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Abstract: Coumarin is a natural compound well known for its phytotoxic potential. In the 

search for new herbicidal compounds to manage weeds, three synthetic derivatives bearing 

the coumarin scaffold (1–3), synthesized by a carbonylative organometallic approach, were 

in vitro assayed on germination and root growth of two noxious weeds, Amaranthus retroflexus 

and Echinochloa crus-galli. Moreover, the synthetic coumarins 1–3 were also in vitro assayed 

on seedlings growth of the model species Arabidopsis thaliana to identify the possible 

physiological targets. All molecules strongly affected seed germination and root growth of 

both weeds. Interestingly, the effects of synthetic coumarins on weed germination were 

higher than template natural coumarin, pointing out ED50 values ranging from 50–115 µM. 

Moreover, all synthetic coumarins showed a strong phytotoxic potential on both Arabidopsis 

shoot and root growth, causing a strong reduction in shoot fresh weight (ED50 values ≤  

60 µM), accompanied by leaf development and a decrease in pigment content. Furthermore, 

they caused a strong alteration in root growth (ED50 values ≤ 170 µM) and morphology with 
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evident alterations in root tip anatomy. Taken together, our results highlight the promising 

potential herbicidal activity of these compounds. 

Keywords: Arabidopsis thaliana; Amaranthus retroflexus; Echinochloa crus-galli; germination; 

root morphology; phytotoxicity; natural-like herbicides; coumarins 

 

1. Introduction 

Weeds are still the most important pest because they compete with crops for water and nutrient 

resources reducing yields and quality and, consequently, causing huge economic losses [1–4]. Although 

mechanical, chemical, biological and cultural practices for weed management have evolved over the past 

century, synthetic herbicides currently represent the most common, effective and economical method 

for their control among all major crops [5,6]. However, concerns for the negative impact of synthetic 

herbicides on the environment and human health along with the rapid evolution of weeds’ resistance 

made the search for new herbicides with a new mode of action (MOA) and/or a new weed management 

paradigm more pressing and stringent [7]. Large efforts should be undertaken to develop alternative 

methods for weed control, using eco-friendly, cost-effective and bioactive natural or natural-like products. 

These compounds could be used directly as bio-herbicides or as templates for the production of synthetic 

herbicides [8]. Although many natural products have been employed to develop different conventional 

pesticides (e.g., piretroids) and fungicides, few herbicide examples may be provided [9]. Among them, 

leptospermone, a natural triketone found in the bottlebrush plant extract (Callistemon citrinus spp.) [10], 

is able to repress growth of several weeds [11,12]. This compound was then utilized to synthetize a 

more potent derivative, mesotrione (Callisto® herbicide), successfully employed as a pre-emergence 

and post-emergence herbicide. Cinmethylin, a herbicidal analogue of 1,4-cineole, is a moderately 

effective growth inhibitor used for monocotyledonous weed control [13], whereas pelargonic acid [14], 

sarmentine [15] and citral [16] are patented natural compounds isolated from plants, known for their 

high phytotoxic potential against the most common and noxious weeds. 

However, there are few natural product-based phytotoxins described in the academic and patent 

literature. The industry is realizing that many natural compounds could have high potential as template 

for commercially successful herbicides, offering several economic and environmental advantages.  

In the present work, three synthetic coumarin derivatives 1–3 were synthesized by PdI2/KI-catalyzed 

dicarbonylation of 2-(1-hydroxyprop-2-ynyl)phenols, and their biological activity, have been evaluated. 

Coumarins are secondary metabolites containing a 2H-1-benzopyran-2-one or benzopyrone moiety [17], 

largely known for their phytotoxic activity in many plant species. They affect many physiological 

processes [18] including photosynthesis [19–21], nutrient uptake and metabolism [22,23], seed 

germination [24–26] and root growth [27–29]. In particular, coumarin, the most simple and representative 

compound of this class, shows a high phytotoxic potential [30], and its relatively simple chemical 

structure makes it an excellent template for the synthesis of new structural analogues to develop novel 

natural herbicides. 

In this context, the aim of the present paper was: (1) to assess the phytotoxic potential of the synthetic 

coumarin derivatives 1–3 on the noxious weeds, Amaranthus retroflexus and Echinochloa crus-galli, 
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in order to evaluate their use as promising natural-like herbicides; and (2) to evaluate the phytotoxicity 

of these molecules on the model species Arabidopsis thaliana in order to identify their possible 

physiological targets. 

2. Results 

2.1. Synthesis of 3-[(Methoxycarbonyl)methyl]coumarins 1–3 

Methyl (6-methoxy-2-oxo-2H-chromen-3-yl)acetate (1), methyl (8-methoxy-2-oxo-2H-chromen-3-

yl)acetate (2), and methyl (4-methyl-2-oxo-2H-chromen-3-yl)acetate (3) were synthesized by PdI2/KI-

catalyzed carbonylation [31–35] of readily available 2-(1-hydroxyprop-2-ynyl)phenols, according to 

Scheme 1 [36]. Reactions were carried out with 0.5–1 mol % of PdI2 in conjunction with 10–50 mol % 

of KI, at room temperature in MeOH as the solvent and under 90 atm of carbon monoxide (see the 

Experimental Section for details). A possible pathway leading to the coumarin derivatives involves the 

formation of a palladium phenate stabilized by triple bond coordination (I), followed by CO insertion, 

intramolecular syn insertion of the triple bond and alkoxycarbonylation of the resulting vinylpalladium 

intermediate (II). This leads to the formation of an allylalcoholic intermediate (III) and an H-Pd-I species, 

which, according to a known reactivity, react to give an allypalladium intermediate (IV) with elimination 

of water. Protonolysis of IV by HI eventually yields the final coumarin product with regeneration of PdI2 

(Scheme 2; anionic iodide ligands are omitted for clarity). 

 

Scheme 1. Synthesis of coumarin derivatives 1–3 by PdI2/KI-catalyzed dicarbonylation of 

2-(1-hydroxyprop-2-ynyl)phenols [36]. 

 

Scheme 2. Possible reaction mechanism leading to coumarin derivatives 1–3 by  

PdI2/KI-catalyzed dicarbonylation of 2-(1-hydroxyprop-2-ynyl)phenols. 
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2.2. Bioassays on Weeds 

2.2.1. Weed Germination Bioassay 

All the synthetic coumarin derivatives 1–3 caused a strong inhibition of all the germination parameters 

on both weeds (Table 1). This effect was dose-dependent and statistically significant already at the lowest 

doses (Table 1). In particular, the total germination (GT %) was completely inhibited by 100 µM 1 and 

200 µM 2 and 3 in A. retroflexus, while the same effect was observed with 100 µM 1 and 2 and 400 µM 

3 in E. crus-galli (Table 1). In addition, germination speed (S) and speed of accumulated germination 

(AS) were strongly affected by all molecules in both species (Table 1). 

The nonlinear regression fit of data related to GT (%) is characterized by a high statistical significance 

(p < 0.001) in both weeds. In A. retroflexus, the comparison of ED50 values confirmed the highest 

phytotoxicity of 1 and 2, able to cause 50% inhibition of GT at 54 and 58 µM concentrations, respectively, 

while 3 caused the same effect at 115 µM concentration (Table 1). On the other hand, 2 was the most 

bioactive molecule (72 µM) against E. crus-galli, followed by 1 and 3, which were both able to cause a 

50% inhibition of GT at 105 µM concentration (Table 1). 

In a complementary experiment, after each treatment, the un-germinated seeds of both weeds 

transferred in distilled water were able to recover seed germination ability underlining that the effect of 

all molecules, at all the concentrations assayed, was reversible. 

2.2.2. Root Growth Bioassay 

The effects of three synthetic coumarins (1–3) on root growth of A. retroflexus and E. crus-galli are 

reported in Table 1. All the molecules strongly inhibited root growth, and this effect increased along 

with the increase of molecule concentrations in both weeds (Table 1). The non-linear regression fit of 

data related to TRL show a high statistical significance (p < 0.001), as observed for seed germination. 

In A. retroflexus, 2 showed the most inhibitory effect (105 µM) followed by 3 (126 µM) and 1 (164 µM) 

(Table 1), whereas in E. crus-galli all the molecules assayed were able to cause a 50% of root growth 

inhibition at ~100 µM concentration (Table 1). 

Table 1. Effects of the coumarin derivatives 1–3 on seed germination (GT %), speed of 

germination (S), speed of accumulated germination (AS) and Total Root Length (TRL) of 

A. retroflexus and E. crus-galli. 

Physiological Process A. retroflexus E. crus-galli 
GT (%) 1 2 3 1 2 3 

0 µM 100 (0.0) a 100 (0.0) a 100 (0.0) a 100 (0.0) a 100 (0.0) a 100 (0.0) a 

50 µM 81.8 (3.6) b 66 (5.1) b 94 (4.1) a,b 87.8 (4.9) b 59.5 (7.9) b 92 (4.9) ab 

100 µM 0 (0.0) c 8 (3.7) c 84 (3.8) b 54 (3.0) c 46.5 (6.3) b 54 (3.0) b 

200 µM 0 (0.0) c 0 (0.0) d 0 (0.0) c 0 (0.0) d 0 (0.0) c 10.2 (3.2) c 

400 µM 0 (0.0) c 0 (0.0) d 0 (0.0) c 0 (0.0) d 0 (0.0) c 0 (0.0) d 

800 µM 0 (0.0) c 0 (0.0) d 0 (0.0) c 0 (0.0) d 0 (0.0) c 0 (0.0) d 

ED50 (µM) 53.8 (1.3) a 58 (1.6) a 115.3 (5.8) b 104.6 (2.4) b 72.3 (7.6) a 104.9 (3.4) b 
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Table 1. Cont. 

Physiological Process A. retroflexus E. crus-galli 
S       

0 µM 100 (0.0) a 100 (0.0) a 100 (0.0) a 100 (0.0) a 100 (0.0) a 100 (0.0) a 

50 µM 42.5 (2.4) b 37.2 (2.4) b 57.3 (2.5) b 65.5 (4.1) b 42.2 (5.1) b 57.5 (3.9) b 

100 µM 0 (0.0) c 3.6 (1.8) c 41.9 (1.9) b 35.2 (3.8) c 23.9 (3.4) c 25.8 (1.7) c 

200 µM 0 (0.0) c 0 (0.0) c 0 (0.0) c 0 (0.0) d 0 (0.0) d 4.7 (1.5) d 

400 µM 0 (0.0) c 0 (0.0) c 0 (0.0) c 0 (0.0) d 0 (0.0) d 0 (0.0) d 

800 µM 0 (0.0) c 0 (0.0) c 0 (0.0) c 0 (0.0) d 0 (0.0) d 0 (0.0) d 

AS       

0 µM 100 (0.0) a 100 (0.0) a 100 (0.0) a 100 (0.0) a 100 (0.0) a 100 (0.0) a 

50 µM 31.1 (1.9) b 29.7 (2.1) b 51.3 (2.2) b 55.5 (4.6) b 38.5 (4.6) b 47.2 (3.4) b 

100 µM 0 (0.0) c 2.1(1.0) c 30.1 (1.3) c 24.6 (3.9) c 14.3 (2.4) c 15.2 (1.4) c 

200 µM 0 (0.0) c 0 (0.0) c 0 (0.0) d 0 (0.0) d 0 (0.0) d 2.7 (0.9) d 

400 µM 0 (0.0) c 0 (0.0) c 0 (0.0) d 0 (0.0) d 0 (0.0) d 0 (0.0) d 

800 µM 0 (0.0) c 0 (0.0) 0 (0.0) d 0 (0.0) d 0 (0.0) d 0 (0.0) d 

TRL (cm)       

0 µM 100 (0.0) a 100 (0.0) a 100 (0.0) a 100 (0.0) a 100 (0.0) a 100 (0.0) a 

50 µM 76.9 (5.0) b 67.1 (2.0) b 83.9 (5.1) b 69.5 (3.9) b 74.9 (11.6) b 75.3 (2.7) b 

100 µM 63.5 (1.6) c 47.5 (2.9) c 51.2 (0.6) c 56.8 (5.0) c 47.8 (10.1) b 49.8 (4.5) c 

200 µM 46.4 (3.5) d 41.6 (1.0) c 36.8 (0.6) d 25.1 (4.2) d 21.6 (2.6) c 26.3 (1.7) d 

400 µM 27 (2.3) e 20.8 (1.6) d 22.6 (1.4) e 9.4 (2.2) e 6.9 (1.1) d 14.2 (2.9) e 

800 µM 8.7 (1.3) f 7.1 (2.2) e 7.7 (0.8) f 4.2 (0.7) f 4.7 (0.4) e 4.7 (0.6) f 

ED50 (µM) 164 (9.4) c 105.8 (8.9) a 126.4 (9.4) b 104 (6.3) a 94.7 (7.4) a 101.8 (4.3) a 

Data are expressed as percentage of the control. Different letters (a–f) along the columns, or along the row 

(ED50 parameter), indicate significant differences at p < 0.05. Homoscedastic data were analyzed by ANOVA 

with Tukey’s test, whereas the heteroscedastic ones were analyzed with Tamhane’s T2. Values within the 

brackets indicated the standard deviation (N = 5). All the dose response curves pointed out a significance 

level of p < 0.001. 

2.3. Bioassays of Arabidopsis thaliana 

2.3.1. Effects of the Synthetic Coumarins on Fresh Weight, Leaf Number and Pigments Content 

All the molecules significantly affected shoot fresh weight (SFW) of Arabidopsis seedlings already at 

the lowest concentration (50 µM), causing 66%, 46% and 50% of reduction with 1, 2 and 3 treatments, 

respectively (Figure 1). Furthermore, this effect was most evident along with increasing of concentrations, 

reaching almost the complete inhibition at the highest concentration. The non-linear regression fits  

of the dose-response curves are characterized by a high statistical significance (p ≤ 0.001) and all the 

molecules showed very low ED50 values. In particular, comparing the ED50 values, 1 seemed to be 

more harmful showing a higher ED50 (26 µM) compared to 2 (53 µM) and 3 (59.3 µM), which did not 

significantly vary (Table 2). 
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Table 2. ED50 (µM) values of shoot fresh weight (SFW), total root length (TRL), number 

of lateral root (NLR) and root hair density (RHD) of A. thaliana estimated by the log-logistic 

equations in response to different concentrations of 1–3. Data from Figures 1 and 3. 

Molecules 
ED50 (µM) 

SFW TRL NLR RHD 

1 26.01 (0.16) a 111.29 (19.3) ab 42.49 (0.75) a 55.36 (0.28) a 

2 53.07 (0.76) b 74.24 (10.1) a 43.56 (0.89) a 56.18 (0.78) a 

3 59.27 (0.22) b 173 (18.78) b 43.34 (0.12) a 49.27 (0.46) a 

Different letters (a–b) along the columns indicate significant differences at p < 0.05. Homoscedastic data were 

analyzed by ANOVA with Tukey’s test, whereas the heteroscedastic ones were analyzed with Tamhane’s T2.  

N = 5. Values within the brackets indicated the standard deviation (N = 5). All the dose-response curves pointed 

out a significance level of p < 0.001. 

Conversely, LN was significantly affected only by 2 and 3, which were able to reduce it already at 

200 µM (26% of inhibition), reaching the highest level of inhibition (76%) with both molecules at 800 µM 

(Figure 2). Furthermore, all the molecules strongly affected leaf area (LA) starting from the lowest 

concentration (50 µM) (data not shown). Interestingly, similar strong inhibitory effects were observed 

on pigment content coupled with a chlorotic appearance in Arabidopsis leaves treated with the lowest 

concentration (50 µM). These effects, observed at naked eye, were also confirmed by the experimental 

data which pointed out a strong dose-dependent reduction in all the pigments quantified (Figure 3). 

 

Figure 1. Dose-response curves of shoot fresh weight (SFW) of A. thaliana seedlings treated 

with 1–3 for 15 days. Data are expressed as percentage of the control. Different letters (a–c) 

along the curves indicate significant differences at p ≤ 0.05). Homoscedastic data were 

analyzed by ANOVA with Tukey’s test, whereas the heteroscedastic ones were analyzed 

with Tamhane’s T2. N = 5. 
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Figure 2. Leaf number (LN) of A. thaliana seedlings treated with synthetic coumarins 1–3 

Data are expressed as percentage of the control. Different letters (a–d) along the bars indicate 

significant differences at p ≤ 0.05). Homoscedastic data were analyzed by ANOVA with 

Tukey’s test, whereas the heteroscedastic ones were analyzed with Tamhane’s T2. N = 5. 

 

Figure 3. Pigments content in A. thaliana shoots treated with synthetic coumarins 1–3. Data 

are expressed as percentage of the control. Different letters (a–e) along the bars indicate 

significant differences at p ≤ 0.05). Homoscedastic data were analyzed by ANOVA with 

Tukey’s test, whereas the heteroscedastic ones were analyzed with Tamhane’s T2. N = 5. 
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2.3.2. Root Growth and Morphology 

All the molecules strongly affected A. thaliana root morphology showing a dose-dependent inhibitory 

effect on primary root growth. In particular, 100 µM of 1, 2 and 3 caused 60%, 77% and 44% of TRL 

inhibition, respectively, and this effect increased as their concentrations increased, reaching 90% of 

inhibition at the highest concentration (Figure 4A–C). The ED50 values were equal to 111, 74 and 173 µM 

(R2 = 0.98) for 1, 2 and 3, respectively (Table 2). Interestingly, NLR and RHD root traits were also 

strongly affected by all synthetic coumarins and the percentage of inhibition showed a similar trend  

for all the molecules (Figure 4D–I). In detail, Arabidopsis seedlings showed 90% of NLR inhibition 

already at the lowest concentration (50 µM), reaching 100% of inhibition at all higher concentrations 

(Figure 4D–F). A marked reduction of the RHD was observed already at the lowest concentration  

(50 µM) which reached a complete inhibition at 100 µM and this effect was confirmed by the ED50 

values (Figure 4, Table 2). 

 

Figure 4. Dose-response curves of root morphology of A. thaliana seedlings treated with  

1–3 for 15 days: (A–C) Total Root Length (TRL); (D–F) Lateral Root Number (NLR); (G–I) 

Root Hair Density (RHD). Data are expressed as percentage of the control. Different letters 

(a–c) along the curves indicate significant differences at p ≤ 0.05). Homoscedastic data were 

analyzed by ANOVA with Tukey’s test, whereas the heteroscedastic ones were analyzed 

with Tamhane’s T2. N = 5. 
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However, root structure and organization were only modified by 1 and 3, which were able to cause 

a loss of the gravitropic response already at low concentrations (50 µM) (Figure 5). This effect became 

evident at 100 µM together with a strong root deformation causing a corkscrew-shape. Moreover, 3 

treatment also determined a circumnutation phenomenon (Figure 5). 

 

Figure 5. Root apex of A. thaliana grown in vitro and treated with different concentrations 

of 1–3. The anticlockwise torsion of the cell files and the absence of root hairs (when treated 

with molecules 1 and 3) are evident.  

2.3.3. Number of Mitotic Sites  

All the synthetic coumarins affected lateral root initiation (Figure 6). In particular, 1 strongly reduced 

the number of mitotic sites (62% of inhibition) along the primary root, whereas the higher concentrations 

completely inhibited mitotic sites’ formation (Figure 6). Fifty and 100 µM 2 concentrations already 

caused 85% of inhibition, reaching a complete inhibition of mitotic sites’ formation at the higher 

concentrations, as already observed for 1 (Figure 6). Conversely, 3 did not affect mitotic sites’ formation 

at the lowest concentration (50 µM), whereas at the higher ones it exhibited the same trend of 1 and 2 

(Figure 6). 
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Figure 6. Mitotic sites number evaluated along the primary root of A. thaliana seedlings 

treated with the synthetic coumarins 1–3. Data are expressed as percentage of the control. 

Different letters (a–c) along the curves indicate significant differences at p ≤ 0.05). 

Homoscedastic data were analyzed by ANOVA with Tukey’s test, whereas the heteroscedastic 

ones were analyzed with Tamhane’s T2. N = 5. 

3. Discussion 

Because of their multifaceted biological activity and broad spectrum of action, coumarins are currently 

of great interest as a source for new chemical structures with potential utilization in pharmacology, 

chemical and agronomy fields. Focusing on their potential application in agriculture, the development of 

new synthetic methods for natural herbicide production starting from the coumarin nucleus as a natural 

template could provide interesting tools for the development of natural herbicide models. Coumarin, 

the simplest compound of this class, is well known for its phytotoxicity in germination and growth of many 

species [24,25,37–39], and could represent a promising template for natural herbicides’ production. In this 

paper, we have evaluated the phytotoxic potential among widespread noxious weeds and Arabidopsis 

model plant of three coumarin derivatives, methyl (6-methoxy-2-oxo-2H-chromen-3-yl)acetate (1), methyl 

(8-methoxy-2-oxo-2H-chromen-3-yl)acetate (2), and methyl (4-methyl-2-oxo-2H-chromen-3-yl)acetate (3). 

Similarly to the natural coumarin template [24,25], all the synthetic molecules exerted a dose-dependent 

inhibitory effect on seed germination of both noxious weeds. Interestingly, they showed a stronger 

biological activity compared to coumarin, which is generally considered the most active compound 

tested among structural analogues [40]. Indeed, 1 mM natural coumarin caused 60% and 40% inhibition 

in germination of E. crus-galli and A. retroflexus, respectively [41,42], and more than 60% in wheat 

seeds’ germination [24], while 1, 2 and 3 completely inhibited this process at lower concentrations. 

Similarly, Prabodh et al. [43] and Khanh et al. [44] observed that higher concentrations of template 



Molecules 2015, 20 17893 

 

 

coumarin (above of 350 µM) were needed to reach 50% inhibition of Lactuca sativa, Lolium perenne 

and E. crus-galli germination process. Comparable results were also observed by Saleh and Abu  

El-Soud [45] on wheat germination. Also, other natural coumarins isolated from Meliaceae and 

Rutaceae, such as psoralen, showed lowest phytotoxic activity on germination process causing the 

complete inhibition at 1mM concentrations [46]. However, despite their potency, the effects of 1–3 

were reverted after a careful seed washing of both weeds, allowing them to recover germination in  

the presence of deionized water, thereafter. This effect, observed also after treatment with natural 

coumarin [24], suggested that all the molecules did not cause an irreversible germination block. It has 

been demonstrated that exogenous application of phenols to weeds delayed but did not substantially 

inhibit germination [41]. The 1, 2 and 3 treatments also caused a strong dose-dependent inhibitory 

effect observed on root growth of both weeds. In accordance with coumarin effects on root growth of 

E. crus-galli [42], 100 µM of all the synthetic coumarin derivatives caused 50% inhibition of root growth 

on both weeds reaching 90% with the highest concentration (800 µM). Conversely, recent results 

demonstrated that 430 µM (L. perenne and L. sativa) and 690 µM (E. crusgalli) coumarin concentrations 

were needed to reach 50% inhibition of root growth of these species [43,44].  

Given their high phytotoxicity on weeds, the effects of these synthetic coumarins were evaluated on 

shoot and root growth of model species Arabidopsis thaliana. As reported by Pennacchio et al. [47], 

this species is sensitive to different allelochemicals and satisfies all of the selection criteria for target 

species such as fast growth, short life cycle, and mutant availability useful to better identify sites target 

and mode of action of molecules [48]. 

All the molecules strongly affected A. thaliana growth causing an evident chlorosis, a reduction of 

leaf number (LN), shoot fresh weight (SFW) and leaf area (LA), together with several alterations in 

root growth and morphology. In particular, 1, at all concentrations, reduced SFW without a consistent 

reduction of leaf number, indicating that this molecule caused a biomass loss without interfering with 

leaf differentiation. Conversely, 2 and 3, at concentrations higher than 100 µM, caused a dose dependent 

LA and LN inhibition which matched SFW responses. Similar results were already observed by 

Sánchez-Moreiras et al. [49] in Arabidopsis treated with 2-3H-benzoxazolinone (BOA), an allelochemical 

mainly found in the Poaceae [50,51] and largely known for its phytotoxic effect [8,52,53]. Furthermore, 

similar to natural coumarin, the synthetic coumarin derivatives inhibited in a dose dependent-manner 

chlorophyll and carotenoids content of A. thaliana. Knypl [54,55] showed that coumarin was able to 

delay the loss of chlorophyll from leaves kept in the dark and to stimulate yellowing in light. Moreover, 

some natural 4-phenylcoumarins and imperatorin, a furanocoumarin, acted as photophosphorylation 

uncouplers or energy transfer inhibitors [21,56,57]. Macias et al. [58] demonstrated that several 

coumarins reduced chlorophyll content and photosynthetic activity in spinach chloroplast. Since the 

chlorophyll content is strictly related to plant biomass production [59], any reduction in leaf pigments 

would limit net photosynthesis altering the entire plant metabolism. However, if the reduction in 

chlorophyll content was due to a synthesis inhibition or a chemical-induced degradation was not 

clarified. Probably, the strong effect induced by these synthetic coumarins on root growth, essential for 

nutrient uptake, could be indirectly responsible for shortage of some nutrients involved in chlorophyll 

synthesis. Although natural coumarin increased nitrate uptake in wheat roots [22], many phenolic and 

synthetic diphenolic compounds markedly reduced net nutrient uptake such as nitrate, ammonium, 

potassium and phosphorus in different plant species [60–62]. 
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All the synthetic molecules strongly affected the root system more than the natural coumarins [45,46] 

inducing modifications on root morphology and anatomy, such as unaligned cells, gravitropism loss 

and root hair inhibition. Similar results were observed by several authors in treated roots with oryzalin, 

taxol and colchicines, affecting microtubule organization [63–65], which could also justify root hair  

loss [66,67]. Furthermore, they caused a strong decrease in the number of lateral roots accompanied by 

a reduction in mitotic sites’ formation attributable to a biased hormonal balance. Indeed, the formation 

of lateral roots is dependent on the coordinated action of many factors among which auxin transport 

and redistribution together with ethylene played a key role [68,69]. These effects were also found in 

Arabidopsis roots after treatment with 3-(methoxycarbonylmethylene)isobenzofuran-1-imines, molecules 

synthetized from simple substrates by a catalytic carbonylation approach that have showed a very 

promising potential herbicidal activity [70].  

4. Experimental Section 

4.1. General Information  

Chemicals were purchased from Sigma-Aldrich Italia (Milano, Italy) and were used as such without 

further purification. Melting points were taken on a Reichert Thermovar apparatus and are uncorrected. 
1H-NMR and 13C-NMR spectra were recorded at 25 °C in CDCl3 solutions with a Bruker DPX Avance 

300 spectrometer (Bruker Italia, Milano, Italy) operating at 300 MHz and 75 MHz, respectively, with 

Me4Si as internal standard. IR spectra were taken with a JASCO FT-IR 4200 spectrometer (Jasco 

Europe s.r.l., Cremella, Lecco, Italy). Mass spectra were obtained using a Shimadzu QP-2010 GC-MS 

apparatus (Shimadzu Italia, Milano, Italy) at 70 eV ionization voltage. Microanalyses were carried out 

with a Carlo Erba Elemental Analyzer Mod. 1106 (Carlo Erba, Cornaredo, Milano, Italy). All reactions 

were analyzed by TLC (Merck Italy, Vimodrone, Milano, Italy) on silica gel 60 F254 (Merck Italy)  

or on neutral alumina (Merck Italy) and by GLC using a Shimadzu GC-2010 gas chromatograph 

(Shimadzu Italia, Milano, Italy) and capillary columns with polymethylsilicone + 5% polyphenylsilicone 

as the stationary phase (HP-5). Column chromatography was performed on silica gel 60 (Merck Italy, 

70–230 mesh). Evaporation refers to the removal of solvent under reduced pressure. 

Synthetic coumarins 1–3 were prepared and characterized as we previously reported [31]. 

4.2. Bioassays on Weeds 

4.2.1. Seed Germination Bioassay 

The potential phytotoxic activity of the three synthetic coumarin derivatives (1–3) was assayed on 

seed germination of two noxious weeds: Amaranthus retroflexus and Echinochloa crus-galli. These 

species has been chosen not only for their economic importance [71,72] but also because they are 

representatives of the two different classes Liliopsida and Magnoliopsida. For the experiments, all the 

molecules were firstly dissolved in 0.1% EtOH (v/v) and then diluted in deionized water to reach the 

final concentrations: 0, 50, 100, 200, 400, and 800 µM. The same amount of ethanol employed to 

solubilize the molecules was added in the control. 
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Seeds were surface sterilized for 15 min using a 15% (v/v) NaClO solution and then rinsed three 

times with sterile deionized water. Ten seeds for each species were distributed into a Petri dish (6 cm 

diameter) on a double layer of filter paper moistened with 2 mL of each concentration and molecule. 

Control treatments received 2 mL of distilled water. Petri dishes were then placed in a growth chamber at 

25 ± 1 °C, 70% relative humidity, in dark conditions. Seeds germination was recorded every 24 h for 

five consecutive days. The total germination index [GT (%)], germination speed (S), and speed of 

accumulated germination (AS) were calculated as reported by Chiapusio et al. [73]. At the end of 

treatments, the un-germinated seeds were carefully washed, placed in Petri dishes containing filter 

paper, wetted with deionized water and checked daily for three days in order to evaluate the reversible 

or irreversible inhibition of the seed germination process [74]. 

4.2.2. Root Elongation Bioassay 

Five pre-germinated seeds of A. retroflexus and E. crus-galli, selected for uniformity in root length 

(1 mm), were placed in Petri dishes (6 cm diameter) on a double layer of filter paper moistened with  

2 mL of the synthetic coumarin solutions at the same concentrations applied for seed germination 

bioassay (Section 2.2.1). Petri dishes were then placed in a growth chamber at 25 ± 1 °C and 70% relative 

humidity. After 48 h of exposure, Total Root Length (TRL) was measured according to Araniti et al. [75]. 

4.3. Bioassays of Arabidopsis thaliana 

4.3.1. Seedling Growth Bioassays 

Arabidopsis thaliana (L.) Heynh. seeds ecotype Columbia (Col-0) were surface sterilized for 3 min in 

50% EtOH and NaOCl 0.5% with Triton X-100 at 0.01% and then rinsed three times in distilled water. 

After sterilization, seeds were maintained in 0.1% agar at 4 °C for 72 h to promote the synchronization 

of germination. Then, 24 sterilized seeds were sown in Petri dishes (100 × 150 mm) containing agar 

medium (0.8% w/v) enriched with micro- and macronutrients (Murashige-Skoog, Sigma-Aldrich) and 

supplemented with 1% sucrose. According to Araniti et al. [76] plates were placed vertically in the growth 

chamber (22 ± 2 °C temperature and 75 mol·m−2·s−1 light intensity) to promote geotropic root growth. 

Once germinated, 24 seedlings (7 day old) were transferred to a single plate and grown for 14 days in 

the same medium containing the synthetic coumarin derivatives at the same concentrations previously 

reported (Section 2.2.1). All the molecules were previously dissolved in 0.1% EtOH (v/v), and then 

autoclaved. The same amount of EtOH was added to the control plates. 

After 14 days of treatments, seedlings were collected and separated into shoot and root. Shoot Fresh 

Weight (SFW) and Leaf Number (LN) were evaluated. Whole root system was  imaged by scanning 

(STD 1600, Régent Instruments Inc., Quebec, QC, Canada) and Total Root Length (TRL), Number of 

Lateral Roots (NLR) and Lateral Root Length (LRL), using WinRhizo Pro system v. 2002a (Instruments 

Régent Inc., Quebec, Canada) were measured. Root Hair Density (RHD) was analyzed by using a 

stereoscopic microscopy (Olympus SZX9, Jackson, MS, USA). 
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4.3.2. Determination of Mitotic Sites 

The number of mitotic sites was evaluated as described by Canellas et al. [77], with some modifications. 

After 14 days of treatment with synthetic coumarin derivatives, roots were washed in 50 mM phosphate 

buffer (pH 7.4) and then warmed at 75 °C in 0.5% KOH (w/v) solution for 20 min. The roots were 

carefully rinsed in 50 mM phosphate buffer (pH 7.4) and then stained in haematoxylin solution containing 

0.025 g haematoxylin, 0.0125 g ferric ammonium sulphate and 1.5 mL of 45% (v/v) acetic acid for 16 h, 

in dark conditions. Finally, the roots were distained in 80% lactic acid (w/v) at 75 °C for 20 s, and the 

mitotic sites were counted by stereoscopic microscopy (Olympus SZX9). 

4.3.3. Pigment Quantification 

Chlorophyll a (Chla), chlorophyll b (Chlb), and carotenoids (Ct) quantification was carried out on  

A. thaliana seedlings treated with each molecule for 14 days (see Section 2.1). One hundred milligrams 

of leaf tissue for each replicate and treatment were ground in liquid nitrogen and extracted with 1.5 mL 

methanol. The extract was then centrifuged at 170 g for five minutes and, successively, 500 µL of 

supernatant was mixed with 500 µL methanol. The absorbance of the extracts was determined at 470, 

653, 666 and 750 nm. The pigment content (mg·g−1 of SFW) was evaluated according to the following 

Equations proposed by Wellburn [78]: Chlୟ(μg) = (15.65(DO଺଺଺ − DO଻ହ଴) − 7.34(DO଺ହଷ − DO଻ହ଴)) × V (1)Chlୠ(μg) = (27.05(DO଺ହଷ − DO଻ହ଴) − 11.21(DO଺଺଺ − DO଻ହ଴)) × V (2)C୲(X + C)(μg) = (1000(DOସ଻଴ − DO଻ହ଴) − 2.86Chlୟ − 129.2Chlୠ)/221) × V (3)

where DO is the optical density, V is the volume of methanol used (mL) and (X + C) the sum of 

carotenoids and xanthophylls.  

4.4. Statistical Analysis 

A completely random design with 5 replications was adopted to evaluate the effects of synthetic 

coumarin derivatives on seed germination and root growth of both weeds and seedlings growth of  

A. thaliana. Data were evaluated for normality (Kolmogorov-Smirnov test) and tested for homogeneity 

of variances (Levene’s test). The statistical significance of differences among group means were estimated 

by analysis of variance followed by Tukey test in case of homoscedastic data, and by Tamhane’s T2 

test in the case of heteroscedastic data (p ≤ 0.05). All statistical analyses were performed by using 

SPSS ver. 6.1 software (Insightful Corporation, Seattle, WA, USA). According to Araniti et al. [79] 

the SFW, TRL, NLR, RHD responses to different doses of all molecules were evaluated by a nonlinear 

regression model using a log-logistic function that allowed to estimate the ED50 parameter, the dose 

required to reduce 50% of the total response. The phytotoxicity comparison among the three molecules 

was performed by one-way ANOVA using the ED50 as a variable with the molecule as main factor. 

The ED50 data were first checked for deviations from normality (Kolmogorov-Smirnov test) and tested 

for homogeneity (Leven Median test). The statistical significance of differences among group means 

were estimated by analysis of variance followed by Tukey test in case of homoscedastic data, and by 

Tamhane’s T2 test in the case of heteroscedastic data (p ≤ 0.05). 
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5. Conclusions 

In conclusion, all the synthetic coumarins 1–3 exhibited a strong phytotoxic activity among Arabidopsis 

seedlings affecting shoot and root growth as well as root morphology, seed germination and root growth 

of two noxious weeds higher than the natural coumarin. These results suggested that the three synthetic 

coumarins could be promising phytotoxic molecules employable as new natural-like herbicides.  

In perspective, the potential effectiveness of these coumarin derivatives as herbicides will have to be 

tested in field conditions, where the soil properties and microbial interactions come into play. 
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