several interesting applied problems such as chemical re-
actions controlled by catalysts, and also smart materials, which are able to
change their principal parameters under certain conditions. This explains
the growing interest in multiplicative controllability. General references for
multiplicative controllability are, e.g., [7], [8], [9], [10], [11], [12].
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This note is inspired by [13], [14] and [15]. In [13] A.Y. Khapalov studied
the global nonnegative approximate controllability of the one dimensional
non-degenerate semilinear convection-diffusion-reaction equation governed
in a bounded domain via the bilinear control α ∈ L∞(QT ). In [14], the
same approximate controllability property is derived in suitable classes of
functions that change sign.
Degenerate parabolic problems are related to several applied models. For
instance, in climatology, the so-called Budyko-Sellers model studies the role
played by continental and oceanic areas of ice on climate change. The one-
dimensional version of such a model reduces to an equation of the form

ut −
(
(1− x2)ux

)
x

= g(t, x)h(x, u) + f(t, x), x ∈ (−1, 1),

where g, f and h are given functions and h may even be discontinuous. Here,
the coefficient a(x) = 1 − x2 vanishes at the boundary and the problem is
strongly degenerate, in the sense that 1

a 6∈ L
1(−1, 1).

In [15], we have obtained approximate controllability results with multi-
plicative control for strongly degenerate parabolic equations. In this article
we extend the results of [15] to weakly degenerate equations, that is, as-
suming 1

a ∈ L
1(−1, 1).

Problem formulation.

Let us consider the following Cauchy-Robin weakly degenerate bound-
ary linear problem in divergence form, governed in the bounded domain
(−1, 1) by means of the bilinear control α(t, x)

(1)


vt − (a(x)vx)x = α(t, x)v in QT = (0, T )× (−1, 1){

β0v(t,−1) + β1a(−1)vx(t,−1) = 0 t ∈ (0, T )

γ0 v(t, 1) + γ1 a(1) vx(t, 1) = 0 t ∈ (0, T )

v(0, x) = v0(x) x ∈ (−1, 1)

We assume that

i. v0 ∈ L2(−1, 1)
ii. α ∈ L∞(QT )
iii. a ∈ C0([−1, 1]) ∩ C1(−1, 1) fulfills the following properties

(a) a(x) > 0 ∀x ∈ (−1, 1), a(−1) = a(1) = 0
(b) 1

a ∈ L
1(−1, 1)

iv. β0, β1, γ0, γ1 ∈ R, β2
0 + β2

1 > 0, γ2
0 + γ2

1 > 0, satisfy the sign condition
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(a) β0β1 ≤ 0 and γ0γ1 ≥ 0.

Under the assumptions iii.) we say that the problem (1) is weakly degen-
erate.

2. Main goals.

We are interested in studying the multiplicative controllability of prob-
lem (1) by the bilinear control α(t, x). In particular, for the above lin-
ear problem, we will discuss results guaranteeing global nonnegative ap-
proximate controllability in large time (for multiplicative controllability
see [13], [11], [14], [15]).
Now we recall one definition from control theory.

Definition 2.1. We say that the system (1) is nonnegatively globally ap-
proximately controllable in L2(−1, 1), if for every ε > 0 and for every non-
negative v0(x), vd(x) ∈ L2(−1, 1) with v0 6≡ 0 there are a T = T (ε, v0, vd)
and a bilinear control α(t, x) ∈ L∞(QT ) such that for the corresponding
solution v(t, x) of (1) we obtain

‖v(T, ·)− vd‖L2(−1,1) ≤ ε .

In this work at first the nonnegative global approximate controllability
result is obtained for the linear system (1) in the following theorem.

Theorem 2.1. The linear system (1) is nonnegatively approximately con-
trollable in L2(−1, 1) by means of static controls in L∞(−1, 1). Moreover,
the corresponding solution to (1) remains nonnegative at all times.

Then, the results present in Theorem 2.1 can be extended to a larger
class of initial states.

Theorem 2.2. For any vd ∈ L2(−1, 1), vd ≥ 0 and any v0 ∈ L2(−1, 1)
such that

(2) 〈v0, vd〉L2(−1,1) > 0,

for every ε > 0, there are T = T (ε, v0, vd) ≥ 0 and a static bilinear control,
α = α(x), α ∈ L∞(−1, 1) such that

‖v(T, ·)− vd‖L2(−1,1) ≤ ε .

3
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Remark 2.1. The solution v(t, x) of the problem (1) in the assumptions
of Theorem 2.2 does not remain nonnegative in QT , like in Theorem 2.1,
but it can also assume negative values.

In the following, we will sometimes use ‖·‖ and 〈·, ·〉 instead of ‖·‖L2(−1,1)

and 〈·, ·〉L2(−1,1).

3. Well-posedness in weighted Sobolev spaces.

In order to deal with the well-posedness of problem (1), it is necessary
to introduce the following Sobolev weighted spaces

H1
a(−1, 1) := {u ∈ L2(−1, 1) : u absolutely continuous in [−1, 1],

√
aux ∈ L2(−1, 1)}

and
H2
a(−1, 1) := {u ∈ H1

a(−1, 1)| aux ∈ H1(−1, 1)},

respectively with the following norms

‖u‖2H1
a

:= ‖u‖2L2(−1,1) + |u|21,a and ‖u‖2H2
a

:= ‖u‖2H1
a

+ ‖(aux)x‖2L2(−1,1),

where |u|1,a := ‖
√
aux‖L2(−1,1) is a seminorm.

In this note we consider the following space

B(0, T ) = C0([0, T ];L2(−1, 1)) ∩ L2(0, T ;H1
a(−1, 1)),

where let us define the following norm

‖u‖2B(0,T ) := sup
t∈[0,T ]

‖u(t, ·)‖2L2(−1,1) + 2

∫ T

0

∫ 1

−1
a(x)u2

xdx , ∀u ∈ B(0, T ) .

In [16] the following result is obtained.

Lemma 3.1.

H1
a(−1, 1) ↪→ L2(−1, 1) with compact embedding.

A similar result is obtained in [15] in the strongly degenerate case.
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We now recall the existence and uniqueness result for system (1) ob-
tained in [17] (see also [16]). Let us consider, first, the operator (A0, D(A0))
defined by

(3)


D(A0) =

{
u ∈ H2

a(−1, 1)

∣∣∣∣
{
β0u(−1) + β1a(−1)ux(−1) = 0

γ0 u(1) + γ1 a(1)ux(1) = 0

}

A0u = (aux)x , ∀u ∈ D(A0) .

Observe that A0 is a closed, self-adjoint, dissipative operator with dense
domain in L2(−1, 1). Therefore, A0 is the infinitesimal generator of a C0 −
semigroup of contractions in L2(−1, 1).

Next, given α ∈ L∞(−1, 1), let us introduce the operator

(4)

D(A) = D(A0)

A = A0 + αI .

For such an operator we have the following proposition.

Proposition 3.1.

• D(A) is compactly embedded and dense in L2(−1, 1).
• A : D(A) −→ L2(−1, 1) is the infinitesimal generator of a strongly con-

tinuous semigroup, etA, of bounded linear operators on L2(−1, 1).

Observe that problem (1) can be recast in the Hilbert space L2(−1, 1) as

(5)

u′(t) = Au(t) , t > 0

u(0) = u0 .

where A is the operator in (4).

We recall that a weak solution of (5) is a function u ∈
C0([0, T ];L2(−1, 1)) such that for every v ∈ D(A∗) the function 〈u(t), v〉 is
absolutely continuous on [0, T ] and

d

dt
〈u(t), v〉 = 〈u(t), A∗v〉 ,

for almost t ∈ [0, T ] (see [18]).
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Theorem 3.1. For every α ∈ L∞((0, T ) × (−1, 1)) and every u0 ∈
L2(−1, 1), there exists a unique weak solution u ∈ B(0, T ) to (1), which
coincides with etAu0.

4. Auxiliary lemmas.

Let A = A0 + αI, where the operator A0 is defined in (3) and α ∈
L∞(−1, 1). Since A is self-adjoint and D(A) ↪→ L2(−1, 1) is compact (see
Proposition 3.1), we have the following (see also [19]).

Lemma 4.1. There exists an increasing sequence with {λk}k∈N, λk −→
+∞ as k → ∞ , such that the eigenvalues of A are given by {−λk}k∈N,
and the corresponding eigenfunctions {ωk}k∈N form a complete orthonormal
system in L2(−1, 1).

In this note we obtain the following result

Lemma 4.2. Let A be the operator defined in (4) with α = α∗

(6)

D(A) = D(A0)

A = A0 + α∗I ,

and let {λk}, {ωk} be the eigenvalues and eigenfunctions of A, respectively,
given by Lemma 4.1. Let v ∈ D(A) be such that v > 0 on (−1, 1), and

α∗(x) = − (a(x)vx(x))x
v(x) ∈ L∞(−1, 1). Then

λ1 = 0 and |ω1| =
v

‖v‖
.

Moreover, v
‖v‖ and − v

‖v‖ are the only eigenfunctions of A with norm 1 that

do not change sign in (−1, 1).

Remark 4.1. Problem (6) is equivalent to the following Sturm-Liouville
system 

(a(x)ωx)x + α∗(x)ω + λω = 0 in (−1, 1)β0ω(−1) + β1a(−1)ωx(−1) = 0

γ0 ω(1) + γ1 a(1)ωx(1) = 0 .
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Proof. (of Lemma 4.2)
STEP.1 We denote by

{−λk}k∈N and {ωk}k∈N,

respectively, the eigenvalues and orthonormal eigenfunctions of the operator
(6) (see Lemma 4.1). Therefore,

(7) 〈ωk, ωh〉 = 0, if h 6= k .

One can check, by easy calculations, that v(x)
‖v‖ is an eigenfunction of A

associated with the eigenvalue λ = 0. Since v
‖v‖ has norm 1 and v(x) > 0

on (−1, 1), we have that

(8) ∃ k∗ ∈ N : ωk∗(x) =
v(x)

‖v‖
> 0 or ωk∗(x) = −v(x)

‖v‖
< 0, ∀x ∈ (−1, 1) .

Writing (7) with k = k∗ we obtain

(9) 〈ωk∗ , ωh〉 =

∫ 1

−1
ωk∗(x)ωh(x)dx = 0, ∀h 6= k∗ .

Therefore, considering (8) and (9), we observe that ωk∗ is the only eigen-
function of the operator defined in (6) that doesn’t change sign in (−1, 1).

STEP.2 Let us now prove that

k∗ = 1 ,

that is, λ1 = 0. Recall that

λ1 = min
u∈D(A)\{0}

−〈Au, u〉
‖u‖2

,

where

〈Au, u〉 =

∫ 1

−1

(
(a ux)x u+ α∗ u

2
)
dx = [aux u]1−1−

∫ 1

−1
a u2

x dx+

∫ 1

−1
α∗ u

2 dx .

By Lemma 4.1, since λk∗ = 0, it is sufficient to prove that λ1 ≥ 0, or

(10)

∫ 1

−1
α∗ u

2 dx + [aux u]1−1 ≤
∫ 1

−1
a u2

x dx, ∀u ∈ H1
a(−1, 1) .

7
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If β1γ1 6= 0, using the Robin boundary conditions, we have

[aux u]1−1 = a(1)ux(t, 1)u(t, 1)− a(−1)ux(t,−1)u(t,−1)

=
−γ0

γ1
u2(t, 1) +

β0

β1
u2(t,−1).

Integrating by parts, keeping in mind that β1γ1 6= 0, we have

∫ 1

−1
α∗ u

2 dx = −
∫ 1

−1

(a vx)x
v

u2 dx = −
[
a vx

u2

v

]1

−1

+

∫ 1

−1
a vx

(
u2

v

)
x

dx

= −a(1) vx(1)
u2(t, 1)

v(1)
+ a(−1) vx(−1)

u2(t,−1)

v(−1)

+

∫ 1

−1
a vx

2uux
v

dx−
∫ 1

−1
a v2

x

(
u2

v2

)
dx

=
γ0

γ1
v(1)

u2(t, 1)

v(1)
− β0

β1
v(−1)

u2(t,−1)

v(−1)

+ 2

∫ 1

−1

√
a
vx
v
u
√
aux dx−

∫ 1

−1
a v2

x

(
u2

v2

)
dx

≤ γ0

γ1
u2(t, 1)− β0

β1
u2(t,−1)

+

∫ 1

−1
a
(vxu
v

)2
dx+

∫ 1

−1
au2

x dx−
∫ 1

−1
a v2

x

(
u2

v2

)
dx

= − [aux u]1−1 +

∫ 1

−1
au2

x dx ,

from which (10) follows. In fact, (10) holds true even for β1γ1 = 0, as one
can show by similarly argument.

For the proof of Theorem 2.1 the following Lemma is necessary.

Lemma 4.3. Let T > 0, α ∈ L∞(QT ), let v0 ∈ L2(−1, 1), v0(x) ≥
0 a.e. x ∈ (−1, 1) and let v ∈ B(0, T ) be the solution to the linear
system

vt − (a(x)vx)x = α(t, x)v in QT = (0, T )× (−1, 1)β0v(t,−1) + β1a(−1)vx(t,−1) = 0 t ∈ (0, T )

γ0 v(t, 1) + γ1 a(1) vx(t, 1) = 0 t ∈ (0, T )

v(0, x) = v0(x) x ∈ (−1, 1) ,

8
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Then

v(t, x) ≥ 0, ∀(t, x) ∈ QT .

Proof. Let v ∈ B(0, T ) be the solution to the system (1), and we consider
the positive-part and the negative-part (see Appendix). It is sufficient to
prove that

v−(t, x) ≡ 0 in QT .

Multiplying both members equation of the problem (1) by v− and integrat-
ing it on (−1, 1) we obtain

(11)

∫ 1

−1

[
vtv
− − (a(x)vx)xv

− − αvv−
]
dx = 0.

Recalling the definition v+ and v−, we obtain∫ 1

−1
vtv
−dx =

∫ 1

−1
(v+−v−)tv

−dx = −
∫ 1

−1
(v−)tv

−dx = −1

2

d

dt

∫ 1

−1
(v−)2dx .

Integrating by parts and applying Theorem 6.1 (see Appendix), we obtain
v− ∈ H1

a(−1, 1) and the following equality∫ 1

−1
(a(x)vx)xv

− dx = [a(x)vxv
−]1−1 −

∫ 1

−1
a(x)vx(−v)x dx

If β1γ1 6= 0, using the Robin boundary conditions and the sign assumptions,
we have

[a(x)vxv
−]1−1 = a(1)vx(t, 1)v−(t, 1)− a(−1)vx(t,−1)v−(t,−1) =

= −γ0

γ1
v(t, 1)v−(t, 1) +

β0

β1
v(t,−1)v−(t,−1) ≥ 0 .

If β1γ1 = 0(a), proceeding similarly, we obtain

[a(x)vxv
−]1−1 ≥ 0.

We also have ∫ 1

−1
αvv−dx = −

∫ 1

−1
α(v−)2dx

aIn the particular case β1 = γ1 = 0 we have [a(x)vxv
−]1−1 = 0. Indeed, in this case

the problem (1) is reduced to a Cauchy-Dirichlet problem.

9
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and therefore (11) becomes

−1

2

d

dt

∫ 1

−1
(v−)2dx+

∫ 1

−1
α(v−)2dx = [a(x)vxv

−]1−1 +

∫ 1

−1
a(x)v2

x ≥ 0,

from which

d

dt

∫ 1

−1
(v−)2dx ≤ 2

∫ 1

−1
α(v−)2dx ≤ 2‖α‖∞

∫ 1

−1
(v−)2dx.

From the above inequality, applying Gronwall’s lemma we obtain∫ 1

−1
(v−(t, x))2dx ≤ e2t‖α‖∞

∫ 1

−1
(v−(0, x))2dx .

Since
v(0, x) = v0(x) ≥ 0 ,

we have
v−(0, x) = 0.

Therefore,
v−(t, x) = 0, ∀(t, x) ∈ QT .

From this, as we mentioned initially, it follows that

v(t, x) = v+(t, x) ≥ 0 ∀(t, x) ∈ QT .

5. Proofs of main goals.

We are now ready to prove our main result.

Proof. (of Theorem 2.1)
STEP.1 Let A0 be the operator defined in (3), to prove Theorem 2.1 it is
sufficient to consider the set of target states

(12) vd ∈ D(A0), vd > 0 on (−1, 1) such that
(a vdx)x
vd

∈ L∞(−1, 1) .

Indeed, regularizing by convolution, every function vd ∈ L2(−1, 1), vd ≥
0 can be approximated by a sequence of strictly positive C∞([−1, 1])−
functions.
Then, fixing ε > 0, we can find a function vεd ∈ C∞([−1, 1]), vεd > 0 in

10
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[−1, 1] such that ‖vd − vεd‖ ≤
ε
2 .

Now, let us consider ω̄1, the first positive eigenfunction of A0 with norm 1.
Note that ω̄1 is a solution of the following Sturm-Liouville problem

(13)


(a(x)ωx)x + λω = 0 in (−1, 1)β0ω(−1) + β1a(−1)ωx(−1) = 0

γ0 ω(1) + γ1 a(1)ωx(1) = 0

Define

v̄εd(x) = ξσ(x) ω̄1(x) + (1− ξσ(x)) vεd(x), x ∈ [−1, 1],

where ξσ ∈ C∞([−1, 1]) (σ is a positive real number) is a symmetrical
cut-off function

• ξσ(−x) = ξσ(x), ∀x ∈ [−1, 1]
• 0 ≤ ξσ(x) ≤ 1, ∀x ∈ [0, 1]
• ξσ(x) = 0, ∀x ∈ [0, 1− σ]
• ξσ(x) = 1, ∀x ∈ [1− σ

2 , 1].

Then,

v̄εd ∈ H2
a(−1, 1), v̄εd > 0 in (−1, 1) and

β0v̄
ε
d(−1) + β1a(−1)v̄εdx(−1) = 0

γ0 v̄
ε
d(1) + γ1 a(1) v̄εdx(1) = 0

Moreover, taking into account that there is σ > 0 such that

‖vεd − v̄εd‖2 ≤
∫ −1+σ

−1
(ω̄1(x)− vεd(x))2 dx+

∫ 1

1−σ
(ω̄1(x)− vεd(x))2 dx ≤ ε2

4
,

we have
‖vd − v̄εd‖ ≤ ‖vd − vεd‖+ ‖vεd − v̄εd‖ ≤ ε .

Finally, since (a(x)ω̄1x(x))x
ω̄1(x) = −λ̄1 ∀x ∈ (−1, 1) (b), we have

(a v̄εdx)x
v̄εd

∈ L∞(−1, 1) .

STEP.2 Taking any nonzero, nonnegative initial state v0 ∈ L2(−1, 1) and
any target state vd as described in (12) in STEP.1, let us set

(14) α∗(x) = −(a(x)vdx(x))x
vd(x)

, x ∈ (−1, 1).

b−λ̄1 is the first eigenvalue of the Sturm-Liouville problem (13).

11
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Then, by (12),
α∗ ∈ L∞(−1, 1) .

We denote by

{−λk}k∈N and {ωk}k∈N,

respectively, the eigenvalues and orthonormal eigenfunctions of the spectral
problem Aω + λω = 0, with A = A0 + α∗I (see Lemma 4.1), where as first
eigenfunction we take the one which is positive in (−1, 1).

We can see, by Lemma 4.2, that

(15) λ1 = 0 and ω1(x) =
vd(x)

‖vd‖
> 0, ∀x ∈ (−1, 1) .

STEP.3 Let us now choose the following static bilinear control

α(x) = α∗(x) + δ, ∀x ∈ (−1, 1), with δ ∈ R (δ to be determined below).

Adding δ ∈ R in the coefficient α∗ there is a shift of the eigenvalues cor-
responding to α∗ from {−λk}k∈N to {−λk + δ}k∈N, but the eigenfunctions
remain the same for α∗ and α∗ + δ.
The corresponding solution of (1), for this particular bilinear coefficient α,
has the following Fourier series representation

v(t, x) =
∞∑
k=1

e(−λk+δ)t〈v0, ωk〉ωk(x)

= eδt〈v0, ω1〉ω1(x) +
∑
k>1

e(−λk+δ)t〈v0, ωk〉ωk(x) .

Let
r(t, x) =

∑
k>1

e(−λk+δ)t〈v0, ωk〉ωk(x)

where, recalling that λk < λk+1, we obtain

−λk < −λ1 = 0 for ever k ∈ N, k > 1 .

Owing to (15),

(16) ‖v(t, ·)− vd‖ ≤
∥∥∥∥eδt〈v0, ω1〉ω1 − ‖vd‖ω1

∥∥∥∥+ ‖r(t, x)‖

=
∣∣∣eδt〈v0, ω1〉 − ‖vd‖

∣∣∣+ ‖r(t, x)‖ .

12
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Since −λk < −λ2, ∀k > 2, applying Bessel’s inequality we have

(17) ‖r(t, x)‖2 ≤ e2(−λ2+δ)t
∑
k>1

|〈v0, ωk〉|2‖ωk(x)‖2

= e2(−λ2+δ)t
∑
k>1

〈v0, ωk〉2 ≤ e2(−λ2+δ)t‖v0‖2.

Fixed ε > 0, we choose Tε > 0 such that

(18) e−λ2Tε = ε
〈v0, vd〉
‖v0‖‖vd‖2

.

Since v0 ∈ L2(−1, 1), v0 ≥ 0 and v0 6≡ 0 in (−1, 1) and by (15), we obtain

(19) 〈v0, ω1〉 =

∫ 1

−1
v0(x)ω1(x)dx > 0.

Then, it is possible choose δε so that

eδεTε〈v0, ω1〉 = ‖vd‖,

that is, since ω1 = vd
‖vd‖ ,

(20) δε =
1

Tε
ln

(
‖vd‖2

〈v0, vd〉

)
.

So, by (16)− (18) and (20) we conclude that

‖v(Tε, ·)− vd(·)‖ ≤ e(−λ2+δε)Tε‖v0‖ = e−λ2Tε
‖vd‖2

〈v0, vd〉
‖v0‖ = ε .

From which we have the conclusion.

Proof. (of Theorem 2.2) The proof of Theorem 2.1 can be adapted to
Theorem 2.2, keeping in mind that, in STEP.3, inequality (19) continues to
hold in this new setting. In fact we have

〈v0, ω1〉 =
1

‖vd‖
〈v0, vd〉 > 0, by assumptions (2).

From this point on, one can proceed as in the proof of Theorem
2.1.

13



P. Cannarsa et al

6. Appendix.

Positive and negative part.

Given Ω ⊆ Rn, v : Ω −→ R we consider the positive-part function

v+(x) = max (v(x), 0) , ∀x ∈ Ω ,

and the negative-part function

v−(x) = max (0,−v(x)) , ∀x ∈ Ω .

Then we have the following equality

v = v+ − v− in Ω

For the functions v+ and v− the following result of regularity in Sobolev’s
spaces will be useful (see [20], Appendix A ).
Theorem 6.1. Let Ω ⊂ Rn, u : Ω −→ R, u ∈ H1,s(Ω), 1 ≤ s ≤ ∞. Then

u+, u− ∈ H1,s(Ω)

and for 1 ≤ i ≤ n

(u+)xi =

uxi in {x ∈ Ω : u(x) > 0}

0 in {x ∈ Ω : u(x) ≤ 0} ,

and

(u−)xi =

−uxi in {x ∈ Ω : u(x) < 0}

0 in {x ∈ Ω : u(x) ≥ 0} .

Gronwall’s Lemma.

Lemma 6.1. Gronwall’s inequality (differential form). Let η(t) be a non-
negative, absolutely continuous function on [0, T ], which satisfies for a.e.
t ∈ [0, T ] the differential inequality

(21) η′(t) ≤ φ(t)η(t) + ψ(t),

where φ(t) and ψ(t) are nonnegative, summable functions on [0, T ].
Then

η(t) ≤ e
∫ t
0 φ(s)ds

[
η(0) +

∫ t

0
ψ(s)ds

]
for all 0 ≤ t ≤ T .

In particular, if ψ(t) ≡ 0 in (21), i.e. η′ ≤ φ η for a.e. t ∈ [0, T ], and
η(0) = 0, then

η ≡ 0 in [0, T ].

14
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