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ABSTRACT 

The paper proposes a limit analysis approach to define the ultimate load 

capacity of orthotropic composite laminates under biaxial loading and plane stress 

conditions. A lower bound to the collapse load multiplier is computed by solving 

a maximization nonlinear problem, according to the static theorem of limit 

analysis. To set up the optimization problem a stress field distribution is 

hypothesized at lamina level, moreover inter-lamina stresses are also considered. 

The effectiveness and validity of the proposed approach is shown by comparing 

the obtained numerical predictions both with available experimental data and with 

other numerical results carried out by means of a different numerical lower bound 

approach. 

KEY WORDS: A. Laminates, C. Numerical Analysis, Limit Analysis, Nonlinear 

Optimization. 
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1. INTRODUCTION  

Composite materials, due to their mechanical and physical properties, are 

nowadays increasingly used in many advanced engineering fields such as 

aeronautical, marine and civil engineering. This justifies the continuing scientific 

interest both in theoretical and experimental studies of such materials. Among the 

various problems faced on the subject, a paramount effort has been made to 

determine the ultimate strength of composite laminates to be used for design 

purposes. However, because of anisotropy and heterogeneity of composite 

laminates it is difficult to predict strengths. On the other hand, a failure process in 

a laminate can arise with different failure modes due to matrix crushing, fiber 

rupture, fiber buckling, delamination and/or a combination of the above 

phenomena [1].  Furthermore, the failure process is also influenced by the 

laminate lay-up, the number of layers, their orientation and stacking sequence. 

Due to the complexity of the problem, several predicting failure theories for 

composite laminates have been developed in literature [2]. Some theories are 

based on linear or nonlinear analysis, some involve damage and/or fracture 

mechanics concepts, some are applied at lamina level others are applied on a 

homogenized laminate, some are based on analytical models others on numerical 

analysis, some others are physically based (see e.g. [3]-[5]). The list is not 

exhaustive and is out of the scope of this paper to provide an overview on the 

subject. 
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About ten different theories of predicting failure in a laminate were compared 

by Soden et al. [6], [7] by analyzing the results of the Word Wide Failure Exercise 

(WWFE) that remains an open benchmark for those who want to validate a failure 

theory on composite laminates.  

Besides theories presented in [2], among others, a valid alternative to predict 

the strength capability of a composite laminate is given by the application of 

nonstandard limit analysis. The nonstandard limit analysis approaches are based 

on the Radenkovic static and kinematic theorems of limit analysis [8] and allow to 

evaluate a lower and an upper bound to the collapse load multiplier of a composite 

laminate in a direct manner, i.e. without carrying out a complete post-elastic 

analysis of stress or strain in the laminate, so resulting relative simple methods of 

practical connotation for design purposes. It is worth noting that, consistently with 

a limit analysis theory, these approaches do not allow to describe phenomena 

arising after a state of incipient collapse such as delamination, debonding or 

damage in a wider sense. 

Despite the above observation, several limit analysis approaches, in the field 

of composite material structures, have been recently proposed in many scientific 

contributions and with different scopes. Among others, some studies provided the 

explicit analytical form of the upper bound multiplier for composite plates in 

tension [9] or in bending [10] by minimizing the expression of an appropriately 

derived dissipation power. Other studies are mainly devoted to the determination 

of plasticity/strength domains for composites. In [11] for example, by using the 
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homogenization method of periodic media, the plasticity domain of metal matrix 

composites is found by solving a limit analysis problem on a unit cell. Papers [12] 

and [13] are aimed at determining the plasticity domain of composite laminates 

and pin-loaded composite laminates, respectively, under a tensile loading; in these 

contributions the laminate is modelled as a three-dimensional solid and the 

problem is solved by combining finite element methods and mathematical 

programming numerical procedures. As an alternative approach, limit state 

solutions may be obtained from sequences of elastic (linear) analyses of the 

structure. In this case the elastic parameters of the constituent materials of the 

structure are suitably changed to mimic inelastic phenomena. In particular, to this 

kind of approach belong the Linear Matching Method (LMM) and the Elastic 

Compensation Method (ECM). The former is a procedure aimed at constructing a 

collapse mechanism for the evaluation of an upper bound, while the second is a 

procedure aimed to constructing an admissible stress field suitable for the 

evaluation of a lower bound. Both procedures have been recently applied in the 

field of composite materials to determine the load bearing capacity of multi-layers 

composite laminates and pin-loaded structural elements (see e.g. [14]-[19]). 

Finally, a broad overview of the state of the art concerning numerical and 

theoretical developments of direct methods can be found in the books [21]-[23] 

and references therein,  which collect the results of international workshops on 

this topic. 
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In the context of limit analysis procedures may be inserted the present paper 

which proposes a lower bound approach to predict the strength capability of 

orthotropic composite laminates under biaxial loading and plane stress conditions. 

In particular, the implemented procedure considers a multilayered domain which 

is a 3D cylindrical domain. Each layer obeys, by hypothesis, a Tsai-Wu type 

criterion [23] and, in particular, a second order polynomial form of it, the latter 

assumed as yield condition. Moreover, for each layer, a stress field distribution 

has been hypothesized in such a way that it satisfies boundary conditions and it 

results in equilibrium with the applied loads. An optimization nonlinear problem 

is then solved to determine the searched lower bound to the collapse load 

multiplier.  

Four numerical examples are carried out to validate the proposed approach by 

comparing the obtained results both with experimental data and with the results of 

another limit analysis approach available in literature. Precisely, the first two 

examples are aimed to construct a biaxial failure envelope for two multi-layered 

composite laminates under biaxial loads, the latter are described in detail in the 

well documented WWFE [6], [7]. The second couple of examples concerns the 

peak load prediction of a square composite plate having different material 

configurations and subjected to two different loading conditions, in this case the 

obtained results are compared with those obtained by Pisano et al. via the elastic 

compensation method [25]. For all the examined examples, the predicted ultimate 
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loads appear in good agreement with the expected ones so validating the proposed 

approach and encouraging for further investigations. 

2. LIMIT LOAD OF A COMPOSITE LAMINATE SUBJECTED TO BIAXIAL 

LOADING – THEORETICAL BACKGROUND 

2.1 GEOMETRY AND MECHANICAL MODEL 

To model the laminate consisting of n unidirectional plies, a mechanical 

model was developed for a multilayer domain with n anisotropic layers (Fig. 1). 

The laminate is designed as a cylindrical domain Ω of 3  with a plane base 

2[ /2, /2] [ /2, /2]a a b b       and n layers (or plies). Each ply is designed as a 

cylindrical domain Ωi with a thickness ei. The overall thickness of the multilayer 

laminate is denoted by 1
n i
ih e  . In the following, a single bar beneath the 

symbols denotes a vector, two bars indicate a second order tensor. The set 

( , , )x y ze e e  is an orthogonal vectorial basis of Ω with ( , )x ye e   and [0, ]h  . 

The relative cylindrical domains for the different plies are denoted by 

1
1 1[ , ]i ii i

i ii e e 
       for the layers {2, , }i n  and 1 1[0, ]e    for the layer 1 

at the bottom of the laminate. The interface between two adjacent layers i and i+1 

is represented by the surface 1i i   (Fig. 1).  
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Fig. 1. Schematic mechanical model of a multilayer composite laminate subjected to a biaxial 

loading condition. 

Looking at Fig. 1, a biaxial loading condition is assumed in which membrane 

loads ( ,xx yyN N ) are applied at the four edges of the laminate, i.e. at /2x a   and 

/2y b  . The membrane loads are defined as:  
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where xx  and yy  are the stress values at the edges of the laminate /2x a   and 

/2y b  , respectively. Similarly, i
xx and i

yy  are the stress values at the edges 

/2x a   and /2y b   in a layer i  and ih  indicates the ordinate of the upper face 

of ply i  or, equivalently, of the lower face of ply 1i  , see again Fig. 1. 
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2.2 STRESS TENSOR, EQUILIBRIUM EQUATIONS AND BOUNDARY 

CONDITIONS 

2.2.1 STRESS TENSOR 

The second order stress tensor is written in i , the field related to ply i , as 

follows: 

         where  , , , 1 and , , ,
i iX X X x y z i n x y z           (2) 

Because of the symmetry of geometry, loading and boundary conditions, the study 

can be limited to a quarter of the laminate, i.e. only the domain 

( , ) [0, /2] [0, /2]x y a b   is analyzed. We assume  Xi
xx  and  Xi

yy  to be linear 

functions of x and y, respectively, and satisfying the boundary conditions at the 

edges. The tangential stress components  i
xy X are taken constant per ply i , i.e.: 

0
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0 1
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 



  (3) 

in which: i
xx  and i

yy  are the stress values at the edges of the plate assumed 

constant per ply i ; 0
i
xx  and 0

i
yy  are the stress values at the center of the plate 

assumed constant per ply i ; i
xy are the tangential stress values assumed constant 
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per ply i . The latter assumption arises from considering the shear stress field to be 

only caused by the stacking sequence effect across the laminate, i.e., no 

membrane tangential load is assumed to be applied onto the laminate. Finally, the 

stresses  i
xz X ,  i

yz X  and  i
zz X  are taken as linear functions of z, i.e.:  
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   

  (4) 

where , 1i i
xz  , , 1i i

yz   and 1, ii
zz  are the inter-laminar stress values. Moreover, stresses 

given in (4) must satisfy the boundary conditions, the stress vector continuity 

conditions at each lamina interface and the local equilibrium equations 

for 1[ , ]i iz h h  as better specified in the next section. 

2.2.2 EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS  

The stress field previously selected must satisfy the local equilibrium given by 

the following Eq. (5) for volume forces equal to zero, the boundary conditions at 

/2x a  and /2y b  derived from Eq.(1), the free edge conditions on the top and 

bottom face of the laminate, Eq. (7) (at 0z   and nz h , respectively), and the 

stress vector continuity at the interface   (see Eq. (8)) must also be satisfied. 
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In the above equations xxp  and yyp  are the weighted average values (across all the 

layers) of the xx  and yy  stresses calculated at the edges /2x a  and /2y b , 

respectively. Note that the condition given in Eq. (8) is naturally satisfied by the 

choice of the stress field given by Eq.(4). Similarly to Eqs. (1), membrane 

tangential loads xyN  may be defined as follows: 
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In case of no membrane tangential loads acting on the laminate, as in Fig. 1, the 

tangential stress i
xy in each ply i must satisfy the condition:  

 
1

0
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e 
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   (10) 

that, for laminates having layers of equal thicknesses, reduces to 
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2.3 FAILURE CRITERION IN LAYERS 

In Fig. 2, 1 2( , , )
i i

ze e e  represents the layer local co-ordinate system where 1

i
e  is 

in the longitudinal direction of fibers, 2

i
e  is in the transversal direction to fibers 

and 3 ze e  is in the orthogonal direction to the loading plane. In a ply i , the fiber 

orientation angle is denoted by i . 

 

Fig. 2. Local and global coordinate systems for a multi-layered laminate. 

For anisotropic materials Tsai and Wu [23] proposed a (failure) criterion in a 

tensor polynomial form, which, for the case of a unidirectional orthotropic 

laminate under plane stress conditions, is written as: 

 2 2 2
1 1 2 2 6 6 11 1 22 2 66 6 12 1 22 1F F F F F F F              .  (12) 

In Eq. (12) iF  and ijF  (with , 1,2,6)i j   are strength tensors of the second and 

fourth rank, respectively; 1 and 2 denote the principal directions of orthotropy in 

plane stress case [1]. 
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The coefficients iF  and ijF  ( , 1,2,6)i j   have to be determined by tensile, 

compressive and shear tests and are functions of the longitudinal tensile and 

compressive strengths ( tX  and cX ), of the transverse tensile and compressive 

strengths ( tY  and cY ) as well as of the longitudinal shear strength S  [1], [17]. It is 

worth remarking that in the present paper the Tsai–Wu type criterion of Eq.(12) is 

used for defining an admissible stress states domain (see [10], [18]). Points within 

the domain locate stress states pertaining to an anisotropic linear elastic behavior 

of the material. Points lying on the domain boundary locate stress states at which 

the material has exhausted its strength capabilities. Besides being a domain within 

which the stress state may be designated elastic, Eq. (12) also defines a convex 

domain which is an additional requirement for applying a limit analysis approach 

as the one proposed in this paper.  

As the Tsai–Wu type criterion applies to the local coordinate system 1 2( , , )
i i

ze e e  

while the other relationships involved in the optimization problem and introduced 

in the previous sections are referred to the global coordinate system ( , , )x y ze e e , a 

transformation rule, which is merely a rotation of stress directions, has to be 

applied. Only for completeness, we recall from elementary mechanics of materials 

that for expressing stresses in the (1,2,3) coordinate system in terms of stresses in 

the (x,y,z) coordinate system, by considering Fig. 2 the following transformation 

equations are applied at the generic layer i: 



13 

 

 

2 2
11

2 2
22

2 2
12

13

23

33

cos sin 2sin cos 0 0 0

sin cos 2sin cos  0 0 0

sin cos sin cos cos sin 0 0 0

0 0 0 cos sin 0

0 0 0 sin cos 0

0 0 0 0 0 1

i i
xxi i i i

i
yyi i i i

i

i i i i i i
i

i i

i
i i

i

    

    

      

  

 



   
   
   
   

    
   
   
   
   

   

i

i
xy

i
xz

i
yz

i
zz









 
 
 
 
 
 
 
 
 
  

 (13) 

According to the scheme sketched in Fig. 3, biaxial loading conditions for the 

laminate are assumed by means of a radial loading path. An angle  establishes the 

ratio of load magnitudes in the x and y directions, pxx and pyy, respectively, 

according to the formula: 

 tan  with [0,2 ]yy xxp p    ,  (14) 

where pxx and pyy are the weighted average stresses applied to the edges x = ± a/2 

and y = ± b/2, respectively. Expression (14) will be considered as an additional 

constraint of the optimization limit analysis problem. As will be shown in Section 

3.1, the assumption of such radial loading path is particularly suitable for 

constructing the biaxial failure envelope, because varying the  value throughout 

the trigonometric circle [0, 2] enables covering all the possible biaxial loading 

conditions thus describing the complete failure envelope in a straightforward 

manner. On the other hand, uniaxial load distributions along the x axis (e.g. 

tractions as the ones assumed in Section 3.2) may be obtained by setting =0 in 

the maximization problem (i.e. pyy=0).  
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Fig. 3. Schematic model of radial loading path to set biaxial loading conditions for the laminate. 

2.4 A LOWER BOUND APPROACH 

In order to find the failure load, a lower bound approach of limit analysis is 

considered. The set of potentially bearable loads must be in equilibrium with a 

statically admissible (SA) and plastically admissible (PA) stress field. More 

specifically, a SA stress field must satisfy equilibrium conditions (5) and 

boundary conditions (6), (7), whereas a PA stress field satisfy the yield criterion 

(12) at all points within the domain. The class of potentially bearable loads may 

therefore be expressed by the following set: 

     , / , , , , ,  SA  and  PAi i i i i i
xx yy xx yy xy xz yz zzK p p         . (15) 

2.5 IMPLEMENTATION OF THE MAXIMIZATION PROBLEM 

The present lower bound approach turns out to be a maximization problem to 

be solved. In particular, the weighted average pressures pyy at the edges 

(considered as objective function) has to be maximized under the conditions given 

by the local equilibrium equations, boundary conditions, the coordinate system 

xxp
xxp



yyp

yyp

loading direction

 fiber orientation
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transformation, the yield criterion and the loading path. Constraints containing the 

index i must be written n times for each layer i since each condition is valid at 

lamina level. The yield criterion must be verified for each ply i and a limit 

criterion is considered on the inter-laminar shear stresses as follows: 

 andxz yz     , (16) 

where   denotes the inter-laminar shear strength. On the basis of the convexity 

property of the yield criterion (12), it can be demonstrated that the maximization 

problem written for the studied domain ( , ) [0, /2] [0, /2]x y a b   is equivalent to the 

maximization problem written with reference to the four corner points of the 

laminate only, namely: 

 

1 1

2 2

3 3

4 4

( ) ( 0, 0, )

( ) ( 0, / 2, )

( ) ( / 2, 0, )

( ) ( / 2, / 2, ).

P z P x y z

P z P x y b z

P z P x a y z

P z P x a y b z

  

  

  

  

  (17) 

The considered approximation of the stress field reduces the number of variables 

within the optimization problem to (9n-3) parameters, n being the number of plies. 

These parameters are: , , , , ,i i i i i i
xx yy xy xz yz zz       in each ply i (6 n) and 

, 1 , 1 , 1, ,i i i i i i
xz yz zz      in each interface 1i i   (3( 1)n  ). 

The optimization problem has been solved by using the software Maple [25]. In 

particular, the algorithm used for the present study is the Sequential Quadratic 

Programming (SQP) method which is available for arbitrary unconstrained or 
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constrained nonlinear programs. We recall that the key idea of SQP algorithms is 

to replace a nonlinear problem, as the one here involved, with a sequence of 

quadratic sub-problems, in such a way that the sequence of solutions of the sub-

problems converges to the solution of the original problem. Each sub-problem is 

solved by employing a Newton’s method (using a quadratic approximation of the 

objective function subject to a linearization of the constraints) and the solution for 

a given iteration k is used to construct a new iteration k+1 until convergence. 

Having in mind all the conditions discussed above, the maximization problem is 

written out as follows: 

Max

Stress field expressions, Eqs. (3), (4)

Local and global equilibrium equations, Eqs. (5), (10)  

Static boundary conditions, Eqs. (6), (7) 

Stress vector continuity at the interfaces, Eq.
subject to

yy
p

   1 2 3 4 -1

 (8)

Failure criterion, Eq. (15) at ( ), ( ), ( ), ( ), , , 1..

Transformation equations, Eq. (13)

Loading path, Eq. (14)

Limit criterion on the inter-laminar shear stresses, Eq. (16)

i i
P z P z P z P z z h h i n 















  (18) 

3. VALIDATION OF THE PROPOSED MODEL 

The applicability and efficacy of the proposed static approach has been 

scrutinized by comparing the numerical predictions with both experimental 

findings, available in literature, and numerical results given by another limit 

analysis approach. In this regard, four different groups of examples have been 

analyzed and discussed in this section. Examples #1 and #2 concern the 

construction of a biaxial failure envelope for two multi-layered composite 
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laminates under biaxial loads. The mechanical properties of these two laminates 

as well as their complete biaxial failure envelope are well-documented 

experimentally because these laminates were selected, within a set of six laminate 

types, as benchmarks in the WWFE [6], [7]. As already said in the introductory 

section, these benchmarks constitute an important reference for the validation of 

any failure theory applied to composite laminates. 

Examples #3 and #4, on the other hand, concern a square orthotropic plate 

with a variety of material properties (a parametric study is, in fact, performed) and 

subjected to two different loading conditions, namely a uniform tension and a 

uniaxial tensile triangular distribution, respectively. Such square plate was already 

analyzed via other numerical limit-analysis procedures based on different static 

and kinematic approaches [18], [9]. Despite the simplicity of the latter two 

examples, the possibility to compare numerical results obtained by the proposed 

approach not only with experimental findings but also with results given by 

alternative limit-analysis-based procedures is, in the authors’ opinion, highly 

important to check the consistency and effectiveness of the proposed procedure in 

determining the collapse load value for composite laminates.  

3.1 EXAMPLES #1 AND #2 

As mentioned, the first two examples have been taken from the WWFE [7] 

and concern a [±55°]s E-glass/MY750 laminate and a [90°/±30°]s E-glass/LY556 

laminate under biaxial loading conditions (Fig. 4a,b). It has to be noted that the 
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weighted average stresses pxx and pyy appearing in Fig. 4a,b are coincident with the 

biaxial stresses x and y, respectively. Full details about the experimental results 

for the first laminate are presented and discussed in [26]-[28], whereas for the 

second laminate reference is made to the experimental study performed in [29]. 

Test results of both the laminate types were systematically summarized in [6]. 

Different reasons motivated the choice of the aforementioned laminate types in 

the present study. The first laminate [±55°]s was selected in the WWFE and 

analyzed in this paper because of its widespread use in industrial pipework and 

availability of experimental results on the failure under a broad range of biaxial 

stresses including those in the compression-compression quadrant [6]. The latter 

aspect is important to assess the numerical predictive performance of the proposed 

limit analysis approach with regard to a wide range of loading conditions 

throughout the biaxial failure envelope x-y. Also the choice of the second 

laminate [90°/±30°]s is partly due to the large availability of experimental data on 

the failure envelope in terms of combined biaxial loads y-x. However, a 

substantial difference may be recognized between these two lay-up 

configurations: the [±55°]s stacking sequence results in a balanced and symmetric 

angle ply configuration and in a quasi-isotropic laminate, whereas the [90°/±30°]s 

stacking sequence lead to a general orthotropic (not quasi-isotropic) laminate; in 

the latter case the strength depends on the loading direction and a number of 

different failure modes are therefore expected to be experienced under biaxial 

loading [6]. Consequently, the construction of the complete biaxial failure 
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envelope for these two laminates through the static approach discussed in Section 

2 guarantees covering a rather general survey of data, being representative of a 

wide range of failure modes often encountered in industrial practical use, for a 

careful and thorough inspection of its predictive capabilities. 

 

Fig. 4. Mechanical model of example #1 and #2 (only one half of the plate thickness is considered 

for symmetry reasons): a) [±55°]s laminate under biaxial load; b) [90°/±30°]s laminate under 

biaxial load. 

It is worth noting that, due to the difficulties involved in performing 

experiments on such laminates under a wide range of loading conditions, almost 

all the experimental results (here considered for comparison purposes) were 

derived from tests on filament wound glass/epoxy tubular specimens (see [6], [30] 

for details about experimental equipment). However, this is only an experimental 

issue (above all, testing on tubes avoids problems associated with free edge 

effects encountered with other specimen shapes), because there exist well-known 

relationships than enable a simple conversion of such stress quantities [6], [30]. 

The laminate tubes were set up from unidirectional fiber reinforced composite 

)a )b

xxp

xxp

yyp

yyp

30 

ye

xe

ze

90
30 

xxp

xxp

yyp

yyp

55 
55 

ye

xe

ze



20 

 

plies, where the ply angle  was specified as the angle between the fiber direction 

and the axis of the tube. As a result, =90° corresponds to the circumferential 

direction y, whereas =0° leads to an axial stress for the tube ax. 

Manifold, specific biaxial loading conditions can therefore be reproduced by 

performing tests on such tubular specimens under combined axial load (tension or 

compression), torsion and/or radial pressure (internal or external). On the basis of 

that, a point in the biaxial failure envelope y-x corresponds to a fixed ratio of 

circumferential to axial stress /a in the experimental counterpart.  

Table 1. Example #1 and #2: mechanical parameters of the unidirectional lamina forming the 

composite laminates 

E-glass/MY750 lamina ([± 55°]s laminate)      

Elastic moduli (GPa) and Poisson ratio E1 E2 G12 12  

 45.6 16.2 5.83 0.278  

Strength (MPa) Xt Xc Yt Yc S 

 1280 800 40 145 73 

      

E-glass/LY556 lamina ([90°/± 30°]s laminate)      

Elastic moduli (GPa) and Poisson ratio E1 E2 G12 12  

 53.5 17.7 5.83 0.278  

Strength (MPa) Xt Xc Yt Yc S 

 1140 570 35 114 72 

The mechanical properties of the unidirectional lamina forming the composite 

laminates are reported in Table 1. The total thickness for the [±55°]s laminate is 

1mm (consequently, the thickness of each lamina is 0.25mm), whereas for the 

[90°/±30°]s the total thickness is 2mm (so that the ±30° plies cover 82.8% of the 

total thickness and the 90° plies form the remaining 17.2% of the laminate 

thickness).  
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The construction of the biaxial failure envelope for the [±55°]s E-

glass/MY750 composite laminate is illustrated in Fig. 5. Experimental data, 

superimposed in the plot for comparison purposes, were obtained on tubes having 

either 100 or 51mm inner diameter and various thicknesses. In particular, results 

reported in Soden et al. [26], [27] were obtained on typically 1mm thick tubes 

(although a couple of exceptions regarding 5.1mm thick specimens were included 

too) with 100mm inner diameter and subjected to combined internal pressure and 

axial loading; on the other hand, experimental data documented in Kaddour et al. 

[28] refer to both 100 and 51mm inner diameter tubes with thicknesses ranging 

from 4.24mm to 14.4mm. The latter tubular specimens were tested under 

combined pressure and axial compression [6], [28] and, therefore, give indications 

on the biaxial failure envelope in the third (compression-compression) quadrant 

only.  

As can be seen in Fig. 5, a reasonably satisfactory correlation of the numerical 

results with the experimental data is obtained for the [±55°]s laminate throughout 

the biaxial failure envelope, that is, for almost all the loading combinations. More 

in depth, a really good failure estimation is obtained by the lower bound approach 

both in the biaxial tension-tension and compression-compression quadrants (first 

and third quadrants). Very few scattered experimental data are present in the 

fourth (tension-compression) quadrant, however accurate numerical results may 

be observed also in this zone of the biaxial failure envelope. Finally, there being 

practically no data in the second (compression-tension) quadrant, no direct 
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comparison can be made although a likely trend from the contiguous experimental 

results can be envisaged which, once again, correlates very well with the 

corresponding numerical prediction. 

-600

-400

-200

0

200

400

600

-1000 -750 -500 -250 0 250 500 750 1000


xx

(M
P

a
)

yy (MPa)

Soden et al. (1989)

Soden et al. (1993)

Kaddour et al. (1998)

proposed approach

 

Fig. 5. Example #1: biaxial failure envelope for the [±55°]s E-glass/MY750 composite laminate 

(comparison with experimental data after [26], [27], [28]). 

 

On the other hand, the construction of the biaxial failure envelope for the 

[90°/±30°]s E-glass/LY556 composite laminate is depicted in Fig. 6. Extensive 

experimental work on this laminate type was carried out by Hütter et al. [29]. 

Experimental data, superimposed in the plot for comparison purposes, were 

obtained on tubes 2mm thick and having 60mm inner diameter [29]. Tubes with 

two external circumferentially wound 90° layers and helically wound ±30° central 

layers were subjected to combined internal pressure (hoop stress) and axial load 

[6].  
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Also in this case, a quite accurate numerical prediction of the failure envelope 

is achieved through the proposed limit analysis approach. Apart from the little 

deviation observed in the second quadrant (particularly for small y values 

approaching zero), a rather good description of the failure envelope as a whole 

can be observed, especially in the biaxial tension-tension and tension-compression 

(first and fourth) quadrants. Nonetheless, an overestimation of the predicted 

failure envelope compared to the experimental scattered data can easily be 

recognized in the third (compression-compression) quadrant. In this regard, it is 

worth noting that tubular specimens can experience various forms of buckling 

when they are subjected to combined circumferential or axial compression [6]. 

Actually, as stated in the related experimental report [29], the few test results 

carried out under external pressure and axial compression (i.e. in the compression-

compression quadrant) were reported to be governed by buckling. This 

experimental fact may presumably justify the overestimation of the experimental 

results in the third quadrant. Furthermore, under certain loading conditions, e.g. 

under high combined tension-tension stresses, delamination between plies may 

occur at the ends of the tubular configuration [1] and considerable damage may 

accumulate as well, which may, to some extent, explains some differences 

observed in the first quadrant. 
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Fig. 6. Example #2: biaxial failure envelope for the [90°/±30°]s E-glass/LY556 composite 

laminate (comparison with experimental data after [29]). 

3.2 EXAMPLES #3 AND #4 

In addition to examples #1 and #2 discussed in the previous section, two 

further numerical examples have been addressed to verify the effectiveness of the 

proposed static approach. These are two case studies which were solved 

numerically by different limit-analysis-based procedures (here only lower bound 

approaches based on the static theorem have been considered for uniformity with 

the proposed approach). In particular, example #3 concerns a square plate under 

plane stress conditions and, by hypothesis, made of a tetratropic material (Fig. 7). 

This example was first studied in [9] by means of an upper bound approach: for 

this simple problem the actual collapse mechanism, i.e. a uniform strain rate field, 

is in fact immediately detected and thus the use of the kinematic theorem leads to 

an explicit analytical expression of the upper bound multiplier [9]. The example 

-600

-400

-200

0

200

400

600

800

-400 -300 -200 -100 0 100 200 300 400 500


xx

(M
P

a
)

yy (MPa)

Hütter et al. (1974)

proposed approach



25 

 

carried out in the above mentioned paper presents an interesting sensitivity 

analysis on the influence of the ratio between tensile and compressive strength as 

well as of the “degree of orthotropy” of the material. 

 

 

Fig. 7. Example #3: square plate, made of a tetratropic material, uniformly loaded along two 

opposite edges. 

 

Looking at the mechanical model depicted in Fig. 7, the square plate of side a 

is uniformly loaded along two opposite edges in the x direction (at x=±a/2), while 

roller supports are applied along the other opposite edges in the y direction (at 

y=±a/2) so as to prevent transverse displacements of the plate. The load per unit 

length is specified as P0, where 0 is a given reference stress value and P is a 

scalar load multiplier.  

The plate is referred to a Cartesian co-ordinate system (x, y) while the 

principal directions of orthotropy are individuated by the Cartesian axes (1, 2). 

The angle  defines the counterclockwise angle between axis 1 and axis x along 

which the uniformly distributed load is applied (i.e. it indicates the fiber direction 
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of the laminate). As stated above, the material is tetratropic which implies that Xc 

 Yc and Xt  Yt. According to the study carried out in [9], a parametric analysis 

has been performed in which the effect of the ratio between tensile and 

compressive strength as well as of the material degree of orthotropy is carefully 

investigated. The Tsai–Wu criterion, Eq. (12), is adopted but assuming the 

following expressions for the coefficients Fi and Fij (i, j = 1, 2, 6): 
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  (19) 

where  is the ratio between tensile and compressive material strength such that it 

represents the degree of symmetry of the material behavior ( = 0 corresponds to a 

symmetric behavior), whereas  defines the degree of orthotropy of the material 

(isotropy is recovered for  = 1). Note that only for -1<<1 the yield surface (12) 

with coefficients given by (19) represents a convex domain. Note also that the 

value of 0 does not affect the solution since the coefficients reported in (19) are 

normalized by 0. 

In order to check the reliability of the proposed limit analysis approach a 

comparative study has been performed with the results obtained by a different 

limit-analysis procedure, namely the Elastic Compensation Method. The ECM 

was originally conceived by Mackenzie and Boyle [31] for von Mises type 

materials, typically perfectly plastic steel materials, but its flexibility and 
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applicability have since been extensively demonstrated in literature for a much 

wider range of material laws (see e.g. [32], [33]). For completeness, only a few 

quite general concepts concerning this procedure are described hereafter. 

Basically, the ECM is an iterative procedure based on the static approach of limit 

analysis and therefore enables one to calculate a lower bound to the collapse load. 

The purpose of such numerical procedure is to build a statically and plastically 

admissible stress field for the structure, and this is achieved by performing a series 

of linear elastic FE-based analyses with adaptive elastic parameters that are 

iteratively adjusted. While performing the elastic analyses, highly loaded regions 

of the structure (defined by a certain number of FEs) are systematically weakened 

by reduction of the local modulus of elasticity in order to simulate a stress 

redistribution arising within the structure before attaining its limit-state threshold. 

To identify the critical FEs which are the ones where the elastic parameters are to 

be updated, the elastic stress value in each FE, say e, is compared to the yield 

stress of the material, sayY , only when e>Y the reduction of the elastic 

moduli is put into effect. It appears clear that, even if based on the static approach 

of limit analysis, the ECM is to be considered rather different from the proposed 

limit analysis approach described in Section 2: the optimization problem, in fact, 

is not solved explicitly (i.e. in a strict mathematical way resorting to a 

mathematical programming algorithm), but using conventional FEM as the basis 

for an iterative procedure (the ECM belongs, in fact, to the so-called modulus 
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variation procedures similarly to the Linear Matching Method [14], [16], [18], 

[34]).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Lower bound multipliers for the problem of Fig. 7: comparison between results obtained by 

the ECM and by the proposed approach for different ,  and  values. 
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As far as this study is concerned, the problem sketched in Fig. 7 has been 

solved by an extension of the ECM to orthotropic composite laminates, the 

analytical details of which may be found in [25] and [15]. The Tsai–Wu failure 

criterion, Eq. (12), has been implemented as yield condition as explained in [15] 

and the FE elastic analyses, representing the iterations of the ECM, have been 

performed using the ADINA FE-code; a FORTRAN main program has been 

developed to drive the iterative procedure realizing the redistribution process 

throughout the laminate (in practice the updating of the elastic moduli to be used 

as input data in the FE-code at each new iteration).  

Due to the symmetry of the problem only half of the plate has been studied in the 

FE-model, inserting the proper boundary conditions along the center line x=0. A 

FE-mesh consisting of 50 isoparametric 16 nodes quadrilateral elements has been 

considered with 16 Gauss points per element. The elastic moduli for the FE 

analyses are derived from the coefficients given in Eq.(19) and assumed as: 
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In Fig. 8a, b the results given by the proposed static approach are compared 

with those obtained by the ECM. These two plots illustrate the lower bound 

multiplier, PLB, versus the  angle (i.e. for different fiber orientations with respect 

to the loading direction, see again Fig. 7) and for different  and  values; more 

specifically, three series of plots, =0, 0.25, 0.5, are depicted in Fig. 8a, b for 

=0.25 and =4.0, respectively. If   is the maximum shear strength of the 
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laminate for the isotropic case, the latter two values of , namely =0.25 and 

=4.0, corresponds to a maximum shear strength value equal to 2  and / 2 , 

respectively. Moreover, since the material behavior in the two orthotropic 

directions is the same, only the interval 0 45     is studied; the maximum 

effect of anisotropy is obviously experienced for =45°. Overall, 60 different 

laminate cases have been analyzed in this comparative study.  

By inspection of Fig. 8a, b it can be observed that the results obtained by the 

two different limit analysis approaches show a highly satisfactory correlation for 

all the examined laminate parameters. The collapse multiplier seems to depend 

linearly on  and the diagrams undergo a simple translation upon varying such 

value. Relative differences of approximately 5-10% are noticed between the two 

approaches for all the considered cases, which is a really good result. It is worth 

noting that assuming a linear stress field within the proposed static approach–as 

the one expressed by Eq. (3)–produced the same collapse load multipliers as those 

obtained by assuming a constant stress field, which may be due to the simplicity 

of the studied loading condition or material properties. 

As last numerical case analyzed, the mechanical model of example #4 is 

reported in Fig. 9. As can be seen, the same geometry as the previous example #3 

has been considered, i.e. a square plate having side a (assumed equal to 10cm in 

this example) and unit thickness. In this example the plate is made, by hypothesis, 
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of a unidirectional orthotropic laminate with fibers directed along the x axis (i.e. 

θ=0°, e1≡ex and e2≡ey). 

 

Fig. 9. Example #4: square plate, made of a unidirectional laminate with fibers parallel to x axis, 

subjected to a triangular tensile load distribution. 

As a further difference compared to the previous example, the plate is loaded 

along two opposite edges in the x direction (at x=±a/2) by a triangular shaped 

distributed (not uniform) load, while the transverse displacements (along y) are 

prevented on the other edges (at y=±a/2) similarly to the previous example. The 

triangular load distribution is specified by its maximum value 0k p  at y=0, where 

0p  is a given reference value (assumed equal to 20MN/cm) and k is a scalar load 

multiplier.  

Two different composite materials have been considered, namely 

graphite/epoxy (T300/5208) and boron/epoxy (B(4)/5505). The material 

parameters of these two orthotropic laminates, in terms of strength values and 

elastic properties, are reported in Table 2.  
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Table 2. Example #4: mechanical parameters of the unidirectional orthotropic laminates of Fig. 9 

T300/5208 graphite/epoxy laminate      

Elastic moduli (GPa) and Poisson ratio E1 E2 G12 12  

 181 10.3 7.17 0.28  

Strength (MPa) Xt Xc Yt Yc S 

 1500 1500 40 246 68 

      

B(4)/5505 boron/epoxy laminate      

Elastic moduli (GPa) and Poisson ratio E1 E2 G12 12  

 221 20.7 5.79 0.23  

Strength (MPa) Xt Xc Yt Yc S 

 1260 2500 61 202 67 

Also in this case the results obtained by the proposed static approach have 

been compared with those given by the ECM. With regard to the ECM, the same 

FE-mesh as example #3 has been adopted; nearly ten iterations (FE elastic 

analyses) were sufficient to obtain a convergent lower bound value. On the other 

hand, with regard to the proposed static approach the theoretical background 

given in Section 2 remains valid, but the stress field must be rectified in order to 

respect the loading conditions. Since the present test is uniaxial, the components 

of the stress field are: 

-      ,  andxz yz zzX X X    remain equal to zero due to the assumption of thin 

plate; 

-  Xxx  is taken a linear function of both x and y to satisfy the boundary 

conditions, xxaxx
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where xxaxx and    0  are the stress value in the center of the plate and at the edge 

x=a/2, respectively, and h is the plate thickness. 

Table 3. Lower bound multipliers for the problem of Fig. 9: comparison between results obtained 

by the ECM and by the proposed approach for two orthotropic laminate types. 

Laminate type 
Lower bound multiplier 

ECM proposed approach 

T300/5208 graphite/epoxy laminate 0.6962 0.6528 

B(4)/5505 boron/epoxy laminate 0.9041 0.8410 

The lower bound multipliers obtained by the two numerical procedures are 

reported in Table 3. Also for this example, a really good correlation is observed 

which demonstrates that the proposed approach is quite reliable in determining the 

collapse load multiplier; nevertheless, this example highlights that proper 

hypotheses on the mathematical expression of the stress field must be made, 

depending on the loading case studied, so as to allow a realistic description of the 

stress field inside the laminate. Such choice is, obviously, dictated by a plausible 

shape of the stress field and it should be reasonably made beforehand, which 

could appear a weakness point of the procedure. In spite of that, the examples run 

in this paper have shown that in many cases no significant difference is obtained 

by varying the stress field description; moreover, the simplicity of the 

optimization problem (18) to be solved renders the proposed static approach a 
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quite versatile and easy-to-handle numerical tool to face quite general biaxial 

loading cases as clearly confirmed by the accurate results obtained. 

4. CONCLUSIONS 

A limit analysis approach aimed to the prediction of a lower bound to the 

collapse load multiplier of composite laminates has been presented. The 

developed theory considers orthotropic composite laminates under axial and 

biaxial loading and plane stress conditions. 

The key feature of this approach lies in the assumption of an appropriate, 

simple distribution of the stress field for each lamina inside the domain and, 

subsequently, in the solution of a nonlinear optimization problem driven by a 

standard optimization procedure. The choice of the approximate stress field 

described in this paper, which reduces the number of the optimization variables, 

together with the convexity of the failure criterion adopted at lamina level has the 

advantage of significantly reducing the computational effort related to the 

maximization problem. As a result, the proposed approach turns out to be very 

effective and computationally competitive if compared to other limit analysis 

numerical procedures. In this way the quoted approach appears simple to be 

utilized for practical applications.  

The proposed approach has been validated, with reference to four examples, 

by comparing the predicted failure values in two cases with the ones 

(experimental) provided by a famous benchmark (WWFE) and for the other two 
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cases with those obtained by an alternative, well established, limit analysis 

procedure (ECM). 

The obtained results witness how the proposed lower bound approach can be 

considered reliable at least for the examined cases. The encouraging results 

suggest to extend the application of the limit analysis procedure also to structural 

elements having more complex geometry and subjected to different load 

conditions. 
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