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ABSTRACT 18 

 19 

Accurate predictions of surface runoff and soil erosion after wildfire help land managers adopt the 20 

most suitable actions to mitigate post-fire land degradation and rehabilitation planning. The use of 21 

the Artificial Neural Networks (ANNs) is advisable as hydrological prediction tool, given their 22 

lower requirement of input information compared to the traditional hydrological models. 23 

This study proposes an ANN model, purposely prepared for forest areas of the semi-arid 24 

Mediterranean environments. The ANN hydrological prediction capability in non-burned, burned 25 

by wildfire, and burned and then treated soils has been verified at the plot scale in pine forests of 26 
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 2 

South-Eastern Spain. Runoff and soil loss were much higher than non-burned soils (assumed as 27 

control), but mulch application was effective to control runoff and soil erosion in burned plots. 28 

Moreover, logging did not affect the hydrological response of these soils. The model gave very 29 

accurate runoff and erosion predictions in burned and non-burned soils as well as for all soil 30 

treatments (mulching and/or logging or not), with only one exception (that is, in the condition with 31 

the combination of treatments which gave the worst performance, burning, mulching and logging), 32 

as shown by the exceptionally high model efficiency and coefficients of determination. Although 33 

further experimental tests are needed to validate the ANN applicability to the burned forests of the 34 

semi-arid conditions and other ecosystems, the use of ANN can be suggested to landscape planners 35 

as decision support system for the integrated assessment and management of forests. 36 

 37 

KEYWORDS: Artificial Intelligence; hydrological modelling; surface runoff; erosion; mulching; 38 

logging. 39 

 40 

1. INTRODUCTION  41 

 42 

The increased frequency and severity of summer droughts due to the forecasted global warming are 43 

expected to lead to an important increase in the severity and recurrence of wildfires, which may 44 

affect processes and properties of forest soils (Certini, 2014). Forest fire generates a chain of 45 

physico-chemical and biological processes, whose effects influence the entire ecosystem. One of the 46 

most threatening effect of forest fire soil is the change in its post-fire hydrological response, strictly 47 

linked to fire severity (Morales et al., 2000; Benavides-Solorio and MacDonald, 2005; Robichaud et 48 

al., 2007). In other words, the more severe the fire is, the greater is the susceptibility to surface 49 

runoff and soil erosion. More specifically, key factors enhancing runoff and soil loss are the 50 

reduction in infiltration, increase in water repellence, destruction of vegetal cover, and loss of soil 51 

organic matter (Larsen et al., 2009; Neary et al., 2005). The changes in soil hydrology induced by 52 
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wildfire are of high importance particularly in Mediterranean areas, where the infiltration-excess 53 

mechanism dominates runoff and erosion generation (Plaza-Alvarez et al., 2019). In such an 54 

environmental context, intense storm events in autumn and hot summers with drought risks make 55 

these zones prone to post-fire erosion and wildfire occurrence, respectively (Shakesby, 2011). 56 

Therefore, the post-fire changes in soil hydrology are the key to understand the post-fire restoration; 57 

however, the number of the studies analysing the post-fire effects on soils at multi-year scale is 58 

larger than short-term research (few months after fire).  59 

Moreover, it is very important to understand the hydrological effects (that is, the potential reduction 60 

of surface runoff and erosion) of the post-fire stabilization and rehabilitation treatments, used to 61 

mitigate the short-term effects on soil degradation (Robichaud et al., 2000). Among these treatments, 62 

emergency post-fire activities for soil stabilization, such as mulching, are recommended in areas 63 

burned by wildfire to minimize overland flow and erosion risk (Vega et al., 2014). In any case, the 64 

need of a better understanding and prediction of the hydrological effects of wildfire fires has created 65 

a strong demand for tool able to simulate post-fire runoff and soil loss (Moody et al., 2013). 66 

Accurate predictions of water and sediment flows after fire help land managers in the adoption of 67 

the most suitable actions to mitigate post-fire land degradation and rehabilitation planning (Moody 68 

et al., 2013). With regards to post-fire erosion modelling, literature reports simple empirical models 69 

(such as the Universal Soil Loss Equation, USLE, and its revised version, the RUSLE model), semi-70 

empirical models (e.g., the revised Morgan–Morgan–Finney model, Morgan 2001), and physically-71 

based models (for instance, the Water Erosion Prediction Project (WEPP). However, many 72 

hydrological models were developed for agricultural regions, and thus such models may find 73 

limited applicability in burned conditions of the Mediterranean ecosystems (Esteves et al., 2012; 74 

Vieira et al., 2014; 2018).  75 

In the last two decades data-driven models, such as the Artificial Neural Networks (ANNs), had an 76 

increasing popularity for estimating and forecasting water resources (Hsu et al., 1995; Riad et al., 77 

2004; Sharma and Tiwari, 2009). The ANNs have been applied to complex, dynamic and highly 78 
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non-linear systems (Hsu et al., 1995), and in situations where the input is incomplete or ambiguous, 79 

since they can analyze multi-source dataset (Tokar and Johnson, 1999). The main advantage of the 80 

ANNs over traditional methods is the lower requirements of information about the complex nature 81 

of the underlying process that are instead described in a mathematical closed form (Sudheer et al., 82 

2002). Furthermore, ANNs can generalise relationships also from a small dataset, but remain more 83 

or less robust when noisy or missing inputs are present and can work also in changing environments 84 

(Dawson and Wilby, 1998). ANNs learn from the analysis of the available input data and do not 85 

require reprogramming, but they must be trained, optimized and tested (Gholam et al., 2018).  86 

ANNs have been extensively used also for rainfall-runoff modeling, flood predictions, reservoir 87 

operations, routing of polluting compounds (ASCE, 2000). For instance, ANNs have been used for 88 

modelling the rainfall-runoff relationships in small to large watersheds of United States (Hsu et al., 89 

1995), United Kingdom (Dawson and Wilby, 1998), India (Sudheer et al., 2002; Sharma and 90 

Tiwari, 2009), Morocco (Riad et al., 2004), Albaradeya et al., 2011 (in Palestinian territories) and, 91 

more recently, in Australia (Asadi et al., 2019). Also, soil erosion was predicted using ANNs at 92 

both plot scale (Licznar and Nearing, 2003, and Kim and Gilley, 2008, in USA; Albaradeya et al., 93 

2011, in Palestinian territories) and watershed scale (e.g., Gholami et al., 2018, in Iran). Moreover, 94 

Yusof et al. (2014) used ANNs to predict the soil erodibility factor of the USLE equation using 74 95 

samples of Malaysia soils. 96 

However, only a few studies have analysed the ANN performance in soil erosion modelling 97 

(Gholami et al., 2018) and, even, ANN has not been used for hydrological predictions in burned 98 

soils. Modelling soil erosion and runoff after wildfires using ANNs may be a novel approach that 99 

could be of help to better understand and predict fire-induced effects after fire. 100 

To fill this gap, this study provides an ANN model, purposely prepared for pine forest areas of the 101 

semi-arid Mediterranean environments, and verifies its hydrological prediction capability in non-102 

burned, burned by wildfire, and burned and then treated soils. More specifically, surface runoff and 103 

soil loss were firstly measured in i) unburned plots (assumed as control); ii) plots subjected to a 104 
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wildfire and not rehabilitated with any post-fire measures; iii) plots subjected to fire and treated 105 

with mulching throughout one year. Based on these observations, the ANN model is calibrated and 106 

its performance in estimating surface runoff and soil loss at the event scale is evaluated under the 107 

peculiar climatic conditions and forest management. 108 

 109 

2. THEORETICAL APPROACH ABOUT THE ARTIFICIAL NEURAL NETWORKS  110 

 111 

In this work a standard feedforward neural network has been used to simulate the hydrological 112 

response of the experimental plots. A standard feedforward neural network (Haykin, 1994) is 113 

composed by a set of N nodes N and a set of M arcs A. The nodes are partitioned into L groups, 114 

called layers, with L > 2. The first layer is a set of I input nodes NI called input layer; then, there 115 

are L-2 hidden layers, of which each hidden layer ht, with t = 1, .., L-2 is a set of H nodes NHt. 116 

Finally, there is a set of O nodes NO, called output layer. Each node (denoted by o) of the output 117 

layer is connected with each node (denoted by h) of the NHL-2 hidden layer by an edge directed 118 

from o to h, and each node y of the NH1 hidden layer is connected by an edge with each node x of 119 

the input layer by an edge directed from y to x .  120 

For each edge of the network, we denote by i (resp. j) the source (resp. destination) node and we 121 

associate a real value Wij, called weight, with the edge.  122 

The neural network is used for representing a real function. Each input layer node is associated with 123 

an input (real) value and each output layer node is associated with an output (real) value of the 124 

function. The output values are computed by the neural network using the input values. Hidden 125 

layer nodes are associated with intermediate results of the computation.  126 

The neural network computes the output values as follows. Both of each hidden and output layer 127 

node n are provided with the same function a, which is called activation function, and with a 128 

parameter , which is called bias. The node j of the first hidden node NH1 computes its associated 129 
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hidden value     i

I

i ij IWah *
11 , where i is an input layer node, i.e., by computing the 130 

weighted sum of the values iI of the input layer using the weights ijW  associated with all the 131 

connections between each input layer node i and the hidden layer node j. 132 

The node j of each hidden layer NHl computes its associated hidden value 133 

  

 1

1
* l

i

H

i ij

l

j hWah , where i is the l-1 layer node, i.e., by computing the weighted sum of the 134 

values 1l

ih  of the nodes of the previous layer. Analogously, each output layer node j computes its 135 

associated output value   

 2

1
* L

i

H

i ijj hWao , where 2L

ih   is a hidden L-2 layer node. 136 

The weight ijW  associated with the edges of the set A and the activation function parameters are 137 

suitably set by a training algorithm that tries to learn how correctly approximating the desired 138 

output. Training algorithms can be unsupervised or supervised. In the first case, the ANN 139 

autonomously learns the functional dependence between an input and its correct output. Differently, 140 

a supervised training algorithm takes advantage from the availability of a training dataset where for 141 

each input its correct output is provided; by measuring the difference between the correct and the 142 

computed ANN outputs then it is possible to tune the ANN parameters to minimize this error. When 143 

the ANN reaches the desired precision in reproducing the outputs of the training dataset, then the 144 

learnt ends and the ANN can be considered ready to work with unknown input data. 145 

Multilayer feedforward networks are commonly used to approximate real functions, i.e. for 146 

determining weights and parameters of a given neural networks such that a set of given output data 147 

matches with a corresponding set of input data, with an approximation error. Some theoretical 148 

results have been provided in the related literature (Hetch-Nielsen, 1987) to assure the possibility of 149 

approximating any real function satisfying some determined constraints. 150 

Many types of activation function a can be used with the above neural network model. In this work, 151 

we will use the well-known sigmoid function with the following formula:  152 

 153 
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xe1

1
)x(a


             (1)  154 

 155 

where  is a parameter that should be appositely chosen when designing the neural network 156 

architecture. 157 

 158 

3. STUDY AREA  159 

 160 

The study was carried out in the Sierra de las Quebradas forest (Liétor, Castilla-La Mancha region, 161 

province of Albacete, Central Spain) (Figure 1a). The climate is hot dry Mediterranean (Allué, 162 

1990), BSk according to the Koppen classification (Kottek et al., 2006). Average annual rainfall and 163 

medium annual temperature is 282 mm and 16 °C, respectively. Elevation ranges between 520 and 164 

770 m and aspect is W-SW. According to the Spanish Soil Map (2000), soils are classified as 165 

Inceptisols and Aridisols and soil texture is sandy loam. 166 

The forest land mainly consists of Pinus halepensis M. stands. The mean density and height of 167 

forest trees before the wildfire were about 500–650 trees/ha and 7–14 m, respectively. The shrubs 168 

and herbaceous species mainly found at the study site were Rosmarinus officinalis L., 169 

Brachypodium retusum (Pers.) Beauv., Cistus clusii Dunal, Lavandula latifolia Medik., Thymus 170 

vulgaris L., Helichrysum stoechas (L.), Stipa tenacissima (L.), Quercus coccifera L. and Plantago 171 

albicans L.  172 

173 
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 174 

 175 

Figure 1 - Location/experimental design (a) and measuring equipment (b) of the experimental plots 176 

used to model the hydrological response of pine forest to wildfire using ANNs (Liétor, Castilla La 177 

Mancha, Spain).  178 
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4. METHODS  179 

 180 

4.1. Experimental site description 181 

 182 

Immediately after the wildfire, one site of about five hectares in the forest stand was selected for 183 

study (Figure 1a). Twelve experimental plots (each one 9 m long and 3 m wide, for a total area of 184 

27 m2) were installed with their longest dimension along the maximum slope in the burned area. In 185 

addition, an unburned area, located 7 km far from the burned stand was selected as control and three 186 

other plots were located for the same aim.  187 

In both areas, the plots were distributed caring that their characteristics (soil properties, slope and 188 

aspect) were similar, to ensure comparability. Plot slope varied between 10 and 15%. Plot distance 189 

was always higher than 20 m.  190 

The plots, delimitated by a 0.5 m wide geotextile fabric that was inserted up to 0.4 m below the 191 

ground surface, were hydraulically isolated along their perimeter to prevent external inputs of water 192 

and sediments. For this, a geotextile that was tightly fastened to 0.8 m long and 20-mm in diameter 193 

iron rods was pounded into the ground at 0.15 m of depth. A 50-cm long metallic sediment fence 194 

with a triangular shape was installed in the downstream side of the plot, to convey water and 195 

sediments in a pipe and then into a 25-litre tank. The area with the metallic fence was protected 196 

from rain by a plastic cover. Its ground surface was also covered by plastic, to ensure that the entire 197 

runoff and all sediments were delivered to the collection point and then to the storage container 198 

(Figure 1b). 199 

 200 

4.2. Wildfire and forest management operations 201 

 202 

The Sierra de las Quebradas area was affected in July 2016 by a wildfire. During the wildfire about 203 

830 ha of forest land was burned. Tree mortality was 100%. A mean value of soil burn severity was 204 
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obtained for each plot by adopting the methodology proposed by Vega et al. (2013) and Fernandez 205 

et al. (2017). Soil burn severity values were classified in the high class for all of the burned plots by 206 

the Castilla La Mancha Forest Service. 207 

In September 2016, mulching treatment was carried out in six plots in the burned area. Mulching 208 

consisted of manually spreading straw of barley on the plots at a rate of 200 g/m2 (dry weight). 209 

Initial mulch cover and depth were 95% of the plot area and 3 cm, respectively.  210 

Moreover, salvage logging was conducted in December 2016 in six plots, of which three non-211 

mulched and three mulched. The geotextile fabrics of the plots were removed before harvesting and 212 

re-installed immediately after. The trees were cut with mechanical chain saws and burned logs were 213 

removed using an agricultural tractor equipped with pneumatic wheels.  214 

The experimental design consisted of the following soil conditions in relation to the wildfire: (1) 215 

"Non-Burned, NB" (three plots); (2) "Burned, B" (twelve plots). After fire the following soil 216 

treatments were defined in the burned plots: (i) Burned+Mulching+No-Logging (B+M+NL, six 217 

plots); (ii) Burned+No-Mulching+No-Logging (B+NM+NL, six plots). This experimental design 218 

was adjusted from the cutting date onwards, and the treatments were reassigned as follows: i) 219 

Burned+Mulching+Logging (B+M+L, three plots); ii) Burned-No-Mulching+Logging (B+NM+L, 220 

three plots).  221 

 222 

4.3. Collection of observed data 223 

 224 

Precipitation depth, duration and intensity were measured by a weather station (WatchDog 2000 225 

Series model) with a tipping bucket rain gauge, located 50 metres out of the study area. In the 226 

hourly rainfall series of the experimental database, two consecutive events were considered 227 

separate, if no rainfall was recorded for 6 h or more (Wischmeier and Smith, 1978; Zema et al., 228 

2017). 229 
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Between September 2016 and July 2017, after each precipitation event, the volume of surface 230 

runoff collected by the plot tank was measured. After mixing the runoff water collected in the tank, 231 

a water sample of about 0.5 litres was collected. Then, samples were oven dried (at 105 °C) for 24 h 232 

in the laboratory and Total Dissolved Sediments (TDS) and Suspended Sediments (SS) were 233 

measured. Moreover, the eroded soil deposited at each metallic sediment fence was collected 234 

manually after each event and then weighed in the field. After sample oven-drying, the dry 235 

sediment (DS) weight was measured. 236 

The runoff coefficients of each event were calculated as the ratio surface runoff to total rainfall. Soil 237 

loss was evaluated as the sum of DS, TDS and SS. 238 

 239 

4.4. Statistical analysis on observed data 240 

 241 

Following Lucas-Borja et al. (2019), the observed data were analysed to evaluate the treatment 242 

effect (with five levels: Non-Burned, Burned+No-Mulching+No-Logging, Burned+Mulching+No-243 

Logging, Burned+No-Mulching+Logging Burned+No-Mulching+No-Logging) on runoff volumes 244 

and soil losses by a general linear mixed model. The survey date and plots were included as random 245 

effects. The rainfall parameters (total precipitation, maximum rainfall intensity in 60 min of each 246 

rainy event) for each sediment collection date were included as covariates. Data were log-247 

transformed to achieve normality and residuals were tested for autocorrelation, normality and 248 

homogeneity of variance. When significant mixed effects were indicated, the post hoc pairwise 249 

comparisons (with Bonferroni adjustment for multiple comparisons) were conducted to assess 250 

differences between the main effects of treatments and their interactions. All the statistical analyses 251 

were conducted using the R statistical program, package lme4.  252 

 253 

254 
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4.5.  ANN implementation  255 

 256 

In these experiments, we used the Neuroph framework for training the ANN on a data set of real 257 

hydrological information. The data set contains 243 tuples of four attributes, namely i) treatment, ii) 258 

precipitation (mm), iii) runoff (mm) and iv) soil loss (kg/ha). Among the input variables, rainfall 259 

intensity has not been deliberately included, although many studies (e.g., Lucas-Borja et al., 2019; 260 

Prats et al., 2012), carried out in the same environmental conditions, have demonstrated that, beside 261 

the total rainfall, rainfall intensity is the most influential variables explaining runoff generation after 262 

fire. This choice is due to the fact that many weather stations (as happen in Spain) are equipped 263 

only with rain gauges, which provides daily depths rather than with automated devices, allowing 264 

continuous measurements of rainfalls for hourly or sub-hourly intensity calculations. By this way, 265 

the ANN seems to have a larger transferability compared to the gauged areas. 266 

The treatment assumes the following discrete values: Burned+Mulching+No-Logging, Burned+No-267 

Mulching+No-Logging, Non-Burned, Burned+Mulching+Logging and Burned+No-268 

Mulching+Logging.  269 

The attributes i) and ii) are considered as the neural network inputs, while iii) and iv) are used as 270 

neural network outputs. 271 

 272 

4.5.1. Data pre-processing 273 

 274 

First, we have processed the data to obtain a suitable dataset to train the neural network.  The value 275 

of treatment has been transformed into an integer number that takes values between 1 and 5. In 276 

particular, Burned+Mulching+No-logging = 1, Burned+No-mulching+No-logging = 2, Non-burned 277 

= 3, Burned+Mulching+Logging = 4 and Burned+No-mulching+Logging = 5. Since some pair of 278 

inputs <treatment, precipitation> were associated with different outputs (due to the fact that the 279 

same precipitation can produce different runoff volumes, because of many factors, such as the 280 
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variability of precipitation intensity, soil characteristics in time and space), we averaged in those 281 

cases the values of the surface runoff and soil loss. The new dataset is shown in Table 1a. 282 

Then, the data set had to be normalized. Normalization implies that all values from the dataset 283 

should take values in the range from 0 to 1. For this purpose, we used the following formula: 284 

 285 

minmax

min
n

XX

XX
X




           (2) 286 

        287 

where X is the value that should be normalized, Xn is the normalized value, Xmin is the minimum 288 

value of X and Xmax is the maximum value of X. Therefore, we obtained the dataset shown in Table 289 

1b.   290 

 291 

Tables 1a and 1b - The original (a) and normalized (b) datasets used to model the hydrological 292 

response of plots through ANNs (Liétor, Castilla La Mancha, Spain). 293 

 294 

(a) 295 

Treatment  

(input 1) 

Precipitation (mm) 

(input 2) 

Runoff volume (mm) 

(output 1) 

Soil loss (kg/ha) 

(output 2) 

1.0 40.0 1.65 68.1 

2.0 40.0 2.21 316.3 

3.0 40.0 0.00 0.0 

1.0 41.0 0.41 145.16 

2.0 41.0 0.35 403.09 

3.0 41.0 0.00 6.366 

1.0 59.0 0.25 158.35 
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2.0 59.0 0.25 424.01 

3.0 59.0 0.03 8.3 

4.0 93.8 0.60 5.98 

5.0 93.8 0.70 77.73 

3.0 93.8 0.08 0.6 

4.0 28.0 0.15 8.84 

5.0 28.0 0.18 19.52 

3.0 28.0 0.02 1.97 

4.0 16.8 0.13 9.45 

5.0 16.8 0.19 15.91 

3.0 16.8 0.00 0.0 

4.0 11.6 0.02 7.1 

5.0 11.6 0.04 38.48 

3.0 11.6 0.01 0.79 

4.0 47.4 1.46 48.28 

5.0 47.4 1.34 103.25 

3.0 47.4 0.03 4.15 

4.0 20.7 0.08 22.32 

5.0 20.7 0.21 21.72 

3.0 20.7 0.03 0.26 

 296 

 297 

(b) 298 

Treatment  

(input 1) 

Precipitation  

(input 2) 

Runoff volume  

(output 1) 

Soil loss  

(output 2) 
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0.0 0.345 0.75 0.16 

0.25 0.345 1.0 0.74 

0.5 0.345 0.0 0.0 

0.0 0.358 0.18 0.34 

0.25 0.358 0.16 0.95 

0.5 0.358 0.0 0.01 

0.0 0.577 0.11 0.37 

0.25 0.577 0.11 1.0 

0.5 0.577 0.013 0.02 

0.75 1.0 0.27 0.01 

1.0 1.0 0.32 0.18 

0.5 1.0 0.04 0.001 

0.75 0.199 0.07 0.02 

1.0 0.199 0.08 0.05 

0.5 0.199 0.009 0.005 

0.75 0.063 0.06 0.02 

1.0 0.063 0.08 0.04 

0.5 0.063 0.0 0.0 

0.75 0.0 0.009 0.02 

1.0 0.0 0.018 0.09 

0.5 0.0 0.004 0.002 

0.75 0.435 0.66 0.114 

1.0 0.435 0.6 0.24 

0.5 0.435 0.013 0.0097 

0.75 0.111 0.04 0.53 
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1.0 0.111 0.095 0.51 

0.5 0.111 0.013 6.0e -04 

 299 

 300 

Tables 2a and 2b - Runoff volume (a) and soil loss (b) observed and simulated by the ANN used to 301 

model the hydrological response of plots through (Liétor, Castilla La Mancha, Spain). 302 

 303 

(a)  304 

Observed runoff  

(mm) 

Simulated runoff 

(mm) 

Error 

(mm) 

 1.65 1.65 0 

2.21 2.14 0.07 

0 0.025 0.025 

0.41 0.39 0.02 

0.35 0.35 0 

0 0.0084 0.0084 

0.25 0.243 0.007 

0.25 0.21 0.04 

0.03 0.06 0.03 

0.6 0.57 0.03 

0.7 0.7 0 

0.08 0.11 0.03 

0.15 0.15 0 

0.18 0.21 0.03 

0.02 0.0097 0.0103 



 17 

0.13 0.085 0.045 

0.19 0.13 0.06 

0 0.007 0.007 

0.02 0.072 0.052 

0.04 0.11 0.07 

0.01 0.0075 0.0025 

1.46 1.46 0 

1.34 1.33 0.01 

0.03 0.00044 0.02956 

0.08 0.1 0.02 

0.21 0.15 0.06 

0.03 0.0075 0.0225 

 305 

(b) 306 

Observed soil loss 

(kg/ha) 

Simulated soil loss 

(kg/ha) 

Error 

 (kg/ha) 

68.1 85.18 17.08 

316.3 320.42 4.12 

0 0.38 0.38 

145.16 136.49 8.67 

403.09 401.96 1.13 

6.36 0.42 5.94 

158.35 157.69 0.66 

424.01 424.01 0 

8.3 12.42 4.12 
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5.98 0.975 5.005 

77.73 76.19 1.54 

0.6 2.03 1.43 

8.84 7.93 0.91 

19.52 20.35 0.83 

1.97 0.38 1.59 

9.45 11.45 2 

15.91 24.8 8.89 

0 0.72 0.72 

7.1 14.96 7.86 

38.48 30.4 8.08 

0.79 1.02 0.23 

48.28 48.76 0.48 

103.25 101.93 1.32 

4.15 3.985 0.165 

22.32 9.54 12.78 

21.72 21.88 0.16 

0.26 0.55 0.29 

 307 

 308 

4.5.2. Neural network architecture 309 

 310 

We adopted the Neuroph, which is an ANN tool, and the Multi Layer Perceptron architecture, 311 

which is a feedforward ANN (see Section 2).  This ANN model maps sets of input data into a set of 312 

appropriate output. It consists of multiple layers of nodes in a directed graph, with each layer fully 313 
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connected to the next one. Except for the input nodes, each node is a neuron with nonlinear 314 

activation function. 315 

Multilayer perceptron uses a supervised learning technique called backpropagation for the training 316 

stage. It is a modification of the standard linear Perceptron, which is not able to distinguish data that 317 

not linearly separable, as in our case. We set multi-layer perceptron's parameters. The number of 318 

input and output neurons was the same as in the training set. Then, we had to choose number of 319 

hidden layers, and number of neurons in each layer. 320 

The topology of our ANN was chosen as the result of a preliminary study, where several 321 

alternatives in terms of number of hidden layers and number of neurons for layer were tested. At the 322 

end of this study, the best performance architecture resulted in two hidden layers with 20 neurons in 323 

each layer (Figure 2). 324 

 325 

 326 

Figure 2 - The ANN with two hidden layers with 20 following neurons used to model the 327 

hydrological response of plots (Liétor, Castilla La Mancha, Spain). 328 

 329 

 330 
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Then we adopted a 'Sigmoid' for transfer function, while, for learning rule, we chose a 331 

'Backpropagation with Momentum'. The momentum is a real value added to speed up the process of 332 

learning and to improve the efficiency of the algorithm. 333 

 334 

4.5.3. Neural network training 335 

 336 

After we have created training set and set the parameters of the neural network, we started to train 337 

it. When the Total Net Error value dropped below the max error, the training was complete. The 338 

smaller the error is, the better the obtained approximation is. 339 

In our case the maximum error was set to 0.0001, learning rate was set to 0.2 and momentum was 340 

set to 0.7. In the first phase, we calculated the total Mean Square Error (MSE). For that purpose, the 341 

following formula was used: 342 

 343 
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where MSE is the arithmetic mean of the squares of the errors (Yi – Ŷi)
2. 346 

To have a global view of the error, the Mean Absolute Error (MAE) was calculated using the 347 

following formula: 348 

 349 
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where At are the actual output and Ft corresponding predictions. 352 

 353 

354 
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4.6. Evaluation of the hydrological prediction capability of ANN  355 

 356 

The predictions of surface runoff and soil loss provided by the adopted ANN model were compared 357 

to the corresponding observations collected in the equipped plots. First, observed and simulated 358 

values were visually compared in "scatter-plots". Then, the following indicators, usually adopted in 359 

the literature studies dealing with hydrological modelling (e.g., Willmott, 1982; Legates and 360 

McCabe, 1999; Loague and Green, 1991; Zema et al., 2017; 2018), were calculated:  361 

(i) the main statistics (i.e. the maximum, minimum, mean and standard deviation of both the 362 

observed and simulated values);  363 

(ii) the coefficients of determination (r2), efficiency (E, Nash and Sutcliffe, 1970) and residual 364 

mass (CRM, also knowns as "percent bias", PBIAS); and  365 

(iii) the Root Mean Square Error (RMSE). 366 

The related equations for the calculation of these indicators are reported by Zema et al. (2012), 367 

Krause et al. (2005), Moriasi et al. (2007) and Van Liew and Garbrecht (2003).  368 

To summarise, the model performance can be evaluated as follows: 369 

- the closer the statistics, the more accurate the model predictions; 370 

- values of r2, ranging from 0 to 1, over 0.5 indicate reasonable model performance (Santhi et al., 371 

2001; Van Liew et al., 2003; Vieira et al., 2018);  372 

- E, in the range −∞ to 1, is negative for a model giving poor predictions,  0.35 for a satisfactory 373 

model and  0.75 for a good performance (Zema et al., 2017); 374 

- RMSE, which should be as closest as possible to zero (no errors between predictions and 375 

observations), less than half the standard deviation of the measured data are considered good 376 

(Singh et al., 2004); 377 

- CRM/PBIAS, which, if positive, indicates model underestimation, whereas, if negative, model 378 

overestimation (Gupta et al., 1999), must be below 0.25 or 0.55 for good runoff and soil loss 379 

predictions, respectively, according to Moriasi et al. (2007). 380 
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 381 

5. RESULTS AND DISCUSSIONS  382 

 383 

5.1. Runoff and soil erosion observations  384 

 385 

During the observation period, nine events were monitored, for which precipitation depth and mean 386 

intensity were in the range 11.6-93.8 mm and 0.98-28.0 mm/h. The monitored events were only 387 

those producing surface runoff and erosion. As expected, all burned plots gave runoff volumes and 388 

soil loss significantly (at p < 0.05) much higher than non-burned soils (control), for which the mean 389 

runoff and soil loss were 0.02  0.03 mm and 2.49  3.07 kg/ha (mean  standard deviation). Also 390 

Gimeno-García et al. (2007), studying the soil's hydrological response after wildfires in 391 

Mediterranean shrublands, showed that total runoff and sediment yield in the first post-fire year 392 

(19.43 mm and 0.56 kg/m2 in the intense fire) contrast with the very low runoff (3.82 mm) and soil 393 

loss (0.08 kg/m2) in control plots. In a different Mediterranean landscape, Mayor et al (2007) found 394 

that total runoff and sediment yield in the burned catchment (35 mm and 4.56 kg/ha, respectively) 395 

were considerably greater than in the unburned catchment (0.03 mm, and 0.12 kg/ha). Key casual 396 

factors enhancing runoff and soil loss are the reduction in infiltration and some combination of 397 

sealing, soil water repellency, loss of surface cover, and disaggregation due to loss of soil organic 398 

matter (Neary et al., 2005). 399 

Mulching reduced the hydrological response of the burned and non-logged soils (mean runoff of 400 

0.26  0.54 mm as well as soil loss of 41.3  66.6 kg/ha soils) compared to non-mulched plots 401 

(runoff of 0.31  0.72 mm and soil loss of 127  193 kg/ha) (Figure 3a and 3b). The differences 402 

were significant for soil erosion, but not for runoff.  The efficacy of mulch application to control 403 

soil erosion is in accordance with Bautista et al. (2009), who highlighted the immediate increase of 404 

ground cover in mulch application, which result in an effective soil protection for the first rain 405 

events after fire.  406 
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The effects of logging on burned soils (mulched or not)anywhere not appreciably different between 407 

the plots., since the differences in surface runoff and soil loss were not significant (at p < 0.05). 408 

More specifically, non-mulched plots gave higher runoff (0.30  0.45) and soil loss (30.7  36.7 409 

kg/ha) compared to soils treated with straw (mean runoff of 0.27  0.48 mm and soil loss of 11.3  410 

15.5 kg/ha) (Figure 3a and 3b). This is in accordance with other authors that did not report a 411 

significantly negative effect of logging in soil parameters (Fernández and Vega, 2016). The type of 412 

machinery used during forest operations could also explain this. As Lucas-Borja et al. (2018) 413 

demonstrated, the use of not heavy machinery with air tires generates not negative impact on soil 414 

and reduce soil compaction in comparison to chain tires.  415 

It is worth to highlight that a temporal gradient in runoff generation mechanism was found for the 416 

burned and non-logged plots, regardless of the treatment, indicating a decrease of the hydrological 417 

response of all soils throughout the time elapsed from fire. In other words, the largest runoff - and 418 

thus soil loss - was produced by the rainfall events occurring immediately after the wildfire, as 419 

shown by the decrease of the runoff coefficients (data not shown). This has been observed in the 420 

first and second storms in the season immediately after wildfires by several authors (e.g., de Dios 421 

Benavides-Solorio and MacDonald, 2005; DeBano et al., 1998; MacDonald et al., 2000; Robichaud 422 

and Brown, 1999). The large increase in the runoff coefficients just after fire has been attributed to 423 

changes in soil hydrological properties, such as the development of a water-repellent layer at or near 424 

the soil surface, which prevents infiltration and induces overland flow (DeBano et al., 1970; 425 

Shakesby et al., 2000). In addition, this fact might be explained by the vegetation (mainly shrubs 426 

and herb) recovery after fires that performed better than litter in order to stop runoff generation. The 427 

complex system of vegetation patches in control plots which is highly disconnected that influence 428 

of semiarid Mediterranean vegetation on runoff generation has been widely reported in previous 429 

studies (i.e. Dunjó et al., 2004). 430 

 431 

 432 
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 433 

Figures 3a and 3b - Precipitation, runoff volumes (a) and soil losses (b) observed in the 434 

experimental plots (Liétor, Castilla La Mancha, Spain) (NB = Non-Burned; B+M+NL = 435 

Burned+Mulching+No-Logging; B+NM+NL = Burned+No-Mulching+No-Logging; B+M+L = 436 
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Burned+Mulching+Logging; B+NM+L = Burned+No-Mulching+Logging; different lower case 437 

letters indicate statistically significant differences at p < 0.05). 438 

 439 

5.2. Hydrological modelling by ANN 440 

  441 

First, we train the neural network for the first output. After 250000 iterations we obtained a Total 442 

Network Error (equal to the Total Mean Square Error) drop down to a specified level of 0.0001, 443 

which means that training process was successful. 444 

 445 

5.2.1. Neural Network Approximation 446 

 447 

A Total Mean Square Error of 1.965 e-4 in simulating the runoff volume was achieved (Figure 4a), 448 

which certainly is a very good result, because our goal is to get the total error to be as small as 449 

possible. In more detail, Table 2a reports the observed (desired output) and simulated (ANN output) 450 

runoff values and the related differences the trained neural network produced. Looking at the 451 

individual errors, we can observe that most of them are at the low level, below 0.1. MAE was equal 452 

to 0.025 mm. So we can conclude that this type of neural network architecture is the best choice.  453 

We used the same neural network shown in Figure 2. Also in this case, we set the maximum error to 454 

0.0001, the learning rate to 0.2 and the momentum to 0.7. After 175000 iterations we obtained a 455 

total Total Network Error (MSE) drop down to a specified level of 0.0001, which means that 456 

training process was successful and that now we can exploit this trained neural network (Figure 4b). 457 

The Total Mean Square Error for this second neural network was 1.78 e-4. The relative error on the 458 

individual soil loss between the observations and the simulations (Table 2b) was lower than 17.1 459 

kg/ha while MAE was equal to 3.57 kg/ha.  460 

 461 

462 
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 463 

Figures 4a and 4b - Total Network Error (equal to the Total MSE, Mean Square Error) for runoff 464 

volume (a) and soil loss (b) simulated by the ANN used to model the hydrological response of plots 465 

(Liétor, Castilla La Mancha, Spain). 466 

 467 
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5.2.2. Evaluation of the ANN prediction capability 468 

 469 

The scatter plots of Figure 5a and 5b show a very close agreement between the predictions provided 470 

by ANN and the corresponding observations collected at the plots for both surface runoff volumes 471 

and soil loss for all the experimental conditions (control, burned and treated/not treated soils).  472 

 473 

 474 

Figures 5a and 5b - Scatter plot of the observed vs simulated (by ANN) runoff volumes (a) and soil 475 

loss (b) in the experimental plots (Liétor, Castilla La Mancha, Spain). 476 
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 477 

This qualitative agreement is confirmed by the values of the indicators adopted for the quantitative 478 

assessment of ANN prediction capability. In general, when the ANN performance is evaluated by 479 

aggregating all the soil conditions, the statistics (i.e., mean, standard deviation, minimum and 480 

maximum) were practically equal for both runoff and soil loss. Only very small differences were 481 

found for the maximum runoff (under 3.2%) and the minimum soil loss (modelled as zero against a 482 

mean value of 0.38 kg/ha). Moreover, the model efficiency and RMSE are good and the coefficient 483 

of determination equal to one, while the CRM (equal to 0.01) indicates a very small model 484 

underestimation of the observations (Table 3). 485 

A more detailed analysis of the ANN performance, carried out separately for the individual soil 486 

conditions (burned/unburned) and treatments (mulching/logging) highlighted that (Table 3): 487 

- the observed and predicted mean values of both runoff and soil loss are practically the same and 488 

the maximum difference (16.2%, however under the acceptance threshold) is detected for soil loss 489 

prediction in B+M+L plots; 490 

- the lower agreement between observations and predictions was found in the maximum runoff 491 

(with differences lower than 32%) and in the minimum soil loss (below 112%); for the latter, in 492 

same cases the ANN predicted soil losses equal to zero also in the case of observed erosion; instead, 493 

for the maximum soil losses, only in one case (for the B+M+L plots) the difference with the 494 

corresponding observation was more than 20%. 495 



 29 

Table 3 - Values of the criteria adopted for ANN evaluation in the experimental plots (Liétor, Castilla La Mancha, Spain). 496 

 497 

Treatment 

Number of 

events 

Value Mean Minimum Maximum 

Standard 

Deviation 

E CRM r2 RMSE 

RUNOFF VOLUME 

ALL DATA 27 

Observed 0.39 0.00 2.21 0.59 - - - - 

Simulated 0.38 0.00 2.14 0.58 1.00 0.01 1.00 0.03 

NB 9 

Observed 0.57 0.00 2.21 0.80 - - - - 

Simulated 0.56 0.01 2.14 0.78 1.00 0.01 1.00 0.03 

B+M+NL 3 

Observed 0.46 0.08 0.70 0.33 - - - - 

Simulated 0.46 0.11 0.70 0.31 0.99 0.00 1.00 0.02 

B+NM+NL 3 

Observed 0.12 0.02 0.18 0.09 - - - - 

Simulated 0.12 0.01 0.21 0.10 0.93 -0.06 0.99 0.02 

B+M+L 6 

Observed 0.07 0.00 0.19 0.08 - - - - 

Simulated 0.07 0.01 0.13 0.05 0.55 -0.06 0.56 0.05 

B+NM+L 6 

Observed 0.53 0.03 1.46 0.68 - - - - 

Simulated 0.51 0.00 1.46 0.69 1.00 0.03 1.00 0.03 
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SOIL LOSS 

ALL 

DATA 

27 

Observed 70.96 0.00 424.01 120.84 - - - - 

Simulated 70.99 0.38 424.01 120.96 1.00 0.00 1.00 5.60 

NB 9 

Observed 169.96 0.00 424.01 170.74 - - - - 

Simulated 171.00 0.38 424.01 170.21 1.00 -0.01 1.00 6.98 

B+M+NL 3 

Observed 196.89 8.30 424.01 210.52 - - - - 

Simulated 198.04 12.42 424.01 208.74 1.00 -0.01 1.00 2.41 

B+NM+NL 3 

Observed 10.11 1.97 19.52 8.84 - - - - 

Simulated 9.55 0.38 20.35 10.08 0.97 0.06 1.00 1.16 

B+M+L 6 

Observed 11.96 0.00 38.48 14.26 - - - - 

Simulated 13.89 0.72 30.40 12.15 0.79 -0.16 0.82 5.93 

B+NM+L 6 

Observed 33.33 0.26 103.25 38.25 - - - - 

Simulated 31.11 0.55 101.93 38.85 0.98 0.07 0.98 5.25 

Notes: NB = Non-Burned; B+M+NL = Burned+Mulching+No-Logging; B+NM+NL = Burned+No-Mulching+No-Logging; B+M+L = 498 

Burned+Mulching+Logging; B+NM+L = Burned+No-Mulching+Logging. 499 
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As regards the other model performance indicators, the following considerations can be drawn 500 

(Table 3): 501 

- ANN showed a very slight tendency to overestimate or underestimate the hydrological 502 

observations (for instance, overestimation of runoff in B+NM+L and B+NM+L plots, CRM = -0.06 503 

as well as underestimation of soil loss in B+NM+NL and B+NM+L, CMR = 0.06-0.07), as shown 504 

by the very small negative or positive values of CMR;  505 

- for all the soil conditions/treatments and both for runoff and soil loss predictions, E, r2 and RMSE 506 

attained good values (that is, very close to one for E and r2, and to zero for RMSE), except for the 507 

B+M+L plots; 508 

- for the latter soil condition and treatment, the worst performance of the ANN was found for both 509 

runoff and erosion predictions (see values of E, r2 and RMSE). Presumably, in soil subjected to 510 

logging, the impacts of machinery wheels on soil determine the formation of small rills, in which 511 

small volumes of water and sediments are stored and do not feed runoff. Since, in general, many 512 

models find difficulties in modelling rill erosions (e.g., Aksoy and Kavvas, 2005), this behaviour 513 

could be common with ANN.  514 

However, on account of E, r2 and RMSE values, the prediction capability of the ANN can be 515 

considered as satisfactory to good for runoff and good for soil loss. This indicates that a soil 516 

disturbance due to more than two factors (in our case wildfire, mulching and logging) founds some 517 

difficulties in being simulated by ANN, which however does not compromise the generally good 518 

model performances.   519 

The runoff and erosion prediction capacity provided by ANNs appears to be very satisfactory in the 520 

experimental conditions and this is even more appreciable if we make comparisons with other 521 

conceptual models. For instance, limiting the evaluation criteria to model efficiency, the very high 522 

E coefficients of this study (close to 0.99) is noticeably higher compared to the maximum values (E 523 

from -10 to 0.93) reported in the studies of Vieira et al. (2014), Fernandez et al. (2010) and Hosseini 524 

et al. (2018), who applied the MMF model for predicting runoff and erosion at seasonal and annual 525 
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scales on soils of Iberian Peninsula, burned by fires of different severity and subjected to different 526 

post-fire treatments. Fernandez et al. (2010) and Fernandez and Vega (2016) found some 527 

inaccuracies of the RUSLE model (shown by a negative E) for predicting annual soil erosion from 528 

burned soils of NW Spain, since the K factor did not allow to reflect the changes on soil 529 

permeability and structure after fire, while the annual soil loss predictions achieved by Vieira et al. 530 

(2018) applying RUSLE in north-central Portugal were more satisfactory (E = 0.63-0.70). 531 

Contrasting results in annual erosion prediction capacity provided by PESERA model applied in 532 

burned plots were shown by coefficients E of 0.33 (Fernandez and Vega, 2016) or 0.73-0.85 (Vieira 533 

et al., 2018). 534 

The ANN models focus on mathematical solutions over process representation, such as the 535 

empirical models do. In other words, it is a “black box” approach, which estimates runoff and soil 536 

loss, but does not gives information about the physical factors underlying the hydrological 537 

processes. Nonetheless, empirical models are frequently used in preference to more complex 538 

models as they can be implemented in situations with limited data and parameter inputs, and are 539 

particularly useful as a first step in identifying sources of water, sediments and pollutants (Merritt et 540 

al., 2003). However, the main goal of technicians and land planners is first the knowledge of the 541 

runoff and erosion rates and then the selection of the most suitable treatment to reduce the 542 

unsustainable rates, rather than a detailed comprehension of the hydrological processes. For 543 

stakeholders or government agencies, who may be responsible for land and water management on a 544 

national or regional basis, the complex models are prohibitive in terms of the time required to 545 

develop and implement them (Fu et al., 2018). Since the data requirements of any model increase 546 

with the model complexity, models that are less complex than the physically-based models, such as 547 

the empirical models (Aksoy and Kavvas, 2005), are more indicated for use in burned areas of 548 

Mediterranean forests, which are often data-poor environments. Low-data demanding models are 549 

based primarily on the analysis of observations and seek to characterise response from these data 550 

(Wheater et al., 1993). The simplest models are regression equations between climatic variables 551 
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(such as precipitation volumes and intensities) and runoff/erosion rates. However, in the 552 

experimental areas, linear regressions were not able to predict with accuracy runoff volumes and 553 

soil loss from simple observations of precipitation. As a matter of fact, very low coefficients of 554 

determination were found by regressing both runoff volumes and soil loss to precipitation depth and 555 

intensity in non-burned soils as well as in burned plots (mulched or not) (Figure 6). This 556 

presumably happened, since these simple models ignore the inherent non-linearities in the 557 

hydrological processes and employ unrealistic assumptions about the physics (Wheater et al., 1993). 558 

Conversely, the ANNs, which require only precipitation as input, but use a more complex 559 

mathematical structure, were successful in capturing the output hydrological variables from the 560 

observational input data, as shown by the very good prediction capacity detected for the ANNs in 561 

the experimental conditions of this study.   562 

Therefore, the main advantages of the ANN use are in such environmental contexts are the low 563 

input requirement in comparison to the more complex physically-based models and, at the same 564 

time, the prediction accuracy in comparison to the simpler empirical models. This is appreciated by 565 

land planners and forest managers, who have a powerful prediction tool easy to be used in data-poor 566 

environment, as often the Mediterranean forests are.  567 

Overall, the use of ANNs for hydrological predictions in burned areas of Mediterranean forests 568 

appears to be suitable, since this modelling approach only needs precipitation data (whose 569 

measuring equipments are available also in forestlands) as well as a reasonable set of rainfall-runoff 570 

observations to train the ANN.  571 

 572 
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Figure 6 - Linear regression between runoff volumes and precipitation depth as well as soil loss and 574 

maximum 1-h precipitation intensity in the experimental non-burned (a), burned and mulched (b) 575 

and burned and non-mulched (c) plots (Liétor, Castilla La Mancha, Spain). 576 

 577 

 578 

6.  CONCLUSIONS 579 

 580 

The evaluation of the ANN for hydrological modelling in the forest plots subject to wildfire showed 581 

that the runoff and erosion prediction capability is in general very good. The ANN performance was 582 

exceptionally high for all the experimental conditions, since the model efficiency and the coefficient 583 

of determination was equal to one, while the very low CRM indicated a negligible underestimation 584 

of the observations. The ANN proposed is also very robust, in the sense that its performance is 585 

exceptionally high for all the experimental conditions (burned or non-burned soils) and treatments 586 

(mulching and/or logging or not), with only one exception (that is, in the condition where the soil 587 

disturbance is higher). Thus, the potential applicability of the ANN is promising as management 588 

tool for predicting and controlling the hydrogeological risk in Mediterranean forest ecosystems 589 

threatened by wildfire as well as for evaluating the efficiency of post-fire treatments. Moreover, this 590 

approach is more desirable compared to the most complex physically-based models or the less 591 

accurate empirical equations, since ANNs require low amount of data, but, at the same time, offer a 592 

good prediction capacity of hydrological variables.   593 

However, further experimental tests are needed to assure ANN applicability to these climatic, 594 

geomorphological and ecological contexts and to upscale the model applications from the plot to the 595 

watershed scale. On the other hand, a larger and general use of ANN for hydrological predictions 596 

requires more experimental investigations in other environmental contexts (different for climate and 597 

geomorphology), which should assure a large transferability of this modelling tool for hydrological 598 

and ecological management in forest ecosystems potentially prone to fire. 599 
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If simulations of runoff and erosion remain good also out of the experimental conditions of this 600 

study after fire, the availability of powerful ANNs can support landscape planners not only in 601 

control the fire risk in forestland, but also in identifying the most efficient countermeasures to limit 602 

ecosystem degradation. Conversely, in the case of less accurate hydrological predictions, other 603 

important variables - of easy measurement or estimation, - influencing the runoff and erosion 604 

generation mechanisms should be implemented when an ANN is designed, such as the rainfall 605 

intensity, vegetal cover and texture of soils. Therefore, estimations of water flows and soil erosion 606 

using ANN decrease the costs and the studies time otherwise required by hydrological models of 607 

other nature.  608 

Overall, the study aims to consolidate the use of ANNs - a well-known efficient technique of 609 

Artificial Intelligence - as decision support system for the integrated assessment and management of 610 

forested watersheds. 611 

 612 
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