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Abstract The present study proposes a multi-yield-criteria limit analysis numerical
procedure for the prediction of peak loads and failure modes of reinforced concrete
(RC) elements. The proposed procedure, which is a generalization of a previous one
recently presented by the authors, is hereafter applied to structural elements rein-
forced either with traditional steel bars and stirrups or with fiber reinforced poly-
mer (FRP) sheets used as strengthening system. The procedure allows to take into
account the actual behaviour, at a state of incipient collapse, of steel, FRP and con-
crete by a finite element (FE) based plasticity approach where concrete is governed
by a Menétrey-Willam-type yield criterion, FRP reinforcement obey to a Tsai-Wu-
type yield criterion and steel reinforcement follow the von Mises yield criterion.
To check the effectiveness and reliability of the numerically detected peak loads
and failure modes a comparison with experimental laboratory findings, available in
literature for large-scale specimens, is presented.

1 Introduction

The design of concrete structures reinforced either with classical steel bars or with
innovative FRP bars, as well as the strengthening or the rehabilitation of existing
steel RC structures through externally bonded FRP sheets or strips, are subjects
of great interest in the field of civil engineering. This interest is witnessed by a
huge amount of analytical and experimental research studies proposed in the rel-
evant literature in the last decades (see e.g. [2, 9]). Among the several methods
already developed and the different aspects anlayzed, from an engineering point of
view, it is of utmost importance the knowledge at ultimate (collapse) state of the
load carrying capacity of such structures. This task can indeed be pursued, within
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a plasticity-based approach, using Limit Analysis. Although plain concrete is not
a ductile material, experimental studies have shown that the presence of longitudi-
nal web or stirrups reinforcement, as well as of FRP laminates, render the global
behaviour of RC structural elements quite ductile so justifying the applicability of
approaches based on plasticity theory [3, 5, 10]. It is the realm of the so called direct
methods which often utilise finite element method (FEM) in conjunction with op-
timization algorithms such as linear [27] and nonlinear programming [11, 14, 28].
These approaches indeed do not allow the treatment of post elastic phenomena that
may arise in concrete structures, such as localization, fracture, damage, creep etc.,
and that can be faced by coupling plasticity with fracture or damage mechanics the-
ories within step-by-step analyses (see e.g. [12, 15, 30]); however, they can give
information on the behaviour at limit (collapse) states of such structures, so result-
ing very useful for design purposes. In this context it has to be framed the present
study.
The promoted approach belongs to a wider research program started by the authors
in the context of laminates of FRP [18, 19, 21] and extended to RC structures with
reference to a Menétrey-Willam (M-W)-type yield criterion with cap in compres-
sion [8, 20, 22]. In the latter studies, two limit analysis methods, namely the Linear
Matching Method, LMM, [24], and the Elastic Compensation Method, ECM, [16],
have been applied under the hypothesis that reinforcement behave as indefinitely
elastic. This assumption has inevitably produced some drawbacks. In particular only
those structures whose behaviour at incipient collapse is dominated by crushing of
concrete, that is the case of the so-called over-reinforced structures, can be appro-
priately analyzed, while for under-reinforced structures, where reinforcement often
attain their limit capabilities, the methods result less accurate. To overcome this
limitation and improve the overall analysis of the RC structural elements at collapse
enhancements of the methods have been presented in [23]. The present study pro-
poses a further advanced version of the methods that considers possible yielding of
steel bars as well as collapse of FRP sheets. To this purpose the paper proposes a
three yield criteria limit analysis formulation in which concrete is governed by a
Menétrey-Willam-type yield criterion with cap in compression, steel reinforcement
follow the von Mises yield criterion and FRP reinforcement obey to a Tsai-Wu-type
yield criterion. This allows to predict the peak loads of those RC structures in which
steel and/or FRP reinforcement play an important role in the behaviour exhibited at
a state of incipient collapse. The effectiveness of the proposed approach is shown
by comparison of the obtained numerical predictions with the experimental findings
on steel reinforced beams strengthened in flexure using GFRP sheets.

It is worth noting that the promoted procedure is of general (wider) applicability,
the only essential requisite being the strict convexity of the yield criteria assumed
for the constituent materials.
The paper is organized as follows: after this introductory section, Section 2 gives
the principles of the LMM and ECM employed in the limit analysis procedure and
this with reference to a generic, strictly convex, yield criterion; Section 3 recalls few
analytical expressions of the Menétrey-Willam-type yield criterion enriched with a
cap in compression, of the Tsai-Wu-type yield criterion and of the von Mises yield
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criterion, just to set up the constitutive relations; Section 4 and Section 5 particular-
ize the LMM and ECM to the three yield criteria here considered; Section 6 gives
the results obtained by analyzing large scale RC beams strengthened with FRP sheet
and compares these results with the available experimental tests; finally Section 7
draws some conclusions.

2 Limit analysis: basic concepts and numerical issues

Limit analysis allows the direct evaluation of the load bearing capacity of a structure
or of a structural element. In its classical formulation the theory of limit analysis
refers to perfectly plastic structures, made of standard materials, and it is based on
a lower and an upper bound theorem ([6, 26]). The bound theorems allow the exact
determination of the (unique) load value that will cause collapse.

The upper bound theorem states that an upper bound, say PUB , to the collapse
load multiplier for a given body of volume V is given by:

PUB =

∫
V σY

j ε̇c
j dV∫

∂Vt
p̄i u̇c

i d(∂V )
, (1)

where: ε̇c
j = λ̇ ∂ f/∂σ j are the components of the strain rate at collapse having the

direction of the outward normal to the yield surface f (σ j) = 0 (with λ̇ > 0 a scalar
multiplier); σY

j are the stresses at yield associated to the given compatible strain
rates ε̇c

j ; u̇c
i are the related displacement rates. Moreover, p̄i are the surface force

components of the reference load vector p̄ acting on the external portion ∂Vt of
the body surface. For simplicity, only surface forces are considered. The set (ε̇c

j , u̇
c
i )

defines a collapse mechanism.
On the other hand, the lower bound theorem states that if at every point within V
exists a stress field σ̃ j which satisfies the condition f (σ̃ j) ≤ 0 and in equilibrium
with the applied load P p̄ for a value of P, say PLB, then PLB is a lower bound to the
collapse limit load multiplier.
The two assertions above, as known, lead to two classical approaches of limit anal-
ysis, namely: the kinematic and the static one. If the loads produced by their appli-
cation are equal to each other, circumstance verifiable only for standard materials,
then they equal the collapse load. As a matter of fact, the success of limit analysis
approaches has been determined also by the possibility to apply the theory, with due
attention, outside the realm of perfect plasticity so allowing the study of structures
made of non standard materials. The non standard limit analysis theory is based
on the two Radenkovic’s fundamental theorems which can be summarized as: "ev-
ery value of the limit load for a non standard body is located between two fixed
boundaries defined by the values of the limit loads computed considering the body
made by two standard materials whose yield surfaces are one outer, the other inner,
to that of the nonstandard material." Obviously, within a nonstandard Radenkovic’s
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approach only a range of collapse load multiplier values can be located between two
computed bounds, the uniqueness of the limit load being missing.

The nonstandard approach will be followed hereafter, the main constituent mate-
rials of the addressed structural elements being indeed modelled by plasticity-based
criteria of non associative type. The assumed yield surface playing the double role
of outer and inner "standard" surfaces mentioned before. The promoted approach is
based on sequences of FE elastic analyses as well as on the use, in concomitance,
of two distinct limit analysis numerical methods, i.e.: the LMM which follows the
kinematic approach of limit analysis theory [18, 20, 24] and the ECM which is
grounded on the static approach [16, 21, 22]. For sake of brevity, the LMM and the
ECM will be discussed with reference to a generic, strictly convex, yield surface,
namely an ellipsoid in principal stress space. To this concern it is worth noting that
the applicability of the whole approach is independent from the assumed stress field
representation as will appear more clear in Sections 4 and 5 where the adopted yield
criteria will be explicited.

2.1 Upper bound evaluation via LMM

The LMM, firstly theorized by Ponter and Carter [24] for von Mises materials and
then extended to more complex materials in [20–22], is an iterative procedure in-
volving one sequence of linear analyses. The linear analyses are carried on the
structure made, by hypothesis, of a linear viscous fictitious material with spatially
varying moduli, DI (I ranging over the elastic constants entering the considered
material), and imposed initial stresses, σ̄ j ( j ranging over the considered (needed)
stress components). The adjective fictitious highlights the property of the material
endowed with elastic parameters which may assume different values at different
points; the latter being Gauss points (GPs) in a FE discrete model of the structure.
An easy understanding of the method can be achieved by looking at its geometrical
interpretation sketched in Fig.1. At the current iteration, say at the (k− 1)th FE-
analysis, the fictitious structure (i.e. the structure under study with its real geometry,
boundary and loading conditions but made of fictitious material) is analyzed under
loads P(k−1) p̄i, with P(k−1) load multiplier and p̄i assigned reference loads.
The fictitious linear solutions computed, at each Gauss Point of the FE mesh, can be
represented by a point P(k−1)

L lying on the complementary dissipation rate equipo-
tential surface referred to the fictitious viscous material, say W (k−1)(σ

`(k−1)
j , D(k−1)

I ,

σ̄
(k−1)
j ) = W̄ (k−1), whose geometrical dimensions and center position depend on the

fictitious values D(k−1)
I and σ̄

(k−1)
j fixed at the current GP. The point P(k−1)

L with its

coordinates, say σ
`(k−1)
j in the chosen principal stress space, shown in the sketch

of Fig.1, represents the fictitious solution in terms of stresses while the outward
normal at P(k−1)

L , say the normal of components ε̇
`(k−1)
j , represents the fictitious so-

lution in terms of linear viscous strain rates. At this stage the fictitious moduli and
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initial stresses are modified so that P(k−1)
L is brought onto the yield surface of the

real constitutive material the analyzed structure is made with. The latter surface is
here presented by the ellipsoidal shaded surface of Fig.1. Namely P(k−1)

L is brought
to identify with point P(k−1)

M , having the same outward normal of P(k−1)
L but lying

on the real material yield surface.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Geometrical sketch, in the principal stress space, of the matching procedure 
from iteration (k-1) to (k)  at the current GP within the current element. 
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Fig. 1 Geometrical sketch, in the principal stress space, of the matching procedure, from iteration
(k−1) to (k), at the current GP within the current element.

The fictitious solution in terms of strain rates, namely ε̇
`(k−1)
j ≡ ε̇

c(k−1)
j , where

the apex c stands for "at collapse", as well as the stress coordinates of P(k−1)
M , say the

stresses at yield σ
Y (k−1)
j , give all the information pertaining to a state of incipient

collapse built at the current GP. In particular, the fictitious strain rates ε̇
`(k−1)
j ≡

ε̇
c(k−1)
j , with the associated displacement rates u̇`(k−1)

j ≡ u̇c(k−1)
j , define a collapse

mechanism. The related stresses σ
Y (k−1)
j are the pertinent stresses at yield. Indeed,

for the formal analogy existing between the linear viscous problem and the linear
elastic problem the strain rates ε̇

`(k−1)
j can be evaluated as linear elastic strain rates,

viewing W (k−1) = const as the complementary energy equipotential surface of the
fictitious material. While the described modification of D(k−1)

I and σ̄
(k−1)
j implies
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that the "modified" W (k)(σ
`(k)
j , D(k)

I , σ̄
(k)
j ) = W̄ (k−1) matches the yield surface at

point P(k−1)
M , see again Fig.1.

Operatively, the matching procedure performed at the current GP starts with the
search of the stress point P(k−1)

M on the yield surface having an assigned strain rate
ε̇εε
`(k−1) ≡ ε̇εε

c(k−1) as outward normal.
It is worth noting that if the yield surface is strictly convex such point P(k−1)

M is
uniquely determined by the given normal ε̇εε

`(k−1). If this normal belongs to a cone
of normals pertaining to a vertex (nonsmooth corner) if any, of the yield surface,
point P(k−1)

M simply identifies with this vertex.
If the expounded rationale is repeated at all GPs of the mesh, a collapse mechanism,
(ε̇c(k−1)

j , u̇c(k−1)
i ) with the related stresses at yield, σ

Y (k−1)
j can be defined for the

whole structure and, by Eq. (1), an upper bound value to the collapse load multiplier,
say P(k)

UB
, can be evaluated at current (k− 1)th FE elastic analysis. However, the

above stress at yield, computed through the matching, do not meet the equilibrium
conditions with the acting loads P(k−1) p̄i and the procedure is carried on iteratively
until the difference between two subsequent PUB values is less than a fixed tolerance.
Convergence requires that the W (k) = W̄ (k−1) matches the yield surface at P(k−1)

M
and otherwise lies outside the yield surface (see [25]). In the following the LMM is
applied simultaneously to concrete, FRP and steel reinforcement.

2.2 Lower bound evaluation via ECM

The ECM conceived by Mackenzie and Boyle [16] with reference to steel and then
modified to deal with more complex materials in Pisano et al. [18, 22] is aimed
to construct an admissible stress field, suitable for the evaluation of a PLB , in the
spirit of the static approach of limit analysis. Also the ECM is an iterative proce-
dure involving many sequences of linear elastic FE-based analyses, in which highly
loaded regions of the structure are systematically weakened by reduction of the
elastic moduli and this in order to simulate a stress redistribution arising within the
structure before attaining its limit strength threshold. Also in this case the procedure
can be more easily explained by means of a geometrical sketch as the one given in
Fig.2 with reference to a generic yield surface F(σ j, DI , σ̄ j) = 0. The ECM starts
with a first sequence, say s = 1, of FE elastic analyses, carried on the structure en-
dowed with the proper (real) material elastic parameters and suffering applied initial
loads P(s)

D p̄i = P(1)
D p̄i. At the current iteration, say at the (k−1)th FE analysis, the

elastic stress solution is computed at the GPs of the mesh. Such values, averaged
within the current element #e, allow to define a solution "at element level", which,
as shown in the sketch of Fig.2, locates in the principal stress space a stress point,
say Pe(k−1)

#e . PY (k−1)
#e denotes the corresponding stress point at yield (i.e. lying on the

yield surface) measured on the direction
−→
OPe

#e

/
|
−→
OPe

#e|. In the figure are reported
other stress points, representing the average stress elastic solution within the ele-
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ments #1,#2, ...,#e, ...,#n. If the elastic solution at the #e-th element is such that
|
−→
OPe

#e|(k−1) > |
−→
OPY

#e|(k−1) then the element’s Young modulus is reduced according
to the formula:

E(k)
#e = E(k−1)

#e

[
|
−→
OPY

#e|(k−1)

|
−→
OPe

#e|(k−1)

]2

(2)

where the square of the updating ratio, within the square bracket, is used to increase
the convergence rate.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.  Geometrical sketch, in the principal stress space, of the ECM at current iteration 
(k-1) of the current sequence s. Stress points representing the elastic solution at elements #1, 
#2, …, #e, …, #n; ( 1)−  
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Fig. 2 Geometrical sketch, in the principal stress space, of the ECM at current iteration
(k − 1) of the current sequence s. Stress points representing the elastic solution at elements
#1, #2, ...,#e, ...,#n; with P(k−1)

R denoting the “maximum stress” among all the elements.

After the above modulus variation, the maximum stress value has to be detected in
the whole FE mesh, namely the value corresponding to the stress point farthest away

from the yield surface, say P(k−1)
R in the sketch of Fig.2. If |

−→
OPR|

(k−1)
is greater than

|
−→
OPY

R|
(k−1)

(as drawn Fig.2) a new FE analysis is performed within the current se-
quence trying to re-distribute the stresses within the structure; and this by keeping
fixed the applied loads but with the updated E(k)

#e values given by Eq.(2). The itera-
tions are carried on, inside the given sequence, until all the stress points just reach or
are below their corresponding yield values, which means that an admissible stress
field has been built. Increased values of loads are then considered in the subsequent
sequences of analyses, each one with an increased value of P(s)

D , till further load
increase does not allow the stress point P(k−1)

R to be brought below yield by the
re-distribution procedure. A PLB load multiplier can then be evaluated at last admis-
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sible stress field attained for a maximum acting load P(s)
D p̄i, say at s = S, and at last

FE analysis, say at k = K, as:

PLB = |
−→
OPY

R|
(K) P(S)

D

|
−→
OPR|

(K)
. (3)

3 Yield-criteria for RC structures

As outlined in the introductory section, this study is focused on concrete elements
reinforced with steel bars and externally strengthened with FRP sheets. The main
goal is indeed to apply the limit analysis approach, described in Section 2, to the
yield criteria assumed for the constituent materials of the analyzed RC elements,
namely: concrete, FRP laminates and steel. The main constitutive assumptions are
given next.

Concrete is assumed as an isotropic nonstandard material obeying a plasticity
model derived from the Menétrey-Willam [17](M-W) failure criterion; this criterion
is defined by the following expression:

F (ξ ,ρ,θ) =

[√
1.5

ρ

f ′c

]2

+m
[

ρ√
6 f ′c

r (θ ,e)+
ξ√
3 f ′c

]
−1 = 0; (4)

where:

r (θ ,e) =
4
(
1− e2

)
cos2 θ +(2e−1)2

2(1− e2)cosθ +(2e−1)
[
4(1− e2)cos2 θ +5e2−4e

]1/2 ;

m := 3
f
′
c

2− f
′
t

2

f ′c f ′t

e
e+1

. (5)

Equation (4) is given in terms of three stress invariants ξ ,ρ,θ known as the Haigh
Westergaard (H-W) coordinates; m is the friction parameter of the material depend-
ing, as shown in Eq.(5), on the compressive strength f

′
c, the tensile strength f

′
t as

well as on the eccentricity parameter e, whose value governs the convexity and
smoothness of the elliptic function r (θ ,e). The eccentricity e describes the out-of-
roundness of M-W deviatoric trace and it strongly influences the biaxial compres-
sive strength of concrete. To limit the concrete strength in high hydrostatic compres-
sion regime, a cap, closing in compression the surface defined by Eq.(4), is adopted.
This cap, formulated in the H-W coordinates, can be given the shape:

ρ
CAP (ξ ,θ) =−ρMW (ξa,θ)

(ξa−ξb)
2

[
ξ

2−2ξa (ξ −ξb)−ξ
2
b
]
, with { ξb ≤ ξ ≤ ξa

0≤ θ ≤ π

3
; (6)
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where ρMW (ξ ,θ) is the explicit form of the parabolic meridian of the M-W surface
that, looking at Eq. (7), can be given by:

ρ
MW (ξ ,θ) =

1
2a

{
−b(θ)+

[
b2 (θ)−4ac(ξ )

]1/2
}
, with { ξa ≤ ξ ≤ ξv

0≤ θ ≤ π

3
; (7)

and where:

a =
1.5(
f ′c
)2 ; b(θ) =

m√
6 f ′c

r (θ ,e) ; c(ξ ) =
m√
3 f ′c

ξ −1. (8)

The values ξa, ξb and ξv entering Eqs.(6) and (7) locate the cap position and can be
detected experimentally.
It is worth noting that the Menétrey-Willam surface equipped with a cap in compres-
sion is strictly convex and smooth, except for the vertices on the hydrostatic axis,
and it is hereafter assumed as yield criterion for concrete. A realistic representation
of concrete requires to take into account the dilatancy so a non-associated flow rule
is also postulated.

The FRP laminate, the strengthening sheets are made with, are assumed as a com-
posite, orthotropic, nonstandard material obeying a plasticity model derived from
the Tsai-Wu failure criterion [29]. By denoting with 1 and 2 the principal direc-
tions of orthotropy in plane stress case as well as indicating, as usual in this context,
σ6 ≡ τ12, the adopted Tsai-Wu-type yield surface is given by:

F(σ1, σ2, σ6) = F11 σ
2
1 +F22 σ

2
2 +F66 σ

2
6 +2F12 σ1σ2+F1 σ1+F2 σ2−1 = 0, (9)

where:

F1 :=
1
Xt

+
1
Xc

; F2 :=
1
Yt

+
1
Yc

; F11 :=− 1
Xt Xc

;

F22 :=− 1
Yt Yc

; F66 :=
1
S2 ; F12 :=−1

2
√

F11F22; (10)

with: Xt , Xc the longitudinal tensile and compressive strengths respectively; Yt , Yc
the transverse tensile and compressive strengths respectively and S the longitudinal
shear strength. In Eq.(10) the compressive strengths Xc and Yc have to be considered
intrinsically negative. Equation (9) represents in the space σ1, σ2, σ6 an ellipsoid
whose major axis lies on the σ6 = 0 plane and it is rotated by an anticlockwise
angle of 450 with respect to the σ1 axis. This surface is hereafter assumed as yield
criterion for the FRP composite reinforcement. Also in this case a non-associated
flow rule is postulated.

Finally, steel follows the von Mises yield criterion which is one of the most popular
criteria applied to describe the behaviour of perfectly plastic ductile materials. For
a generic, multi-axial, loading condition and considering that ρ2 = 2J2 (with J2
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second stress deviatoric invariant) the von Mises yield surface, being σy the yield
strength, is expressed in the form:

F(ρ) =
3
2

ρ
2−σ

2
y = 0, (11)

that, in the case of uniaxial stress condition, like the one recorded in the reinforce-
ment bars, simply reduces to σ1 = σy, being σ1 the first principal stress, measured
along the bar longitudinal direction. As known, in the principal stress space the
von Mises yield surface of Eq.(11) is represented by a cylinder, indefinite along the
hydrostatic axis, circumstance that does not satisfy the required condition of strict
convexity. However the limit analysis procedure will be pursued on the deviatoric

plane where the von Mises criterion is a circle of radius ρy =
√

2
3 σy.

4 Three-yield-criteria LMM

The LMM procedure presented in Section 2.1, with reference to a generic strictly
convex yield surface, can be now easily specified for concrete, FRP and steel. To
this aim, taking into account the assumed yield criteria, it will be sufficient to
specify the apposite expressions of the complementary energy equipotential surface
W (k−1)(σ

`(k−1)
j , D(k−1)

I , σ̄
(k−1)
j ) = W̄ (k−1) that has to be consistent with the yield

criterion in use. Looking at concrete, governed by the M-W-type yield surface by
Eqs.(4)-(8), the pertinent complementary energy equipotential surface, in the Haigh-
Westergaard coordinate, depends on the bulk modulus K, on the shear modulus G
as well as on initial stresses, ξ̄ and ρ̄ . With reference to the rationale of Section
2.1, then, referring to Fig.1, the elastic moduli DI identify with G and K, while σ̄ j

correspond to ξ̄ and ρ̄ . At the current iteration (k− 1) of the LMM procedure and
at the current GP within the mesh, the right complementary energy functional can
be given the shape:

W (k−1) (ξ ,ρ) =

(
ξ − ξ̄ (k−1)

)2

6K(k−1) +

(
ρ− ρ̄ (k−1)

)2

4G(k−1) . (12)

Equation (12), written as W (k−1) = W̄ (k−1) represents, in the principal stress space,
a prolate spheroid having semi axes proportional to the elastic parameters (G(k−1),
K (k−1)) and coordinates of the center depending on the initial stresses (ξ̄ (k−1),
ρ̄ (k−1)).
The LMM acts updating the elastic moduli and the initial stresses of Eq.(12) in such
a way that the spheroid is modified in shape and position till matching is realized on
the M-W-type surface at the stress point of given outward normal. In this context the
normal components are the volumetric and deviatoric strain rates of the fictitious
linear solution, namely: ε̇

`(k−1)
v ≡ ε̇

c(k−1)
v and ε̇

`(k−1)
d ≡ ε̇

c(k−1)
d . The above match-

ing point P(k−1)
M (ξY (k−1), ρY (k−1)) gives, with its H-W coordinates, the associated
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stresses at yield. A nonlinear system of 5 equations provides the searched matching
point. The quite complex geometrical problem associated to the LMM applied to
M-W-type yield surface has been deeply discussed in a recent paper by the authors
[20].

For the FRP strengthening sheets, at a current iteration (k−1) and at a current GP,
the complementary energy functional consistent with the T-W-type yield criterion,
given by Eqs.(9), (10), can instead be written as:

W
(

σ j,E
(k−1)
j ,ν

(k−1)
12 , σ̄

(k−1)
j

)
=

1
2

[
σ2

1

E(k−1)
1

+
σ2
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2

 , (13)

where E6 is the shear modulus G12. The surface obtainable by Eq.(13) represents
in the stress space (σ1, σ2, σ6) an ellipsoid whose semi axes amplitude depend on
the elastic moduli, while its center position depends on the initial stresses. Referring
again to the sketch of Fig.1, that can be easily redrawn with reference to the stress
components σ1, σ2, σ6, the elastic parameter DI identify with E1, E2, E6, ν12, while
σ̄ j corresponds to σ̄1, σ̄2, σ̄6. The ellipsoid W (k−1) = W̄ (k−1) is in all similar to the
Tsai-Wu-type yield surface and this simplifies the matching procedure. By appro-
priately choosing the initial values of the elastic parameters and initial stresses of
the fictitious material, the complementary energy surface may indeed result homo-
thetic to the T-W-type surface and the matching procedure can be realized just by a
rescaling of the complementary energy surface. To this aim it is sufficient to rescale
by only one scalar coefficient the elastic parameters E j, which govern the amplitude
of the axes of W (k−1) = W̄ (k−1), through the updating formula:

E(k)
j = E(k−1)

j (Λ (k−1))2, ( j = 1, 2, 6) (14)

being the scalar coefficient Λ (k−1) the homothetic ratio between the two ellip-
soids, [18, 19]. In this case homothety implies that W = W̄ , at matching, simply
coincides with the yield surface. The points P(k−1)

L and P(k−1)
M not only have the

same normal of components ε̇
c(k−1)
j , with j = 1,2,6, (as required by matching) but

they belong, since the beginning, to the same straight line passing through the stress
space origin. Eventually, at matching, the coordinates of P(k−1)

M , namely σ
Y (k−1)
j

with j = 1,2,6 give the pertinent stresses at yield.

The application of the LMM results even more simple with reference to the von
Mises yield criterion. Nevertheless, the sketch of Fig.1 becomes meaningless, the
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von Mises yield surface being in the principal stress space a cylinder indefinite along
its axis coincident with the hydrostatic axis. The procedure can indeed be carried on
with reference to the deviatoric plane where the essential requisite of strict convexity
is recovered, the von Mises surface being a circle. Looking at the geometrical sketch
of Fig.3(a), under the hypothesis of incompressible fictitious material the pertinent
complementary energy potential functional consistent with a von Mises material, at
a current iteration (k−1), can be written as:

W (ρ,E(k−1)) =
3ρ2

4E(k−1) (15)

which, if written in the shape W (k−1) = W̄ (k−1), represents a circle concentric to the
von Mises one. With reference to Fig.3(a), the linear fictitious solution at a current
iteration, (k− 1), and at the current GP can be represented by the deviatoric stress
invariant, point Q(k−1)

L (|OQ(k−1)
L | ≡ ρ(k−1)), having outward normal the deviatoric

strain rate ε̇d
(k−1).

To find the corresponding matching point Q(k−1)
M it is sufficient to move along the

radius
−−→
OQL

(k−1) that is to re-scale the complementary energy surface by modifying
the Young modulus E(k−1) with the updating formula:

E(k) = E(k−1) ρy

ρ(k−1) (16)

that brings W (k−1) = W̄ (k−1) to coincide with the von Mises deviatoric circle of
radius ρy. In the case of uniaxial stress condition, as the one detected in the steel
bars, Eq.(16) is further simplified, i.e.:

E(k) = E(k−1) σy

σ
(k−1)
1

. (17)

The key idea of the present approach is now achievable: the LMM is applied
simultaneously to all the FEs of the discrete model of the RC structure, i.e. to each
GP of each element. The proper yield condition and matching procedure will be
used at the GPs of the FEs describing concrete, FRP sheets and steel bars.
When, at current iteration and for each GP of the FE mesh the stresses at yield,
the corresponding strain rates at collapse, together with the associated displacement
rates at collapse, are known, it is possible to compute an upper bound multiplier, say
P(k)

UB, by applying Eq.(1) that particularizes as follows:

P(k)
UB =

∫
V (ξ

Y (k−1) ε̇
c(k−1)
v +ρY (k−1) ε̇

c(k−1)
d + σ

Y (k−1)
j ε̇

c(k−1)
j +ρy ε̇

c(k−1)
d )dV∫

∂Vt
p̄i u̇c(k−1)

i d(∂V )
.

(18)
As said, the iterative procedure is carried on until the difference between two

subsequent PUB values is less than a fixed tolerance.
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5 Three-yield-criteria ECM

Following the same rationale of the previous section, the ECM, presented in its gen-
eral formulation in Section 2.2, is also applied to the whole structure. The admissible
stress field for a given maximum applicable load has to be detected with respect to
each of constituent materials yield surface.

With reference to concrete and FRP sheets, the point Pe(k−1)
#e of Fig.2 has to

be simply interpreted with the pertinent coordinates, namely: (ξ e(k−1)
#e , ρ

e(k−1)
#e ,

θ
e(k−1)

#e ) in the Haigh-Westergaard coordinates when dealing with M-W-type yield
surface or (σ e(k−1)

#e1
, σ

e(k−1)
#e2

, σ
e(k−1)

#e6
) when working on FRP sheets within the (σ1,

σ2, σ6) stress space. PY (k−1)
#e denotes the corresponding stress point on the yield

surface, measured on the direction
−→
OPe

#e

/
|
−→
OPe

#e| and the reduction formula given by
Eq.(2) holds true and it has to be applied if the elastic solution at the #e-th element
is such that |

−→
OPe

#e|(k−1) > |
−→
OPY

#e|(k−1).
In particular, assuming that the concrete Poisson ratio v remains constant, the up-
dating of the Young modulus by Eq.(2) is equivalent to modify the bulk modulus
K(k−1)

#e and shear modulus G(k−1)
#e by the same reducing factor. When dealing with

FRP reinforcement the reduction is applied instead to the three element’s Young
moduli of #e, namely to E(k)

#e j
, j = 1,2,6.

With reference to steel, at the current iteration (k− 1), the deviatoric stress in-
variant ρ

(k−1)
#e evaluated within the steel bar elements #1,#2,..., #e, ..., #n, can be

represented as in Fig.3(b). As said, in the elements where ρ
(k−1)
#e is greater than

ρy the elastic modulus must be modified (reduced). This goal can be achieved by
varying the elastic modulus as in Eq.(16). It is worth to remark that the “modulus
variation” realized by Eq.(16) possesses, in this case, a completely different mean-
ing. When it is applied within the LMM, the above variation (reduction or increse),
is driven by a fixed strain rate and, as said, it is oriented to build a collapse mecha-
nism. On the other hand when such modulus variation is applied within the ECM it
is always a reduction necessary to bring a not admissible stress onto the yield sur-
face so realizing a stress redistribution oriented to build an admissible stress field.
It has also to be noted that the LMM acts on all the GPs of the FE mesh. All the
GPs are viewed as possible sites where a mechanism might arise. The confinement
of the plasticized zone is obtained only at convergence. On the contrary, the ECM
acts only on the elements characterized by stress quantities greater than the yielding
ones in the attempt to mimic a stress redistribution within the structure. Also in this
case, it has been numerically experienced that the convergence rate increases if the
square of the updating ratio, ρy/ρ

(k−1)
#e , is used so the updating formula becomes:

E(k)
#e = E(k−1)

#e

[
ρy

ρ
(k−1)
#e

]2

. (19)
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Within the current sequence, after the described moduli redistribution on concrete,
FRP laminates and steel bars, the three maximum stress values have to be detected
in the whole FE mesh. Precisely, the three stress points farthest away from the yield
surfaces considered, say P(k−1)

R for concrete or FRP and ρ
(k−1)
R for steel bars.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  Geometrical sketch of the limit analysis procedure in the deviatoric plane for steel bars: 
(a) the matching procedure from iteration (k-1) to (k) performed at the current GP of current bar 
element; (b) stress points measured within the steel bar elements #1, #2, #3, …, #e, …, #n, to apply 
ECM, Rρ  dealing with the ”maximum stress” among the bar elements. 
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Fig. 3 Geometrical sketch of the limit analysis procedure in the deviatoric plane for steel bars: (a)
matching procedure from iteration (k−1) to (k) performed at current GP of current bar elements;
(b) stress points measured within the steel bar elements #1, #2, #3, ...,#e, ...,#n to apply ECM,
ρ
(k−1)
R denoting the “maximum stress” among the bar elements.

Referring again to Fig.2 and Fig.3(b) if |
−→
OPR|

(k−1)
is greater than |

−→
OPY

R|
(k−1)

or
ρ
(k−1)
R is greater than ρy a new FE analysis is performed within the current se-

quence keeping fixed the applied load but with the updated E(k)
#e given by Eqs.(2)
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and (19). The iterations are carried on, inside the given sequence, until all the stress
points just reach or are below their corresponding yield values, which means that an
admissible stress field has been built. Increased values of loads are then considered
in the subsequent sequences, each one with an increased value of P(s)

D , till further
load increase does not allow the maximum stresses to be brought below yield by
redistribution. A PLB load multiplier can then be evaluated at last admissible stress
field attained for a maximum acting load P(s)

D p̄i, say at s = S, and at last FE analysis,
say at k = K, as the minimum between the three values:

PLB = min


|−→OPY

R|
(K) P(S)

D

|
−→
OPR|

(K)


CONCR

;

|−→OPY
R|

(K) P(S)
D

|
−→
OPR|

(K)


FRP

; ρy
P(S)

D

ρ
(K)
R

 .

(20)

6 Applications

The main goal of the following applications is to verify the reliability of the ex-
pounded three-yield-criteria limit analysis numerical procedure in predicting the
limit state (peak load and failure mechanism) of structural RC elements strength-
ened by FRP sheets. Experimental findings on large scale specimens, taken from
the relevant literature, have been numerically reproduced and the obtained results
have been compared with those given by the laboratory tests.
In all the numerical analyses a perfect bonding between steel bars and concrete as
well as between FRP sheets and concrete has been assumed. Reference is made to
the experimental works of Almusallam and Al-Salloum [1] who thested, up to fail-
ure, steel reinforced concrete beams strengthened with Glass FRP (GFRP) sheets.
Indeed, the above quoted paper faces a number of experimental tests, carried out
to investigate the effects of the GFRP strengthening on the flexural capacity and
central deflection of the beams, so that the experimental campaign considers beams
with and without GFRP reinforcements. Only some of the available experimental
results are then taken into consideration, namely those in which the sheets of GFRP
are present. In particular, using the same label of Almusallam and Al-Salloum [1],
the analyzed beams are: GB2, GB4 and GB6.
The beams are simply supported and subjected to four-point bending test through
two line loads Pp̄/2 placed at the same distance with respect to the mid-span. For
all the considered specimens, P denotes the load multiplier, while p̄ denotes the line
reference load whose resultant is assumed equal to 100kN. Figure 4(a) shows the
mechanical scheme used for beams together with all the geometrical details. Only
half specimen is modeled due to symmetry with respect to the longitudinal direc-
tion. The beams are reinforced with different arrangement of internal steel bars and
stirrups, and strengthened with different arrangement of GFRP sheets as reported in
Figures 4(b). Furthermore, the relevant material properties for concrete and GFRP



16 Aurora Angela Pisano, Paolo Fuschi, Dario De Domenico 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  Mechanical model of  the analyzed simply-supported beams GB2, GB4, GB6: (a) 
geometry, loading and boundary conditions; (b) cross section geometry with reinforcement 
arrangement (Almusallam and Al-Salloum [2005]); all the dimensions are in mm. 
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Fig. 4 Mechanical model of the analyzed simply-supported beams GB2, GB4, GB6: (a) geometry,
loading and boundary conditions; (b) cross section geometry with reinforcement arrangement (after
Almusallam and Al-Salloum [1]); all the dimensions are in mm.

reinforcement are given in Tables 1 and 2 respectively, while, for what concerns
steel a Young modulus of 200GPa and a yield strength σy of 537MPa have been
assumed for all specimens.
It has to be noted that in Table 1 the uniaxial tensile strength value has been com-
puted as f

′
t = 0.33

√
f ′c as suggested by Bresler and Scordelis [4], and the elastic

concrete modulus has been assumed Ec = 22( f
′
c/10)

0.3
according to Eurocode 2.

Moreover, for what concerns the choices related to the adopted concrete constitu-
tive model, the value of the eccentricity parameter e of the M-W-type yield surface
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has been evaluated by the expression e =
[
2+ f

′
t / f

′
c

]/[
4− f

′
t / f

′
c

]
, the f

′
t / f

′
c be-

ing assumed as a measure of the material brittleness. Finally, the value of ξv can be
expressed as ξv =

√
3 f
′
c
/

m, while ξa and ξb have been set equal to ξa = 0.7923 f
′
c

and ξb = 1.8964 f
′
c as suggested by Li and Crouch [13][2010].

 

                                  Table 1 Mechanical  parameters  of  concrete  for  the  
 analyzed beams. 

specimen label  concrete properties 

  '
cf  (MPa) tf

'  (MPa) cE  (GPa) 

GB2  36.00 1.98 32.31 
GB4  36.60 2.00 32.47 
GB6  33.80 1.92 31.70 

 

 
Concerning the numerical model, it is worth noting that in both LMM and ECM
the elastic analyses can be carried out by any commercial FE code. In the following
applications the ADINA code has been used while a Fortran main program has been
used to drive the FE analyses within the sequences. The elastic analyses performed
within the LMM and ECM have been carried out using FE meshes of 3D-solid 8-
nodes elements with 2x2x2 GPs per element for modeling concrete, 2-D-solid plane
stress 4-nodes elements for modeling GFRP laminates and 2-nodes, 1-GP, truss ele-
ments for modeling steel bars and stirrups. To set up the FE model of each analyzed
specimen a preliminary mesh sensitivity study, to assure an accurate FE elastic solu-
tion, has been performed. More precisely, the number of 3D-solid elements is 504,
that of truss elements is 246, while the number of 2D-solid elements ranges from 80
to 160.

 

                 Table 2 Mechanical  parameters of FRP laminae of the strengthening sheets. 

 FRP lamina moduli  FRP lamina strengths 

 E1  
(GPa) 

E2  
(GPa) 

G12  
(GPa) 

ν12 
  Xt  

(MPa) 
Xc  

(MPa) 
Yt  

(MPa) 
Yc  

(MPa) 
S  

(MPa) 
 30.0 30.0 3.80 0.28  600 600 600 600 89 

 

 
The obtained numerical results are reported in Tables 3 in which, for the three

analyzed specimens, are given: the peak load multiplier experimentally detected
PEXP; the predictions in terms of upper and lower bound values, PUB and PLB, and the
relative errors (in %), Err(PUB) and Err(PLB), computed as the difference between
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the numerical detected values and the experimental ones over the experimental one.

 
 

Table 3 Peak  load  multipliers  for  the  analyzed  RC beams: values 
experimentally detected, PEXP; values of the upper and lower bounds, 
PUB and PLB; relative errors, Err (PUB) and Err (PLB). 

Specimen label  Peak load multipliers        Relative error %  

  PEXP PUB PLB  Err (PUB) Err (PLB) 

GB2  0.562 0.596 0.498  6.05 -11.39 
GB4  0.587 0.649 0.550  10.56 -6.30 
GB6  0.635 0.671 0.580  5.67 -8.66 

 

With the adopted definition of the relative errors, the upper bound values are ex-
pected to have a positive relative error, while the lower bound values are expected
to have a negative relative error. The inspection of the numerical findings highlights
the very good prediction obtained with the proposed three-yield-criteria limit anal-
ysis approach. In order to have a more immediate perception of the quality of the
numerical predictions, the data of Table 3 are drawn in Fig.5 as histograms. Other
quite encouraging results have been obtained on FRP strengthened RC beams and
slabs (see e.g. [7] ), but are not reported here for lack of space.

 

 

 

 

 

 

 

 

 

 

                             

 

Figure 5 Comparison between numerical and experimental peak load multipliers for the analyzed 

beams. 

Fig. 5 Comparison between numerical and experimental peak load multipliers for the analyzed
beams.

The LMM gives also some hints on the type of failure mechanisms. Such a pre-
diction in fact is given by the possibility to point out the plastic zone (portions of
the FE-mesh where the collapse mechanism has been eventually located) at “last
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converged solution” of the LMM. Just to show one of the analysed cases, the plots
of the principal (compressive) strain rates ε̇c

3 within RC concrete elements and of
the principal strain rates ε̇c

1 within GFRP elements have been considered for beam
GB4, at convergence. Plots are shown in Figs.6(a, b). By inspection of Fig.6 it is
possible to observe a plasticized zone, corresponding to a plastic hinge spread at
beam center. This zone appears reasonably narrow and located where the damaged
zones have been actually experimentally detected, as confirmed by the photograph
given in Fig.6(c) concerning beam GB4 at failure. It is worth to mention that the
band plots of Figs.6(a, b) provides only qualitative information of the failure mech-
anisms, but they can be anyway useful to localize critical zones or weaker members
within larger structural systems.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9  Prediction of the failure mechanism for the beam GB6. Band plot of principal 
compressive strain rates, in the deformed configuration, at the ultimate value of the acting load 
obtained at last converged solution of the LMM. (a) RC elements; (b) laminate elements; (c) 
photograph of the central part of beam GB6 at failure (after  Almusallam and Al-Salloum [2005]). 
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Fig. 6 Prediction of the failure mechanism for the beam GB4. Band plots of principal strain rates,
in the deformed configuration, at last converged solution of the LMM. (a) RC elements; (b) FRP
laminate elements; (c) photograph at midspan of beam GB6 at failure (after Almusallam and Al-
Salloum [1]).
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7 Concluding remarks

A multi-yield-criteria limit analysis numerical procedure for the prediction of peak
loads and failure modes of steel-reinforced concrete elements strengthened with
FRP laminates has been proposed. The behavior at ultimate state of the constituents,
namely: concrete, FRP sheets and steel bars has been taken into account by a numer-
ical procedure that involves, in concomitance, a Menétrey Willam-type yield crite-
rion with cap in compression for concrete, a Tsai Wu-type yield criterion for the
FRP strengthening reinforcement and the von Mises yield criterion for steel bars.
The lack of associativity, postulated for concrete, to deal with its dilatancy, and for
the FRP sheets, due to their compositive nature, has led to search for an upper and
a lower bound to the peak load multiplier of the whole RC structural element. The
former has been pursued by the LMM, the latter by the ECM. Both methods have
been applied simultaneously to the three finite element types adopted to model con-
crete, FRP and steel; each type obeying the proper yield criterion. Large scale pro-
totypes of a few FRP-strengthened RC beams, experimentally tested up to failure,
have been numerically analyzed. The reliability and effectiveness of the proposed
methodology has then been proved by comparison between experimental and nu-
merical results showing also the capability of predicting, even if qualitatively, the
failure mechanism type of the analyzed element.
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