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Abstract: The evolution of engineering applications is increasingly shifting towards the embedded
nature, resulting in low-cost solutions, micro/nano dimensional and actuators being exploited
as fundamental components to connect the physical nature of information with the abstract one,
which is represented in the logical form in a machine. In this context, the scientific community has
gained interest in modeling membrane Micro-Electro-Mechanical-Systems (MEMS), leading to a
wide diffusion on an industrial level owing to their ease of modeling and realization. Physically,
once the external voltage is applied, an electrostatic field, orthogonal to the tangent line of the
membrane, is established inside the device, producing an electrostatic pressure that acts on the
membrane, deforming it. Evidently, the greater the amplitude of the electrostatic field is, the greater
the curvature of the membrane. Thus, it seems natural to consider the amplitude of the electrostatic
field proportional to the curvature of the membrane. Starting with this principle, the authors are
actively involved in developing a second-order semi-linear elliptic model in 1D and 2D geometries,
obtaining important results regarding the existence, uniqueness and stability of solutions as well as
evaluating the particular operating conditions of use of membrane MEMS devices. In this context,
the idea of providing a survey matures to discussing the similarities and differences between the
analytical and numerical results in detail, thereby supporting the choice of certain membrane MEMS
devices according to the industrial application. Finally, some original results about the stability of the
membrane in 2D geometry are presented and discussed.

Keywords: electrostatic membrane MEMS devices; electrostatic actuator; boundary non-linear
differential problems; singularities; curvature; ghost solutions; stability; optimal control

1. Introduction

Recent industrial guidelines direct researchers and designers towards the development of
low-cost devices to combine physical properties with low-level machine languages. Thus arises
the need to design sensors and actuators to meet the multiple requirements of the most
widespread industrial, civil and biomedical applications [1–3]. In this context, static and dynamic
Micro-Electro-Mechanical-Systems (MEMS) technology has matured, especially in domains where
miniaturized and integrated electromechanical systems are required [4–6]. Moreover, MEMS represent
one of the most important achievements of engineering on an industrial scale [5,6]. Currently,
the industrial applications of MEMS devices are extremely varied, from applications in the biomedical
domain [2,3,7] and thermally driven systems [8,9] to elastic structures [1,10] gaining wide acclaim,
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owing to both coupled thermal-elastic systems [5,8,9] and electrostatic-elastic systems [4,5,11] for
industrial applications. The MEMS technology makes it possible to integrate both electronic circuits and
opto-mechanical devices on the same silicon substrate [12,13], employing manufacturing technologies
similar to those used for the realization of integrated circuits. The dimensions of an MEMS device
generally vary between a few µms and 1 mm, while its individual components vary between 11 mm
and µms [4,5,11,14]. The most widely used MEMS devices belong to the class of the electrostatic-elastic
systems [5,11], which consist of two parallel plates, one fixed and the other deformable [5,14,15].
A voltage V is applied, and the deformable plate moves. Often, many applications require that a
membrane replace the deformable plate, reducing the inertial effects [16–24]. Usually, the models
use the deflection of the membrane, u, as an independent variable [16–24]. If, on the one hand,
the demand for MEMS devices is strong, on the other hand, it is not always possible to formulate
models that are easy to implement [5,11,14,15]. Further, these formulations hardly allow resolution
in closed form [16–24], so one must be satisfied with obtaining conditions that ensure both existence
and uniqueness of the solution [14,16,17,20]. The alternative is the numerical approach, which,
although interesting, does not prevent us from being present for ghost solutions [17,19,21–23].
Thus, analytical approaches and numerical techniques work together to obtain solutions, respecting
the analytical conditions that guarantee existence and uniqueness of the solution without ghost
solutions [17,19,21–23]. In this context, the experience of the authors in the field of modeling
electrostatic MEMS membrane devices with strong non-linearity has grown [16–24]. In particular, by
combining the physics of the problem with important results of differential geometry [25] analytical
results have been obtained in terms of the existence and uniqueness of the solution in some cases [16–24]
and numerical solutions in the absence of ghost solutions in other cases [16–24]. However, the
conditions that guarantee existence and uniqueness are often independent of the electromechanical
properties of the membrane material, making the studied models unattractive from an industrial point
of view [16,20,24,26]. All these works start from the physical observation that the electrostatic field, E,
on the membrane is orthogonal to the tangent line to the membrane at the point considered. Moreover,
the greater the |E|, the more the membrane will deform, thus, it appeared legitimate in these works to
consider |E| proportional to the curvature K of the membrane. This made it possible to obtain, both
in 1D and 2D geometries with circular symmetries, the second order semi-linear elliptic differential
models that, although not explicitly resolvable, easily allow algebraic conditions to be obtained,
ensuring the existence and uniqueness of the solution [16,20,26]. Further, regarding 1D geometry,
this approach allowed for a differential model wherein any singularities, typical of models known in
literature, do not appear explicitly [16]. Moreover, when V is applied, the membrane risks touching
the upper plate; therefore, stability and optimal control problems were solved to achieve a range
of possible values of V to achieve the mechanical inertia of the membrane and the maximum value
permissible for V. These problems, concerning 1D geometry, have been solved and presented in [26],
while for geometry 2D, we present the original results in the present study. Finally, a comparison
of the achieved results is discussed. Once the analytical studies in 1D and 2D geometries have been
compared, numerical approaches, such as the shooting procedure, the Relaxation procedure, and
the Keller–Box Scheme for recovering u in both geometries, studied in [17,19,21–23], are presented
and compared.

This survey is structured as follows. The first section discusses some theoretical backgrounds
(Section 2) where the well-known Cassani-d’O-Ghoussoub model is presented (a sort of a milestone
in membrane MEMS devices). Section 3 presents the physical-mathematical approach exploiting
the proportionality between |E| and K in order to achieve the differential model for a 1D membrane
MEMS Device. Section 4 presents the proposed model in general terms in a way that well-known
general results can be applied to it. Following this, a 2D circular membrane MEMS Device model is
presented in Section 5 using concepts based on mean curvature and differential geometry. Thereafter,
a comparison between the algebraic conditions ensuring the existence of at least one solution for both
1D and 2D models is presented and discussed in Section 6, highlighting which of the two algebraic
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conditions is stronger than the other. Thus, the uniqueness of the solution for both 1D and 2D models
is discussed in Section 7, providing food for thought and a comparison between the results obtained
by both geometries in order, followed by a discussion of the conditions ensuring the simultaneous
existence and uniqueness in both geometries (Section 8). Section 9 deals with the stability and the
optimal control problems in 1D geometry, highlighting the range of possible values for V and the
limitations concerning the V, which is necessary to win the mechanical inertia of the membrane and
the maximum permissible value of V. Moreover, some remarks about the potential energy in 1D
geometry are presented and discussed. Some original results of stability and optimal control in 2D
geometry are also discussed in Section 10; the relative range of values of V is shown together with
the limitations for the minimum V to overcome the membrane inertia and the maximum admissible
V. Then, in the same section, relative to 2D geometry, some useful considerations on the values of
V maximizing the energy variation are considered and compared with the results obtained in 1D
geometry. Following this, numerical approaches for recovering the membrane profile in 1D geometry
are discussed in Section 11, providing interesting results in terms of convergence areas and ghost
solutions. In Section 12, the most important results obtained by applying numerical techniques on
the 2D model are discussed, also highlighting the cases in which, in addition to the non-convergence
of the procedure, the phenomena of instability are highlighted. Then, Section 13 offers a comparison
between the limitations of the mechanical stress values obtained in both the 1D and 2D formulations.
Finally, the conclusion and some future perspectives are presented in the last section of this survey.
To facilitate the reading of the survey, the proofs relating to the results known in the literature are
reported in the appendices, while proofs of the original results are reported in the text of the survey.

2. Some Theoretical Backgrounds

The starting point is a well-known dimensionless steady-state model, studied in [5,15]. It considers
an MEMS composed of two parallel plates: one fixed and the other deformable, but clumped at the
boundary of a region Ω = [−0.5, 0.5] (dimensionless conditions). When a voltage drop is applied,
the deformable plate deflects from the rest state (characterized by u(x) = 0) towards the fixed plate
(lower plate), located at height h = 1. The profile u(x), in the stationary case, was studied using the
well-known fourth-order elliptic model [5,15,16]

(h− d∗)∆2u(x) =
(

$
∫

Ω |∇u(x)|2dx + γ
)

∆u(x) + λ1 f1(x)

(1−u(x))σ

(
1+χ

∫
Ω

dx
(1−u(x))σ−1

)
u(x) = ∆u(x)− duν = 0, x ∈ ∂Ω, d ≥ 0, 0 < u(x) < 1, x ∈ Ω

(1)

where f1 is a bounded function carrying the dielectric properties of the material constituting the
deformable plate; λ1 is a quantity depending on V applied between the plates; ρ, γ and χ are related
to the electric and mechanic properties of the material constituting the deformable plate. Moreover, if
σ ≤ 2, one can take into account more general Coulomb potential. Moreover, the existence of at least
one solution has been studied using the Steklov boundary condition, achieving Dirichlet and Navier
boundary ones: uν represents the outer normal derivative of u on ∂Ω and, if d̂ = 0, one obtains the
Navier boundary conditions, while, if d̂ = +∞, one obtains the Dirichlet boundary conditions [5,15].
(1) is a generalization of the model studied in [15], with negligible thickness of the deformable plate.
Particularly, neglecting inertial and non-local effects (σ = 2, ρ = γ = χ = 0), (1), becomes:∆2u(x) = λ1 f1(x)

(1−u(x))2

0 < u(x) < 1 in Ω, u = ∆u(x)− duν, on ∂Ω, d ≥ 0.
(2)
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The Cassani-d’O-Ghoussoub Model and Some Theoretical Backgrounds

In R3 with a system of Cartesian axes O′x′y′z′ (see Figure 1a), let us consider an electrostatic-elastic
system with length 2L, composed by a pair of parallel plates (one fixed and the other one elastic but
clumped at the edges). The plates are located at a mutual distance h but lying orthogonal to z′. When V
is applied, the elastic plate moves towards the fixed plate (for it V = 0). Thus, the electrostatic potential
φ satisfies ∆φ = 0 between the plates, such that φ = V on the elastic plate and φ = 0 on the fixed plate.
Thus, indicating by ∆⊥ the Laplacian operator, with respect to x′ and y′ only, the deflection w′ of the
elastic plate satisfies the equation [5]:

− T∆⊥w′(x) + D∆2
⊥w′(x) = − ε0

2
|∇φ|2 (3)

where T is the mechanical tension of the plate D is the flexural stiffness and ε0 is the permittivity of
the free space. In (3), − ε0

2 |∇φ|2 represents a source term due to E coupling the solution of the elastic
problem to the solution of the electrostatic one [5,16]. Exploiting the following scaling factors

w(x) =
w′(x)

h
, Φ =

φ

V
, x =

x′

2L
, y =

y′

2L
, z =

z′

h
, (4)

(3) becomes the following nonlinear coupled partial differential equation system [5,16]:
ε2∆⊥Φ + ∂2Φ

∂z2 = 0

−∆⊥w(x) + δ∆2
⊥w(x) = −λ2

[
ε2|∇⊥Φ|2 +

(
∂Φ
∂z

)2]
Φ = 1 on elastic plate, Φ = 0 on fixed plate

(5)

where the importance of tension and rigidity is δ = D
(2L)2T and the aspect ratio of the system becomes

ε = h
2L . Finally, setting λ1 = λ2, we write:

λ1 = λ2 =
ε0V2(2L)2

2h3T
= $V2 (6)

in which

$ =
ε0(2L)2

2h3T
(7)

considers the electro-mechanical properties of the material constituting the deformable plate.
$, in dimensionless conditions and by (4) becomes ε0

2T > 1012. If a membrane replaces the deformable
plate, the thickness with D and δ is negligible. Then, as ε→ 0, the first equation of (5) becomes ∂2Φ

∂z2 = 0
so that Φ = z

w from which the second equation of (5) becomes [5,16]:
d2w(x)

dx2 = λ2

(w(x))2 in Ω

w(−0.5) = w(0.5) = 1.
(8)

If we placing w(x) = 1 + u(x), (8) becomes d2u(x)
dx2 = λ2

(1+u(x))2 in Ω, with u(−0.5) = u(0.5) = 0 and
reversing z so that the membrane at rest is located on z = 0, we write the Cassani-d’O-Ghoussoub
model [15]: 

d2u(x)
dx2 = − λ2

(1−u(x))2 in Ω

u(−0.5) = u(0.5) = 0
(9)

We note that with an appropriate setting of the parameters in (1), (9) is easily obtainable. Moreover,
condition 0 < u(x) < 1 in (9) is imperative for the membrane to not touch the fixed plate.
Thus, a critical security distance, d∗, must be taken into account, so that 0 < u(x) ≤ h− d∗.
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(a) (b)

Figure 1. (a) The electrostatic-elastic system, (b) E orthogonal to the membrane profile.

3. The Physical-Mathematical Approach: |E| Proportional to the Curvature of the Membrane

Electrostatic and Mechanical Pressures

Once V is applied, an electrostatic pressure, [23,24,27]

pel =
1
2

ε0V2

(1− u(x))2 , (10)

takes place. Thus, if k is a dimensionless coefficient of proportionality, it makes sense to write p = kpel
where p is the mechanical pressure which, if its amplitude is sufficient to win the mechanical inertia of
the membrane, pushes the membrane towards the fixed plate.

Remark 1. In (10) V2

(1−u(x))2 is proportional to |E|2 [5,11,16,27], so that E produces pel . Moreover, from (9),

considering (6), λ2

(1−u(x))2 ∝ |E|2.

Thus, by Remark 1, (9) becomes:{
d2u(x)

dx2 = θ|E|2 in Ω = [−0.5, 0.5]

θ ∈ R+, u(−0.5) = u(0.5) = 0.
(11)

Remark 2. The higher E is, the more the membrane will be curved. Moreover, E, regardless of the deformation
of the membrane, is always locally orthogonal to the straight line tangent to the membrane at the point considered
(see Figure 1b) [27]. Thus, we consider |E| proportional to the curvature of the membrane [16,17,20,26]:

|E| = µ(x, u(x))K(x, u(x)) (12)

where K(x, u(x)) is the curvature of the deformed membrane and µ(x, u(x)) is the proportionality function
between |E| and K(x, u(x)).

Therefore, (11), considering Remark 2, becomes:{
d2u(x)

dx2 = −θ(µ(x, u(x))2(K(x, u(x)))2 in Ω = [−0.5, 0.5]

θ ∈ R+, u(−0.5) = u(0.5) = 0, 0 < u(x) < h− d∗.
(13)

Remark 3. Physically, µ(x, u(x)) ∈ C0([−0.5, 0.5]) × [0, 1) [16,17]. Moreover, to prevent the electric
discharge between the plates, the membrane must be sufficiently far from the undeformable plate. In other words,

µ(x, u(x)) = λ(1− u(x)− d∗)−1 (14)

where d∗ = λ
εt

with εt is the dielectric strength of the material constituting the membrane, even if the deflection
assumes its maximum deformation [5,11,14].



Membranes 2020, 10, 361 6 of 51

Finally, by (14), (13) becomes:
d2u(x)

dx2 = − θλ2

(1−u(x)−d∗)2 (K(x, u(x)))2 in Ω = [−0.5, 0.5]

θ ∈ R+, u(−0.5) = u(0.5) = 0, 0 < u(x) < h− d∗.
(15)

(15) can be studied by considering 1D geometry and 2D circular geometry [16,20]. If the geometry
is 1D, K(x, u(x)) assumes the well-known formulation studied in the basic university courses of
Calculus [28]. In 2D circular geometry, the formulation obtained is more complex, which requires
some precautions [20]. In the remainder of the survey, we will present both models.

4. 1D Membrane MEMS Device: The Differential Model

K(x, u(x)) in 1D geometry can be easily written as [28] (for geometrical details, see both Figure 2a,b

K(x, u(x)) =
∣∣∣d2u(x)

dx2

∣∣∣(1 +
∣∣∣du(x)

dx

∣∣∣2)− 3
2
. (16)

Thus, substituting (16) into the equation of (15), we can obtain [16,18]: d2u(x)
dx2 = − 1

θλ2

(
1 +

(
du(x)

dx

)2)3
(h− d∗ − u(x))2 in Ω = [−0.5, 0.5]

θ ∈ R+, u(−0.5) = u(0.5) = 0, 0 < u(x) < h− d∗.
(17)

(a) (b)

Figure 2. (a) Electrostatic Micro-Electro-Mechanical-Systems (MEMS) device, (b) typical profile of a
MEMS membrane.

Remark 4. Substituting (16) into (17), you would get:

d2u(x)
dx2 + θµ2(x, u(x))

∣∣∣d2u(x)
dx2

∣∣∣2(1 +
(du(x)

dx

)2)−3
= 0 (18)

from which, being u(x) > 0, the two following cases could occur:

1. d2u(x)
dx2 = 0, thus du(x)

dx = constant. Here being u(x) linear, from d2u(x)
dx2 = 0 it follows that |E| = 0.

Thus, there exists u(x) 6= 0 also when |E| = 0, so that this condition must be discarted.
2. Therefore

d2u(x)
dx2 + θµ2(x, u(x))

(d2u(x)
dx2

)2(
1 +

(du(x)
dx

)2)−3
= 0 (19)

so that (17) makes sense.
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General Formulation of the 1D Model

(17) can be written in a more general manner. In fact, being Ω = [−0.5, 0.5] and u : Ω → R,
we suppose that u(x) ∈ C2(Ω) is the solution of the following general problem (in the Dirichlet form):

d2u(x)
dx2 + f

(
x, u(x), du(x)

dx

)
= 0 in Ω

u(−0.5) = u(0.5) = 0, 0 < u < h− d∗
(20)

where f ∈ C0(Ω × R × R). Then, considering (17), it follows that f
(

x, u(x), du(x)
dx

)
= 1

θλ2

(
1 +(

du(x)
dx

)2)3
(h− d∗ − u(x))2. Apparently, (17) does not present the singularity that characterizes (9).

However, if u(x) = h − d∗, from (17) we would achieve d2u(x)
dx2 = 0. Thus, considering Remark 4,

|E| = 0 produces a linear u(x), which represents a physically unacceptable condition.

Remark 5. It is worth noting that when the membrane is too thin, the formation of wrinkles around the
membrane is highly probable. However, in this work, in the curvature formulation (see (16)) the basic hypothesis
is that the membrane profile u(x) ∈ C2(Ω). This implies that abrupt local variations of the profile are excluded
a priori. In other words, wrinkles around the membrane are not allowed. Obviously, removing the hypothesis
that u(x) ∈ C2(Ω) will result in formulating the curvature so that any wrinkles around the membrane can be
taken into account.

5. 2D Circular Membrane MEMS Device: The Differential Model

Let us consider two parallel disks with radius R, mutual distance h (in dimensionless condition,
h = 1) and a circular membrane of the same radius but clumped on the edge of the lower disk,
which acts as a support for the membrane. Axial symmetry in the geometry of the membrane inside
the device is observed, and considering the z axis a rotation axis, u of the membrane can be thought
of as a surface obtained by rotating the curve C, located on the vertical plane rz in the first quadrant
and around the axis z when 0 ≤ r ≤ R. Thus, u only depends on the radial coordinate r so that this
problem can be considered as a 1D problem wherein the independent variable x is replaced by the
radial coordinate r.

E between the disks generates a pel (see (10) in which the coordinate x is replaced by the radial
coordinate r), deflecting the membrane. Finally, when the membrane deforms towards the upper disk,
the electrostatic capacitance the distance between the membrane and the upper disk varies locally.
Therefore, considering the Remark 1 (here is still valid) and just considering the radial part of the
Laplace operator [28], model (17) becomes{

d2u(r)
dr2 + 1

r
du(r)

dr = −θ|E|2 in Ω = [−0.5, 0.5]

θ ∈ R+, u(−0.5) = u(0.5) = 0, 0 < u(x) < h− d∗.
(21)

However, (12) holds (x is replaced by r) so that (21) can be written as:
d2u(r)

dr2 + 1
r

du(r)
dr = − θλ2

(1−u(r)−d∗)2 (K(r, u(r)))2 in Ω = [−0.5, 0.5]

θ ∈ R+, u(−0.5) = u(0.5) = 0, 0 < u(x) < h− d∗.
(22)

Finally, exploiting the expression of mean curvature [25,29]

H(r) =
1
2

(1
r

du(r)
dr

+
d2u(r)

dr2

)
, (23)
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(22) becomes: {
d2u(r)

dr2 = − 1
r

du(r)
dr −

(1−u(r)−d∗)2

θλ2 in Ω = [−0.5, 0.5]

θ ∈ R+, u(−0.5) = u(0.5) = 0, 0 < u(x) < h− d∗.
(24)

For details on how to obtain (24), see Appendix A.

Remark 6. Also in this case, as highlighted in Remark 5, in the formulation of the mean curvature (23),
the hypothesis that u(x) ∈ C2(Ω) remains, so that the possibility of the formation of wrinkles around the
membrane is excluded a priori.

General Formulation of the 2D Model

As in the 1D framework, (24) can be written in a more general way, considering Ω = [−0.5, 0.5]
and a singularity located at −0.5. Thus, u(r) : (−0.5, 0.5) → R, with u(r) ∈ C2(Ω). Then, (24) is a
particular case of the general following model:

d2u(r)
dr2 + F

(
r, u(r), du(r)

dr

)
= 0

u(0.5) = B, du(0.5)
dr = m,

(25)

with F ∈ C0((−0.5, 0.5]×R×R) and B, m ∈ R. Moreover, setting

F
(

r, u(r),
du(r)

dr

)
=

1
r

du(r)
dr

+
(1− u(r)− d∗)2

θλ2 , (26)

B = 0, and m = 0, we achieve (24). The need to rewrite both the problems 1D and 2D ((17) and (24),
respectively) in general terms (as in (20) and (26)) lies in the fact that this generalization allows for
using general results on the existence and uniqueness of the solution, as consolidated in the literature,
relating to the class of boundary value problems [16,18,20]. Both (17) and (24) do not allow obtaining
the solutions explicitly. Therefore, we must be satisfied with obtaining any conditions that ensure the
existence and uniqueness of the solution. However, it must be considered that (17) has no obvious
singularities, while (24) explicitly manifests a singularity when r = 0 [16,18,20].

6. A Comparison of the Algebraic Conditions Ensuring the Existence of at Least One Solution for
both 1D and 2D Models

6.1. On the Existence of at Least One Solution for the 1D Model

As highlighted in [16], it is not possible to obtain the solution in explicit form for (17), so one
looks for any conditions ensuring existence and uniqueness. Usually, an important tool is the
Banach–Caccioppoli fixed point theorem [28], which guarantees the existence and uniqueness of
a fixed point for certain maps of metric spaces on themselves, providing a constructive method to
find them. This result has the advantage of proving simultaneously the existence and uniqueness
of the solution. However, the conditions to be verified are stringent, and, therefore, for certain
Boundary Value Problems (BVPs), such verifications are often impractical. In [16], this theorem was
not applicable as an alternative way was chosen, obtaining an important result of the existence of
the solution based on the Schauder–Tychonoff fixed point theorem and, sequentially, establishing
conditions of uniqueness [16,18,28]. In particular, to achieve a result of existence for (17) by this
procedure, it is necessary to start by the definition of two suitable functional spaces [16].

Definition 1. Let P be the functional space defined as
{

C2
0 [−0.5, 0.5] : 0 < u(x) < h− d∗,

∣∣∣ du(x)
dx

∣∣∣ < H
}

in which H = sup
∣∣∣ du(x)

dx

∣∣∣. Moreover, let P1 be the functional space defined as
{

C1
0 [−0.5, 0.5] : 0 < u(x) <

h− d∗,
∣∣∣ du(x)

dx

∣∣∣ < H
}

.
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It is well-known that (17) (or its general form (20)), by differentiation, can be transformed into

T(u(x)) =
∫ 0.5

−0.5
G(x, s) f

(
s, u(s),

du(s)
ds

)
ds (27)

where 0 < u < h − d∗ and G(x, s) is a suitable Green function, the main properties of which are
discussed in Appendix B. Then, in [16] the existence of the solution for T(u) = w, with u ∈ P1,
was proved exploiting the Schauder–Tychonoff fixed point theorem applied to w = T(u) from P to
P. The following two results were achieved, the proofs of which are detailed in Appendices C and D,
respectively.

Theorem 1. If

1 + H6 <
Hθλ

2

2(h− d∗)
(28)

then T(u(x)) defined by (27) is an operator from P to P.

Theorem 2. (17) admits at least one solution in P.

6.2. On the Existence of at Least One Solution for the 2D Model

In [20], the following result of existence of the solution for (24) was achieved; the proof is presented
in Appendix E.

Theorem 3. Let us consider (24) and two twice continuously differentiable functions, u1(r) and u2(r),
defined on [0, 1], with u1(r) < u2(r) such that

d2u1(r)
dt2 +

1
r

du1(r)
dr

+
(1− u1(r)− d∗)2

θλ2 > 0 (29)

d2u2(r)
dr2 +

1
r

du2(r)
dr

+
(1− u2(r)− d∗)2

θλ2 < 0 (30)

for r ∈ (0, 1). Moreover, 1
r

du(r)
dr + (1−u(r)−d∗)2

θλ2 is a continuous function (except for r = 0), satisfying the
Lipschitz condition in U × (−∞,+∞), with U = {(r, u) : 0 < r < R and u1(r) ≤ u(r) ≤ u2(r)}.
If du1(0)

dr ≥ du2(0)
dr , u1(1) = u2(1) = 0, and

θλ2 >
d∗2

2V2ε0k
, (31)

with k the constant of proportionality between the displacement of the membrane at the center of the plate u0 and
the mechanical pressure p, there exists at least one solution for (24).

As observed in [20], the greater k is, the lower the value of θλ2 will be and, thus, d2u(r)
dr2 will be

small, so that the concavity of the membrane rises (the greater k2 is, the greater the influence of pel
will be). Then, p will rise increasing the deformation of the membrane. In addition, Figure 3b shows,
in the plane d∗ − θλ2, the area of existence of at least one solution: the line of equation θλ2 = R2d∗2

2V2ε0k in
Figure 3b (blue line), separated the area of existence of at least one solution from the area where at
least a solution was not ensured.
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(a) (b)

Figure 3. (a) Representation of a circular membrane MEMS actuator when its membrane is deformed.
(b) Area of existence of at least one solution and area where at least one solution is not ensured.

6.3. Conditions Ensuring the Existence of at Least one Solutions for 1D and 2D Geometries: A Comparison

As specified in [16], (28) was the algebraic condition, ensuring the existence of at least one
solution for (17). It depended on λ (linked to V) that won the mechanical inertia of the membrane.
Moreover, θ took into account the electromechanical properties of the material constituting the
membrane. On the other hand, in [20], the specified algebraic condition, (31), ensures the existence of
at least one solution for (24). We note that (31) depends on both the mechanical characteristics of the
membrane (presence of θ) and V (not only the voltage to win the mechanical inertia of the membrane).
In this context, it seems interesting to understand which algebraic condition is weaker with respect to
the other one. From (28), we write:

θλ
2
>

2(h− d∗)(1 + H6)

H
(32)

and being λ2 > λ
2
, from (32), it makes sense to write:

θλ2 >
2(h− d∗)(1 + H6)

H
(33)

so that, from both (31) and (33), we achieve

θλ2 >
2(h− d∗)(1 + H6)

H
and θλ2 >

d∗2

2V2ε0k
. (34)

The following results holds.

Proposition 1. From (34), then
d∗2

2V2ε0k
<

2(h− d∗)(1 + H6)

H
(35)

is verified.

Proof. Inequality (35) is immediately verified by substituting the numerical values for each parameter.
In other words, posing d∗ ≈ 10−9, H ≈ 102 so that 1 + H6 ≈ 1012 and setting ε0 ≈ 8.85× 10−12,
(35) holds.

Remark 7. By Proposition 1, the algebraic condition ensuring the existence of at least one solution in 2D
geometry is stronger than the algebraic condition in 1D geometry because, in 2D geometry, not only is V
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considered necessary to overcome the mechanical inertia of the membrane but also the other possible values of
V. This is confirmed by the fact that in 1D geometry, V is not explicitly present. Moreover, in 1D geometry,
H in (35) exceeds the inf{θλ2} with a consequent increase of θλ2 making the numerical results unrealistic.

7. On the Uniqueness of the Solution for both 1D and 2D Models

7.1. On the Uniqueness of the Solution for the Model (17)

In [16], the uniqueness of the solution for (17) was proved to be always guaranteed as stated by
the following result, the proof of which is detailed in Appendix F.

Theorem 4. ∀H > 0 the solution for (17) is unique. Moreover, the following properties hold:

(1) ∀x ∈ [−0.5, 0.5],
∣∣∣u′(x)

∣∣∣ ≤ ∣∣∣ du(0.5
dx

∣∣∣ = ∣∣∣ du(−0.5)
dx

∣∣∣;
(2) u(x) is symmetric with respect to the origin;
(3) u(x) ∈ C∞([−0.5, 0.5]);
(4) u(x) is analytical.

In [16], the uniqueness of the solution for (17), being always guaranteed (see Theorem 4), did not
depend on the electromechanical properties of the membrane, unlike the existence of the solution that
was conditioned by these properties. If the electromechanical properties of the membrane governed
the existence of the solution (i.e., the stiffer the material, the more difficult it is for the membrane
to move towards the non-deformed plate and the more the material accumulates electrical charges,
the greater the possibility that |E| is more intense), the uniqueness of the membrane deflection was
guaranteed regardless of the capacity to accumulate electric charges and the membrane’s stiffness.
Although this has been proved mathematically in [16], physically it appears to be rather lacking.
Versaci et al. in [19] have significantly remedied this gap through an algebraic condition governing
the uniqueness of the solution for (17) stronger than the algebraic condition governing the existence.
In other words, the existence and uniqueness of the solution for (17), proved in [19], has a more realistic
physical-mathematical meaning than the proof given in [16]. In particular, the result obtained in [19] is
as follows (the sketch of the proof is shown in Appendix G).

Theorem 5. If

1 + H6 <
θλ2

18
(36)

Then, (17) admits the uniqueness of the solution.

In addition, the uniqueness of the solution for (17) depended on the electromechanical parameters
of the membrane, but its inertia did not appear. This confirms that when V is applied, the membrane
moves, if V overcomes the inertia of the membrane. Thus, the condition of existence of at least one
solution depends on λ

2
. Nevertheless, the condition that guarantees the uniqueness of the solution (28)

is independent of λ
2
.

7.2. On the Uniqueness of the Solution for the Model (24)

Unlike (17), the uniqueness of the solution for (24) was not guaranteed. This important result,
studied in detail in [20], is condensed in the following Theorem (the proof is detailed in Appendix H).

Theorem 6. Let us consider (24) and suppose that the conditions of the Theorem 3 are satisfied. Moreover,
u1(r) and u2(r) satisfy the given boundary conditions. Then, the uniqueness of the solution u(r), such that
u1(r) ≤ u(r) ≤ u2(r), is not ensured.
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8. Conditions Ensuring both Existence and Uniqueness

8.1. 1D Geometry

In [16,19], the following results have been proved and Appendix I details the proof.

Theorem 7. Algebraic condition (36) ensures both existence and uniqueness of the solution for (17).

Remark 8. (36), proved in [19], depends on the electromechanical properties of the membrane. In [16]
the uniqueness, always guaranteed, did not depend on those properties, since the uniqueness was proved
independently of those properties reducing the risk of obtaining ghost solutions. Finally, we note that h− d∗ does
not appear in (36); thus, existence and uniqueness are not dependent on the critical distance. Table 1 summarizes
these results.

Table 1. Algebraic conditions ensuring the existence and uniqueness of the solution for both geometries.

1D Geometry 2D Geometry

Existence 1 + H6 < Hθλ
2

2(h−d∗) θλ2 > d∗2
2V2ε0k

Uniqueness 1 + H6 < θλ2

18 not ensured
Existence and Uniqueness 1 + H6 < θλ2

18 θλ2 > d∗2
2V2ε0k

8.2. 2D Geometry

Unlike 1D geometry, reference [20] provided an algebraic condition that guarantees the existence
of the solution depending both on d∗ and k. However, uniqueness was not guaranteed. In other
words, even if a number of different deflections are allowed, they never reach the upper plate avoiding
producing the electrostatic discharge between the two plates. Table 1 summarizes these results.

8.3. 1D and 2D Geometries: A Comparison

As for the comparison of the algebraic conditions assuring the existence of the solution for
both geometries, in this section we deepen which of the two conditions assuring simultaneously the
existence and uniqueness of the solution for both geometries is the weakest. From (36) we can write

θλ2 > 18(1 + H6), (37)

so that, taking into account (31), the following result holds.

Proposition 2. From (31) and (37), it follows that

d∗2

2V2ε0k
< 18(1 + H6). (38)

Proof. As for the Proposition 1, it is sufficient to carry out a dimensional analysis to prove (38).

From Proposition 2 we deduce that the algebraic condition assuring both the existence and the
uniqueness of the solution in 2D geometry is more stringent than the one in 1D geometry. Thus,
the same observations discussed in Remark 7 continue to apply.

9. Stability and Optimal Control Problems in 1D Geometry

In Reference [26] authors studied whether the movement of the membrane in 1D geometry, when
V is applied, admits stable equilibrium configurations. Furthermore, since the membrane has an
inertia while moving and considering that it should not touch the upper plate, in [26], the range of
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possible values of V in 1D geometry was achieved. Finally, using concepts based on the variation of
potential energy stored in the device, optimal control conditions were obtained. In this section, we will
present the main results obtained in [26] and some original results regarding 2D geometry.

9.1. Stability and Optimal Control in 1D Geometry

In [26], (17) was transformed into its corresponding system of two first order differential equations

du1(x)
dx

= f (u1(x), u2(x)) ∧ du2(x)
dx

= g(u1(x), u2(x)). (39)

Particularly, it was set u1(x) = u(x) and u2(x) = du(x)
dx , it was posed [5,26]:{ du1(x)

dx = u2(x) = 0;
du2(x)

dx = − 1
θλ2 (1 + (u2(x))2)3(1− u1(x)− d∗)2 = 0

(40)

in [−0.5, 0.5] with θλ2 6= 0, obtaining the equilibrium point

(u0
1, u0

2) = (h− d∗, 0). (41)

The following result about the stability in 1D geometry was achieved in [26]. The proof exploited the
first Lyapunov criterion based on the linearization of (40) in the neighborhood of the equilibrium state.
For details, see Appendix J.

Proposition 3. The point (41) for (40) is an unstable equilibrium configuration.

In [16], it was highlighted that the unique unstable equilibrium point obtained is, in fact, the point
considered to be the most critical because it concerns the value of u(x) (located at x = 0) closest to the
upper plate of the device. Since V is the main cause of membrane movement towards the upper plate,
it is important to know the sup{V}, which ensures that the membrane does not go beyond the unstable
equilibrium position. Moreover, having the membrane inertia while moving, in [26], the minimum
value of V allowing the deflection of the membrane was obtained knowing the range of possible
value of V to understand, by (10), if the pel obtained leads to instability phenomena. Finally, in [26],
it was highlighted that the knowledge of the range of possible values of V means to know the range
of possible values of λ2 (see (6)), serving, on the one hand, as a tuning parameter for the device [5]
and, on the other, to guarantee the convergence of any numerical approach to recover the profile
of the membrane [17,19]. In Sections 9.2–9.4, some important results presented in [26] have been
reviewed. Particularly, Section 9.2 discusses the range of possible values for (Vmin)inertia to overcome
the inertia of the membrane (refer to Appendix K), while Section 9.3 presents some results regarding
the (Vmax)permissible so that the membrane does not reach the upper plate. Finally, Section 9.4 illustrates
the relationship between (Vmin)inertia and (Vmax)permissible) as studied in [26].

9.2. Vmin to Overcome the Inertia of the Membrane in 1D Geometry

Proposition 4. Regarding (40), if (36) holds, then the Vmin needed to overcome the membrane inertia becomes

(Vmin)inertia >

√
4Th3(h− d∗)

ε0θ

√
1 + H6

H
. (42)

(42) has an interesting physical significance. In fact, as T increases (i.e., stretching the membrane more
at the edges), a higher value of V is required to overcome the inertia. Furthermore, the greater the
distance between the plates, the greater V will be to overcome inertia.
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9.3. (Vmax)permissible in Order That the Membrane Does Not Reach the Upper Plate in 1D Geometry

Proposition 5. Concerning (40), (Vmax)permissible is bounded as follows:

(Vmax)permissible <

√
2(h− d∗)d∗

kε0
. (43)

From (43), it is easy to deduce that the distance between the plates is decisive in the limitation
of (Vmax)permissible. In fact, increasing h (distance between the plates) requires a greater V to push the
membrane towards the upper plate. Furthermore, an increase in k reduces the (Vmax)permissible because
p generated is higher.

Remark 9. In [26], to prove (43), indicated by u0, the deflection in the center of the membrane, the following
algebraic conditions were used.

u0 ≤
kε0V2

2d∗
;
√

k =

√
p

2
√

pel
;

kε0V2

2d∗
< h− d∗;

√
0.5θ =

0.5
h

√
0.5ε0

2hT
. (44)

Please refer to [26] for details of the proofs.

We note that, in [26], an interesting range of possible values for V was achieved. In particular, the
two following propositions detail the contents (See Appendix L).

Proposition 6. The following inequality holds:√
4Th3(h− d∗)

ε0θ

√
1 + H6

H
<

√
2(h− d∗)d∗

kε0
. (45)

Proposition 7. Thus, the range of admissible values for V to win the mechanical inertia of the membrane and
to remain far from the upper plate, is as follows:√

4Th3(h− d∗)
ε0θ

√
1 + H6

H
< V <

√
2(h− d∗)d∗

kε0
. (46)

9.4. Relationship between (Vmin)inertia and (Vmax)permissible in 1D Geometry

Finally, in [26], the relationship between (Vmin)inertia and (Vmax)permissible in 1D geometry has been
obtained as testified by the following Proposition, the proof of which is detailed in Appendix M.

Proposition 8. The following inequality holds:

(Vmin)inertia > (Vmax)permissible
k2h
√

h√
0.5ε0

√
1 + H6

H
T. (47)

Remark 10. (47) suggests us a more manageable algebraic condition. In fact, being h = 10−9, ε0 = 8.85×
10−12, thus h2

√
10
√

h
0.5
√

2
√

0.5ε0

√
1+H6

H ≈ 8.15× 10−16 � 1, so that (8) becomes

(Vmin)inertia > 0.023k2T(Vmax)permissible. (48)

Again, as highlighted in [26], k2 ≈ 1 since pel ' p and, moreover, T ≈ 1000 Pa, then (48) can be written as:

(Vmin)inertia > (Vmax)permissible × 0.023k2T ' (Vmax)permissible × 0.023. (49)
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Thus, (A84) in the proof of Proposition 8 makes physical sense. Moreover, in (A84) , h2
√

10
√

d
0
√

0.5ε0

√
1+H6

H is a
constant depending on the geometrical parameters of the device. Therefore, one can write G = G(L, h) =
h2
√

10
√

h√
2L
√

ε0L

√
1+H6

H so that (A84) becomes:

(Vmin)inertia > (Vmax)permissibleGk2T (50)

from which, considering that k2 ≈ 1, it follows that (Vmin)inertia
(Vmax)permissible

> GT. Thus, fixing T (i.e., having chosen the

material constituting the membrane), (Vmin)inertia
(Vmax)permissible

depends on G that changes with the geometry of the device.

Conversely, if one chooses the geometry of the device (i.e., G is fixed), the material constituting the membrane
determines (Vmin)inertia

(Vmax)permissible
.

9.5. Some Remarks about the Potential Energy in the Device in 1D Geometry

As shown in [26], if the membrane is at rest, its distance from the upper plate is equal to h,
Cel = ε0

1
h and its potential energy is Winitial = 1

2 CV2 = 0.5ε0
h V2. If the membrane deforms, Cel =

ε0
∫ +0.5
−0.5

dx
h−u(x) and the final potential energy becomes W f inal =

1
2 CV2 = 1

2 ε0V2
∫ +0.5
−0.5

dx
h−u(x) . Finally,

the total variation of the potential energy, ∆W, is:

∆W = W f inal −Winitial = ε0V2
{1

2

∫ +0.5

−0.5

dx
h− u(x)

− 0.5
h

}
. (51)

Being h− u(x) ≥ h− d∗, then 1
h−u(x) ≤

1
h−d∗ . Therefore, from (51), we can write:

∆W = ε0V2
{1

2

∫ +0.5

−0.5

dx
h− u(x)

− 0.5
h

}
≤ ε0V2

{ 0.5
h− d∗

− 0.5
h

}
= ε0V2

{ 0.5d∗

h(h− d∗)

}
. (52)

In [26] was proved that

∆W ≤ ε0

{ 0.5d∗

h(h− d∗)

}
V2 < 2ε0

{ 0.5d∗

h(h− d∗)

} (h− d∗)d∗

k
=

2(d∗)20.5(h− d∗)
kh(h− d∗)

. (53)

and

∆W > ε0

{ 0.5d∗

h(h− d∗)

}
V2 >

8d∗Th3(h− d∗)
h(h− d∗)θ

1 + H6

H
(54)

which combined with each other it follows (see [26]):

8d∗Th3(h− d∗)
h(h− d∗)θ

1 + H6

H
< ∆W <

(d∗)2(h− d∗)
kh(h− d∗)

, (55)

which in dimensionless conditions became:

7524T
θ

< ∆W <
0.005

k
. (56)

In [26], the value of the V maximizing ∆W was achieved, as detailed in the following proposition, and
the proof is detailed in Appendix N.

Proposition 9. V =

√
2hd∗(ε0+

√
ε0)

kε2
0

maximizes ∆W. Moreover (Figure 4 ):

V =

√
2hd∗(ε0 +

√
ε0)

kε2
0

< sup{(Vmax)permissible} =

√
2(h− d∗)d∗

kε0
(57)
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Figure 4. (Vmin)inertia
(Vmax)permissible

versus T and the area of possible values for ∆W according to the (56).

Remark 11. E, due to the application of V, determines the deflection of the membrane, also determining the
amount of ∆W in the device. In such a context, in [26], a limitation for ∆W was obtained starting from |E| as
detailed in the following Section.

9.6. A Limitation for ∆W Obtained Starting from |E| in 1D Geometry

From both (9) and (17), and considering that λ2

(1−u(x))2 = θ|E|2, in [26], proved that

∆W = W f inal −Winitial ≤
ε0

2θ2λ2 (1 + H2)3(h− d∗)2 − 0.5ε0
V2

h
. (58)

In [26], ε0
2θ2λ2 (1 + H2)3(h− d∗)2 − 0.5ε0

V2

h in (58) was compared with ε0V2
{

0.5d∗
h(h−d∗)

}
in (52) proving

the following proposition (proof detailed in Appendix O).

Proposition 10. In (52), ε0V2
{

0.5d∗
h(h−d∗)

}
< ε0

2θ2λ2 (1 + H2)3(h− d∗)2 − 0.5ε0
V2

h in (58).

Therefore, in [26], it was proved that condition (52) is stronger than condition (58).
In the following section (Figure 5), some original results on the stability and the optimal control

in 2D geometry are discussed in detail.

Figure 5. Area of possible values for ∆W according to ∆W < f (V) and ∆W < g(V).
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10. Stability and Optimal Control in 2D Geometry

10.1. Critical Points and Stability

As (17), (24) has been transformed setting u1(r) = u(r) and u2(r) =
du(r)

dr :{
du1(r)

dr = u2(r);
du2(r)

dr = − 1
r u2(r)− (1−u1(r)−d∗)2

θλ2

u1(R) = 0; u2(0) = 0.
(59)

Proposition 11. Imposing du1(r)
dr = du2(r)

dr = 0 and considering that θλ2 6= 0, from (59), we achieve the
unique critical point

(u0
1, u0

2) = (h− d∗, 0). (60)

which coincides with the unique equilibrium point in 1D geometry (see (41)).

This is not surprising because 2D geometry is generated by the rotation of a curve lying on a
plane. Therefore, for symmetry reasons, the equilibrium positions in 1D and 2D geometries coincide.
However, unlike the 1D geometry, here the unique equilibrium point is stable, as detailed in the
following proposition.

10.2. On the Stability of the Critical Point

Proposition 12. (60) represents a stable equilibrium configuration.

Proof. (59), is writable as:

du1(r)
dr

= u2(r) = f (u(r)) ∧ du2(r)
dr

= −1
r

u2(r)−
(1− u1(r)− d∗)2

θλ2 = g(u(r)) (61)

in which u(r) = [u1(r) u2(r)]T and f(u̇(r)) =

(
f (u1(r), u2(r))
g(u1(r), u2(r))

)
=

(
u2(r)

− 1
r u2(r)− (1−u1(r)−d∗)2

θλ2

)
.

Thus, (59) can be matricially written as:

u̇(r) = f(u(r)) (62)

where u̇(r) = [u̇1(r) u̇2(r)]T . To linearize the system, we use the change of variable (A68). Therefore,
from (61), considering (A68) and also that u0

1 and u0
2 do not depend on r, the following can be stated:

du1(r)
dr

= ε
dξ(r)

dr
= f (u1(r), u2(r)) ∧ du2(r)

dr
= ε

dη(r)
dr

= g(u1(r), u2(r)). (63)

From which, developing in Taylor series both f (u1(r), u2(r)) and g(u1(r), u2(r)) (neglecting the terms
of orders higher than the linear one) and setting τ =

√
ξ2 + η2, it follows thatε

dξ(r)
dr = f (u0

1 + ε(r), u0
2 + εη(r)) ≈ f (uo

1, u0
2) + ε

∂ f (u0
1,u0

2)
∂u1

ξ(r) + ε
∂ f (uo

1,u0
2)

∂u2
η(r) + o(τ)

ε
dη(r)

dr = g(u0
1 + ε(r), u0

2 + εη(r)) ≈ g(uo
1, u0

2) + ε
∂g(u0

1,u0
2)

∂u1
ξ(r) + ε

∂g(uo
1,u0

2)
∂u2

η(r) + o(τ).
(64)

Being f (u0
1, u0

2) = g(u0
1, u0

2) = 0, one obtains:
dξ(r)

dr =
∂ f (u0

1,u0
2)

∂u1
ξ(r) + ∂ f (u0

1,u0
2)

∂u2
η(r) = η(r)

dη(r)
dr =

∂g(u0
1,u0

2)
∂u1

ξ(r) + ∂g(u0
1,u0

2)
∂u2

η(r) = − η(r)
r

(65)
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solving which gives ξ(r) = C1rC2 and η(r) = C3
r , so that ξ(r)(η(r))C1 = C4, which represents a

hyperbola, where C1, C2, C3, and C4 are all constant. Matricially, (65) is writable as:

ż = Az (66)

where z =

(
ξ(r)
η(r)

)
; ż =

(
dξ(r)

dr
dη(r)

dr

)
; A =

 ∂ f (u0
1,u0

2)
∂u1

∂ f (u0
1,u0

2)
∂u2

∂g(u0
1,u0

2)
∂u1

∂g(u0
1,u0

2)
∂u2

 =

(
0 1
0 − 1

r

)
.

(66) admits stable equilibrium position only if A does not have eigenvalues with positive real part
and if any eigenvalues with real part zero have a unit index. Furthermore, if z0 = [z0,1, z0,2]

T ,
then z(r) = eArz(0) = eArz0. Moreover, |A| = 0, then at least one eigenvalue is zero. Thus, the origin
is not an isolated equilibrium point, so that there is at least one line (plane) of equilibrium points:
the only critical point obtained is represented by (60). Therefore, as the variation of d∗ changes the
equilibrium point, theoretically, infinite equilibrium points, ∀d∗, could take place. In our case, the
eigenvalues of matrix A are λ1 = 0; λ2 = − 1

r < 0, (66) is stable. Moreover, since the number of
eigenvalues of A counted with their algebraic multiplicity is equal to the order of A and the geometric
multiplicity of each eigenvalue is equal to with the algebraic multiplicity, A is diagonalizable. Thus,
eAr can be written as eAr = ∑n

k=1 tk × sT
k eλkr = t1 × sT

1 + t2 × sT
2 e−1, in which tk and sk are the left and

right eigenvectors, corresponding to λk, respectively. Then, in our case t1 = [1 0]T , t2 = [1 − r−1]T ,
s1 = [1 r]T , s2 = [0 1]T , so that eAr = [ 1

r r + e−1; 0 − e−1

r ] is limited in norm (when r 6= 0) and it

follows that z1(r) = z0,1 + (r + e−1)z0,2 ∧ z2(r) =
z0,2e−1

r from which, eliminating r, we obtain

z2 =
z2

0,2e−1

z0,1+z0,2e−1−z1
which represents, on the plane z1z2, an equilateral hyperbola (see the red lines in

Figure 6). Furthermore, we achieve z2(r) =
z0,1+rz0,2

r − z1(r)
r , which represent straight lines passing

through a fixed point (point A in Figure 6), as r → R. Then, as r increases (for r > 0), the hyperbola is
traversed such that the point D (see Figure 6 when r 6= R) tends to the point B (when r = R).

Figure 6. Localization of stability points on the plane z1z2.

If ż = Az is stable, then the critical point of u̇(r) = f(u(r)) is also stable [5,30], and the critical
point (60) is an equilibrium stable point for (62).

Although (u0
1, u0

2) = (h− d∗, 0) identifies a point very close to the upper disk (with a high risk
of the membrane touching it), it is still a stable point. Electrostatically, it can be justified as follows.

Considering 1
(1−u(r))2 ≈ 1

d∗ , one can get pel =
1
2

ε0V2

(1−u(r))2 ≈ ε0V2

2d∗ . Thereby fixing V, pel ≈ ε0V2

2d∗ , so that
it does not swing.

10.3. Admissible Values for V in 2D Geometry

Vmin and the Problem to Win the Mechanical Inertia of the Membrane

Here, a condition to which (Vmin)inertia must satisfy is presented in the following Proposition.
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Proposition 13. If (31) holds, thus (Vmin)inertia to win the membrane mechanical inertia satisfies:

(Vmin)inertia >
4

√
h3d∗2T
4ε2

0θk
. (67)

Proof. From (31), it follows λ2 > R2d∗2

2θV2ε0k , from which, considering (6), it follows that V > 4

√
R2d∗2

2kε0θλ2 =

4

√
d∗2d3T
4kθε2

0
obtaining (67).

Both in 1D and 2D geometry (Vmin)inertia are strongly dependent on h, T and θ. The dependence
on h is imperative because the greater the distance between the plates, the greater the V to overcome
the inertia of the membrane. Furthermore, the greater the T, the greater the mechanical tension of the
membrane (i.e., the membrane is tighter), so that greater V is needed to overcome the inertia of the
membrane. Finally, if θ is higher, it means that the influence of |E| on the device is greater so that a
smaller value of V is sufficient to overcome the membrane inertia (see Remark 1).

10.4. (Vmax)permissible in 2D Configuration

We present here some useful propositions [20].

Proposition 14. As in 1D geometry, (44) also holds. It is sufficient to replace x by r.

Remark 12. Since the proof of Proposition 14 is the same as that given for 1D geometry, (Vmax)permissible in
2D geometry is as for 1D geometry (see (43)).

Proposition 15. For the 2D membrane MEMS device, ∆w(x) = − λ2

(w(x))2 holds. It is sufficient to replace
L = 0.5 with R.

Proposition 16. For 2D geometry, the following inequality holds:

4

√
h3d∗2T
4ε2

0θk
<

√
2(h− d∗)d∗

kε0
. (68)

Proof. If, absurdly,

4

√
d3d∗2T
4ε2

0θk
≥

√
2(h− d∗)d∗

kε0
, (69)

considering ∆w(x) = − λ2

(w(x))2 and being u0 ≤ d− d∗, it follows that 1
u0
≥ 1

d−d∗ , easily achieving

√
pel

T
≤ d3

2R(h− d∗)

√
d− d∗

2ε0
. (70)

Being ε0 ≈ 8.85× 10−12, R ≈ 10−6, d = 10−9 and d∗ = 0.1× 10−9, from (70), we achieve
√

pel
T ≤

3.56 × 10−21. Thus, T should be too high a value, as if the membrane has considerable stiffness.
This condition is not physically compatible with the usual membranes used in electrostatic MEMS
devices. Thus, (69) is false, so that (68) is true.

Proposition 17. In 2D geometry, the range of admissible values for V is:

4

√
h3d∗2T
4ε2

0θk
< V <

√
2(h− d∗)d∗

kε0
. (71)
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Proof. It follows from propositions (13) and (5).

In 1D and 2D geometry, the range of admissible values for V, although different in the formulations
(see (46) and (71), respectively), admit the same functional dependence with respect to T, θ and d∗.
This ensures that the electromechanical properties of the membrane, the critical safety distance and
mechanical stress to which the membrane is initially subjected affect the range of possible values for V
in the same way for both geometries.

10.5. Relationship between (Vmin)inertia and (Vmax)permissible in 2D Geometry

Proposition 18. In this case, the following inequality holds:

(Vmin)inertia >
4

√
d4

8(10− h)θ

√
(Vmax)permissible

4√T. (72)

Proof. From (43), and considering that d∗ ≈ 0.1d, it follows

1
k
> (Vmax)permissible)

2 50ε0
d(10− d)

. (73)

Furthermore, from (67), taking into account (73) and remembering that d∗ ≈ 0.1d, (72) is obtained.

For the usual values d = 10−9, θ ≈ 1, T = 1000Pa, (72) becomes (Vmin)inertia > 3.3 ×
10−6

√
(Vmax)permissible. Then, (Vmin)inertia � (Vmax)permissible, so that (72) makes physical sense.

Moreover, (72) can be physically interpreted. Particularly in it, V = 4
√

h4

8(10−h)θ is constant. Thus, we can

write (Vmin)inertia√
(Vmax)permissible

> B 4
√

T. Therefore, once T is fixed (i.e., the material constituting the membrane

has been chosen), (Vmin)inertia√
(Vmax)permissible

depends on B changing with d. On the other hand, once d is fixed

(i.e., once B has been chosen), the material constituting the membrane determines (Vmin)inertia√
(Vmax)permissible

(see Figure 7left). We note that, in both geometries, the link between (Vmax)permissible and (Vmin)inertia,
in both cases, depends on T (even if with a different functional link). This confirms the fact that
whatever the geometry, the larger the T is, the greater the (Vmin)inertia.

Figure 7. (Vmin)inertia√
(Vmax)permissible

versus 4
√

T (the blue separation line identifies two distinct areas of system

behavior) and the zone of possible values for ∆W.

10.6. Some Optimal Control Conditions in 2D Geometry

If the membrane of the device is at rest, the distance between the membrane and the
upper disk is d. Therefore, the electrostatic capacitance of the device is C = ε0

πR2

h , so that

the potential energy of the device can be evaluated as Winitial = 1
2 CV2 = ε0πR2V2

2h . If the
membrane deforms, C = ε0

∫ π
0 Z(φ)

∫ R
−R

dr
h−u(r)dφ, the final potential energy becomes W f inal =
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1
2 ε0V2

∫ π
0 Z(φ)

∫ R
−R

dr
h−u(r)dφ, where Z(φ) is a bounded and continuous function depending on φ.

Therefore, the total variation of the potential energy, ∆W = W f inal −Winitial becomes

∆W = ε0V2
{1

2

∫ 2π

0
Z(φ)

∫ R

−R

dr
h− u(r)

dφ− πR2

h

}
. (74)

Moreover, since h− u(r) ≥ h− d∗, then 1
h−u(r) ≤

1
h−d∗ , so that (74) becomes

∆W ≤ ε0V2
{ R

h− d∗

∫ 2π

0
Z(φ)dφ− πR2

h

}
. (75)

Z(φ), being a bounded and continuous function, allows to write
∫ 2π

0 Z(φ)dφ ≤ D, in which D is a
positive constant. Then, (75) becomes

∆W ≤ ε0V2
{ RD

h− d∗
− πR2

h

}
. (76)

From (71), it follows that
√

h3d∗2T
4ε2

0θk
< V2 < 2(h−d∗)d∗

kε0
. Thus, considering (76), it follows

∆W <
2(h− d∗)d∗

k

{ RD
h− d∗

− πR2

h

}
. (77)

Conversely, from (67), V2 > (Vmin)
2
inertia =

√
h3d∗T
4ε2

0θk
so that

∆W > ε0

{ RD
h− d∗

− πR2

h

}
V2 >

√
h3d∗T
4ε2

0θk
. (78)

Finally, combining (77) and (78), we achieve the range of the admissible values for ∆W, that is:√
h3d∗

4ε2
0

√
T√

k
√

θ
< ∆W <

2(h− d∗)d∗

k

{ RD
h− d∗

− πR2

h

}
(79)

which can be written as
F1
√

T√
θ

< ∆W <
F2

k
(80)

(where F1 and F2 constant) analogous to the (56) relating to 1D geometry. Figure 7right depicts the
zone of possible values for ∆W, corresponding to the zone below the red straight line and above the
blue curve. Obviously, this zone shrinks as k increases.

10.7. On the Values of V that Maximize ∆W

Since u(r) ≤ kε0V2

2d∗

{
1−

(
r
R

)2}
, h− u(r) ≥ h− kε0V2

2d∗

{
1−

(
r
R

)3}
> 2hd∗−kε0V2

2d∗ so that

1
h− u(r)

<
2d∗

2hd∗ − kε0V2 . (81)

Being C = ε0
∫ π

0 Z(φ)
∫ R
−R

dr
h−u(r)dφ and considering (81), one obtains C < 4ε0Dd∗R

2hd∗−kε0V2 . Thus,

∆W = W f inal −Winitial <
2ε0Dd∗RV2

2hd∗ − kε0V2 −
ε0πR2V2

2h︸ ︷︷ ︸
h(V)

(82)
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where h(V) is positive, so that the unique stationary point for h(V) is V∗ =
√

2hd∗(πR−4Dhd∗)
ε0πkR .

Furthermore, V∗ is a point of maximum for h(V) (discarding the negative root which represents
a non-physical condition to achieve). Furthermore, it is also easy to verify that

V∗ > (Vmin)inertia. (83)

10.8. From |E|A to a Useful Limitation for ∆W

Starting from (9) and (24), we can write λ2

(1−u(r))2 = 1
r

du(r)
dr + (1−u(r)−d∗)2

θλ2 . In addition, it follows

that |E|2 = 1
rθ

du(r)
dr + (1−u(r)−d∗)2

θ2λ2 . However, W f inal =
1
2 ε0|E|2, it makes sense to write

∆W =
1
2

ε0

{ 1
rθ

du(r)
dr

+
(1− u(r)− d∗)2

θ2λ2

}
− ε0πR2V2

2h
(84)

and considering that 1− u− d∗ < h− d∗ and du(r)
dr < H, with H = 99 positive constant (see [16]),

(84) becomes

∆W <
1
2

ε0

{ 1
rθ

H +
(h− d∗)2

θ2λ2

}
− ε0πR2V2

2h
. (85)

Proposition 19. Considering both (76) and (85), we can write

ε0V2
{ RD

h− d∗
− πR2

h

}
<

1
2

ε0

{ 1
rθ

H +
(h− d∗)2

θ2λ2

}
− ε0πR2V2

2h
. (86)

Proof. Setting r = R, (86) becomes

V2
{ RD

h− d∗
− πR2

h

}
<

1
2

{ H
Rθ

+
(h− d∗)2

θ2λ2

}
− πR2V2

2h
(87)

so that, if (87) is true, (86) is also true. Moreover, (87) becomes

RV2
{ D

h− d∗
− πR

2h

}
<

1
2

{H
R

+
(h− d∗)2h3T

2θε0R2V2

}
. (88)

Finally, using the usual values for the parameters, (88) is verified so that (86) is also true.

Then, by Proposition 19, it follows

∆W <
1
2

ε0

{ 1
rθ

H +
(h− d∗)2

θ2λ2

}
− ε0πR2V2

2h
, (89)

which represents the limitation for ∆W (depending on θ), obtained from |E|.

The study of analytical models in 1D and 2D geometry [16,26] has determined algebraic conditions,
ensuring the existence and uniqueness for the solution for both models. Then, by means of suitable
numerical procedures, solutions are obtained that, if they satisfy the aforementioned algebraic
conditions of existence and uniqueness, do not represent ghost solutions.

11. Numerical Approaches for Recovering of the Membrane Profile in 1D Geometry

11.1. Shooting Procedure and Ordinary Differential Equation Solvers

To apply the shooting procedure, in [17,19,22] (25) into the form (59) was considered to be
turned into an initial value problem by replacing u1(0.5) at x = 0.5 with u2(−0.5) = η, η ∈ R.
Therefore, by integration, one obtains u1(0.5) at x = 0.5. If u1(0.5) = 0, one has solved the starting
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BVP defining a non-linear equation of the form F(η) = u1(0.5, η) = 0 iteratively solvable to achieve
the correct value of η.

11.1.1. Zeros of F(η): The Dekker–Brent Approach

This approach, used in [22], utilizes the bisection procedure to solve a non-linear equation.
For each iteration, bk approximates temporary zero; ak represents the “contra-point” such that F(ak)

and F(bk) have opposite signs so that [a0, b0] contains the solution; bk−1 represents b at the previous
iteration. Therefore, two temporary values are evaluated: the first is obtained by the secant method and
the second by the bisection approach; s = bk −

bk−bk−1
F(bk)−F(bk−1)

F(bk), if F(bk) 6= F(bk−1), s = m = ak+bk
2

otherwise. If s, as result of the secant procedure, falls in (bk, m), then s = bk+1, otherwise m = bk+1.
Thus, the new value of the contra-point is chosen so that F(ak+1) and F(bk+1) have a different sign, so
that ak+1 = ak, otherwise, ak+1 = bk. Finally, if |F(ak+1)| < |F(bk+1)|, ak+1 is a best approximation of
the solution, so that ak+1 and bk+1 are exchanged. Sometimes, bk converges slowly, so Brent proposes a
modification of this approach using a test that must be satisfied before the result of the secant method
is accepted for the next iteration [23]. If δ is a tolerance and if the previous step has been used in the
bisection procedure, |δ| < |bk − bk−1| and |δ| < |s− bk| < 1

2 |bk − bk−1| have to be applied, otherwise
the bisection procedure is used again. If the previous step uses interpolation, |δ| < |bk−1 − bk−2|
and |δ| < |s − bk| < 1

2 |bk−1 − bk−2| are applied to decide if to perform the interpolation or the
bisection. The Brent approach, ensuring that at the kth iteration the bisection method is used at most

for 2 log2

(
|bk−1−bk−2|

δ

)
times, utilizes inverse quadratic interpolation instead of a linear one (as in the

secant procedure).

11.1.2. Obtaining the Solution

ηk, at each iteration, was evaluated in [17,19,22] by solving the related Initial Value Problem
(IVP). Thus, a suitable stop criterion is used to verify if ηk → η as k→ ∞. The solutions are achieved
exploiting both ode23 and ode45 MatLab®R2017a routines (accuracy and adaptivity parameters defined
by default). However, the main difficulty in achieving the solutions is related to the integration of
unstable initial value problems: thus, the solutions of the BVP could be insensitive from the variations
of the boundary values. However, the solutions of the IVP achieved by the shooting procedure are
computed by the variations of the initial values [22].

11.2. Relaxation Procedure and Keller–Box Scheme

To apply the relaxation procedure in [17,19,22,23], a mesh of points x0 = −0.5, xj = x0 + j∆x, for
j = 1, 2, . . . , J spaced with xJ = L1 was exploited. The numerical solution u(xj) was denoted by the

uj, j = 0, 1, . . . , J. The Keller–Box scheme [23] is writable as uj − uj−1 − ∆F
(

xj−1/2
uj+uj−1

2

)
= 0, j =

1,×, J, with G(u0, uJ) = 0 and xj−1/2 = (xj + xj−1)/2. If u(x) and F(x, u) are sufficiently smooth, the
solution is computable by the Newton procedure where |∆yj`| ≤ TOL, ∆yj`, j = 0, 1, . . . , J and ` = 1, 2,
is the difference between two successive iterate components (TOL is a fixed tolerance). u1(x) = 1,
u2(x) = 1 are the initial guesses to start the iteration.

11.3. Collocation Procedure and III/IV-Stage Lobatto IIIa Formulas

11.3.1. The Collocation Procedure

Starting from the following system of ordinary differential equations (ODEs)

dy(r)
dr

= F(r, u(r)) G[u(a), u(b)] = 0 (90)
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where G[u(a), u(b)] = 0 represents the boundary conditions, one can write

u(x) = u(xn) +
∫ x

xn
F(r, u(r))dr (91)

from which
u(x) ≈ un +

∫ x

xn
p(r)dr, (92)

where p(r) is an interpolation polynomial of degree lower than s interpoling [xn,i, F(xn,i), y(xn,i)], i =
1, 2, ..., s, xn,i = xn + τih, i = 1, ..., s, 0 ≤ τ1 < ... < τs ≤ 1. If the Lagrange method is used, thus:

p(r) =
s

∑
j=1

F(xn,j, u(xn,j))Lj(r), (93)

where Lj(r) are the fundamental Lagrange polynomials. Therefore, plugging (93) into (92),
one achieves

u(x) ≈ un +
s

∑
j=1

F(xn,j, u(xn,j))
∫ x

xn
Lj(r)dr (94)

so that, (94) is forced for all the xn,j, so that un,j at collocation node points are obtained, for i = 1, ..., s, by

un,j = un +
s

∑
j=1

F(xxn,i , unn,j)
∫ xn,i

xn
Lj(r)dr. (95)

If τs = 1, then yn+1 = yn,s, otherwise yn+1 = yn +∑s
j=1 F(xn,j, yn,j)

∫ xn+1
xn

Lj(r)dr. Collocation methods
are reliable tools, although may not be suitable if high accuracy is required [23].

11.3.2. Implicit Runge–Kutta Procedures

Runge–Kutta (RK) approaches require many evaluations of F(x, y(x)), ∀[xn, xn+1]. Generally,

an RK approach can be structured as [23] un+1 = un + h ∑s
i=1 biki where ki = F

(
xn + cih, un +

h ∑s
j=1 aijk j

)
, i = 1, 2, ..., s and s denotes the number of stage of the procedure. Moreover, {aij},

{ci} and {bi} characterize an RK method and can be collected in the so-called Butcher Tableau [30,31]

c A

bT
(96)

in which A = (aij) ∈ Rs×s, b = (b1, ..., bs)T ∈ Rs and c = (c1, ..., cs)T ∈ Rs. Moreover, if aij = 0
for j ≥ i, with i = 1, 2, ..., s, then each ki is evaluated using the i − 1 coefficients k1...ki−1 already
computated. In this case, one has an RK implicit method. Otherwise (implict procedure) to compute ki,
one has to solve an s-dimensional non-linear system. To make an implicit RK procedure, the following
three conditions must be considered [30]:

B(p) :
s

∑
i=1

bick−1
i = k−1, k = 1, 2, ..., p (97)

C(q) :
s

∑
i=1

aijck−1
i = k−1ck

i , k = 1, 2, ..., p, i = 1, 2, ..., s (98)

D(r) :
s

∑
i=1

bick−1
i aij = k−1bj(1− ck

j ), k = 1, 2, ..., r, j = 1, 2, ..., s. (99)
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Particularly, (97) means that
∫ x+h

x F(s)ds ≈ h ∑s
i=1 biF(x + cih) is exact for all polynomials in which

the degree is lower than p (if (97) is satisfied, then the procedure has quadrature of order q).
Analogously for condition (98): if it is satisfied, then

∫ t+cih
x F(s)ds ≈ h ∑s

j=1 aijF(x + cjh) are exact for
all polynomials in which the degrees are lower than q. It is worth noting that all methods satisfying
condition (98) having ci, i = 1, 2, ..., s distinct are collocation procedures [30].

11.3.3. The Three-Stage Lobatto IIIa Formula

This procedure requires that ci be chosen as roots of [30] P∗s − P∗s−2 = ds−2

dxs−2 (xs−1(x− 1)s−1) (s is
the number of the stage), achieving that c1 = 0 and cs = 1 ∀s. Therefore, the quadrature formula is
exact for any polynomial in which the degree is less than 2s− 2 [32]. Two definitions are necessary for
the following.

Definition 2. Let us define the mesh-grid:

0 = a = r0 < r1 < ... < rn = b = R (100)

defining, on it, the step-size hm = rm+1 − rm.

Definition 3. rm+1/2 is the midpoint of (rm, rm−1): Moreover, um+1/2 is the approximation of u(r) at rm+1/2.

Remark 13. p(r) satisfy the boundary conditions in (90) and, moreover, ∀(rm, rm+1), (100) is considered.
Furthermore, p(r) is located at the edges of each sub-interval and midpoint, in which p(r) is also continuous.

This approach can be considered as a collocation procedure and it is equivalent to the three-stage
Lobatto IIIa implicit RK procedure [32], the Butcher tableau of which is [30]

0 0 0 0
1
2

5
24

1
3 − 1

24

1 1
6

2
3

1
6

1
6

2
3

1
6

(101)

Thus, the three-stage Lobatto IIIa formula becomes [30]:

um+1/2 = um + hm

[ 5
24

F(rm, um) +
1
3

F(rm+1/2, um+1/2)−
1

24
F(rm+1, um+1)

]
(102)

and

um+1 = um + hm

[1
6

F(rm, um) +
2
3

F(rm+1/2, um+1/2) +
1
6

F(rm+1, um+1)
]
. (103)

Remark 14. Again, this procedure is achievable from (91) by the Simpson quadrature formula to approximate
the integral between xn and x. Obviously, when the procedure is applied to a quadrature problem, it reduces (103)
to the well-known Simpson formula [31]:

um+1 = um +
hm

6

[
F(rm, um) + F(rm+1, um+1) + 4F

{
rm+1/2,

um+1 + um

2
+ (104)

+
hm

8
[F(rm, F(rm, um)− F(rm+1, um+1)]

}]
.

Remark 15. p(r) with your derivatives satisfy, ∀r ∈ (a, b) [32] p(l)(r) = y(l)(r) +O(h4−l), l = 0, 1, 2, 3.
Moreover, (90) is satisfied by p(r) at each intermediate point and at the midpoint of each interval (i.e., collocation
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polynomial). Furthermore, p(r) is chosen by MatLab® by means of the determination of unknown parameters, if
any. Finally

p′(rm) = F[rm, p(rm)], p′(rm+1/2) = F[rm+1/2, p(rm+1/2)], p′(rm+1) = F[rm+1, p(rm+1)] (105)

which are non-linear equations solvable by a MatLab® routine. In addition, MatLab®, ∀r ∈ (a, b), evaluates the
cubic polynomial by means of its special routine bvpval [30].

Remark 16. As known, a BVP could have more than one solution [31]. Thus, it is important to give an initial
guess for both the initial mesh and the solution. Obviously, the MatLab® solver makes the mesh adaptively
achieve a solution using a reduced number of mesh points [30].

However, a good initial hypothesis could be very difficult. Thus, the MatLab® solver checks a
residue defined as [30] res(r) = p′(r)− F[r, p(r)]. Obviously, if res(r) is small, then p(r) is a good
solution. Moreover, the case of the well-conditioned problem, p(r) is next to y(r). In [23], MatLab®

R2017a bvp4c solver has been exploited since it implements the collocation technique by a piecewise
cubic p(r), with coefficients determined requiring that p(r) be continuous on (a, b). Furthermore, both
mesh and estimation error are based on the computation of the residual of p(r), the control of which
is exploited to manage inadequate guesses for both mesh and solution [30]. Moreover, this routine
provides a very reduced computational complexity to compute the Jacobian J = ∂Fi

∂y . Finally, bvp4c is a
vectorized solver, so that it is able to strongly reduce the run-time vectorizing F(r, y(r)) [31].

11.3.4. Four-Stage Lobatto IIIa Formula

It is derived as an implicit RK method. Its Butcher tableau is [30]:

0 0 0 0 0
5−
√

5
10

11+
√

5
120

25−
√

5
120

25−13
√

5
120

−1+
√

5
120

5+
√

5
10

11−
√

5
120

25+13
√

5
120

25+
√

5
120

−1−
√

5
120

1 1
12

5
12

5
12

1
12

1
12

5
12

5
12

1
12

(106)

Like the three-stage formula, this approach is also a polynomial collocation procedure, but it provides
solutions in which the accuracy is of the fifth-order, belonging to C1([a, b]). However, unlike bvp4c that
exploits the analytical condensation procedure, MatLab® solves the four-stage Lobatto IIIA formula by
a finite difference procedure (by means of bvp5c solver) and solves the algebraic equations directly.
Furthermore, unlike bvp4c that handles the unknown parameters directly, bvp5c augments the system
with trivial differential equations for unknown parameters [30,31].

11.4. Numerical Results

Figure 8left depicts the numerical results for u(x) evaluated in [22] exploiting different values of
θλ2 using the shooting procedure implemented by the MatLab ode23 routine. It can be noted that the
minimum value of θλ2 ensuring convergence is 0.63. Similar results have been achieved exploiting the
other numerical procedures. For the shooting procedure and ODE solvers (indicated by Shoot&23 and
Shoot&45), it was set u1(0) = 1 and u2(0) = 1.2 as initial guess when θλ2 = 0, 63, 1, 4 and u1(0) = 0.1
and u2(0) = 0.2 as initial guess when θλ2 = 2, 3. Regarding the relaxation procedure & Keller–Box
scheme (Rel&Box), both initial guesses were set as u1(0) = u2(0) = 1 [22]. Finally, u1(0) = u2(0) = 0
were set for the collocation procedure and Lobatto formulae (indicated by Col&III and Col&IV). Table 2
presents a comparison of the results achieved when θλ2 = 0.63, 1, 2, 3, 4. Finally, when θλ2 = 4,
the same value max(u(x)) = 0.029918, with J = 13, J = 52, J = 4000, J = 4 number grid points,
respectively, was achieved. The results proved that each procedure showed a good performance,
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even if different orders of accuracy and different grid points were used. Noting that both the relaxation
method and Keller–Box scheme reveal robustness and accuracy, the latter provides results as accurate
as those of the shooting and collocation method, since it involves more grid points for each iteration.
However, although the shooting method is not so robust as the relaxation and collocation procedures,
it is faster and well-implemented in MatLab. Moreover, the collocation procedure gives a solution by a
few numbers of grid points because the profile is smooth. Finally, the Relaxation procedure and the
Keller–Box scheme are more robust with respect to the other approaches.

Figure 8. u(x) for different values of θλ2 using the shooting procedure (MatLab ode23 routine), and
T − V plane partitioned into three distinct areas: non-convergence area; convergence with ghost
solutions area; convergence without ghost solutions area.

Table 2. Comparison of the results for different values of the parameter θλ2.

θλ2 = 0.63 θλ2 = 1

Methods max(y(x)) J max(y(x)) J

Shoot&23 0.190943 64 0.113476 20
Shoot&45 0.189749 364 0.113639 56
Rel&Box 0.191257 4000 0.113662 4000
Col&III 0.189623 44 0.113653 12
Col&IV 0.190331 40 0.113662 10

θλ2 = 2 θλ2 = 3

Methods max(y(x)) J max(y(x)) J

Shoot&23 0.057973 14 0.039371 14
Shoot&45 0.058133 52 0.039432 52
Rel&Box 0.058133 4000 0.039452 4000
Col&III 0.058124 4 0.039451 4
Col&IV 0.058133 6 0.039452 4

11.5. Convergence of the Numerical Approaches

In [22], indicated by [(θλ2)conv]Sode23 , the range of θλ2 that guarantees convergence by the
shooting method (using ode23 MatLab®) routine, it was obtained that [(θλ2)conv]Sode23 = [0.63,+∞),
so that, if [(θλ2)no conv]Sode23 = [0, 0.63), the convergence is not guaranteed. Moreover, using the
Keller–Box scheme, it was found that the range of θλ2 ensuring convergence was [(θλ2)conv]SKeller−Box =

[0.592,+∞). As mentioned above, of [(θλ2)no conv]Keller−Box = [0, 0.592) the convergence of the
Keller–Box scheme is not guaranteed. Moreover, the range of θλ2 ensuring convergence when the
shooting procedure was implemented by the ode45 MatLab® routine was [(θλ2)conv]Sode45 = [0.63,+∞),
so that the range that did not guarantee convergence was [(θλ2)no conv]Sode45 = [0, 0.63). Finally,
exploiting both III and IV Lobatto IIIA formulas, in [22], it was found that [(θλ2)conv]Three StageLobatto

=

[1.181,+∞) and [(θλ2)conv]Four StageLobatto = [1.181,+∞). Then, for IV Stage Lobatto IIIa formulas, it
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was obtained that the range of θλ2 that did not ensure convergence was [(θλ2)no conv]Four StageLobatto =

[0, 1.181). These conditions are summarized in Table 3.

Table 3. Range of θλ2 ensuring convergence for each numerical procedure.

Shooting θλ2 ∈ [0.63,+∞) θλ2 ∈ [0, 0.63)
ode23 convergence no convergence

Shooting θλ2 ∈ [0.63,+∞) θλ2 ∈ [0, 0.63)
ode45 convergence no convergence

Keller-Box θλ2 ∈ [0.592,+∞) θλ2 ∈ [0, 0.592)
convergence no convergence

Three Stage θλ2 ∈ [1.181,+∞) θλ2 ∈ [0, 1.181)
Lobatto IIIa (bvp4c) convergence no convergence

Four Stage θλ2 ∈ [1.181,+∞) θλ2 ∈ [0, 1.181)
Lobatto IIIa (bvp5c) convergence no convergence

If all the procedures work parallelly, the minimum value of θλ2 ensuring the convergence of at
least one numerical procedure was obtained as follows [22]:

min(θλ2)conv = min
{

min[(θλ2)conv]Sode23 , min[(θλ2)conv]Sode45 , (107)

min[(θλ2)conv]Keller−Box, min[(θλ2)conv]ThreeStageLobatto
, min[(θλ2)conv]FourStageLobatto

}
= 0.592.

In other words, for values greater than 0.592, the convergence of at least one numerical solution is
ensured. Then, for θλ2 ≥ 0.63 convergence is ensured for all the numerical procedures considered.
However, even if a numerical solution is obtainable, one must be sure that this solution does not
represent a ghost solution.

11.6. Convergence and Ghost Solutions

As studied in [22], from (36), one obtains θλ2 ≥ 18 so that if θλ2 ∈ [18,+∞) we have that both
existence and uniqueness are ensured. Moreover, from (6) [16], we can write λ2 = 0.25ε0V2

h3T < 0.25ε0V2

(h−d∗)3T
from which

θλ2 <
0.25θ2

(h− d∗)3T
. (108)

Moreover, combining (36) and (108), one obtains 1+
(

sup
{∣∣∣ du(x)

dx

∣∣∣})6
< θλ2

18 ≤
θε0L2

1V2

18(h−d∗)3T , from which

18
((

sup
{∣∣∣du(x)

dx

∣∣∣})6
) ≤ θλ2 ≤ 0.25θε0

(h− d∗)3T
. (109)

Being 0.63 � 18
(

1 +
(

sup
{∣∣∣ dy(x)

dx

∣∣∣})6)
we obtain 0.63 � 18

(
1 +

(
sup

{∣∣∣ dy(x)
dx

∣∣∣})6)
< θλ2 ≤

θε0L2
1V2

(h−d∗)3T , so that

V >

√
0.63(h− d∗)3

θε0L2
1︸ ︷︷ ︸

Z1

√
T = Z1

√
T. (110)

(110) highlights that the thicker the membrane, the higher V to be applied to the device for overcoming

the inertia of the membrane. Moreover, since 18� 18
(

1 +
(

sup
{∣∣∣ dy(x)

dx

∣∣∣})6)
, one can write:
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V >

√
18(h− d∗)3

θε0L2
1︸ ︷︷ ︸

Z2

√
T = Z2

√
T. (111)

Thus, both (110) and (111) identify, on the plane formed by T and V, zones of convergence where
ghost solutions could also take place. As depicted in Figure 8right [22], (110), below the blue curve,
the non-convergence area is identified while, between the blue and red curves, at least one numerical
procedure converges (ghost solutions could take place). Finally, above the red curve, the area in which
convergence is guaranteed without ghost solutions is identified. To achieve solutions that are not ghost
solutions is very important because it gives us the possibility to achieve ranges of possible values for
V, |E| and T defining operating conditions to which the device has been subjected [17,19,22].

11.7. Range of Parameters for the Correct Use of the Device

In this section, we discuss the correct use of the device as studied in [22]. In other words, once the
material constituting the membrane has been chosen (that is, T is fixed), what is the range of possible
values for V and |E|? Vice versa, fixing both V and |E| (that is, fixing the intended use of the device),
which material is more suitable for the membrane? Thus, starting from both (36) and (108), one obtains

1 +
(

sup
{∣∣∣ du(x)

dx

∣∣∣})6
< θλ2

18 = θ
18

0.25ε0V2

h3T < θ
18

0.25ε0V2

(h−d∗)3T , so that
(

sup
{∣∣∣ du(x)

dx

∣∣∣}) < 6

√
θ

18
0.25ε0V2

(h−d∗)3T − 1

giving the interval of admissible values for sup
{∣∣∣ du(x)

dx

∣∣∣}, once θ, Tand Vare known. Moreover

θ|E|2 =
λ2

(1− u(x))2 =
1

(1− u(x))2
ε0V2

h3T
<

1
(1− u(x))2

ε0V2

(h− d∗)3T
. (112)

Multiplying (112) by λ2 and considering that (1− u(x))2 < 1, |E|2 < sup{|E|2, β1 = ε0/2T and

λ2 = β1V2, it is easy to write θλ2|E|2 = β1V2λ2

1−u(x))2 =
β2

1V4

(1−u(x))2 from which

θλ2 =
ε2

0V4

T2(1− u(x))2|E|2 >
ε2

0V4

T2 sup{|E|2} (113)

and

T >
ε0V2

√
θλ2 sup{|E2|}

(114)

or
V2

sup{|E|2} <
T
√

θλ2

ε0
. (115)

By (115), fixing θ and T, one obtains V2

sup{|E2|} (operative electrostatic parameters of the device).
Vice versa, one obtains

T
√

θ >
ε0V2

√
λ2 sup{|E|2}

(116)

so that, starting from |E| and V, T and θ are achieved.

12. Numerical Approaches for Recovering of the Membrane Profile in 2D Geometry

12.1. On the Applicability of the Numerical Procedure

As is known, BVPs are much more difficult to solve than IVPs [33]. Unlike the IVPs (having a
unique solution), a BVP could not have a solution, could have a finite number or could have infinitely
many. To solve BVPs in 2D geometry, shooting procedures and a collocation one can be exploited.
The first one combines a numerical procedure based on the solution of a corresponding IVP for ordinary
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differential equations and one for the solution of non-linear algebraic equations. However, the shooting
procedure could require the integration of an unstable IVP, so that the solution of a BVP could be
insensible to the changes in the boundary value and the solution of the IVP could be sensible to the
changes in the initial values. On the other hand, the collocation procedure, even if they are efficient and
reliable tools, often could not be suitable for high accuracy. In [22,23], the authors used the collocation
procedure based on piecewise polynomial functions for solving (24) because just one coefficient was
singular and, moreover, the solutions were smooth [33]. Thus, they proposed the collocation procedure
implemented in MatLab®, by its routine bvp4c, because its code implements the three-stage Lobatto
IIIa formula, which is a collocation formula exploiting a collocation polynomial, which provides a C1

continuous solution that is fourth-order accurate.

12.2. Numerical Procedure and Convergence: Interesting Ranges of θλ2 and V2k

12.2.1. θλ2 and Its Characteristics Ranges

As specified in [23], instability phenomena of the membrane can arise when V grows too much.
Thus, it is important to know the range of V generating instability. With V being linked to θλ2 (see (31)),
it follows that the knowledge of the behavior of the membrane when θλ2 increases gives us, when both
d∗ and k are fixed, the range of V producing instability of the membrane in absence/presence of ghost
solutions. In [23] it has been observed that θλ2, depending on both the electromechanical properties of
the material constituting the membrane and V, once the ranges of stability/instability of the membrane
are known, it is possible to know the operation parameters in the convergence area respecting (31) and
the engineering areas of applicability of the device. In such a context, it was reasonable to consider that
pel and p are equivalent (i.e., k = 1 and negligible losses). This is correct because when V is applied |E|
and pel are generated inside the device. In [23] all the simulations have been carried out by the bvp4c
MatLab® solver exploiting both the default relative and absolute error tolerances obtaining 100 as the
optimal number of grid points on [0, R] = [0, 1] (by a greater number of grid points the performance
did not improve). Moreover, different solutions starting with different initial guesses were obtained.
Three cases occurred.

Case 1

∀θλ2 ∈ (10−6,+∞) the numerical procedure converged without instabilities. In other words,

when θλ2 increased from 10−6, d2(u)
dr2 increased from negative values towards zero. Thus, the concavity

of the deformed membrane decreased avoiding instabilities next to the edge. This was confirmed
by (31): the higher θλ2 is, the lower V2 will be (increasing θλ2, the membrane does not deform too
much when a low V is applied). Figure 9, as achieved in [23], displays an example of recovering with
θλ2 = 0.5, and initial guesses u1 ≤ 2.446 and u2 = 0. With V being reduced, the membrane moves just
a little so that instabilities do not appear. The procedure behaves differently when the initial guess
of u1 increases (with u2 = 0). In fact, Figures 10–12 depict examples of recovering when θλ2 = 0.5
and with the initial guess for u1 belonging to [2.447, 2.453], [2.454, 9.474], [9.63, 12.7] and [15.1, 19.978],
[9.475, 9.62], [12.71, 15] and [19.979,+∞), respectively (initial guess for u2 is zero).
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Figure 9. Recovering of the membrane: θλ2 = 0.5, u1 ≤ 2.446, u2 = 0.

Figure 10. Recovering of the membrane: θλ2 = 0.5, 2.447 ≤ u1 ≤ 2.453, u2 = 0.

Figure 11. Recovering of the membrane: θλ2 = 0.5, 2.454 ≤ u1 ≤ 9.474, 9.63 ≤ u1 ≤ 12.7 and
15.1 ≤ u1 ≤ 19.978, u2 = 0.

Figure 12. Recovering of the membrane: θλ2 = 0.5, 9.475 ≤ u1 ≤ 9.62, 12.71 ≤ u1 ≤ 15 and
u1 ≥ 19.979, u2 = 0.

One can note that when the initial guess for u1 and u2 = 0 increases, the recovering of the
membrane is symmetrical but erratic ( Figure 10) until the profile assumes a bell-shape (Figure 11).
The erratic behavior is also present when the initial guess is increasing (Figure 12). However, although
Figures 10–12 show simulations that numerically are valid, since u1 is greater than d, they are
not realistic.
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Case 2

If θλ2 ∈ (0, 10−7), the numerical procedure does not work: (1−u(r)−d∗)2

θλ2 increases too much,

(as θλ2 → 0, (1−u(r)−d∗)2

θλ2 → ∞ ). Thus, the procedure stops since the Jacobian matrix is singular.

Case 3

If θλ2 ∈ [10−7, 10−6] strong instabilities occur. Thus, although the numerical method does not
stop, instabilities close to the edge of the membrane occurred. Figures 13 and 14 depicts two examples
of recovering when θλ2 ∈ [10−7, 10−6] highlighting instabilities. Particularly, Figure 13 has been
achieved in [23] setting u1 = 0.1 and θλ2 = 5× 10−7, while Figure 14 has been achieved when u1 = 1.2
and θλ2 = 10−6.

Figure 13. Recovering of the membrane: u1 = 0.1 and θλ2 = 5× 10−7.

Figure 14. Recovering of the membrane: u1 = 1.2 and θλ2 = 5× 10−5.

12.2.2. θλ2 and Analytical Condition of Uniqueness of the Solution

From (31), being d∗ = 10−9, k = 1 and ε0 ≈ 10−12, then θλ2 > R2d∗2

2V2ε0k ≈
(10−6)2(10−9)2

V210−12k = 10−18

V2k
from which [23]:

θλ2 >
10−18

V2k
. (117)

Considering (117), with θλ2 ≤ 10−6 meaning the numerical procedure stably converges, one can write
θλ2 > 10−18

V2k ∧ θλ2 ≥ 10−6 from which V2k ≤ 10−12, so that the range of V2k ensuring both convergence
and stability is V2k ∈ (0, 10−12]. As seen above, ∀θλ2 ∈ (0, 10−7) the numerical procedure does not
converge obtaining θλ2 > 10−18

V2k ∧ θλ2 ≤ 10−7 from which V2k ≥ 10−11; so that, ∀V2k ∈ [10−11,+∞)

the numerical procedure does not converge. If the numerical procedure unstably converges, then θλ2 ∈
[10−7, 10−6]. Thus, θλ2 > 10−18

V2k ∧ 10−7 < θλ2 < 10−6 from which ∀V2k ∈ (10−12, 10−11). Here, the
numerical procedure converges even if instability phenomena can occur close to the edges.
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12.3. An Overview on the Ghost Solutions Areas

As shown in [23], one starts from θλ2 > 10−18

V2k . Moreover, being u0 = kε0V2

(h−u(r))2 [20]. Then

V2k =
2u0(h− u(r))2

ε0
(118)

which, combining with θλ2 > 10−18

V2k , becomes

θλ2 >
10−18ε0

2 u0(h− u(r))2 . (119)

Considering that ε0 ≈ 10−12, u0 ≈ 10−9 and (h− u(r))2 ≈ 10−9, from (119), it is easy to obtain:

θλ2 >
10−18ε0

2u0(h− u(r))2 ≈
10−1810−12

2 10−910−9 ≈ 10−12. (120)

Then, it follows that (119) becomes θλ2 > 10−12. Therefore, ∀θλ2 ∈ (0, 10−12] any solutions could be
ghost solutions. However, since ∀θλ2 ∈ (0, 10−7] the numerical procedure does not converge, then
each numerical solution obtained is not a ghost solution. The results are summarized in Table 4.

Table 4. Convergence and stability areas.

No Convergence Convergence and Instability Convergence and Stability

θλ2 ≤ 10−7 10−7 < θλ2 < 10−6 θλ2 ≥ 10−6

V2k ≥ 10−11 10−12 < V2k < 10−11 V2k ≤ 10−12

No Ghost Solutions if θλ2 > 10−12 No Ghost Solutions No Ghost Solutions

12.4. Electromechanical Properties of the Membrane, V and Ghost Solutions: Exploitation of the Device

As above discussed, θ represents the proportionality between |E| and λ2

(1−u(r))2 [17]:

θ|E|2 =
λ2

(h− u(r))2 . (121)

Moreover, λ2 depends on both V and the electromechanical properties of the material constituting the
membrane (see (6) and (7)). Then, combining (121) with (6) one achieves [23]:

θ|E|2 =
λ2

(h− u(r))2 =
ε0V2(2R)2

2h3T(h− u(r))2 =
ρV2

(h− u(r))2 . (122)

Again θ|E|2λ2 = ε0(2R)2

2h3T
V2λ2

(h−u(r))2 = ρ V2λ2

(h−u(r))2 = ρ2 V4

(h−u(r))2 obtaining

θλ2 =
4ε2

0R4

h6T2
V4

(h− u(r))2|E|2 . (123)

However, in dimensionless conditions, (h − u(r))2 < 1, d = R = 1 and |E|2 < sup{|E|2}; thus,

from (123), one can write θλ2 =
4ε2

0
T2

V4

(h−u(r))2|E|2 >
ε2

0V4

4T2 sup{|E|2} . Moreover, as known, θλ2 is writable



Membranes 2020, 10, 361 34 of 51

as [17,20] θλ2 = ε0V4

4T2(h−u(r))2|E|2 from which θλ2 =
ε2

0V4

T2(h−u(r))2|E|2 >
ε2

0V4

T2 sup{|E|2} . If the numerical

procedure does not converge, it follows that 10−7 > θλ2 >
ε2

0V4

T2 sup{|E|2} so that:

ε2
0V4

T2 sup{|E|2} < 10−7. (124)

Then, from (124), one obtains:

T >
ε0V2√

10−7 sup{|E|2}
(125)

or
V4

[sup{|E|2}]2 <
T210−7

ε2
0

. (126)

Once the intended use of the device has been chosen (that is, once the pair {V, sup{|E|2} has been
fixed), from the inequality (125), inf{T} is computable. In other words, once {V, sup{|E|2} has been
chosen, the material of the membrane is selected. Conversely, if the material of the membrane has
been chosen (that is, T has been fixed), it is possible to achieve the pair {V, sup{|E|2} satisfying the
inequality (126) (that is the intended use of the device is achieved).

13. Electromechanical Properties of the Membrane and Exploitation of the Device: A Useful
Comparison between the 1D and 2D Formulations in Convergence Conditions

The following result holds.

Proposition 20. In convergence conditions, considering both (114) and (125), we can write:

ε0V2√
10−7 sup{|E|2}

>
ε0V2

√
θλ2 sup{|E|2}

. (127)

Proof. In convergence conditiond, ε0V2
√

θλ2 sup{|E2|}
in (114) becomes ε0V2

√
0.63 sup{|E2|} , so that 1√

10−7 > 1√
0.63

.

Therefore, (127) follows.

From the Proposition 20 it follows that, with the same V and sup{|E|2} (i.e., fixed the intended
use of the product), the machine voltage T is higher in 2D geometry. This is due to the fact that,
in 2D geometry, it is necessary to take into account all the contributions due to the mechanical stresses
relative to each vertical plane passing through the vertical axis of symmetry. Recall that each of these
planes is affected by 1D geometry.

14. Conclusion and Perspectives

In recent literature, the surveys published on MEMS membrane electrostatic devices are abundant
and many of them are of high quality. The discussions contained therein range from the design
procedures of the individual devices to the techniques for analyzing the behavior of the devices under
the most varied operating conditions. However, recently, a new line of research has emerged on MEMS
membrane devices based on the observation that on each point of the membrane E is always orthogonal
to the tangent to the membrane at the point in question, so that |E| is to be considered proportional to
the curvature K of the membrane. This approach allows modeling the problem by means of elliptic
semi-linear second-order differential models relative to 1D and 2D geometries (the latter with circular
symmetry). Particularly for the 1D geometry, the explicit singularities present in models known in
the literature are not present, while for the 2D geometry, the singularity is present on the axis of
symmetry passing through the center of the circular plates of the device. In this survey, in addition to
having presented and discussed both the differential models mentioned above, the main results of
existence and uniqueness of the solution for both models were presented, discussed and compared
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in the first part, verifying which conditions are stronger than the remaining. The second part of the
survey was entirely devoted to stability and optimal control problems for both geometries, underlining
the similarities and differences that emerge from the study of both geometries. In particular, important
conditions that manage the range of possible values for V have been studied and compared providing
original results as far as the 2D geometry is concerned. The last part of this survey, since the analytical
models do not provide explicit solutions, was entirely dedicated to the comparison of the results
obtained from the numerical procedures applied to reconstruct the membrane profile. Particularly,
respecting the analytical conditions of existence and uniqueness of the solution and for both geometries
studied, the ranges of admissible values for T to which the membrane must be subjected before
deformation under the effect of V were compared. The comparisons highlighted how both geometries
provide limitations and a range of possible values for the fundamental quantities (such as, for example,
V and T) dependent on the same parameters but with different functional bonds due to the different
membrane shapes in the two geometries. This, at least qualitatively, confirms that both models studied
have been correctly formulated, highlighting a certain uniformity of behavior of the control parameters.
Finally, we observe that, even if the approach of considering |E| is proportional to K, as validated
by the results obtained in the absence of ghost solutions, it appears clear that the formulations used
for K require refinement; therefore, in the future, it would be desirable to exploit more sophisticated
formulations for membrane curvature in order to take into account the symmetries present in the
geometries studied. Moreover, by removing the hypothesis that u(x) ∈ C2(Ω), new scenarios open
up regarding the reformulation of the curvature, thus taking into account any formation of wrinkles
around the membrane. It is worth underlining the fact that the numerical models used enjoy a limited
computational load. Then, the writing of the hardware of what has been implemented in the software
appears desirable in order to make the elaboration usable for any real-time applications.
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Abbreviations

The following abbreviations are used in this manuscript:

MEMS Micro-Electro-Mechanical-System
V applied voltage
u deflection of the membrane
E electrostatic field
|E| amplitude of the electrostatic field
K curvature of the membrane
Ω boundary region
ρ, γ, χ parameters related to the electric and mechanic properties of the membrane
σ Coulombian exponent
φ electrostatic potential
D flexural stiffness
T mechanical tension of the membrane
ε0 permittivity of the free space
h distance between the two parallel plates
δ rigidity of the plate
ε aspect ratio of the system
d∗ critical security distance
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pel electrostatic pressure
p mechanical pressure
k coefficient of proportionality between pel and p
θ parameter of proportionality for |E|
µ function of proportionality between K and |E|
εt dielectric strength of the material constituting the membrane
R radius of the disks in 2D geometry
r radial coordinate
Cel electrostatic capacintance
H(r) mean curvature
G Green function

H sup
∣∣∣ du(x)

dx

∣∣∣
BVP boundary value problem
IVP initial value problem
RK Runge–Kutta approach

Appendix A. Mean Curvature and 2D Modellization

Here, a surface S generated by rotating around z a curve C lying on a vertical plane normal to
the xy plane, which forms an angle t with the zx plane, is considered (Figure 3a) [29]. To simplify
the procedure, let us suppose that C is parametrized with r (generic parameter). Thus, P(r) =

( f (r), 0, g(r)), r ∈ I ⊂ R, in which f (r) and g(r) are regular functions, which satisfy the
following inequality ( d f (r)

dr

)2
+
( dg(r)

dr

)2
≥ 0 (A1)

∀r ∈ I = [0, R]. S is parametrizable as P(t, r) = ( f (r) cos t, f (r) sin t, g(r)) where (t, r) ∈ [0, 2π)× I.

Remark A1. P(r), being a so-called natural parametrization, ensures that the curve C is regular everywhere.
Thus, by rotation, S is also regular.

Thus, one can easily achieve

∂P(t, r)
∂t

= (− f (r) sin t, f (r) cos t, 0) ∧ ∂P(t, r)
∂r

=
( d f (r)

dr
cos t,

d f (r)
dr

sin t,
dg(r)

dr

)
(A2)

from which, the coefficients of the first fundamental form become:

E =
∥∥∥ ∂P(t, r)

∂r

∥∥∥2
= f

2
(r); F =

∂P(t, r)
∂r

× ∂P(t, r)
∂t

= 0; G =
∥∥∥ ∂P(t, r)

∂t

∥∥∥2
= 1. (A3)

Observing that F = 0 everywhere, thus the coordinate lines are orthogonal to each other (everywhere),
so that, one can write:

∂2P(t, r)
∂t2 = (− f (r) cos t,− f (r) sin t, 0),

∂2P(t, r)
∂t∂r

=
(
− d f (r)

dr
sin t,

d f (r)
dr

cos t, 0
)

, (A4)

∂2P(t, r)
∂r2 =

(∂ f (r)
∂r2 cos t,

∂2 f (r)
∂r2 sin t,

∂2g(r)
∂r2

)
.

Therefore, from (A2), ∂P(t,r)
∂t ∧ ∂P(t,r)

∂r = f (r)
(

dg(r)
dr cos t, dg(r)

dr sin t,− d f (r)
dr

)
, so that the unit normal

vector to S in P(t, r) is n̂ =
(

∂P(t,r)
∂t ∧ ∂P(t,r)

∂r

)∥∥∥ ∂P(t,r)
∂t ∧ ∂P(t,r)

∂r

∥∥∥−1
=
(

dg(r)
dr cos t, dg(r)

dr sin t,− d f (r)
dr

)
.

Moreover, the coefficients of the second fundamental form become:

e =
∂2P(t, r)

∂r2 × n̂ = − f (r)
dg(r)

dr
; f =

∂2P(t, r)
∂r∂t

× n̂ = 0; g =
d2 f (r)

dr2
dg(r)

dr
− d f (r)

dr
d2g(r)

dr2 . (A5)
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To obtain both the principal curvatures, k1(t, r) and k2(t, r), one needs to solve (e− kE)(g− kG)− (f−

kF)2 = 0, achieving k1(t, r) = −
dg(r)

dr
f (r)

and k2(t, r) = d2 f (r)
dr2

dg(r)
dr −

d f (r)
dr

d2g(r)
r2 . Then, the mean curvature,

H(t, r), becomes H(t, r) = 1
2 (k1(t, r) + k2(t, r)) = 1

2

(
−

dg(r)
dr

f (r)
+ d2 f (r)

dr2
dg(r)

dr −
d f (r)

dr
d2g(r)

r2

)
and since C

belongs to the plane y = 0, one can set:

f (r) = r;
d f (r)

dr
= 1;

d f (r)
dr2 = 0; g(r) = u(r)

dg(r)
dr

=
du(r)

dr
;

dg(r)
dr2 =

d2u(r)
dr2 (A6)

in which both d f (r)
dr and dg(r)

dr satisfy (A1). Thus, considering (A6), H(t, r) becomes H(r) = − 1
2

(
1
r

du(r)
dr +

d2u(r)
dr2

)
. Therefore, by H(r), (22) becomes:


d2u(r)

dr2 + 1
r

du(r)
dr = − θλ2

4(1−u(r)−d∗)2

(
1
r

du(r)
dr + d2u(r)

dr2

)2

u(R) = 0; du(0)
dr = 0; 0 < u(r) < d.

(A7)

Finally, one can divide both sides of the equation of (A7) by d2u(r)
dr2 + 1

r
du(r)

dr , achieving d2u(r)
dr2 =

− 1
r

du(r)
dr −

(1−u(r)−d∗)2

θλ2 , so that eqrefmedia can be written as (24).

Appendix B

As known, differentiating (20), one obtains:

u(x) =
∫ 0.5

−0.5
G(x, s) f

(
s, u(s),

du(s)
ds

)
ds (A8)

where 0 < u < h− d∗ and G(x, s) is a suitable Green’s function [34]. Moreover,

du(x)
dx

=
∫ 0.5

−0.5
Gx(x, s) f

(
s, u(s),

du(s)
ds

)
ds (A9)

so that (A8) becomes:

u(x) =
∫ 0.5

−0.5
G(x, s)

(
1 +
(

du(s)
ds

)2)3

θµ2(s, u(s), λ)
ds. (A10)

The existence of the solution of the equation T(u) = w, where u ∈ P1, can be proved by the
Schauder–Tychonoff fixed point theorem applied to w = T(u) from P to P [34]. In fact, from (A10),
one defines the positive operator T as follows:

T(u(x)) =
∫ 0.5

−0.5
G(x, s)

(
1 +
(

du(s)
ds

)2)3

θµ2(s, u(s), λ)
ds (A11)

and

dT(u(x))
dx

=
∫ 0.5

−0.5

G(x, s)
dx

(
1 +
(

du(s)
ds

)2)3

θµ2(s, u(s), λ)
ds. (A12)

The suitable Green’s function is [34] G(x, s) = (s+0.5)(0.5−x)
1 , if −0.5 ≤ s ≤ x; or G(x, s) =

(0.5−s)×(x+0.5)
1 , when x ≤ s ≤ 0.5 achieving dG(x,s)

dx = −(s+0.5)
1 if −0.5 ≤ s ≤ x, and dG(x,s)

dx = (0.5−s)
1 if

x ≤ s ≤ 0.5. Moreover, G(x, s) is a continuous and non-negative function having its maximum equal
to 0.5/2 on the straight line x = s at s = 0. From which, one can write:

0 ≤ G(x, s) ≤ 0.5/2 ∀x, s ∈ [−0.5, 0.5]; (A13)

In addition, the integral over [0.5, 0.5] becomes∫ 0.5

−0.5
G(x, s)ds =

0.5− x
1

∫ x

−0.5
(s + 0.5)ds +

x + 0.5
1

∫ 0.5

x
(0.5− s)ds ≤ 0.52

2
;
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and the integral of
∣∣∣ dG(x,s)

dx

∣∣∣ over [−0.5, 0.5] becomes:∣∣∣ ∫ 0.5

−0.5

dG(x, s)
dx

ds
∣∣∣ ≤ ∫ 0.5

−0.5

∣∣∣ dG(x, s)
dx

∣∣∣ds ≤ 0.5. (A14)

Finally, ∀x, s ∈ ([−0.5, 0.5]× [−0.5, 0.5]):

dG(x, s)
dx

≤ 0.5. (A15)

Appendix C. Proof of Theorem 1

To prove that T(u) ∈ C2
0([−0.5, 0.5]), one must prove that

l‖T(u(x))‖C2[−0.5,0.5] = sup
x∈[−0.5,0.5]

|T(u(x))|+ sup
x∈[−0.5,0.5]

∣∣∣ dT(u(x))
dx

∣∣∣+ sup
x∈[−0.5,0.5]

∣∣∣ d2T(u(x))
dx2

∣∣∣ < +∞. (A16)

Due to the construction of G(x, s), it follows that T(u(−0.5)) = T(u(0.5)) = 0 verifying that T(u) ≥ 0.
Moreover, it is easy to verify that µ(x, u(x)) > 1 in [−0.5, 0.5]. This is due to the fact that E deforms
the membrane satisfying the condition that locally it must win the inertion of the deformation, so that
µ(x, u(x)) assumes values greater than the unity. Therefore, to overcome the inertia of the membrane,
a minimum voltage λ > 0 should be applied, so that λ < λ < sup{λ} and sup{λ} being a bounded
quantity, it follows that 1/λ2 < +∞. Therefore, also considering the (A13), one can write:

0 ≤ |T(u(x))| ≤ supx∈[−0.5,0.5]|T(u(x))| ≤ (A17)

≤ 1
θλ2 sup

x∈[−0.5,0.5]

∣∣∣ ∫ x

−0.5

(s + 0.5)(0.5− x)
1

(
1 +

( du(s)
ds

)2)3
((h− d∗)− u(s))2ds

∣∣∣+
+

1
θλ2 sup

x∈[−0.5,0.5]

∣∣∣ ∫ L

x

(0.5− s)(x + 0.5)
1

(
1 +

( du(s)
ds

)2)3
((h− d∗)− u(s))2ds

∣∣∣ ≤
≤ 4(h− d∗)

1
θλ2 (1 + H6)0.52 < +∞.

Moreover:

sup
x∈[−0.5,0.5]

∣∣∣ dT(u(x))
dx

∣∣∣ = sup
x∈[−0.5,0.5]

∣∣∣ ∫ 0.5

−0.5

G(x, s)
dx

(
1 +

(
du(s)

ds

)2)3

θµ2 ds
∣∣∣ ≤ 2(h− d∗)

1
θλ2 (1 + H6) < +∞. (A18)

Thus, being
∣∣∣ du(x)

dx

∣∣∣ ≤ H and |1/µ2| < 1, it is easy to obtain:

sup
x∈([−0.5,0.5])

∣∣∣ d2T(u(x))
dx2

∣∣∣ = sup
x∈([−0.5,0.5])

∣∣∣∣∣ d
dx

∫ 0.5

−0.5
Gx(x, s)

((
1 +

(
du(s)

ds

)2)3

θµ2

)
ds

∣∣∣∣∣ ≤ (A19)

≤ 1
2θλ2 sup

x∈([−0.5,0.5])

∣∣∣∣∣
((

1 +
(

du(s)
ds

)2)3

θµ2

)∣∣∣∣∣+ 1
2θλ2 sup

x∈([−0.5,0.5])

∣∣∣∣∣
((

1 +
(

du(s)
ds

)2)3

θµ2

)∣∣∣∣∣ ≤
≤
( 1

2θ
+

1
2θ

) (1 + H2)3

λ2 =
1
θ

(1 + H2)3

λ2 < +∞.

Moreover, we can deduce that:

‖T(u(‖)||C2([−0.5,0.5]) ≤
(h− d∗)

θλ2 (1 + H6) + 4(h− d∗)
0.5(1 + H6)

θλ2 +
(1 + H2)3

θλ2 < +∞. (A20)

To prove that T(u) ∈ P, one considers that 4(h− d∗) 1
θλ2 (1 + H6)0.52 < (h− d∗), so that 1 + H6 < θλ

2

from which H <
6
√

θλ
2 − 1. Therefore, 1 + H6 < Hθλ

2

2(h−d∗) ∧ 1 + H6 < θλ
2

is verified. To compare

the second members, it is sufficent to suppose, by contradiction, that θλ
2
< Hθλ2

2(h−d∗) obtaining H >
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(h−d∗)
0.5 = 2(h− d∗). However, remembering the scaling factors (4) and considering that H = z

x and
H′ = z′

x′ , one can write:

H =
z
x
=

z′

h
1
x′

= H′
1
h
> 2(h− d∗). (A21)

Moreover, in no-scaling conditions, (h− d∗) = (h−d∗)′
h and by (A21) one easily obtain H′ > (h−d∗)′

L .
Since L represents the semi-length of the wafer without scaling operation, thus, if L → 0, it follow

that (h−d∗)′
L → +∞ and being (h− d∗)′ a positive limited coefficient, then H′ = sup

∣∣∣ du(x)
dx

∣∣∣ would

be greater than a quantity tending to +∞ inconsistently with the membership of u to C2([−0.5, 0.5]).

Therefore, it follows that θλ
2
> Hθλ

2

2(h−d∗) from which:

1 + H6 <
Hθλ

2

2(h− d∗)
(A22)

which represents the condition guaranteeing that T(u) : P→ P.

Appendix D. Proof of Theorem 2

By Theorem 1 and taking into account that the following compact immersions C2
0 [−0.5, 0.5] ↪→

C1
0 [−0.5, 0.5] and P1 ↪→ P holds, applying the Schauder–Tychonoff fixed-point theorem, u(x) =

T(w(x)) admits at least a fixed point u(x) = T(u(x)) in P1. In other words, there exists at least a
solution for (17).

Appendix E. Proof of Theorem 3

Let us introduce the following Lemma.

Lemma A1. Considering the problem (25), let u1(r) and u2(r) be twice continuously differentiable functions
in order that u1(r) < u2(r), r ∈ (0, 1) and

d2u1(r)
dt2 + F

(
r, u1(r),

du1(r)
dr

)
> 0

d2u2(r)
dr2 + F

(
r, u2(r),

du2(r)
dr

)
< 0 (A23)

for r ∈ (0, 1). Furthermore, let F
(

r, y, dy
dr

)
be a continuous function satisfying the following generalized

Lipschitz condition:

K1(r)(u(r)− v(r)) + L2(r)
( du(r)

dr
− dv(r)

dr

)
≤ F

(
r, u(r),

du(r)
dr

)
− F

(
r, v(r),

dv(r)
dr

)
≤ (A24)

≤ K2(r)(u(r)− v(r)) + L1(r)

(
du(r)

dr
− dv(r)

dr

)
,

in U × (−∞,+∞), in which U = {(r, u) : 0 < r < 1 and u1(r) ≤ u(r) ≤ u2(r)} and Ki(r) and Li(r)
(i = 1, 2) are continuous functions in (0, 1]. In the case in which du1(0)

dr ≥ du2(0)
dr , such that u1(1) = B = u2(1),

thus (25) has at least one solution, u(r), satisfying the following chain of inequalities u1(r) ≤ u(r) ≤ u2(r).

To prove Theorem 1, it is imperative to exploit the Lemma A1. Particularly, one assumes the
following expressions as u1(r) and u2(r), respectively:

u1(r) = 0 ∀r ∈ [0, 1] (A25)

and
u2(r) = u(r) =

kε0V2

2d∗2
{

1− r2
}

. (A26)

By construction, u1(r) < u2(r) and both are twice continuously differentiable functions. At this point,
one has to verify (A65). In other words:
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d2u1(r)
dt2 + F

(
r, u1(r),

du1(r)
dr

)
=

d2u1(r)
dt2 +

1
r

du1(r)
dr

+
(1− u1(r)− d∗)2

θλ2 > 0, (A27)

d2u2(r)
dt2 + F

(
r, u2(r),

du2(r)
dr

)
=

d2u2(r)
dt2 +

1
r

du2(r)
dr

+
(1− u2(r)− d∗)2

θλ2 < 0. (A28)

(A27) is verifiable observing that, for u1(r) = 0 and ∀r ∈ [0, 1], it follows that du1(r)
dr = d2u1(r)

dr2 = 0.
Then, assuming that

θλ2 > 0, (A29)

(A27) is directly verified. Moreover, to verify (A28), with (A26)), one easily obtain

du2(r)
dr

= − ε0kV2r
d∗2

(A30)

and again
d2u2(r)

dr2 = − ε0kV2

d∗2
. (A31)

Thus, by both (A30) and (A31), (A27) becomes

1
θλ2

{
1− ε0kV2

2d∗2
{1− r2}

}2
<

2ε0kV2

d∗2
. (A32)

Moreover, in (A32),
{

1− ε0kV2

2d∗2 {1− r2}
}2

< 1, such that, imposing 1
θλ2 < 2ε0kV2

d∗2 , one achieves

θλ2 >
d∗2

2V2ε0k
(A33)

that automatically satisfies (A29). Lemma A1 also requires, to prove that F
(

r, u(r), du(r)
dr

)
= 1

r
du(r)

dr +

(1−u(r))2

θλ2 satisfies the Lipschitz condition (A24). Thus, we can easily write::

F
(

r, u(r)− v(r),
du(r)

dr
− dv(r)

dr

)
=

1
r

du(r)
dr

+
(1− u(r))2

θλ2 − 1
r

dv(r)
dr
− (1− v(r))2

θλ2 ≥ (A34)

≥ 1
r

(u(r)
dr
− dv(r)

dr

)
− 2

θλ2

(
u(r)− v(r)

)
= L2(r)

( du(r)
dr
− dv(r)

dr

)
+ K1(r)

(
u(r)− v(r)

)
.

Moreover,

1
r

(u(r)
dr
− dv(r)

dr

)
− 1

θλ2

(
(u(r)− v(r))(2− (u(r) + v(r))

)
≤ (A35)

≤ L1(r)
( du(r)

dr
− dv(r)

dr

)
+ K2(r)

(
Z(u(r)− v(r))

)
.

2 − (u(r) + v(r)) ≥ 0, so there exists a constant Z such that 0 < Z < 2 − (u(r) + v(r)) holds.
Finally, Lemma A1 also requires that du1(0)

dr ≥ du2(0)
dr . For this aim, being a = 0, it follows that

du1(0)
dr = du1(0)

dr = 0. Moreover, du2(0)
dr = du2(0)

dr = 0. Furthermore, u1(1) = u2(1) = 0, which completes
the proof of the Theorem.

Appendix F. Proof of Theorem 4

From the equation of model (17), it is easy to infer that, being d2u(x)
dx2 ≤ 0 in [−0.5, 0.5], u(x) is

concave over the same interval while its first derivative decreases. Moreover, this equation is writable
as follows:

d2u(x)
dx2

[
1 +

( du(x)
dx

)2]−3
= − 1

θλ2
[h− d∗ − u(x)]2. (A36)

Multiplying both members of (A36) by u(x)
dx , one easily achieves:
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d2u(x)
dx2

du(x)
dx

[
1 +

( du(x)
dx

)2]−3
= − 1

θλ
2 (h− d∗)2 du(x)

dx
+

1

θλ
2 (h− d∗)

d
dx

[u(x)]2 − 1

3 θλ
2

d
dx

[u(x)]3. (A37)

Since d2u(x)
dx2

du(x)
dx

[
1 +

(
du(x)

dx

)2]−2
= − 1

4
d

dx

[
1 +

(
du(x)

dx

)2]−2
by integration from −0.5 to 0.5, (A37),

one achieves
− 1

4
1[

1 +
(

du(−0.5)
dx

)2]2 +
1
4

1[
1 +

(
du(0.5)

dx

)2]2 = 0, (A38)

from which
∣∣∣ du(−0.5)

dx

∣∣∣ = ∣∣∣ du(0.5)
dx

∣∣∣. Furthermore, by integration of (A37) from−0.5 to t, and considering

that u(−L) = 0 and that ∀t ∈ [−0.5, 0.5] one can achieve:

− 0.25[
1 +

(
du(t)

dx

)2]2 +
0.25[

1 +
(

du(−0.5)
dx

)2]2 = − 1

θλ2
(h− d∗)2u(t) +

1

θλ
2 (h− d∗)[u(t)]2 − 1

3 θλ2
[u(t)]3, (A39)

so that ∀t ∈ [−0.5, 0.5], − 1
θλ

2 (h − d∗)2u(t) + 1
θλ

2 (h − d∗)[u(t)]2 − 1
3 θλ

2 [u(t)]3 < 0 and

− 1
4

1[
1+
(

du(t)
dx

)2]3 + 1
4

1[
1+
(

du(−0.5)
dx

)2]3 < 0. Thus, ∀t ∈ [−0.5, 0.5],
∣∣∣ du(t)

dx

∣∣∣ <
∣∣∣ du(−0.5)

dx

∣∣∣. To prove

that (17) has only one solution, let us suppose, by contradiction, that (17) admits two different
solutions, u1, u2 ∈ P1. From the equation associated to (17), integrating from −0.5 to t, ∀t ∈ [−0.5, 0.5],

one achieves du1(t)
dx ≤ H− 1

θλ2

∫ t
−0.5

[
1+

(
du1(x)

dx

)2]3
[h− d∗− u1(x)]2dx and du2(t)

dx ≤ H− 1
θλ2

∫ t
−0.5

[
1+(

du2(x)
dx

)2]3
[h− d∗ − u2(x)]2dx. Subtracting on both members, ∀t ∈ [−0.5, 0.5]

du1(t)
dx

− du2(t)
dx

= (A40)

=
1

θλ2

∫ t

−0.5
{
[
1 +

( du2(x)
dx

)2]3
[h− d∗ − u2(x)]2 −

[
1 +

( du1(x)
dx

)2]3
[h− d∗ − u1(x)]2}dx.

To evaluate the term in the integral, let us consider F(w, v) = [1+w2]3(h− d∗− v)2 and g(t) = F(tw1 +

(1− t)w2, tv1 + (1− t)v2) = F(wt, vt). Observing that dg(t)
dx = ∂F(wt ,vt)

∂w (w1 − w2) +
∂F(wt ,vt)

∂v (v1 − v2)
and g(1) = F(w1, v1), g(0) = F(w2, v2), g(1)− g(0) = g′(ξ), ξ ∈ (0, 1), one can easily write

∂F(wξ , vξ)

∂w
= 6[1 + w2

ξ ]
2wξ(h− d∗ − vξ)

2 = (A41)

≤ 6{ξ[1 + w2
1]

2 + (1− ξ)[1 + w2
2]

2}[ξw1 + (1− ξ)w2](h− d∗ − vξ)
2.

Since w1 ≤ H, w2 ≤ H, vξ ≤ 1, it results that
∣∣∣ ∂F(wξ ,vξ )

∂w

∣∣∣ ≤ 24(1 + H2)2H and

∣∣∣∣∂F(wξ , vξ)

∂v

∣∣∣∣ ≤ 2|ξ(1 + w2
1)

3 + (1− ξ)(1 + w2
2)

3| ≤ 4(1 + H2)3. (A42)

Considering the last inequality, by means of (A40) and exploiting the Poincaré’s inequality,
∀t ∈ [−0.5, 0.5] ∣∣∣ du1(t)

dx
− du2(t)

dx

∣∣∣ ≤ 24

θλ
2 (1 + H2)2H

∫ t

−0.5

∣∣∣ du1(x)
dx

− du2(x)
dx

∣∣∣dx+ (A43)

+
4

θλ2
(1 + H2)3

∫ t

−0.5

∣∣∣ du1(x)
dx

− du2(x)
dx

∣∣∣dx ≤ 24

θλ
2 (1 + H2)2H

∫ t

−0.5

∣∣∣ du1(x)
dx

− du2(x)
dx

∣∣∣dx+

+
8L

θλ
2 (1 + H2)3

∫ t

−0.5

∣∣∣ du1(x)
dx

− du2(x)
dx

∣∣∣ dx ≤ c(H, L, λ, θ)
∫ t

−0.5

∣∣∣ du1(x)
dx

− du2(x)
dx

∣∣∣ dx.
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Then
∣∣∣ du1(t)

dx − du2(t)
dx

∣∣∣ ≤ c(H, L, λ, θ)
∫ t
−0.5

∣∣∣ du1(x)
dx − du2(x)

dx

∣∣∣dx from which, exploiting the well-known

Gronwall’s lemma, one has, ∀t ∈ [−0.5, 0.5],
∣∣∣ du1(t)

dx − du2(t)
dx

∣∣∣ ≤ 0. Thus, ∀t ∈ [−L, L], it follows that
du1(t)

dx − du2(t)
dx = 0. In other words, u1 − u2 = constant, and considering that u1(−0.5) = u2(−0.5) =

u1(0.5) = u2(0.5) = 0, one has u1 = u2. To prove the statement 2, let us consider u(x) as a solution for
(17). Setting v(t) = u(−t), ∀t ∈ [−0.5, 0.5], one has that also v is a solution of the same problem. In fact,

dv(t)
dx = − du(t)

dt , d2v(t)
dx2 = − d2u(−t)

dx2 so that, one obtains d2u(−t)
dx2 = −

[
1+
(

du(−t)
dx

)2]3

θλ2
(h − d∗ − u(−t)).

Therefore, as already mentioned, v′(−0.5) = −u′(0.5) = u′(−0.5) ≤ H, so that v(t) = u(t), ∀t ∈
[−0.5, 0.5], so that u(t) = u(−t) over [−0.5, 0.5].

To prove the statement 3, it is sufficient to take into account that u(x) ∈ C2, and the second
member of the equation ∈ C1 and than u(x) ∈ C3([−0.5, 0.5]). By induction, one obtains that u ∈
C∞([−05, 0.5]).

Appendix G. Proof of Theorem 5

To prove Theorem 5, we premise the following Lemmas. In particular, considering, by
contradiction, two different solutions of u1(x), u2(x), one obtains the following important results.

Lemma A2. The following inequality holds.∣∣∣(1 +
( du2(x)

dx

)2)3
−
(

1 +
( du1(x)

dx

)2)3∣∣∣ ≤ 24H5
∣∣∣ du2(x)

dx
− du1(x)

dx

∣∣∣. (A44)

Proof. Being H > 1, from
∣∣∣(1 +

(
du2(x)

dx

)2)3
−
(

1 +
(

du1(x)
dx

)2)3∣∣∣ one can write:

∣∣∣(1 +
( du2(x)

dx

)2)3
−
(

1 +
( du1(x)

dx

)2)3∣∣∣ = ∣∣∣[( du2(x)
dx

− du1(x)
dx

)( du2(x)
dx

+
du1(x)

dx

)]
× (A45)

×
[(

1 +
du1(x)

dx

)2)2
+
(

1 +
( du2(x)

dx

)2)
(1 +

( du1(x)
dx

)2)
+
(

1 +
( du1(x)

dx

)2)2]∣∣∣ ≤
≤
∣∣∣ du2(x)

dx
− du1(x)

dx

∣∣∣2H|3(1 + H2)2| ≤ 24H5
∣∣∣ du2(x)

dx
− du1(x)

dx

∣∣∣.

Lemma A3. Considering that h− d∗ < 1, and since 0 < u < h− d∗, ∀ u1(x), u2(x) ∈ P, it easily follows:∣∣∣(1 +
( du2(x)

dx

)2)3
(h− d∗ − u2(x))2 −

(
1 +

( du1(x)
dx

)2)3
(h− d∗ − u1(x))2

∣∣∣ ≤ (A46)

≤ 216H5
∣∣∣ du2(x)

dx
− du1(x)

dx

∣∣∣+ 24(1 + H6)|u2(x)− u1(x)|.

Proof. Taking into account∣∣∣(1 +
( du2(x)

dx

)2)3
(h− d∗ − u2(x))2 −

(
1 +

( du1(x)
dx

)2)3
(h− d∗ − u1(x))2

∣∣∣ (A47)
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one can write: ∣∣∣(1 +
( du2(x)

dx

)2)3
(h− d∗ − u2(x))2 −

(
1 +

( du1(x)
dx

)2)3
(h− d∗ − u1(x))2

∣∣∣ = (A48)

=
∣∣∣(1 +

( du2(x)
dx

)2)3
+ d∗

(
1 +

( du2(x)
dx

)2)3
+ u2

2

(
1 +

( du2(x)
dx

)2)3
− 2d∗

(
1 +

( du2(x)
dx

)2)3
−

−2u2(x)
(

1 +
( du2(x)

dx

)2)3
+ 2u2(x)d∗

(
1 +

( du2(x)
dx

)2)3
−

−
(

1 +
( du1(x)

dx

)2)3
− d∗

(
1 +

( du1(x)
dx

)2)3
− (u1(x))2

(
1 +

( du1(x)
dx

)2)3
+ 2d∗

(
1 +

( du1(x)
dx

)2)3
+

+2u1(x)
(

1 +
( du1(x)

dx

)2)3
− 2u1(x)d∗

(
1 +

( du1(x)
dx

)2)3∣∣∣ ≤
≤ 216H5

∣∣∣ du2(x)
dx

− du1(x)
dx

∣∣∣+ 24(1 + H6)|u2(x)− u1(x)|.

Exploiting both Lemmas A2 and A3, one is ready to prove Theorem 5.
By contradiction, assuming u1(x), u2(x) ∈ P as two different solutions for (17), one can write

u1(x) = T(u1(x)) and u2(x) = T(u2(x)).Then, it follows that:

u1(x) =
∫ 0.5

−0.5
G(x, s)

(
1 +

(
du1(s)

ds

)2)3

θµ2(s, u1(s), λ)
ds =

∫ 0.5

−0.5
G(x, s)((1 + (u′1(s)

2)3)
(h− d∗ − u1(s))2

θλ2 ds (A49)

u2(x) =
∫ 0.5

−0.5
G(x, s)

(
1 +

(
du2(s)

ds

)2)3

θµ2(s, u2(s), λ)
ds =

∫ 0.5

−0.5
G(x, s)((1 + (u′2(s)

2)3)
(h− d∗ − u2(s))2

θλ2 ds (A50)

du1(x)
dx

=
∫ 0.5

−0.5

1
θλ2

dG(x, s)
dx

((
1 +

( du1(s)
ds

)2)3)
(h− d∗ − u1(s))2ds (A51)

du2(x)
dx

=
∫ 0.5

0.5

1
θλ2

dG(x, s)
dx

((
1 +

( du2(s)
ds

)2)3)
(h− d∗ − u2(s))2ds (A52)

Therefore, one achieves:

‖u1 − u2‖C1([−0.5,0.5]) = sup
x∈[−0.5,0.5]

|u1(x)− u2(x)|+ supx∈[−0.5,0.5]

∣∣∣ du1(x)
dx

− du2(x)
dx

∣∣∣. (A53)
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Therefore, it follows that:

‖T(u1(x))− T(u2(x))‖ = 1
θλ2 sup

x∈[0.5,0.5]

∣∣∣ ∫ 0.5

0.5
G(x, s)

((
1 +

( du1(s)
ds

)2)3
)(h− d∗ − u1(s))2ds− (A54)

−
∫ 0.5

−0.5
G(x, s)

((
1 +

( du2(s)
ds

)2)3)
(h− d∗ − u2(s))2ds

∣∣∣+
+

1
θλ2 sup

x∈[−0.5,0.5]

∣∣∣ ∫ 0.5

−0.5

dG(x, s)
dx

((
1 +

( du1(s)
ds

)2)3)
(h− d∗ − u1(s))2ds−

−
∫ 0.5

−0.5

dG(x, s)
dx

((
1 +

( du2(s)
ds

)2)3)
(h− d∗ − u2(s))2ds

∣∣∣ ≤
≤ 0.75

θλ2 sup
x∈[−0.5,0.5]

∣∣∣ ∫ 0.5

−0.5

[
(−
(

1 +
( du1(s)

ds

)2)3)
(h− d∗ − u1(s))2+

+
(

1 +
( du2(s)

ds

)2)3)
(h− d∗ − u2(s))

]
ds
∣∣∣

Considering (A48), it follows:

‖T(u1(x))− T(u2(x))‖C1([0.5,0.5]) ≤ (A55)

≤ 0.75
θλ2 sup

x∈[−0.5,0.5]

∣∣∣ ∫ 0.5

−0.5
(216H5

∣∣∣ du2(x)
dx

− du1(x)
dx

∣∣∣+ 24(1 + H6)|u2(x)− u1(x)|)ds
∣∣∣ =

=
0.75
θλ2 (216H5) sup

s∈[−0.5,0.5]

∣∣∣u2(s)
ds
− du1(s)

ds

∣∣∣+ 0.75
θλ2 (24(1 + H6)) sup

s∈[−0.5,0.5]
|u2(s)− u1(s)|.

However, being u1(x) = T(u1(x)) and u2(x) = T(u2(x)), by means of (A53) and (A55), one would
obtain a contradiction if:

1
θλ2

(0.5
2

+
1
2

)
216H5 < 1 ∧ 1

θλ2

(0.5
2

+
1
2

)
24(1 + H6) < 1 (A56)

that is:

216H5 <
θλ2

0.75
∧ 24(1 + H6) <

θλ2

0.75
. (A57)

Taking into account the first inequality of (A57), one can also write H6 = H5H < θλ2

162 H so that

1 + H6 < 1 + θλ2 H
162 so (A57) becomes:

1 + H6 < 1 +
θλ2H
162

∧ 1 + H6 <
θλ2

18
. (A58)

Furthermore, one can observe that:
θλ2

18
< 1 +

θλ2H
162

. (A59)

In fact, starting from (A59), it follows that 9θλ2 < 216× 0.75 + θλ2H from which H > 9
(

1− 24
θλ2 0.75

)
.

In fact, if by contradiction we would write θλ2

18 > 1 + θλ2 H
162 from which H < 9− 163

θλ2 < 0. In other
words, H would assume negative value (impossible condition). Thus, (A56) is equivalent to:

1 + H6 <
θλ2

18
. (A60)

Appendix H. Proof of Theorem 6

We premise the following Lemma.

Lemma A4. Let us firstly suppose that the conditions of Lemma A1 are satisfied. Moreover, u1(r), u2(r)

satisfy the given boundary conditions. If d2u(r)
dr2 + K2(r)u(r) + L1(r)

du(r)
dr = 0 has a nontrivial solution
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satisfying zero boundary conditions on any sub-interval of [0, 1], then the problem has only one solution u(r)
with u1(r) ≤ u(r) ≤ u2(r)

As presented in (A35), it follows that L1(r)
du(r)

dr + K2(r)Zu(r) = 1
r

(
du(r)

dr

)
− Z

θλ2 u(r).

Thus, by Lemma A4, we consider:

d2u(r)
dr2 +

1
r

(du(r)
dr

)
− Z

θλ2 u(r) = 0, (A61)

which represents a particular case of r2 d2u(r)
dr2 + (2k + 1)r du(r)

dr + (α2r2s + β2)u(r) = 0 (Bessel equation)

with 2s 6= 0 and k, α, s, β ∈ C. In fact, one can write d2u(r)
dr2 + 2k+1

r
du(r)

dr +
(

α2r2s

r2 + β2

r2

)
u(r) =

0 that becomes d2u(r)
dr2 + 1

r
du(r)

dr + α2r2s−2u(r) = 0. If 2s − 2 = 0, then r = 1, obtaining
d2u(r)

dr2 + 1
r

du(r)
dr + α2u(r) = 0. Setting α2 = − Z

θλ2 ∈ C, (A61) is achieved. According to Bessel
theory [35,36], the general solution for (A61) can be expressed as a linear combination of two linearly

independent Bessel functions, J0

(√
Z

θλ2 r
)

and Y0

(√
Z

θλ2 r
)

, of the first and second kind of zeroth order,

respectively. In other words u(r) = c1 J0

(√
Z

θλ2 r
)
+ c2Y0

(√
Z

θλ2 r
)

, with c1 and c2 constant [35,36] and

J0

(√
Z

θλ2 r
)
= 1 + ∑∞

m=1

(−1)m
(√

Z
θλ2

)2m

22m(m!)2 and Y0

(√
Z

θλ2 r
)
= 2

π

[(
γ + ln

(
0.5
(√

Z
θλ2 r

)))
J0

(√
Z

θλ2 r
)
+

∑∞
m=1

(−1)m+1 Hm
22m(m!)2

(√
Z

θλ2 r
)2m]

, where γ = 0.5772 is the Euler–Mascheroni constant and Hm =

1 + 2−1 + 3−1 +×××+ m−1. Therefore, the general solution for (A61) becomes:

u(r) = c1

[
1 +

∞

∑
m=1

(−1)m
(√

Z
θλ2 r

)2m

22m(m!)2

]
+ (A62)

+
2c2
π

[(
γ + ln

(
0.5

√
Z

θλ2 r
))[

1 +
∞

∑
m=1

(−1)m
(√

Z
θλ2 r

)2m

22m(m!)2

]
+

∞

∑
m=1

(−1)m+1Hm

22m(m!)2

(
r

√
Z

θλ2 r

)2m]
.

As r → 0, then J0 → 1. Thus, ln
(

0.5
√

Z
θλ2 r

)
in Y0 exhibits a logarithmic singularity as r = 0.

It is worth nothing that a linear combination with c1 6= 0 and c2 = 0, the general integral becomes

u(r) = c1

[
1 + ∑∞

m=1

(−1)m
(√

Z
θλ2 r
)2m

22m(m!)2

]
. So a nontrivial solution ( 6= u(r) = 0) for (A61) has been

achieved. Exploiting Lemma A4, the uniqueness of the solution for (24) is not ensured.

Appendix I. Proof of Theorem 7

As seen, (28) guarantees that (17) admits at least one solution. Moreover, from Theorem 4,
it follows that the solution is also unique. Therefore, to ensure both existence and uniqueness, it is
imperative to solve the system:

1 + H6 <
Hθλ

2

2(h− d∗)
∧ 1 + H6 <

θλ2

18
. (A63)

If, absurdly, we suppose that 1
18 > 1

2(h−d∗) Hλ
2

we would obtain

H <
h− d∗

9λ
2 . (A64)
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Finally, considering the scaling factors, (A64) becomes H = z
x = z

hx′ <
h−d∗

9λ
2 . Hence, if we denote the

dimensionless value of H by H′, it follows that H′ < h(h−d∗)

9λ
2 . Therefore, H′ should be lower than a

notably small amount that is incompatible with the definition of H′ [19]. Thus, (A63) is equivalent
to (36).

Appendix J. Proof of Proposition 3

Appendix J.1. Linearization of the Non-Linear First-Order Differential Equations System around the
Equilibrium Configuration

Firstly, the model is written in the general form (39) in which

f (u1(x), u2(x)) = u2(x); g(u1(x), u2(x)) = − 1
θλ2 (1 + (u2(x))2)3(1− u1(x)− d∗)2. (A65)

(39) can be written in matrix notation. That is

u(x) =

(
u1(x)
u2(x)

)
, u̇(x) =

(
du1(x)

dx
du2(x)

dx

)
f(x, u(x)) =

(
f (u1(x), u2(x))
g(u1(x), u2(x))

)
, (A66)

(39) becomes:
u̇(x) = f(x, u(x)). (A67)

Appendix J.1.1. A Suitable Change of Variables

To linearize the system, we exploit the following change of variable:

u1(x) = u0
1 + εξ(x); u2(x) = u0

2 + εη(x) (A68)

with a small enough ε.

Appendix J.1.2. On the Use of the Taylor Series up to the First-Order

From (39), considering (A68) and u0
1 and u0

2 do not depend on x, one can write:

du1(x)
dx

= ε
dξ(x)

dx
= f (u1(x), u2(x)) ∧ du2(x)

dx
= ε

dη(x)
dx

= g(u1(x), u2(x)). (A69)

Thus, developing in Taylor series f (u1(x), u2(x)), g(u1(x), u2(x)) (neglecting the terms of order higher),
we achieve:ε

dξ(x)
dx = f (u0

1 + εξ(x), u0
2 + εη(x)) ≈ f (u0

1, u0
2) + ε

∂ f (u0
1,u0

2)
∂u1

ξ(x) + ε
∂ f (u0

1,u0
2)

∂u2
η(x) + o(τ)

ε
dη(x)

dx = g(u0
1 + εξ(x), u0

2 + εη(x)) ≈ g(u0
1, u0

2) + ε
∂g(u0

1,u0
2)

∂u1
ξ(x) + ε

∂g(u0
1,u0

2)
∂u2

η(x) + o(τ)
(A70)

in which τ = ε
√

ξ2 + η2. Considering f (u0
1, u0

2) = g(u0
1, u0

2) = 0, and neglecting the infinitesimal
terms of order higher than τ, we obtain:

dξ(x)
dx

=
∂ f (u0

1, u0
2)

∂u1
ξ(x) +

∂ f (u0
1, u0

2)

∂u2
η(x) ∧ dη(x)

dx
=

∂g(u0
1, u0

2)

∂u1
ξ(x) +

∂g(u0
1, u0

2)

∂u2
η(x). (A71)
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Remark A2. Even (A71), as for (39), admits a matrix representation. In fact, by placing:

z =

(
ξ(x)
η(x)

)
, ż =

(
dξ(x)

dx
dη(x)

dx

)
, A =

 ∂ f (u0
1,u0

2)
∂u1

∂ f (u0
1,u0

2)
∂u2

∂g(u0
1,u0

2)
∂u1

∂g(u0
1,u0

2)
∂u2

 (A72)

(A71) becomes:
ż = Az. (A73)

Finally, (A73) is the linearized form of the non-linear system around (A67).

Here, considering (A65), A can be detailed as ∂ f (u0
1,u0

2)
∂u1

= 0; ∧ ∂ f (u0
1,u0

2)
∂u2

= 1 ∧ ∂g(u0
1,u0

2)
∂u1

= 2
θλ2 (h−

d∗ − 1 + d∗) = 0 ∧ ∂g(u0
1,u0

2)
∂u2

= − 6u2
θλ2 (h− d∗ − 1 + d∗)2 = 0. Therefore, (A71) (i.e., (A73)) becomes:

dξ(x)
dx

= η ∧ dη(x)
dx

= 0. (A74)

(A74), solved, provides ξ(x) = k1 + kx and η(x) = k with k1 and k constant.

Remark A3. (A70) makes sense because u1 and u2, as proved in [16], are analytical functions allowing the

linearization by ∂ f (u0
1,u0

2)
∂u1

, ∂ f (u0
1,u0

2)
∂u2

, ∂g(u0
1,u0

2)
∂u1

and ∂g(u0
1,u0

2)
∂u2

.

Appendix J.2. Stability of the Equilibrium Configuration

Appendix J.2.1. Eigenvalues of the Coefficient Matrix and Algebraic Multiplicity

A = [0 1; 0 0] and its eigenvalues become ζ1 = ζ2 = 0. Thus, A has a single non-simple
eigenvalue (its algebraic multiplicity m = 2).

Appendix J.2.2. Point of Equilibrium: Evaluation of Its stability

For this purpose, we exploit the use the following result.

Lemma A5. In a system as (A73), if there is at least one eigenvalue with a positive real part or a not simple
eigenvalue with zero real part, then the system is unstable [26].

Proposition A1. (A74) is not stable.

Proof. Here, we achieve ζ1 = ζ2 = ζ = 0. Therefore, the only eigenvalue and m = 2. Then, by
Lemma A5, (A74) is not stable.

The following result holds.

Lemma A6. If an equilibrium point of ż = Az is unstable, then (u0
1, u0

2) of u̇(x) = f(x) is also unstable [26].

Proposition A2. The model, of which the only equilibrium position is (u0
1, u0

2) = (h − d∗, 0). Then, this
solution is unstable.

Proof. It follows from Lemma A6.

Remark A4. The membrane, when V is applied, deforms reaching a distance, in u(0), equal to h− d∗. However,
this equilibrium is an unstable configuration.
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Appendix K. Proof of Proposition 42

Considering that λ2 < λ2, it follows that λ2 > 2(h−d∗)(1+H6)
Hθ when put into (36), we obtain:

V >

√
2Td3(h− d∗)(1 + H6)√

ε0LHθ
=

√
4Td3(h− d∗)

ε0θ

√
1 + H6

H
. (A75)

√
4Td3(h−d∗)

ε0θ

√
1+H6

H in (A75) is less than the V necessary to achieve the inertia of the membrane. Thus

(Vmin)inertia >

√
4Td3(h− d∗)

ε0θ

√
1 + H6

H
. (A76)

Appendix L. Proof of Proposition 6

Supposing absurdly that √
2Td3(h− d∗)

0.5ε0θ

√
1 + H6

H
>

√
2(h− d∗)d∗

kε0
. (A77)

we achieve:
2d3T

0.5
√

0.5ε0

√
1 + H6

H
>

√
d∗√
k

. (A78)

Observing that u0 ≤ d− d∗ and 1√
u0
≥ 1√

d−d∗
, it follows:

1√
k
≥
√

pel√
d− d∗

. (A79)

Thus, (A78), considering (A79) and taking into account that d∗ = d
10 , becomes:

√
pel

T
≤ 6d3

0.5
√

0.5ε0

√
1 + H6

H
. (A80)

Being H ≈ 99 [16], it follows that
√

1+H6

H ≈ 97× 104. As ε0 = 8.85× 10−12 and d ≈ 10−9, (A80)

becomes
√

pel
T ≤ 0.95 × 10−6. Thus, the T would be a very large value as if the membrane were

extremely rigid (condition physically not compatible with the usual membranes exploited in MEMS
devices). Then, (A77) is false, so that (45) yields.

Appendix M. Proof of Proposition 8

From (43) it follows:

(Vmax)permissible <

√
2(h− d∗)

ε0

√
d∗

k
=

√
2(h− d∗)

ε0

√
h

10k
(A81)

so that
√

2(h−d∗)
ε0

> (Vmax)permissible

√
10k
d . Moreover, from (42), it makes sense to write:

(Vmin)inertia > (Vmax)permissible
d
√

10k√
0.5θ

√
1 + H6

H

√
T. (A82)

However, p = k1 pel , with k1 = 4k and k2 = 2
√

k, thus (A82) becomes [20]:

(Vmin)inertia > (Vmax)permissible
k2
2

d
√

10√
0.5θ

√
1 + H6

H

√
T. (A83)
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Furthermore, (A83) can be written as:

(Vmin)inertia > (Vmax)permissible
k2d2
√

10
√

d
0.5
√

2
√

0.5ε0

√
1 + H6

H
T. (A84)

Appendix N. Proof of Proposition 9

Being d− u(x) ≥ d− kε0V2

2d∗

(
1−

(
x
L

)2)
> 2dd∗−kε0V2

2d∗ it follows that 1
d−u(x) < 2d∗

2dd∗−kε0V2 . Thus,

C = ε0
∫ +0.5
−0.5

dx
d−u(x) < ε0

∫ +0.5
−0.5

2d∗
2dd∗−kε0V2 dx = 2d∗

2dd∗−kε0V2 . Then, W f inal = 1
2 CV2 < 1

2
2d∗V2

2dd∗−kε0V2 so

that ∆W = W f inal −Winitial <
1
2

2d∗V2

2dd∗ − kε0V2 −
ε0LV2

d︸ ︷︷ ︸
f (V)

. f (V), for usual values of d, d∗, k and ε0,

and considering (46), is a continuous function. In fact, if in f (V), 2dd∗ − kε0V2 = 0, we would

avchieve V =
√

2dd∗
kε0
≈ 0.1503V. However, this value is lower that inf(Vmin)inertia, thus V ≈ 0.1503V

is not within the range of possible values for V. To calculate the stationary points for f (V), we

set d f (V)
dV = 2d∗kε0V2

(2dd∗−kε0V2)2 + 2d∗
2dd∗−kε0V2 − εL

d = 0 from which, if V2 = t, we achieve t =
2dd∗(ε0±

√
ε0)

kε2
0

in which 2dd∗ > 0, kε2
0 > 0 and ε0 −

√
ε0 < 0 obtaining 2dd∗(ε0−

√
ε0)

kε2
0

< 0. Therefore, V ∈ C,

thus t =
2dd∗(ε0−

√
ε0)

kε2
0

must be discarded. Thus V =

√
2dd∗(ε0+

√
ε0)

kε2
0

. The negative root must be

discarded, since this value of V would deform the membrane symmetrically with respect to the lower
plate (condition physically impossible to obtain).

Appendix O. Proof of Proposition 10

If absurdly ε0
2θ2λ2 (1+ H2)3(h− d∗)2− ε0L V2

h ≤ ε0V2
{

Ld∗
h(h−d∗)

}
, after some calculations, we obtain

h3T(1+H2)3(h−d∗)2

2θ20.5ε3
0

< V4

h−d∗ that, in dimensionless conditions, becomes V > 4
√

3.10×103T
θ2 105. That is,

V should be greater than an extremely high amount. Then, it makes sense to write ε0V2
{

Ld∗
h(h−d∗)

}
<

ε0
2θ2λ2 (1 + H2)3(h − d∗)2 − ε0L V2

h . Proposition 10 helps us to achieve an interesting increase for
∆W only depending on θ and on how to fix the membrane to the lower plate. In fact, we can

write ∆W ≤ ε0V2
{

0.5d∗
h(h−d∗)

}
< h3T

0.5θ2V2 (1 + H2)3(h− d∗)2 − 0.5ε0V2

h that, in dimensionless conditions,

becomes ∆W < 12
T

θ2V2 −V2︸ ︷︷ ︸
g(V)

.
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