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1. Introduction
Forests and timber represent a vital contributor to 

rural areas from the economic, environmental and so-
cial viewpoint and wood harvesting is one of the most 
important management activities both to meet pro-
duction objectives and shape the composition of the 
future forest (FAO 1997). This active management can 
be done through several techniques to guarantee the 
correct implementation of forestry operations, to in-
crease operators’ productivity and efficiency and to 
improve workers qualifications and occupational 
safety. Worldwide, the improvement of harvesting 
methodologies plays an important role in the optimi-
zation of wood production in a context of sustainable 
forest management (Maesano et al. 2013). Different 
harvesting methods are applied according to forest 
site-specific condition and degree of mechanization. 
The appropriate mechanization level depends on sev-

eral factors. In Italy, wherever terrain characteristics 
are suitable, the forest managers have replaced the 
chainsaw to alternative highly mechanized systems, 
especially for the harvesting of specialized forest plan-
tation such as poplar (Spinelli and Magagnotti 2011) 
and eucalyptus (Picchio et al. 2012), but in mountain-
ous areas, where numerous restrictions related to en-
vironmental protection are imposed, the conventional 
and traditional mechanization is applied (Baraldi and 
Cavalli 2008, Zimbalatti and Proto 2009). The three 
main wood harvesting methods are: full-tree (FT), 
tree-length (TL), and cut-to-length (CTL). Anyway, the 
choice of a harvesting method depends on the final 
product required and can be divided into the follow-
ing groups, sorted to relevance and level of diffusion:

Þ  motor-manual FT/TL harvesting: felling and 
processing with a chainsaw, and skidding with 
a farm tractor and winch or grapple
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Þ  motor-manual CTL harvesting: felling and pro-
cessing with a chainsaw, and skidding with a 
farm tractor and bin or trailer

Þ  partially mechanized FT/TL harvesting: felling 
and processing with a chainsaw, and skidding 
with a skidder or cable crane

Þ  partially mechanized CTL harvesting: felling 
and processing with a chainsaw, and skidding 
with a forwarder

Þ  fully mechanized CTL harvesting: felling and 
processing with a harvester and skidding with 
a forwarder

Þ  fully mechanized FT harvesting: felling with a 
feller-buncher, extraction with a skidder, and 
processing with a processor.

In general, motor-manual operations are frequently 
applied in steep terrain and the farm tractor equipped 
with forestry winches, grapples, trailers or bins is the 
most widely used means of timber extraction. Skid-
ders, cable cranes and forwarders are used where farm 
tractors are limited by terrain steepness and roughness 
and to guarantee more productivity and safety with 
respect to traditional extraction methods.

Consequently, each harvesting system has its spe-
cific features that depend on natural and production 
conditions, the technology used, and the role of man-
ual operations in the overall process (Gerasimov and 
Sokolov 2014, Apăfăian et al. 2017). Therefore, effi-
ciency and functionality of wood harvesting opera-
tions depend on several factors (Proto et al. 2017). For 
this reason, the forest scientific community aimed to 
produce empirical models or to comparatively assess 
the performance of two or more operational alterna-
tives to predict the performance of operational behav-
ior (Musat et al. 2016). One of the common ways to 
evaluate the harvesting systems productivity is to 
measure working time for every single phase and to 
evaluate cost-production (Picchio et al. 2009, Bîrda and 
Borz 2012). The determination of these factors for each 
phase (felling, bunching, skidding, loading, etc.) can 
define corresponding time models and help forest 
managers to choose the best method of extracting 
wood, and efficiently manage the process of harvest-
ing activity (Ghaffariyan et al. 2012). The forest opera-
tions productivity studies are considerable and have 
a long tradition. Anson (1953) associated the effect of 
independent variables on time consumption and 
Steinlin (1955) recommended to measure the time con-
sumed and the quantity produced for carrying out a 
statistical evaluation to relate the two quantities. 
 Harstela (1988) showed that time studies offer different 
resolution depending on the level of detail in which 

they describe the studied process, while Bergstrand 
(1991) suggested to separate functional elements that 
react to different work characteristics for developing 
accurate sub-models. Kanawaty (1992) identified the 
basic techniques of work study including optimization 
of planning processes and implementation of stan-
dards for machine utilization. Mundel and Danner 
(1994) defined time study as a set of procedures for 
determining the amount of time required, under cer-
tain standard conditions of measurement, for tasks 
involving some human, machine, or combined activ-
ity. Björheden et al. (1995) normalized the time study 
procedures adapting to the specificity of forest work 
processes to allow the direct measurement of time 
 expenditure on work elements. In the last decade, 
 several studies (Costa et al. 2012, Spinelli et al. 2013, 
Costa et al. 2014, Naghdi et al. 2016) have addressed the 
application and/or extrapolation of time studies re-
sults for determining appropriate harvesting rates, the 
accuracy of measurements, the time study techniques 
to develop new mathematical models. Therefore, these 
studies have expanded to determining the influence 
of the operating environment, the operational effi-
ciency and the integration of harvesting with operator 
skills, and the dynamics of human-machine systems.

Artificial intelligence (AI) multivariate methods 
based on artificial neural networks (ANNs) are well-
known computational systems to predict the output of 
complex systems and solve multifaceted nonlinear 
problems (even without prior information with high 
accuracy (Nabavi-Pelesaraei et al. 2018). Generally, 
ANN is an alternative to traditional methods of model-
ing (e.g., the statistical regression models) and has 
greater generalizability, less susceptibility to noise and 
outliers, and the ability to model nonlinear relations 
compared to regression models (Haykin 2009). These 
characteristics are important in modeling the growth 
and yield of forest stands. In addition, when variables 
are many and include both quantitative and qualitative 
ones, the most effective approaches resulted to be non-
linear (Assirelli et al. 2018). There are still few examples 
of AI approaches in forestry (Bui et al. 2017, Reis et al. 
2018). For example, in the study of Sanquetta et al. 
(2018) different AI models (i.e., k-nearest neighbors 
(KNN) and ANN) were tested to estimate merchant-
able volumes of Japanese cedar (Cryptomeria japonica) 
trees in a homogenous plantation in southern Brazil. 
These models with respect to traditional ones tended 
to give lower bias, better precision and accuracy in the 
middle portion of the stems. Moreover, Vieira et al. 
(2018) used two AImodels (i.e., ANN and adaptive 
neuro-fuzzy inference system) to estimate the growth 
in diameter and total height of eucalyptus trees.



A Three-Step Neural Network Artificial Intelligence Modeling Approach for Time, Productivity...  (35–47) A.R. Proto et  al.

Croat. j. for. eng. 41(2020)1 37

The purpose of this study is to analyze how the 
different harvesting processes affect operational costs 
and labor productivity in typical small-scale Italian 
harvesting companies. A comparative study of con-
ventional and innovative logging operations, under as 
uniform conditions as possible, has been conducted 
for supporting decision-making when selecting rele-
vant technology and machinery in harvesting activi-
ties. A traditional linear (Multiple Linear Regression; 
MLR) and an artificial intelligence neural network 
(ANN) non-linear approach have been adopted on a 
database composed by a series of qualitative and 
quantitative variables to predict gross time, productiv-
ity and costs.

2. Materials and Methods

2.1 Study Sites and Harvesting Methods
The research was carried out in three experimental 

sites in Southern Italy (Calabria Region), in Fabrizia 
(Site A), Cardinale (Site B) and Brognaturo (Site C) 

 municipalities (Fig. 1). The study area covered a total 
area of 47 hectares (10, 12 and 25 ha in site A, B and C, 
respectively) with an altitude ranging from 980 to 
1150 m. The main characteristics of the study sites are 
shown in Table 1.

Three different processes of wood harvesting were 
adopted using the TL systems and the FT systems. In 
total, five test worksites were monitored (1A, 1B, 2A, 
3A and 3B) and different harvesting methods were ap-
plied (Table 2).

In the first study area, located in the municipality 
of Fabrizia (Province of Vibo Valentia), the TL system 
was adopted and two different coppice chestnut forest 
stands (Castanea sativa Mill.) were monitored and 
marked with letters 1A and 1B. In site 1A (38°28’24” 
N – 16°16’30” E), a Stihl MS 261C-M (2.9 kW) chainsaw 
was used for felling and delimbing. The felling team 
consisted of two chainsaw operators and a farm trac-
tor, (Landini Landpower 165 TDI, 121.6 kW), equipped 
with forest winch used for skidding, worked in mod-
erately rough terrain (UK Forestry Commission 1995). 
In site 1B (38°27’29”N – 16°16’01”E), classified as 
roughness class III and with slopes greater than Fig. 1 Three study sites in Southern Italy (Calabria Region)

Table 1 Main characteristics of five test worksites

Characteristics
Site
1A

Site
1B

Site
2A

Site
3A

Site
3B

Municipality
Fabrizia

(VV)
Cardinale

(CZ)
Brognaturo

(VV)

Prevalent Specie Chestnut Chestnut
Calabrian

pine
Beech

Silver
fir

Government Coppice Coppice
High
forest

High
forest

High
forest

Altitude, m a.s.l. 1050 980 1110 1090 1150

Stand density, plants/ha 600 600 750 500 550

Total volume, m3/ha 470 500 700 575 700

Average DBH, cm 16 15 24.5 29 30

Average height, m 14.5 14 25 23.5 27.4

Average tree volume, m3 0.10 0.13 0.42 0.6 0.57

Slope min, % 48 61 40 25 17

Slope max, % 68 73 80 71 64

Slope medium, % 58 67 27 55 42

Roughness Medium High Medium High Medium

Total volume extracted, m3 2350 2250 1680 1437 1375

Volume per ha, m3/ha 470 500 140 115 110
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60 percent, the same team worked in felling while the 
bunching phase was realized using a Greifenberg 
TG700 (84 kW) cable crane. The same farm tractor 
equipped with a grapple was used for extracting trees.

In the second study area (2A: 38°36’59” N – 
16°23’34” E), located in the municipality of Cardinale 
(Province of Catanzaro), the FT system was adopted 
and selective felling was applied in a Calabrian Pine 
(Pinus nigra Arn. ssp. laricio Poiret var. Calabrica  Delamare) 
forest. Tree felling team was composed of two opera-
tors and the working phase was performed by chain-
saw (Husqvarna 560 XP, 3.5 kW), whereas a John 
Deere grapple skidder was used for skidding opera-
tions involving a single operator. The forest was clas-
sified as roughness class II, while the slope varied 
between class IV and V.

In the third study area, located in the municipality 
of Brognaturo (Province of Vibo Valentia), two high 
forests of different age were studied, beech (Fagus 
 sylvatica L.) and silver fir forest (Abies alba Mill.); the 
sites were monitored and marked with letters 3A and 
3B. In this site (38°34’51” N – 16°22’17” E), after the 
felling, the trees were delimbed by a team of two 
workers equipped with two chainsaws (Husqvarna 
560 XP, 3.5 kW) and extracted by a farm tractor with 
forest winch. In the second site (3B: 38°32’47” N – 
16°21’22” E), the felling phase was the same as that in 
3A, while a John Deere grapple skidder was used for 
skidding operations. In the beech stand, the terrain 
conditions were difficult with respect to the silver fir 
forest with higher inclination and roughness. With 

respect to other two sites (1A and 1B), in the sites 2A, 
3A and 3B, the delimbing phase was assisted by a 
mini-excavator (32 kW) for moving the logs and the 
work time of this machine was assessed with a flat rate 
of 30% of the gross time required for tree bunching.

2.2 Time Study
The time study data were collected during the 

spring of 2016 and the autumn of 2017. The times of 
the different work phases were measured separately 
using the repetition-timing method to determine the 
total yarding cycle time. Each work cycle was divided 
into work elements and classified as productive time 
or delay time, following the terminology »Forest Work 
Study Nomenclature« suggested by a subcommittee 
of IUFRO Working Party $3.04.02 (Work study; Pay-
ment, Labour productivity) (Björheden et al. 1995) and 
approved by the IUFRO Division 3 and timed using a 
digital chronometer (i.e., 1 min = 100 unit), Tag-Heu-
erMicrosplit™. Particularly, regarding the extraction 
cycle using a farm tractor and skidder, the productive 
time was subdivided into six elements:

Þ  travel unloaded (similar for winch and grapple): 
begins when the skidder/farm tractor leaves the 
landing area and ends when the skidder stops 
in the stump area

Þ  release and hooking (farm tractor+winch): be-
gins when the worker has just grabbed the cable 
and sets the choker on the tree about 0.5–1.0 m 
away from the tree end, and ends when the op-
erator starts winching

Þ  winching (farm tractor+winch): begins when the 
driver starts to winch and ends when the tree 
has arrived at the rear part of the farm tractor

Þ  grabbing (skidder/farm tractor+grapple): begins 
when the grapple opens and takes the trees and 
ends when the grapple is closed

Þ  travel loaded (similar for winch and grapple): 
begins when the machine moves to the landing 
and ends when it reaches the landing

Þ  unhooking (similar for winch and grapple): be-
gins when the machine reaches the landing and 
ends when the load is unhooked.

Concerning the cable crane, seven yarding phases 
were monitored (Proto et al. 2016):

Þ  outhaul empty: begins when the operator is 
ready to move carriage from landing out to 
choke setter and ends when the choke setter 
touches the choke

Þ  hook descent: begins when the operator locks 
the carriage and begins to release the hook, and 

Table 2 Description of the experimental design of the five test work 
sites

Site
Harvesting

method
Felling Delimbing Bunching Extraction

1A TL Chainsaw 1 Farm tractor + winch

1B TL Chainsaw 1
Cable
crane

Farm tractor
+

grapple

2A FT Chainsaw 2 (Mini-excavator)
Forest
loader

Skidder
+

grapple

3A TL Chainsaw 2 (Mini-excavator)
Farm tractor

+
winch

3B FT Chainsaw 2 (Mini-excavator)
Forest
loader

Skidder
+

grapple
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it ends when the operator starts to connect with 
the load

Þ  lateral out: begins at the end of outhaul empty 
and ends when the choke setter is ready to hook 
a turn (choke setter’s forward motion has stopped 
and is ready to begin setting the chokers)

Þ  hookup: begins at the end of lateral out and ends 
when the choke setter has completed hooking 
the chokers and signals to begin yarding

Þ  lateral in: begins at the end of hookup and ends 
when the turn is pulled up to the carriage and 
the carriage begins to move up the corridor

Þ  in haul: begins at the end of lateral in and ends 
when the turn has reached the position on the 
deck where it can be directly unhooked at the 
landing

Þ  unhook: begins at the end of in haul when the 
carriage passes over the tripblock and ends 
when the chokers have returned to the carriage.

2.3 Economic Evaluations
To calculate the hourly cost of wood harvesting in 

the different study sites, many parameters were con-

sidered (Olsen and Kellogg 1983) and the Miyata 
(1980) method was applied. To calculate the produc-
tion cost for 1 m3 of wood, the cost analysis employed 
the following parameters: the number of operators, the 
hourly cost of an operator, the hourly cost of machines, 
the volume of wood extracted and productive ma-
chine hours excluding all delay times. The purchase 
prices and operator wages required by the cost calcu-
lations were obtained from catalogues and accounting 
records. Cost calculations were based on the assump-
tions adopted in recent economic studies (Magagnotti 
and Spinelli 2011, Spinelli and Magagnotti 2011, Proto 
and Zimbalatti 2016, Proto et al. 2018). In the machine 
cost calculation, the relocation costs have not been 
 considered. The principal technical and economi-
cal parameters and the machine cost are shown in 
Table 3.

2.4 Modeling Approaches
The statistical analyses were performed on the ma-

trix composed of 6 quantitative and 4 qualitative (i.e., 
categorical) variables per 252 cycles (i.e., observations). 
Six quantitative variables are: average slope, average 
DBH, wood biomass per hectare (m3 ha-1), bunching 

Table 3 Assumed cost parameters and calculated hourly machine costs 

Description

Felling/Delimbing Bunching/Extraction

Chainsaw 1 Chainsaw 2 Mini–excavator
Farm Tractor with

winch/grapple
Cable crane

Skidder with
grapple

Forest loader

Purchase price, € 1100 940 50,000 79,000 150,000 200,000 80,000

Initial investment (no tires cost) 1100 940 48,500 76,200 149,400 197,000 78,200

Salvage value, € 220 188 10 15,240 29,880 39,400 15,640

Economic life, years 3 3 10 10 10 10 10

Productive machine hours, h/year 700 700 800 1000 800 740 800

Engine power, kW 3.5 2.9 32 121 84 110 88

Interest rate, % 4 4 4 4 4 4 4

Fuel consumption, L/h 1.32 1.09 2.79 17.58 12.50 15.00 10.23

Lubricant consumption, L/h 0.59 0.49 0.30 0.54 0.40 0.38 0.45

Fuel price, €/L 1.55 1.55 1.05 1.05 1.05 1.05 1.05

Lubricant price, €/L 4.5 4.5 9 9 9 9 9

Tires cost, € – – 1500 2800 600 3000 1800

Qualified labor cost (ancillary wage included), €/h 15 15 15 15 15 – 15

Specialized labor cost (ancillary wage included), €/h – – – – 21 21 –

Hourly machine cost, €/h 5.50 4.58 24.45 37.95 51.35 68.95 33.25
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distance (m), extraction distance (m) and load per 
cycle (m3 cycle-1). The four qualitive variables, ex-
pressed as dummy variables are: governance (man-
agement of coppice or high forest), machine used for 
log extraction (tractor with winch, cable crane, skidder 
with grapple), working system (TL or FT) and rough-
ness (medium or high), classified in relation to the 
presence of obstacles on the ground (outcropping 
rocks, stone, etc.) in accordance with UK Forestry 
Commission (1995).

A three-step approach was applied (Guerrieri et al. 
2016). In the first step, the gross time (minutes per 
transported load) was estimated based on the above 
ten variable matrix. In the second step, the gross pro-
ductivity (m3 h-1 per operator) was estimated based on 
ten variable matrix together with the gross time esti-
mated (11 variables). In the third step, the cost per m3 
(€ m3) and cost per hectare (€ ha-1) was estimated based 
on ten variable matrix together with the estimated 
gross time and productivity (12 variables).

The model for gross time, productivity and costs 
estimation was developed using a non-linear regres-
sive ANN approach compared with a MLR model. As 
the database is composed of a series of qualitative and 
quantitative variables, the best way to find a regressive 
solution is a non-linear approach. ANN was devel-
oped based on the input layer (x-block) to estimate the 
output layer (y-block). Between the input and output 
layers, one or more hidden layers were built by the 
ANN procedure based on its architecture. The number 
of hidden layers used was equal to 3 nodes. The type 
and the complexity of the process or experimentation 
usually iteratively determine the optimal number of 
the neurons in the hidden layers (Gupta 2013).

The ANN model was developed using a Multi-
Layer Feed Forward Networks (MLFN) structure, the 
method often used for function approximation 
 (Mossalam and Arafa 2017). The ANNs models are 
massively parallel systems with large numbers of in-
terconnected simple processors. These networks are 
fine-grained parallel implementations of non-linear 
static or dynamic systems (Hassoun 1995). The gen-
eral regression neural network (GRNN) was trained 
with a back-propagation learning algorithm. Out of 
252 observations, only 227 samples (90%) were used 
to construct the models to avoid overfitting. The re-
maining 25 samples (10%) were then used to test the 
performance of the models (internal test). The parti-
tioning was conducted using the sample set partition-
ing based on joint x-y distances (SPXY) algorithm 
(Harrop Galvao et al. 2005) that considers the vari-
ability in both X- and Y-spaces. The training of the 
ANN was carried out using a learning equal to 0.5 and 

a momentum equal to 0.1. The training procedure was 
repeated 1,000,000 times and the best performing 
MLFN was selected based on the independent test set. 
The final architecture of the ANN includes a different 
number of nodes in the hidden layer depending of the 
kind of variable to be estimated. Performance param-
eters, such as the r correlation coefficient between the 
observed and predicted and the Root Mean Squared 
Error (RMSE), were reported for both training and test 
sets. A variable impact neural network analysis was 
performed to assess the relative importance of each 
variable (Abdou et al. 2012). Operatively, this index is 
similar to the linear regression Variable Importance in 
the Projection (VIP) scores (Chong and Jun 2005, Febbi 
et al. 2015). The ANN analysis has been performed 
using Palisade Neural Tools 7.6.

The ANN model performance (r correlation coef-
ficient and RMSE) on the same datasets has been com-
pared with a MLR model applied on the same parti-
tioned datasets. Ordinary linear regression 
approaches, such as MLR, are widely used in the ag-
ricultural and forestry frameworks for the estimation 
of quantitative parameters (Costa et al. 2012). MLR is 
the most common form of linear regression analysis, 
generally used to explain the relationship between one 
dependent variable (y-block) and two or more inde-
pendent variables (x-block).

3. Results and Discussion
In the three study sites, 252 cycles and more than 

250 h of operations were analyzed and evaluated. The 
total productivity (m3/PMH) in worksite 1 (1A+1B) was 
0.85 and 0.74, in worksite 2A it was 1.6 and in worksite 
3 (3A+3B) it was 1.5 and 1.70, respectively. Data regard-
ing the total travel distance for the cycles, number of 
logs and total volume are shown in Table 4.

Mean and standard positive deviation values of the 
gross time, gross productivity and costs (per m3 and 
hectare) for each worksite were visually reported by 

Table 4 Elements related to bunching and extraction operations

Worksite
Bunching distance

m
Extraction distance

m
Logs

N/load
Load

m3/cycle

1A 21.15 350.84 3.63 0.57

1B 26.54 200.25 4.06 0.58

2A – 366.10 4.54 1.74

3A 41.64 391.00 1.80 1.16

3B – 236.00 4.61 2.39
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histograms. Figs. 2 and 3 show the operating results 
referred to the total gross times and productivity, for 
all operations concerning the forest work performed. 
Figs. 4 and 5 show the economic results of the five sites 
relative to the evaluation of the costs per unit of prod-
uct and per unit of surface, in relation to the extraction 
systems adopted.

Regarding the felling phase, although the same 
team and systems were used, a different productivity 
(m3 h-1 per worker) was observed (1.55, 1.47, 2.58, 3.34 
and 3.38 in site 1A, Site 1B, Site 2A, Site 3A, and Site 3B 
respectively). This was due to the different tree sizes 
with higher unit volumes for the sites 2A (0.38 m3), 2B 
(0.64 m3) and 3B (0.54 m3), compared to sites 1A (0.16 m3) 
and 1B (0.14 m3). The average bunching distances were 
21, 27 and 42 m in site 1A, Site 1B, Site 3A, respectively, 
while this phase was not adopted in site 2A and Site 
3B. The bunching productivity varied significantly at 
different sites monitored. The extraction distances var-
ied form the minimum of 200 m in site 1B and the 
maximum of 391 m in site 3A. The unit complete pro-
ductivity (m3 h-1 per worker) was 0.42, 0.37, 0.99, 0.75 
and 1.12 in site 1A, Site 1B, Site 2A, Site 3A, and Site 3B, 
respectively. Costs per unit of product (€ m-3) were 
lower in sites 3B (38.56) and 3A (41.45), due the lowest 
cost for wood extraction of the skidder use, while the 
costs were much higher in sites 1A (65.19) and 1B 
(86.27), where the cost of extraction was very high. The 
worst result was obtained in site 1B with the use of the 
cable crane, in a terrain with high slope. The costs per 

hectare reach the maximum value in site 1B with 
€ 43,137 and the lowest cost in site 3B with € 4241. The 
lower logging costs per hectare, obtained in sites 3B, 
2A and 3A, as well as higher work productivity, are to 
be correlated to the different volume of extracted 
wood, which at these sites was considerably lower 
(110, 140 and 115 m3 ha-1, respectively), compared to 
sites 1A and 1B (470 and 500, respectively).

Fig. 2 Mean (±SD; whiskers) gross time of logging in five sites, 
divided into different operations

Fig. 3 Mean (±SD; whiskers) gross productivity of logging in five 
sites, divided into different operations

Fig. 4 Mean (±SD; whiskers) cost per m3 of logging in five sites, 
divided into different operations
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Table 5 shows the results of the MLR and ANN 
models for both training and internal test, for the esti-
mation of gross time, gross productivity and cost. 
Comparing the two methods, it is possible to observe 
definitely higher performances (up to 10% higher) of 
the ANN approach for both modeling and test sets to 
estimate gross time, cost per m3 and cost per hectare, 

while results are comparable for gross productivity 
estimation. MLR test set correlation coefficient (r) re-
sults ranged from 0.86 (gross time) to 0.98 (gross pro-
ductivity) estimation. ANN test set correlation coeffi-
cient (r) results ranged from 0.96 (gross time) to 0.99 
(cost per hectare) estimation.

Fig. 6 shows the scatter plots of the observed versus 
predicted estimation of gross time, gross productivity, 
cost per m3 and cost per hectare in both MLR and 
ANN. In both MLR and ANN modeling approaches, 
the prediction of gross productivity resulted visually 
linear. ANN models predicted vs observed scores re-
sulted closer to the bisectrix (i.e. perfect attribution).

Fig. 6 clearly shows the superiority of estimation 
with ANN method with respect to MLR method. This 
difference is even more accentuated in the estimation 
of the cost per hectare, where the deviation of the pre-
dicted value from the observed value calculated with 
MLR is higher. The difference between the worksites 
is also more evident with significantly lower costs per 
hectare for the worksites 2A, 3A and 3B, managed to 
high forest, with respect to the worksite 1A and 1B, 
managed to coppice.

Table 6 reports the percentage of VIP scores of the 
ANN models for the estimation of gross time, gross 
productivity, cost per m3 and cost per hectare. In the 
prediction of the gross time, the variable »load per 
cycle« has the most important impact (20.22%). For the 
estimation of the gross productivity, it is the »wood 

Fig. 5 Mean (±SD; whiskers) cost per hectare of logging in five 
sites, divided into different operations

Table 5 Characteristics and principal results of MLR and ANN models (training and internal test) in estimating gross time, gross productivity, 
cost per m3 and cost per hectare: number of cases, training time, number of trials, r correlation coefficient, Root Mean Square Error (RMSE)

MLR ANN

Gross time Gross 
productivity Cost per m3 Cost per ha Gross time Gross 

productivity Cost per m3 Cost per ha

Training (90% sample size) Training (90% sample size)

Number of cases 227 227

Training time Not available 00:06:01 00:05:12 00:05:02 00:05:52

Number of trials Not available 1,000,000 1,000,000 1,000,000 1,000,000

Number of nodes Not available 4 3 3 3

r correlation coefficient 0.945 0.983 0.942 0.973 0.979 0.983 0.986 0.996

Root Mean Square Error (RMSE) 7.495 0.059 7.436 3999.245 4.713 0.046 3.672 1576.23

Testing (10% sample size) Testing (10% sample size)

Number of cases 25 25

r correlation coefficient 0.863 0.983 0.875 0.922 0.962 0.984 0.966 0.992

Root Mean Square Error (RMSE) 12.847 0.071 11.141 6614.403 7.495 0.077 5.995 2237.59
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Fig. 6 Scatter plot of the observed versus predicted gross time, gross productivity, cost per m3 and cost per hectare obtained from the MLR 
(left side) and ANN models (right side). Lines represent the bisectrices (i.e. perfect attribution)
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biomass per hectare« with a percentage of 18.49% and 
finally for the Cost per m3 and per ha, these are »gross 
time prediction« (13.78%) and »average DBH« 
(21.60%).

The obtained MLR and ANN models were based 
on heterogeneous input dataset, constituted by quan-
titative (DBH in cm, biomass in m3, distance in m, time 
in min, productivity in m3 h-1, costs in €) and qualita-
tive variables (governance, working system and 
roughness). These models proved to be extremely ef-
ficient as well as generalizable and robust, but the 
ANN model has a higher predictive capacity and ac-
curacy than the MLR. The ANN model adopted is 
highly able to accurately estimate the technical param-
eters and economic parameters useful to the forestry 
entrepreneur to predict the results of the work in ad-
vance, taking into account only the detectable values 
of some characteristic elements of the worksite.

4. Conclusions
The wood harvesting is composed of several con-

secutive operations over time, such as the felling of 
trees, delimbing, wood extraction, loading and trans-
port. This process can be represented by empirical 

models to meet different objectives, such as the plan-
ning of forest wood chain, the calculation of the cost 
of harvesting and the convenience to adopt different 
working systems and degrees of mechanization. For 
this reason, the interest in exploring alternatives to 
ordinary linear regression, such as ANN predictive 
modeling is constantly growing. In this study, the au-
thors compared the MLR and ANN analysis allowing 
to produce models that, in addition to better adapting 
to the original data, can also manage collinear vari-
ables, facilitating the extraction of models from large 
amounts of field data and different forest operations.

The system was successfully used in the field tests 
and provided accurate and satisfactory data observing 
higher performances of the ANN approach than the 
MLR. Although ANN models are somewhat less prac-
tical than standard regression equations, they are cer-
tainly more robust in terms of variable oscillations and 
higher repeatability and are particularly suitable, un-
like linear models, for modeling systems with greater 
complexity and more difficult to manage.

The comparison of the various modeling approach-
es indicated that the generated models could predict 
work time, productivity and costs per unit of product 
and per hectare. The statistical models developed 
through numerous and different harvesting systems 
tested in this study could be used for harvesting plan-
ning and productivity optimization. Considering the 
recent dynamic growth in mechanized forest opera-
tions (Spinelli et al. 2017, Mederski et al. 2018), it is 
fundamental to select the correct wood harvesting 
method, and this study enables taking into consider-
ation all qualitative and quantitative variables to ob-
tain a valid and accurate prediction.
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