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Abstract: Structural Health Monitoring (SHM) allows us to have information about the structure
under investigation and thus to create analytical models for the assessment of its state or structural
behavior. Exceeded a predetermined danger threshold, the possibility of an early warning would
allow us, on the one hand, to suspend risky activities and, on the other, to reduce maintenance costs.
The system proposed in this paper represents an integration of multiple traditional systems that
integrate data of a different nature (used in the preventive phase to define the various behavior
scenarios on the structural model), and then reworking them through machine learning techniques,
in order to obtain values to compare with limit thresholds. The risk level depends on several
variables, specifically, the paper wants to evaluate the possibility of predicting the structure behavior
monitoring only displacement data, transmitted through an experimental transmission control unit.
In order to monitor and to make our cities more “sustainable”, the paper describes some tests on road
infrastructure, in this contest through the combination of geomatics techniques and soft computing.
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1. Introduction

Our society strongly depends on several complex and interdependent critical infrastructures. Due
to technological development, these transport networks became sophisticated, complex, and essential
for people, businesses, and municipalities. Indeed, any deficiencies (interruption or traffic calming)
of the transport network functionality can cause serious consequences for people. The transport
system is, therefore, necessary for the health and functionality of modern society, which depends on it
not only for people’s day to day mobility and for freight transport, but also as a lifeline system for
emergency management.

The transport infrastructure assets, both in terms of the existing network and infrastructural works,
are so significant that the problem of its safety and preservation is surely a priority for our country.

The expected lifecycle cost of infrastructure is an important factor that should be estimated in the
design and optimal management of infrastructure. In reference to economics, this cost is associated
with several factors such as hazard, inherent vulnerability and exposed asset. The uncertainty of the
expected lifecycle cost depends on the potentially dangerous events and the preservation of materials
constituting the infrastructural works. The optimal strategy consists of minimizing the expected
lifecycle cost, preserving infrastructure safety. In this context, the issues can be dealt with a multiscale
approach: Analyzing a single infrastructural work (bridge, viaduct, gallery, and geotechnical system)
or assessing and managing the risk of the whole network infrastructure [1,2].
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Infrastructures in Italy are in a general state of need and dislike, mainly due to a near-total lack of
central risk control and monitoring mechanism.

The tendency to “economize” at the initial design stage does not consider that the post-assessment
costs caused by misjudgments are much higher when compared to the potential “savings” that would
be obtained by preemptively adopting a methodology capable to assess the uncertainties in the round.

Smart cities is a reality, in which there is an optimized use of all the resources that contribute to
guaranteeing, in various sectors and various fields, development and growth.

The smart cities definition introduces, alongside the concept of “smart”, also that of “sustainable”:
A smart and sustainable city is an urban core which uses information and communication technologies
(ICT) and other technological means to improve the quality of life, the efficiency of services, and urban
activity, competitiveness, respecting the needs of present and future generations since economic, social,
and environmental perspective. Therefore, not only a concentration of technologies but a complex
ecosystem in which citizens, municipal authorities, local companies, industries in general in addition
to the different communities and interest groups must actively participate. It should be pointed out
that, in this perspective, the geographical limits of a smart city transcend the narrow urban boundaries
and encompass metropolitan areas or even on a regional scale.

The infrastructure for communication and data transmission is certainly the skeleton that makes
the system work.

There are two aspects that must characterize the sensor adapted to the complexity of the smart
city. The first is, of course, the ability to accurately and accurately detect physical data. The second, no
less important, is the ability to perform some computing functions directly, perhaps using artificial
intelligence techniques. This becomes essential to generate information already properly interpreted
and consequently decrease the immense volume of data that could otherwise grow to such levels that
it becomes manageable only with significant costs and resources. To date, where the smart city is
becoming more and more established as a reality, the proposed experimentation well fits in this contest
through the combination of geomatics techniques and soft computing to monitor and to make more
“sustainable” our cities.

Structural monitoring, also known as structural health monitoring (SHM), is one of the newest
and most interesting fields of structural engineering study. It makes it possible, taking advantage
of the continuous technological development of data collection and processing tools, to assess with
increasing clarity the structural characteristics and level of damage of any work, allowing its predicting
progress over time.

As known, various methods of remote sensing are used for application to structural health
monitoring, including radio detection and ranging (RADAR), light detection and ranging (LiDAR),
photogrammetry, multispectral satellite imagery, synthetic aperture radar (SAR), infrared thermography,
and image analysis methods, including digital image correlation (DIC), ground-penetrating radar
(GPR), and remote acoustics [3–5]. Vaghefi et al. (2012) and Harris et al. (2016) compared several of
the previously listed methods to investigate bridge assessment and monitoring performance. Results
indicated that the techniques worked most effectively when used in conjunction with one another [6],
whereas specific groupings of sensing technologies were most efficient at the identification of defects
in specific locations [7].

Viaduct performance has three types of movement components: Static, semistatic, and dynamic [8,9].
The static and semistatic structure movements are measured using robotic total stations, displacement
sensors techniques [10,11]. The dynamic displacement can be obtained from accelerometer
measurements by integrating the measured acceleration data [12–17].

As know, to date, there are several monitoring systems all based on: A sensor system—a data
processing system, (which is the kite, transmission and data efficiency)—a system of assessment of
the structure’s health, including analysis techniques and algorithms (that allow to outline specific
assessments of the state of the structure on the basis of the measured data).
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Monitoring the health of a structure means increasing its level of safety in its different stages
of life, from implementation to culling. Implementing a monitoring system, for example, makes it
possible for the relevant authorities to identify critical issues and categorize them. The creation of an
archive, continuously updated with the data collected, finally allows to optimize the use of resources
and improve the quality of interventions to be planned.

Structural monitoring is based on the interaction of sensing techniques and FE models.
Most of the civil works currently located throughout the country have not only reached the final

stage of their useful life but are even stressed by stresses many times greater than those with which it
was designed.

In addition, reinforced concrete, a material widely used in today’s construction technique, initially
considered eternal in the past from a temporal point of view, increasingly manifests its shortcomings
in terms of durability. It is precisely in a delicate scenario like this that the benefits and potential of
continuous and efficient structural monitoring can be appreciated more over time.

The increasing spread of structural monitoring systems as a supervisory and inspection tool is
often limited to little more than a collection of data whose interpretation is difficult to implement
in practice.

In traditional monitoring systems:

- Data is captured by instrumentation and stored;
- It is checked that the acquired magnitudes are within set threshold values;
- The monitoring report is limited to the values that physical quantities have had over time
- The interpretation of the data is given to specialist advice;
- There is no information on the consistency between expected and measured behavior of

the structure;
- Following exceptional events, specialist advice is needed to understand whether resistant behavior

has changed significantly.

In this context, the monitoring system can be a burden on the institution in the face of little benefit.
To overcome these limitations, the activities that are being carried out are aimed at testing an

innovative monitoring system, using and integrating precisely techniques and methodologies of
Geomatics and Soft Computing (Figure 1).

To this end, we want to finalize the use of geomatics technologies (also supplemented by the use
of sensors on site) to early warning issues, and on the other hand, through soft computing techniques,
we want to introduce automations in the collection and processing predicting data.

The ultimate aim is to create a real-time risk predictive system that allows to simulate various
scenarios and, therefore, various infrastructure behaviors under investigation, capable of alerting those
in charge, in case of imminent hazards, through the use of the proposed system that integrates data of
a different nature (preventive used to define the various behavior scenarios on the structural model),
and then reworking them through machine learning techniques, in order to obtain values to compare
with limit thresholds. The level of risk depends on several variables. Specifically, the note wants to
evaluate the possibility of predicting the behavior of the structure using only displacement data during
monitoring, transmitted through the help of an experimental transmission control unit.

More specifically, the proposed integrated system is based on the integration of multiple models:
A 3D model detected by drone (geometric scenario 0), a structural model at instant 0 on which multiple
boundary conditions are varied in order to simulate as many scenarios (scenario n). The results are
implemented in a neural network and cause that the proposed system requires only displacements
(static and dynamic) in input, to output the risk levels. A 3D model is a simple tool from which we can
capture data.
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2. Materials and Methods

With this objective in mind, an experimental test was carried out on the “Annunziata” viaduct
in Reggio Calabria (south Italy), a viaduct in reinforced concrete (Figure 2), already used as a case
study in the context of other geomatic research activities conducted by the Geomatics laboratory in the
context of the segmentation of the dense cloud obtained from drone photogrammetry.

2.1. The 3D Reconstrucion

Structure from Motion (SFM) as applied in geoscience and survey is more than a single technique
is a workflow employing multiple algorithms developed from traditional photogrammetry, survey
techniques, and three-dimensional (3D) computer vision. The full workflow is known as Structure from
Motion Multi-View Stereo (SFM-MVS) to account for the Multi-View stereo algorithms used in the final
stages. Many commercial SFM-MVS software packages do not detail the specific procedure applied to
solve the problem. The aim of this paragraph is to understand the basic concept for 3D reconstruction
starting from uncalibrated imagery, for a deep understanding of mathematical formulas the interested
reader can find relevant information on. The basic process to reconstruct the 3D scene geometry from a
set of images where the extrinsic and intrinsic calibration parameters are unknown, could be divided
into three main steps: (1) Image analysis for matches and estimation of unknown camera parameters,
(2) application of Structure from Motion (SFM) algorithm and (3) Multi-View Stereo for 3D dense cloud
generation [18,19]. The detailed workflow for 3D reconstruction is summarized as follows:

(1) Image analysis and matches:

(i) Detect image features on key point;
(ii) Key point correspondence between different images;
(iii) Identify geometrically consistent matches;

(2) Structure from Motion:

(iv) SFM of simultaneously estimating 3D scene geometry: Camera pose and internal camera
parameters through bundle adjustment;
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(v) Scaling and georeferencing the resultant scene geometry;
(vi) Optimizing the identified parameters in the bundle adjustment using know Ground Control

Points (GCP);

(3) Multi-View Stereo:

(vii) Clustering image sets for efficient processing;
(viii) Apply MVS algorithms
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Figure 2. Annunziata Viaduct.

Different photogrammetry pieces of software are available, both open source and commercial,
that use this process to reconstruct a 3D scene starting from uncalibrated images (Figure 3). It should
be considered that while open source software generally offers the use of greater transparency, and the
use of different algorithms can vary from different software packages, commercial software does not
release information on algorithms used (that can be sometimes proprietary). Moreover, the continuous
evolution of computer vision techniques, and development and refinement of algorithms in the
different process steps suggest that further improvements will be implemented very quickly, reducing
the memory consumption increasing elaboration speed and point cloud density and accuracy.
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2.2. Structural Model

Generally, in the study of bridges and viaducts, it is possible to implement a simplified Finite
Element Model (FEM) using one-dimensional elements (as beams, truss and rigid links) with properties
equivalent to those of the real elements. However, such a simplification results in a considerable
reduction in the computational burden and in the memory required for the analysis. Obviously, such
a model can only provide some information on the overall behavior of the structure, useful in the
preliminary design phase. To analyze in detail the most important elements of a structure, it will be
necessary to use more complex modeling. The increase in discretization improves the accuracy of
the final results but increases the computational burden, and therefore, the processing times. The
comparison between the results obtained from the Finite Element (FE) modeling and the experimental
ones are reported in Section 3.2.

Structural monitoring of existing works is an engineering practice that, from a theoretical point of
view, rediscovers the roles played by the information used in the design phase. During the design of a
construction, the (static or dynamic) actions are known and the structural model is possessed, this
knowledge is combined to obtain the prediction of the structural response in the various conditions
of interest (state of interest service limit and last limit status). Surveys and tests (in situ or in the
laboratory) that provide the structural response to certain stresses are carried out in the monitoring of
an existing work [20]. In this case then, we are aware of the response and actions, while what we want
to determine is the model. It could be said that in the first case we handle a direct problem, while in
the second case, we deal with the reverse problem.

The main objective of monitoring is, in fact, to create a final model that can be used for example to
analyze the behavior as the applied loads change.

The main problem is to be able to combine the information known a priori (of monitoring) with
those that are obtained experimentally during inspections and tests on materials [21–23]. The first model
is built on the basis of design drawings and inevitably has errors, the main uncertainties of which are
related to the following parameters: 1. Discretion, 2. Boundary conditions, 3. Materials characteristic
parameters. The amplification of the error due to these uncertainties, is evaluable by comparing the
values taken from the field tests, with those that can be derived from the model’s predictions.

One of the solutions proposed to solve this problem is to implement the so-called type model,
through the integration of the geomatics surveys results and structural monitoring (Figure 4).
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In this way, we obtained a final model, that allows us to analyze the structure’s behavior at applied
loads changing, moreover allowing the train of a predictive behavior structural model.

To validate the goodness of the obtained final model we compared the stresses taken with those
obtained during in situ tests.

To identify an anomaly, a comparison of two system states, called baseline cases and nonconforming
cases (reference state and non-compliant state), must be performed directly from the point-time
comparison of 3D models.

In this paper, a finite element (FE) 3D model of the viaduct (see Figure 5a) and a structural dynamic
analysis aimed at identifying in detail the characteristics of concrete bridge was performed. The spans
of the viaduct, built in the 70s, in concrete of class C20/25, with a cubic resistance characteristic of
25 MPa, have a length of 28 m. The scheme of its cross-section is shown in Figure 5b. Moreover, the FE
model was validated through an output-only ambient vibration test described in [20,24].
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Generally, a static load test is performed to verify the actual behavior of a structure, while a
dynamic test is performed in order to validate the FE model for the structure. The identification of
the dynamic parameters (modal frequencies, damping ratios, mode shapes, and modal participation
factors) actually provides an assessment of the global response of a system. In addition, experimental
techniques for the dynamic identification provide a significant contribution in connecting assumptions
and the actual behavior of a structure. In the identifying structural dynamics analyses, techniques for
experimental modal analysis (EMA) or, alternatively, operational modal analysis (OMA) can be used.
Traditional EMA uses excitation inputs while OMA aims to identify the modal properties of a structure
excited by environmental sources. Despite its usefulness, traditional EMA has some limitations, such
as the following: (i) Artificial excitation is normally conducted in order to measure frequency response
functions (FRFs), or impulse response functions (IRFs). FRF or IRF would be very difficult or even
impossible to measure using field tests and/or assessing large structures. (ii) Traditional EMA is
normally conducted in a lab environment. This is at odds with real operational conditions in place in
many industrial applications. (iii) Lab environments are generally suitable for individual component
testing, instead of complete systems verification. Furthermore, boundary conditions would need to
be simulated. Therefore, the OMA technique (output only) is considered as the most suitable for
important structures, such as bridges or viaducts, since evaluation can be performed without closing
the viaduct to traffic. Therefore, model updating was used to minimize the ‘difference’ between FEA
and reference test data. In the model updating, the procedure presented in [20] was performed.

The parameters chosen for model updating were [20,22,24]:

• Young’s Modulus of concrete;
• span length;
• slab thickness.
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Simultaneously, we decided to insert in the FE model the experimental elastic modules of the
actual materials (steel and concrete).

Table 1 shows the comparison between experimental frequencies and numerical frequencies
obtained by using a commercial program. In particular, the second column of Table 1 reports the
experimental frequencies, while column 3 reports numerical frequencies after some iteration of the
model updating procedure. It is easy to verify the effectiveness of the FE model.

The identification of the modal parameters of the viaduct was developed using the frequency
domain decomposition.

Figure 6 shows the first three vibration modes of the viaduct, with the corresponding frequencies
and periods. Figure 7 shows the static behavior of viaduct subject to vehicular loads.
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2.3. Built Database

From the constructed three-dimensional model, geometric information (base, beams, cross) relating
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Table 1. Comparison between experimental and numerical frequencies.

Shape f exp,i (Hz) f FE,i,Last (Hz) Variation (%)

1.00 1.55 1.70 9.68
2.00 2.15 2.10 2.32
3.00 3.10 2.77 10.67

Table 2. Geometries database.

Span No. 1 2 3 4 5 6 7 8 9

Length (m) 29 29 28.5 28.8 29 29 28.7 28.7 28

width (m) 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5

Base
base (m) 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5

height (m) 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Beams

Length (m) 27 27 27 27 27 27 27 27 27
base (m) 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

height (m) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Number 4 4 4 4 4 4 4 4 4

Cross

Length (m) 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
base (m) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

height (m) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Number 3 3 3 3 3 3 3 3 3

Pier 1 2 3 4 5 6 7 8

H p (m) 21 24 22 22 21 20 16 15
Geometry R R R R R R R R
h or D (m) 2.60 2.60 2.60 2.60 2.60 2.60 2.60 2.60

b (m) 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50
c (m) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

3. The Sensing System: Sensors

The sensory detection system is one of the most important elements of structural monitoring
architecture. In order to be able to model analytically and numerically manage the structural behavior
of an artifact, we made a sensors’ detections. Sensors were installed on pillars and beams, and
they measured physical quantities, that in our case study are mainly translated into three types of
parameters: 1. Load sources: Environmental (wind, seismic action)) or artificial (traffic), 2. Structural
responses: Displacements, deformations, accelerations, and inclinations, 3. Environmental effects:
Temperature, precipitation, humidity. Obviously, the accuracy and precision of predictions made
through structural monitoring are inevitably related to the accuracy and precision of detection tools.

All these parameters were used to recreate boundary conditions in the various scenarios required
for neural network training, neural network that is at the base of the predictive system [11].

For the real monitoring phase, the direct measure of the movements is of particular importance.
It has been made through the two GPS (rover) receivers and one base station near the viaduct. The GPS
observations are real-time kinematic (RTK) with differential GPS (DGPS) system. The receivers are
LEICA-GMX902 antenna (24-channel L1/L2 code and phase, 20 Hz data rate, Smart Track technology
for high precession, accuracy of 1 mm + 0.5 ppm (horz.), 2 mm + 1 ppm (ver.)) and the GPS data
were preprocessed using the software LeicaSpider to improve and adjust the collected GPS data. The
GPS receivers are linked via the internet to the Spider server. The raw data is streaming out from the
receiver to the Spider server. The server generates RINEX-RTK corrections and they are streamed out
via TCP/IP to the field. The GPS measurements were free of any obstructions of the horizon view and
more than six satellites were tracked continuously. The coordinate components for each observation
epoch were derived. The output of the two rovers was the time series of global coordinates of the
installed receivers. Therefore, the coordinate’s data were converted to a local bridge coordinate system
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(BCS) for the analysis and evaluation procedures. In this coordinate system, x-axis is aligned with the
traffic direction and z-axis gives the vertical direction of the viaduct.

To analyze the viaduct performance, the GPS observations were first filtered to denoise the time
series of GPS receiver’s outputs after converting the coordinates into the local viaduct coordinate
system [9,25,26]. Moreover, to estimate the semistatic movement of components of the pillars, the
low-pass moving average (MA) filter (0.025 Hz) was applied to remove the dynamic and noise
components from the data. The dynamic response can be extracted from the short period components
by applying a bandpass filter (Figure 9).
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Figure 9. GPS data collected and filtered of x direction measurement: (a) On the span, (b) on the pillar.

3.1. Comparison of Captured Data to Model Data

The sensor-captured data were compared (specifically, we report data acquired and calculated on
the beam of the span 4) with data obtained from the model to verify the goodness of the model itself.
The result attests good adaptability of the model to the real state with an average error of about 10%
(see Table 3). Figure 10 shown the sensors’ positions.Sustainability 2020, 12, x FOR PEER REVIEW 11 of 14 
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Table 3. Displacement measured on survey on model and error.

Progressive Abscissaof
the Span

(m)

Displacement
Measured

(cm)

Displacement Calculated
in the Model

(cm)

Error
(%)

0 0 0 0.0
5 −2.35 −2.45 4.1
10 −3.81 −4.44 14.1
14 −4.82 −5.21 7.5
18 −3.93 −4.44 11.5
23 −2.43 −2.45 0.8
28 0 0

3.2. The Predictive System

Therefore, we proceeded to the implementation of soft computing techniques, capable of providing
an outbound forecast value related to the prediction of the loads, necessary to know in advance the
behavior of the infrastructure.

In order to predict in advance the possible consumption of the system, it was thought to create a
system that uses different soft computing techniques and neural network with the task of carrying out
the first screening of the information components of the data base. The back-propagation algorithm
was used due to its simplicity and its ability to extract useful information from examples. In fact,
its ability to implicitly store information in the form of connection weights and its applicability to
digitally or analogically evaluated models, the back-propagation algorithm manages to understand
two phases: An early phase and a feedback phase. In the first feed-forward phase, input x (Load
sources: Wind, seismic action, traffic. Structural responses: Displacements, deformations, accelerations,
and inclinations. Environmental effects: Temperature, precipitation, humidity) are inserted and
propagated through the multilayer network, to calculate the correct y output value for each output unit
(displacement and risk level). The input variables related to environmental effects clearly, are variables
that can be acquired from existing databases, as well as from daily weather forecasts. Traffic load
conditions to date have been calculated through a statistics of traffic or average daily study, but work
is being done to estimate this variable using a numerical counter based on an automatic or vehicle
recognition system based on the Yolo neural network. The risk levels were experimentally established
by the combination of loads of the different risk parameters on structural software.

The second back-propagation phase, on the other hand, involved a backward path through the
network, during which the error signal was calculated and, between the desired output d and the
obtained y and then propagated appropriately from the output layer to the input state, in order to
update the values of the weights and bases, in fact, this error signal was carried back through all the
layers of the network by simultaneously adjusting or modifying all the values of the connection between
weights and bases, bringing in this way current output closest to the desired output. In particular,
learning using the back-propagation algorithm takes place in the following steps: (1) Initialization of
weights and bases, (2) presentation of desired input/exit pairs. At this stage, a vector with N input
components was presented and the desired output vector was specified. This procedure was then
repeated with the presentation of new input/output pairs for a number of iterations that depend on the
shutdown condition which is typically defined based on the difference between total errors obtained in
two successive iterations until obtaining the values of the weights and bases and then assigning them
to the neural network (Figure 11).

The outgoing signal of the soft computing system was processed and sent, through communication
channels, to a hardware system, which is responsible for recording the data to compare it with the
previous ones and informing the operator of possible future developments.

The monitoring was realized by the design and subsequent implementation of an integrated
software/hardware system, able to control the movements and deformations of the structure in
real-time and to expect them to be at least one month. The integrated system was designed in
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EasyEDA® environment. The board was properly designed and integrated with components needed
for data processing. Data taken in real-time and data processed using soft-computing techniques were
transmitted with 4G LTE internet key to the monitoring platform. The platform was implemented in
the WordPress® environment. At the same time, in order to prevent the disadvantages inherent in
programming in WordPress®, SSL security protocols were integrated, which provided a fundamental
level of online security, essential when transmitting sensitive information.

Sustainability 2020, 12, x FOR PEER REVIEW 12 of 14 

depend on the shutdown condition which is typically defined based on the difference between total 

errors obtained in two successive iterations until obtaining the values of the weights and bases and 

then assigning them to the neural network (Figure 11). 

 

Figure 11. Comparison between measured displacement on survey and prediction displacement. 

The outgoing signal of the soft computing system was processed and sent, through 

communication channels, to a hardware system, which is responsible for recording the data to 

compare it with the previous ones and informing the operator of possible future developments. 

The monitoring was realized by the design and subsequent implementation of an integrated 

software/hardware system, able to control the movements and deformations of the structure in real-

time and to expect them to be at least one month. The integrated system was designed in EasyEDA®  

environment. The board was properly designed and integrated with components needed for data 

processing. Data taken in real-time and data processed using soft-computing techniques were 

transmitted with 4G LTE internet key to the monitoring platform. The platform was implemented in 

the WordPress®  environment. At the same time, in order to prevent the disadvantages inherent in 

programming in WordPress® , SSL security protocols were integrated, which provided a fundamental 

level of online security, essential when transmitting sensitive information. 

The final prototype produced (Figure 12) consists of a capture and processing board that receives 

incoming displacement signals, such signals picked up by appropriate sensors are managed by a 

system intelligent System On Module (SOM) or an independent electronic device capable of 

managing a Linux operating system and able to carry out numerical processes, even complex. The 

captured signals are then sent to a database that stores them and makes them available for 

management from an online platform. 

 

Figure 11. Comparison between measured displacement on survey and prediction displacement.

The final prototype produced (Figure 12) consists of a capture and processing board that receives
incoming displacement signals, such signals picked up by appropriate sensors are managed by a
system intelligent System On Module (SOM) or an independent electronic device capable of managing
a Linux operating system and able to carry out numerical processes, even complex. The captured
signals are then sent to a database that stores them and makes them available for management from an
online platform.
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4. Conclusions

From the experimental survey carried out, some conclusions can be drawn. The control system
(still in development phase) can be used both for monitoring existing structures and as a control system
in newly built buildings and bridges. In addition, the reliability of the measurements is perfectly in
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line with that obtained through traditional systems with the advantage of the enormous versatility
of application. Therefore, the use of the monitoring system can be an effective tool for operators in
the sector, in order to assess the static and dynamic consistency of existing infrastructures and also
provide a powerful means of control during the useful life of new constructions.
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