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Abstract

A finite element based numerical procedure for predicting the plastic collapse

load as well as the plastic collapse mechanism of beam-to-column steel joints

is presented. The promoted procedure is based on two methods following

the static and the kinematic approach of limit analysis. Both methods have

been rephrased for a von Mises type material in the deviatoric plane and in

terms of deviatoric stress invariants. The key concepts are: i) in the static

formulation, to mimic the stress redistribution arising within a structure

approaching its critical (collapse) state, being such stresses in equilibrium

with the maximum redistributable loads; ii) in the kinematic formulation, to

build a plastic collapse mechanism characterized by compatible strain and

displacement rates corresponding to a minimum value of loads doing positive

work equal to the total plastic dissipation. A validation of the numerical

results is pursued by comparison with experimental findings on real scale

prototypes of the tackled steel joints. Future developments are outlined at

closure.
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1. Research context, motivations and main goals

The structural analysis of steel joints is nowadays a matter solved by any

commercial numerical code in the engineering fields. Both the constitutive

behaviour of steel and the post-elastic behaviour of steel structural compo-

nents are successfully described by commercial finite element (FE) codes in

statics or in dynamics also in presence of damaging processes. Sophisticated

step-by-step and/or time-stepping algorithms are available robust tools to

handle the analysis of steel structures. Also the accuracy and computational

performance of such algorithms, when dealing with only-steel elements, is

certainly the more competitive. So that, the here claimed evaluation of the

plastic collapse load for welded beam-to-columns steel joints, avoiding the

description of the post-elastic behaviour of the addressed steel structural

elements, might appear even outdated.

The problem here in mind is however related to the use of those steel

structural components as parts of more complex structural systems charac-

terized by the presence of other structural elements made of materials whose

constitutive as well as post-elastic behaviour is not easy to handle or it is

described by criteria not possessing the necessary general applicability. This

is actually a recurrent circumstance when dealing, for example, with seismic

retrofitting of masonry or reinforced concrete existing structures often pur-

sued by strengthening techniques which insert moment resistant steel frames

or steel bracing systems, see e.g. [1], [2], [3], [4] and references therein. A

similar circumstance appears also in composite steel-concrete structures, [5],

[6], or in new composite steel-concrete structural elements as, for example,

in concrete filled welded steel columns [7], [8], [9], [10] or in steel ribs for
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strengthening of steel concrete joints [11], or in composite beams [12], also

in presence of other materials of common use nowadays as fiber reinforced

polymers [13].

The above list of papers, far to be exhaustive, gives the idea of the re-

search context hereafter referred in which a conflict in the adoptable design

methodologies arises. From one side, steel members and their mutual joints

are described by well known constitutive criteria, as von Mises for example,

and can be handled by plasticity or damage theories fully implemented in

nonlinear FE codes. From the other side, structural elements made of ma-

sonry or concrete, whose constitutive as well as post-elastic behaviour is not

uniquely defined being also affected by the constructive techniques, are often

treated with FE codes whose results are valid only for very particular cases

or structural typologies. In this context a direct method, as Limit Analysis,

with all its congenital limitations, can result more reliable to predict a limit

load of plastic collapse for steel members and of rupture for the other ones

giving rise to a complete and effective limit states design approach.

The present work finds and tries motivations on the above considerations

and, as a first step of the study, presents a limit analysis FE based procedure

applied to steel joints. It is worth noting that, looking at a real engineering

practical context, limit analysis has to be performed numerically, indeed a

FE based friendly procedure is presented in the paper while the joints are

focused being the weak points of a steel elements system. The promoted

method, already experienced by the authors in different contexts [14], [15],

[16], [17], [18], is here applied to welded beam-to-column joints to predict

their plastic collapse load. Perfect associative plasticity is postulated and von
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Mises yield criterion in deviatoric plane is used throughout. Two different

numerical techniques, based on the static and the kinematic approach of

limit analysis respectively, are simultaneously applied to detect the plastic

collapse limit load of the analyzed joints. The procedure and the related

numerical findings are validated by comparison with experimental outputs

on real scale prototypes, [19], to show the robustness and reliability of the

numerical plastic limit state design when facing a real engineering problem.

2. Limit analysis via a FE-based procedure

2.1. Theoretical bases

In the realm of perfect plasticity, limit analysis gives the theoretical tools

to determine the plastic collapse loads, i.e. the loads under which the struc-

ture, modeled as elastic-perfectly plastic, reaches a critical state in which

large increases in plastic deformation become possible with little, if any, in-

crease in loads.

For simplicity, but without loss of analytical rigor and practical effective-

ness, in the following the loads are only the external surface actions applied

to the structure, body forces are assumed negligible with respect to the for-

mers. Moreover, as usual in this context, all the acting loads are expressed

in terms of assigned reference loads, say p̄, multiplied by a single load multi-

plier, say P . To set the problem from an analytical point of view, let us now

denote with V the volume, referred to a 3D Euclidean space, occupied by

the analyzed structure whose external surface is S = St ∪ Su where St is the

portion where loads P p̄ act and Su the portion where boundary kinematic

conditions, say u = ū, are specified.
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The cited theoretical tools are the well known theorems of limit analysis,

based on the principle of maximum plastic dissipation valid only for standard

materials as the one here assumed, and furnishing a lower bound, PLB, and an

upper bound, PUB, to the plastic collapse load multiplier, say PU . Borrowing

from a classis textbook on plasticity, [20], the two theorems may be stated

as follows:

Static or Lower bound theorem: the loads that are in equilibrium with a stress

field that nowhere violates the yield criterion do not exceed the collapse loads.

That is, if at every point within V exists a stress field σ̃j with f(σ̃j) ≤ 0,

with j ranging over the components of the stress vector in principal stress

space and f(σj) denotes the yield function in the same space, and also the

stress field σ̃j is in equilibrium with the applied loads PLB p̄, then PLB is a

lower bound to the plastic collapse load multiplier PU , i.e. PLB ≤ PU .

Kinematic or Upper bound theorem: the loads that do positive work on a

kinematically admissible velocity field at a rate equal to the total plastic

dissipation are at least equal to the collapse loads. That is, if the acting

loads are PUB p̄; u̇c is a kinematically admissible velocity field whose related

compatible strain rates, say ε̇cj, have the direction of the outward normal

to the yield surface f(σj) = 0 at σj = σY
j , which means that ε̇cj = λ̇ (∂f/

∂σj) with λ̇ > 0 being a scalar multiplier; σY
j denotes the stresses at yield

associated to ε̇cj, then PUB given by

PUB =

∫
V
σY
j ε̇

c
j dV∫

St
p̄i u̇ci dSt

(1)

is an upper bound to the plastic collapse load multiplier PU , i.e. PUB ≥ PU .

It is well known that for standard materials the maximum value of PLB
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and the minimum value of PUB produced by the application of the two theo-

rems are equal to each other and they also equal the collapse load multiplier

PU . The static and the kinematic approaches of limit analysis pursued to

detect PU are essentially techniques to maximize PLB and to minimize PUB,

respectively. The above theorems, as well as the limit analysis approaches

they generate, are well known and have been here recalled only for a better

understanding of the numerical procedures applied throughout the present

analysis both illustrated in the next section with the aid of a geometric, more

intuitive, interpretation.

2.2. The FE-based limit analysis

The promoted FE-based procedure arises from the application of two

different methods, namely the Elastic Compensation Method (ECM) and

the Linear Matching Method (LMM), see e.g. [18], and references therein.

The ECM is aimed at determining the maximum value of loads, say PLB p̄,

in equilibrium with a plastically admissible stress field, at which the struc-

ture find itself at a state of incipient collapse. It then operates in the spirit

of the static approach. The key-concept of the ECM is to mimic the stress

redistribution arising within a structure approaching its critical (collapse)

state when subjected to loads increasing up to collapse. Indeed the greater

are the acting loads the wider are the structure portions where the elastic

(plastically admissible) stresses attain an admissible threshold given by the

assumed yield condition. When such redistribution cannot take place any-

more the structure enters its post-elastic (plastic in this context) phase and

plastic collapse is readily manifested. Precisely, the load increase is achieved

by the ECM performing many sequences of elastic FE analyses. At the end
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of each sequence the applied loads, say P (s) p̄, with P (s) = load multiplier

of the current sequence (s), is increased of a fixed increment. On the other

hand, the stress redistribution is achieved by the ECM performing, for the

current fixed loads P (s) p̄ of the sequence, a number of FE analyses on the

discretized structure in which a reduction of the elastic modulus is applied

to the portions where the stress has attained the yield threshold. 
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Figure 1: Von Mises circle in deviatoric plane. Geometrical sketch of the scalar-value

stresses measured within the elements #1, #2, #3, ...,#e, ...,#n computed at iteration

(k − 1) by the ECM. ρ
(k−1)
max denotes the “maximum stress” among all the elements in the

mesh.

The redistribution of the stresses associated to P (s) p̄ is pursued iteratively

and can be easily understood with reference to the sketch of Fig.1 where

the assumed von Mises yield surface in the deviatoric π−plane is given by a

circle of equation ρ2−ρ2
y = 0, with ρ :=

√
2J2 (being J2 the second deviatoric

stress invariant) and ρy :=
√

2
3
σy (being σy the uniaxial yield stress) is the
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circle’s radius.

The sketch of Fig.1 depicts the scalar value stresses computed at the

(k − 1)th iteration (or, equivalently, at the (k − 1)th FE analysis within the

current sequence) at each element in the FE mesh. Such value, say ρ
(k−1)
#e for

the generic element #e, is the average of the stress values computed at each

Gauss point within the element. Among all the ρ
(k−1)
#e (with #e = 1, 2, ...

total number of elements), the “maximum stress” in the whole mesh, named

ρ
(k−1)
max in Fig.1, is detected. Such a stress point is, in practice, the stress point

“farthest away” from the von Mises circle. If such maximum value is greater

than ρy, as hypothesized in the sketch, the method tries to redistribute the

current loads P (s) p̄ performing a new (kth) FE analysis of the discretized

strucuture where within the elements with a ρ
(k−1)
#e greater than ρy (like,

for example, in elements #1,#2,#e,#n, in Fig.1) the elastic modulus is

reduced, to bring the not admissible stress onto the yield surface, according

to the formula:

E
(k)
#e = E

(k−1)
#e

[
ρy

ρ
(k−1)
# e

]2

. (2)

If conversely, ρ
(k−1)
max is less than ρy, circumstance not sketched but obvi-

ously met if all the ρ
(k−1)
#e stress points lay inside or onto the yield surface,

compute a lower bound multiplier as:

P
(k−1)
LB = ρy

P (s)

ρ(k−1)
max

, (3)

increase the intensity of the acting loads and perform a new sequence of

elastic analyses in the attempt to redistribute a greater load. The sequences

stop when the load increase does not allow the maximum stress to be brought

below, or at, yield by redistribution. The PLB is then the last computed value
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corresponding to the last (maximum) redistributed admissible stress field.

The second method of the promoted procedure is, as said, the LMM. This

method is aimed at determine an upper bound, say PUB p̄, to the plastic

collapse load of the structure so it follows the kinematic approach of limit

analysis. The upper bound multiplier is computed in the shape given by

Eq.(1), which can be rephrased with reference to the adopted von Mises

circle in the deviatoric plane as:

PUB =

∫
V
ρy ε̇

c
d dV∫

St
p̄i u̇ci dSt

. (4)

In Eq.(4): ε̇cd is the deviatoric (plastic) strain rate at collapse having the

direction of the outward normal to the von Mises circle at ρ = ρy; u̇
c
i are the

related compatible displacement rates of the points where reference external

loads p̄i, all collected in the vector p̄, act; ρy is the deviatoric stress invariant

at yield (given by the radius of the von Mises circle in π−plane); PUB p̄

are the acting loads. The integrals of Eq.(4) are numerically evaluated on

the Gauss points within the element in which the structure is discretized

or along the elements’ side at the domain borders. The key-concept of the

LMM is to build a collapse mechanism (plastic in this context), i.e. a velocity

field in which the deformation is concentrated at points, lines, or planes,

with the remaining parts of the system moving as rigid bodies. Looking

again at Eq.(4) such collapse mechanism is given by the set (ε̇cd, u̇
c
i). Once

again we will refer to a geometric interpretation to explain the method that

builds the collapse mechanism performing, at difference with the previous

one, just one sequence of linear analyses on the structure discretized in FEs.

Moreover, in this case the structure is made, by hypothesis, of a linear viscous

incompressible fictitious material with spatially varying Young modulus. Such
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assumption is indeed the artifice to build the collapse mechanism of the real

structure operating on a fictitious one, i.e. a structure having the same

geometry, boundary and loading conditions of its real counterpart but made

of a material, with the above specified qualities, and fictitious in the sense

that its elastic modulus may assume different values at different points, the

latter being the Gauss points (GPs) in a FE model.

Once clarified in which sense the material is fictitious, a crucial remark

concerns the required linear viscosity of it. First of all it is worth noting

that for a linear viscous material the (viscous) strain rates can be expressed

as partial derivatives, with respect to the stresses, of the pertinent comple-

mentary dissipation rate functional, say W , in the shape ε̇ = ∂W/∂σ. The

postulated linear viscosity of the fictitious material will then allow to com-

pute, or express, the searched strain rates at collapse in terms of a defined

functional W . On the other hand, the formal analogy existing between the

linear viscous problem and the linear elastic one, will also allow to evalu-

ate the above fictitious viscous strain rates as fictitious finite elastic strains

viewing at the functional W as at the complementary energy density func-

tional of a fictitious elastic material. This simplifies the procedure, allowing

to perform a sequence of linear elastic analyses on the fictitious discretized

structure. A final remark is related to the postulated incompressibility of the

fictitious material. Under this hypothesis the complementary energy density

of the fictitious material, in terms of deviatoric stress invariant ρ, can be

given the simple shape:

W =
3 ρ2

4E
. (5)
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The latter, rewritten in the formW = W̄ = constant, defines in the deviatoric

Π−plane a complementary energy equipotential surface in the shape of a circle

centered at the origin with radius equal to 2
√

W̄E
3

, a circumstance useful for

the rationale that follows.
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Figure 2: Geometrical sketch of the LMM at a generic Gauss point in the FE mesh and

at iteration (k − 1): a) fictitious solution P(k−1)
L onto W (k−1) = W̄ (k−1); b) rescaling of

W (k−1) = W̄ (k−1) to W (k) = W̄ (k−1) through modification of the fictitious Young modulus

to match the von Mises circle at P(k−1)
M for given ε̇

(k−1)
d ≡ ε̇c(k−1)

d .

With reference to Fig.2(a), let us expound the LMM that, as said, per-

forms one sequence of elastic FE analyses on the above defined fictitious

structure. For clarity we focus the attention on one generic GP of the FE

mesh and at the current, say (k − 1)th, iteration, or FE analysis of the se-

quence. At the beginning, say for k = 1, the fictitious material has a Young

modulus E(0) equal, at all GPs, to an arbitrary value that can also be the
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real value. The fictitious solution obtained, at the focused GP, under given

loads P (k−1)p̄i can be represented, as sketched in Fig.2(a) on Π−plane, as

a stress point, say P(k−1)
L , lying on the complementary energy equipotential

surface W (k−1)
[
ρ(k−1), E(k−1)

]
= W̄ (k−1) referred to the fictitious material.

As suggested in the sketch the stress point P(k−1)
L is located by the computed

deviatoric stress invariant ρ(k−1) while the outward normal at P(k−1)
L is, for

the postulated incompressibility of the fictitious material, the associated de-

viatoric strain rate ε̇
(k−1)
d = ∂W (k−1)/∂ρ(k−1) compatible with the computed

(fictitious) displacement rates u̇
(k−1)
i . It is worth noting that, based on the

recalled analogy between a linear viscous material and a linear elastic one,

the above rates quantities are computed as finite (elastic) quantities. It is

also worth noting that the wideness of the circle W (k−1) = W̄ (k−1) depends

from the current value of E(k−1) and W̄ (k−1). The latter, at k = 1, is given

by W̄ (0) = (3/4)
[
ρ(0)
]2
/E(0).

Aside from this obvious geometric interpretation, useful for the follow-

ing rationale, the fictitious solution is eventually given by ρ(k−1), in equilib-

rium with loads P (k−1) p̄i, together with an associated ε̇
(k−1)
d compatible with

u̇
(k−1)
i . Looking again at Eq.(4) it is easy to realize that if the fictitious so-

lution is “forced to become a solution at yield”, i.e. if P(k−1)
L is brought onto

the von Mises yield surface of the real material we have all the ingredients to

compute a PUB in the shape of Eq.(4). To explain this crucial action of the

LMM we refer to the sketch of Fig.2(b), focusing again on the stress state of

the generic GP and referring to the Π−plane where the von Mises yield sur-

face of the real material and the complementary energy equipotential surface

of the fictitious one, W (k−1)[ρ(k−1), E(k−1)] = W̄ (k−1), are homothetic circles
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centered at the origin. To bring P(k−1)
L onto von Mises surface it suffices to

modify the fictitious elastic modulus at the focused GP with the formula:

E(k) = E(k−1) ρy
ρ(k−1)

, (6)

so rescaling the surfaceW (k−1) = W̄ (k−1). The hypothesized P(k−1)
L in Fig.2(b)

(out of the von Mises circle) entails a reduction of W (k−1) = W̄ (k−1) but if

P(k−1)
L was inside the von Mises circle the rescaling of W (k−1) = W̄ (k−1) would

be an increase. Eventually the rescaled surface W (k)
[
ρ

(k−1)
y ≡ ρy, E

(k)
]

=

W̄ (k−1) coincides or, matches, the yield surface at point P(k−1)
M , the latter

representing a solution at yield in terms of ρ
(k−1)
y ≡ ρy, with associated

ε̇
c(k−1)
d ≡ ε̇

(k−1)
d compatible with the u̇

c(k−1)
i ≡ u̇

(k−1)
i .

If the expounded modulus variation is repeated at all GPs of the mesh, a

collapse mechanism
(
ε̇
c(k−1)
d , u̇

c(k−1)
i

)
with related stresses at yield ρ

(k−1)
y ≡ ρy

can be defined for the whole structure and, by Eq.(4), an upper bound to

the plastic collapse load multiplier, say P
(k)
UB, can be evaluated at current

(k − 1)th analysis as:

P
(k)
UB =

∫
V
ρ

(k−1)
y ε̇

c(k−1)
d dV∫

St
p̄i u̇

c(k−1)
i dSt

. (7)

It is worth noting that the above stress at yield, ρ
(k−1)
y ≡ ρy, has been

generated, at each GP, by the described matching procedure, i.e. geomet-

rically. Such stresses do not meet equilibrium conditions with the acting

loads P (k−1) p̄i and the procedure is iterative. At iteration (k) the analysis

will be carried on with the updated E(k) computed at iteration (k − 1)th

and under loads P
(k)
UB p̄i. The iterations stop when the difference between

two subsequent PUB values is less than a fixed tolerance. Two further final
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remarks necessitate on the LMM, which has been applied by the Authors

with reference to different yield criteria, see again [14], [18]. The first remark

concerns a sufficient condition for convergence of the entire procedure here

fully met and addressed in [21]. The second remark concerns the circum-

stance that the computed upper bound converges monotonically to the least

upper bound allowed by the adopted mesh geometry and shape functions, a

matter addressed in [22] where the method was first conceived. Both matters

are out of the scope of the present study and the interested Reader can refer

to the above quoted papers for a deeper comprehension.

3. Experimental results versus numerical predictions

3.1. Experimental test set up

The laboratory tests reported in [19] have been considered as benchmark

for validating the discussed limit analysis numerical procedure facing ex-

perimental findings on real scale prototypes. The tests were there mainly

oriented to appraise experimentally the behavior of welded beam-to-column

steel joints suffering cyclic loads and to compare some of the more common

damage models and failure criteria available in the literature. The main goal

was indeed to assess the capability of available models/criteria to correctly

interpret the actual cyclic behavior of critical parts of a steel structural or-

ganism, both in terms of deterioration of their mechanical properties and of

energy absorption capacity. Nevertheless, two of the examined specimens,

precisely the ones named BCC5-E and BCC6-E, were also tested up to col-

lapse under a monotonically increasing load. The tests were actually stopped

when the recorded load-displacement diagram was exhibiting a sub-horizontal
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trend witnessing an incipient plastic collapse at a constant load. These two

are the tests hereafter analyzed for validation.

     

 
 
 
 
 
 
 
 
 
 
 
                     
          
 
 
 
 
 
 
 
 

a) 

b) 

Figure 3: Geometry, boundary and loading conditions of the analyzed specimens: a)

BCC5-E; b) BCC6-E.

Figures 3(a,b) report the geometry, boundary conditions, loading conditions

of the two specimens respectively, giving also the main details of the test de-

vice shown in the pictures of Fig.4. Moreover, on the top right of Figs.3(a,b)
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it is sketched a contrivance welded above the loaded point to the head of the

IPE metal profiles to prevent out-of-plane deformations during tests.

     

 
 
 
 
 
 
 
 
 
 
 
                     
          
 

a) b) 
Figure 4: Pictures of the test device.

It is also worth noting that referring to a typical steel framed structure sub-

jected to horizontal (seismic) actions, the qualitative bending moments di-

agrams are those sketched in Fig.5(a). As suggested in Fig.5(b) the joint

has been tested in a configuration which is rotated anticlockwise of 900 with

respect to its real working position when embedded in a steel frame. The hor-

izontal elements in the tests (HE160B and HE200B) are actually the columns

of the real joint, the vertical elements in the tests (IPE300) are the beams

of the real configuration. Two hinges would have been more appropriate at

the end sections of the HE metal profiles of the tested specimens instead

of clamps, nevertheless, for our purposes, this circumstance does not affect

the validity of the numerical simulation of the tests in which the actual test

boundary conditions (clamps) have been applied to the FE model. Tables 1

and 2 give the actual (measured) dimensions and the yield stress values of
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the metal profiles of the two specimens.
 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

Figure 5: Analyzed beam-to-column steel joint: a) real configuration of the joint embedded

in a typical steel frame; b) laboratory test configuration.

Finally, Figures 6(a,b) report the experimentally detected load-displacement

curves. It is worth noting that the F−d curve obtained for specimen BCC6-E

shows an abrupt change in the curve slope at F = 239.62kN. This was due to

the formation of a crack in the beam flange close to the weld line, i.e. located

within the so-called Heat-Affected Zone. A consequent local buckling of the

beam flange under compression caused the loss of the member’s load-carrying

capacity and the premature interruption of the test. However, looking at the

results of BCC5-E and estimating a possible position of the plastic plateau for

specimen BCC6-E, it seems sensible to assume that the correct experimental

load-displacement curve would have given a plastic collapse load of about

258kN. The dashed-lines in Figs.6(a,b) indicate the experimentally detected

values of the plastic collapse load equal to 228kN for BCC5-E and, with the
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Metal profile IPE 300 HE 160 B 

Geometry [mm] 

Height 299.0 162.5 

Width 151.0 162.0 

Flange thickness 10.3 13.0 
Web thickness 7.2 8.9 

Yield stress [MPa] 

Flange 274.78 323.13 
Web 305.54 395.56 

Table 1: Actual (measured) geometrical dimensions and yield stress of the beam-to-column

joint metal profiles of specimen BCC5-E (steel S235)

.                                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Metal profile IPE 300 HE 200 B 

Geometry [mm] 

Height 298.5 201.0 

Width 151.0 200.0 

Flange thickness 10.6 14.5 
Web thickness 7.0 9.8 

Yield stress [MPa] 

Flange 278.62 312.55 
Web 304.92 401.62 

Table 2: Actual (measured) geometrical dimensions and yield stress of the beam-to-column

joint metal profiles of specimen BCC6-E (steel S235)

.
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a) b) 

Figure 6: Load-displacement experimentally detected curves: a) specimen BCC5-E; b)

specimen BCC6-E. Dashed-lines denote the plastic collapse load experimental value.

declared approximation, equal to 258kN for BCC6-E.

3.2. Numerical simulations

The experimental tests described in the previous section have been nu-

merically simulated applying the promoted procedure to predict the plastic

collapse load for each specimen. A FORTRAN main code drives the com-

mercial code ADINA, which carries on all the elastic analyses required by

the ECM and by the LMM.

More specifically, a first FORTRAN segment governs the sequences of

the FE elastic analyses of the ECM, increases the multiplier of the reference

load at the end of each sequence, redistributes the acting loads of the current

sequence driving the iterative FE analysis within the sequence. Indeed, at

each iteration (analysis) the Young modulus of the FEs where the computed

(deviatoric) stress ρ#e is greater than a known threshold is reduced according

to Eq.(2). Finally, such first FORTRAN segment computes a lower bound
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multiplier, in the shape given by Eq.(3), at the end of each successful se-

quence, i.e. a sequence characterized by a re-distributable load. It stops the

sequences when the maximum re-distributable load is reached.
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Figure 7: FE meshes, boundary and loading conditions of a typical mesh adopted.

A second FORTRAN segment governs the sequence of the fictitious elas-

tic analyses of the LMM. It actually starts with a first FE analysis of the

discretized structure with a Young modulus initial value equal at all GPs of

the mesh. It then accomplishes the matching procedure at each GP of the

mesh so modifying the Young modulus value at the GP according to Eq.(6).

It computes an upper bound according to Eq.(7) and feeds the ADINA ele-

ments with the modified (fictitious) Young modulus values (a unique value

obtained averaging among the GPs of the element is used) to perform a new

analysis under loads amplified by the computed upper bound till equilibrium

is satisfied.
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Figure 7 shows the FE mesh adopted for the analysis of the two specimens

BCC5-E and BCC6-E. Shell-type ADINA elements with 8 nodes, 6DOF per

node and 9 GPs have been adopted to perform numerical integrations. The

DOFs of all FEs nodes, out of the plane of structural symmetry, have been

impeded for a consistent numerical simulation. More precisely, a mesh of 160

FEs has been used for both specimens. The hypothesis of incompressibility

of the fictitious material, required by the LMM, has been obtained assuming

a computationally acceptable value of the Poisson ratio equal to 0.4999

Figures 8(a,b) show the computed values of the upper and lower bound

multipliers to the plastic collapse load versus iteration number for the PUB

and versus iteration number at last successful sequence for the PLB; both are

plotted against the experimentally detected plastic collapse load multiplier,

PEXP . All the multipliers are given assuming the experimentally detected

plastic collapse load as reference load, so PEXP is equal to 1. It is worth

noting that the numerical bounds are reached in few iterations/sequences

and with a monotonic convergence. Despite the coarse meshes adopted, the

two bounds locate the real collapse multiplier within a pretty narrow band

witnessing the effectiveness of the whole procedure.

The coincidence of PUB and PLB with PU ≡ PEXP , claimed by the theory

of limit analysis for standard materials, could be obtained numerically with

finer meshes. To this concern, specimen BCC5-E has been analyzed once

again with the finer mesh (650 FEs) of Fig.9 with a mesh refinement around

the welded zone of the joint. The related PUB and PLB values are plotted

against the iterations in Fig. 10. By inspection of the plotted curves the fol-

lowing remarks can be drawn: i) the two bounds get very close to each other
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with a difference of 6%, which seems acceptable in terms of “coincidence” of

two numerical solutions. They eventually give in practice a “unique” value

of the plastic collapse load as required by the theory for a standard perfectly

plastic material; ii) the PUB shows a significative improvement getting closer

to the final experimentally detected plastic limit value. No significative gain

is obtained for the PLB. From this point of view the LMM seems more ac-

curate. To this concern it is worth noting that to adopt a finer mesh implies

an enrichment of the kinematic description of the structural FE model, a cir-

cumstance directly influencing the kinematic approach on which the LMM

is based. No such advantage is gained in terms of stress description with a

mesh refinement, and this is the reason of no significative variation of the

ECM results. Eventually, the analysis carried on with a finer mesh, com-

putationally more cumbersome, appears not useful from a practical point of

view.

A second, but not secondary, useful result concerns the possibility offered

by the promoted numerical procedure of locating the plasticized zones at

collapse as shown in Figures 11(b) and 12(b) for the two specimens and the

coarse mesh.

The contour plots of the strain components along the plane of loading, per-

taining to the plastic collapse mechanism built by the LMM at last converged

iteration, give indeed such information. The latter, even if qualitative —the

plotted quantities have to be interpreted for what they are, i.e. plastic strain

rates at collapse, or directions of plastic strains— can be very useful to local-

ize critical zones or weaker members within structures of large dimensions.

Moreover, the above contour plots are given in Figures 11(b) and 12(b) on
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a) 

b) 

Figure 8: Plastic collapse load multipliers. Solid line with squares plots the upper bound

values (PUB) versus iteration number; solid line with triangles plots the lower bound

values (PLB) versus iteration number at last successful sequence; dashed line denotes the

experimentally detected plastic collapse load multiplier (PEXP ): a) specimen BCC5-E, b)

specimen BCC6-E.
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Figure 9: Finer FE mesh of specimen BCC5-E, boundary and loading conditions.

 

 

 

 

 

 

 

 

 

 

Figure 10: Plastic collapse load multipliers for specimen BCC5-E analyzed with the finer

mesh of Fig.9. Solid line with squares plots the upper bound values (PUB) versus iteration

number; solid line with triangles plots the lower bound values (PLB) versus iteration

number at last successful sequence; dashed line denotes the experimentally detected plastic

collapse load multiplier (PEXP ) .
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a) b) 

Figure 11: Specimen BCC5-E at collapse: a) experimentally observed plastic collapse

mechanism; b) deformed mesh and contour plots of the strain components along the plane

of loading at last (converged) iteration of the LMM.

the deformed discretized structures, i.e. the ones obtained by applying the

computed displacement rates at collapse (u̇ci) at all nodes of the meshes. The

comparison with the experimental evidences, shown in the pictures of Figures

11(a) and 12(a), is impressive also showing the capability of the procedure

of predicting the plastic collapse mechanism shape. By inspection of Figs.

11(b) and 12(b) it appears how, beyond the plasticized zones, the deformed

meshes at collapse locate also the parts of the structure which rotate rigidly,

as it happened experimentally and as it has to be when a structure under-

goes plastic collapse. Finally, Figures 13(a,b) show the contour plots of the

plastically admissible stresses given by the ECM at last successful sequence.

Also these results, quantitative this time —being stresses in equilibrium with

the maximum re-distributable load— but not verifiable experimentally, seem

to validate the good predictive capabilities of the procedure.
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a) b) 

Figure 12: Specimen BCC6-E at collapse: a) experimentally observed plastic collapse

mechanism; b) deformed mesh and contour plots of the strain components along the plane

of loading at last (converged) iteration of the LMM.

4. Concluding remarks and future developments

The main findings and possible steps forwards of the present study can

be summarized as follows:

A numerical FE-based procedure for limit analysis has been applied for pre-

dicting the plastic collapse load as well as the plastic collapse mechanism of

two real scale prototypes of beam-to-column steel joints tested up to collapse.

The obtained results seem to confirm the fair predictive capabilities of the

procedure already experienced in different contexts but here rephrased in a

very simple and effective way with reference to von Mises material in the

deviatoric plane. Avoiding enthusiastic conclusions, being other checks nec-

essary, the expounded methodology seems applicable straightforward to the
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Figure 13: Contour plots of plastically admissible stresses computed by the ECM at last

successful sequence: a) specimen BCC5-E; b) specimen BCC6-E.

analysis of more complex structures characterized by structural components

made of many different materials with a post-elastic behaviour not easy to

handle or not uniquely defined. In such context the limit load evaluation

is still more reliable and competitive with respect to step-by-step nonlinear

analyses.

The application to composite steel-concrete structures and to concrete-filled

welded steel columns are, among others, next possible steps of the present

approach and are the object of an ongoing research.
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