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Abstract

A strain-difference based nonlocal elasticity model devised by the authors
elsewhere (Polizzotto et al., Int. J. Solids Struct. 25 (2006) 308–333) is
applied to small-scale homogeneous beam models in bending under static
loads in the purpose to describe the inherent size effects. With this the-
ory —belonging to the strain-integral nonlocal model family, but exempt
from anomalies typical of the Eringen nonlocal theory— the relevant beam
problem is reduced to a set of three mutually independent Fredholm inte-
gral equations of the second kind (each independent of the beam’s ordinary
boundary conditions, only one depends on the given load), which can be rou-
tinely solved numerically. Applications to five cases of beam samples (usually
addressed in the literature) are performed, the obtained results are graph-
ically illustrated and compared with analogous results from the literature.
Size effects of stiffening type are found for all beam samples, in agreement
with the analogous results obtained with the well-known and widely accepted
strain gradient elasticity model. Analogous size effects are expected to be
predicted for other multi-dimensional structures, all of which seems to con-
firm the smaller-is-stiffer phenomenon.
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1. Introduction1

The behavior of beam structures at micro- and nano-scales has been2

widely studied within the nonlocal (stress-gradient) elasticity theory ad-3

vanced by Eringen (1983, 2002). This theory is characterized by a stress-4

strain relation of integral type, in which the stress (conventionally called5

“nonlocal”) measured at a point is expressed as a weighted mean value in6

terms of the strain (conventionally called “local”) measured at all points7

within the domain occupied by the material. Additionally, the kernel func-8

tion of this integral relationship (through which a length scale parameter for9

the underlined microstructure is carried in) is taken coincident with the Green10

function of a Helmholtz differential equation in the nonlocal stress, such that11

the solution of the integral equation may be equivalently obtained as the12

solution of the differential equation. Eringen (1983, 2002) provided mathe-13

matical forms of the kernel function for one-, two- and three-dimensional do-14

mains and probed them by comparisons of the dispersion curves of Rayleigh15

surface waves and of screw dislocations obtained by means of the proposed16

nonlocal theory with the analogous curves obtained by means of atomistic17

lattice dynamics (Wang and Hu, 2005; Zhang et al., 2006; Heireche et al.,18

2008; Khorshidi and Fallah, 2016; Shaat and Abdelkefi, 2017; Patra et al.,19

2018).20

The Eringen nonlocal elasticity described above, here (as often in the lit-21

erature) referred to as the nonlocal “differential”, or “stress-gradient”, model,22

constitutes an appealing conceptual framework for the study of the size effects23

exhibited by small scale structures due to the inhomogeneities and defects24

of the inherent microstructure. There exists a huge literature in which this25

theory is applied to beam and plate models simulating sensors and actuators26

within modern micro- and nano-technologies. Here we just mention a few27

representative works as (Peddieson et al., 2003; Sudak, 2003; Reddy, 2007;28

Gibson et al., 2007; Kumar et al., 2008; Pin Lu et al., 2007; Aydogdu, 2009;29

Eltaher et al., 2016; Reddy, 2010; Wang and Arash, 2014; Li et al., 2015; Xu30

et al., 2016; Eptaimeros et al., 2016; Rafii et al., 2016; Faroughi et al., 2017).31

Two decades after its birth, the Eringen nonlocal differential elasticity32

theory was applied by Peddieson et al. (2003) to simple nanobeams in bending33

simulating sensors and actuators devises within micro- and nano-technologies34

for which clear predictions of size-dependent effects were expected. It was35

found that this theory is not able by its own nature to predict size effects36

in a cantilever beam subjected to point load(s), but it predicts stiffening37
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size effects for the same beam under a uniform load, whereas it in general38

predicts softening size effects for beams with different constraint conditions.39

Anomalous results were also found for a beam under free vibration (Lu et40

al., 2006) and buckling condition (Sudak, 2003), and for a rod in tension41

(Benvenuti and Simone, 2013).42

These anomalies were subsequently addressed by many researchers, who43

advanced remedies to overcome them. For instance, we recall (Polizzotto,44

2001; Pisano and Fuschi, 2003; Benvenuti and Simone, 2013; Khodabakhshi45

and Reddy, 2015; Wang et al., 2016), where a two-phase local/nonlocal model46

is used in place of the Eringen’s fully nonlocal one; (Challamel et al., 2016),47

where the Eringen’s fully nonlocal model is used, but the solution is searched48

out of the usual displacement continuity framework; (Challamel and Wang,49

2008; Lim et al., 2015; Xu et al., 2017a,b), where a hybrid model is used,50

which is formed up by the Eringen’s nonlocal stress-gradient model cou-51

pled with a strain gradient one, such that the material behavior is governed52

by two different types of length scale parameters; (Fernández-Sáez et al.,53

2016; Wang et al., 2016), where the nonlocal bending moment solution is54

found as a solution of the Helmholtz differential equation accompanied by55

special boundary conditions (known from integral equation theory, see Tri-56

comi (1985); Polyanin and Manzhirov (2008)) which in principle guarantee57

the equivalence between the differential problem and the nonlocal one; (Tuna58

and Kirca, 2016), where mathematical procedures of integral equation theory59

are applied to derive “exact” solutions to the Eringen’s nonlocal beam prob-60

lem (indeed a problem known to admit no solution (Romano and Barretta61

(2016)).62

Mention is also given of a research stream within micro/nano-technologies,63

in which suitable forms of the Eringen nonlocal theory are used to solve64

nonlinear problems. Within this framework we recall (Vila et al., 2017) in65

which one-dimensional solids in vibration are addressed, obtained through66

a continualization procedure from a discrete molecular model undergoing67

large displacements; (Sahmani and Aghdam, 2017a,b) where the instability68

of nonlocal nano-shells is addressed; (Lu et al., 2017) where a nonlocal strain69

gradient theory is used to study nano-beams in vibration; (Sahmani et al.,70

2018a,b) where functional graded nano-beams and nano-plates in bending71

and vibration are addressed; (Pang et al., 2018) where the vibration of visco-72

elastic nano-plates with surface stresses are considered; (Pinto and Mordehai,73

2018) where combined longitudinal and transverse vibrations of nanowires are74

studied; (Sahmani et al., 2018c) where the nonlocal strain gradient theory is75
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used to study the instability of functionally graded micro/nano-plates.76

Research efforts were spent for the study of the so-called boundary ef-77

fects, which manifest themselves within a boundary layer of a finite domain78

occupied by a nonlocal material of Eringen type. As a consequence of these79

effects, the nonlocal stress response to a uniform strain field is not uniform,80

whereas instead it is expected to be uniform whenever any source of non-81

locality does not occur. A discussion on the above boundary effects can be82

found in (Romano et al., 2017b, 2018).83

This latter shortcoming was eliminated within the framework of nonlocal84

damage theory, first by Pijaudier-Cabot and Bažant (1987) who adopted a85

suitably rescaled, but non-symmetric, kernel; then by Borino et al. (2002,86

2003), who proposed a differently modified symmetric kernel. Within the87

framework of nonlocal elasticity, Polizzotto (2002); Polizzotto et al. (2004)88

advanced a strain-difference based model; this happens to be equivalent to89

the latter referenced model, but it was independently conceived as a nonlo-90

cal counterpart of a strain gradient model whereby the stress response proves91

to be uniform as soon as the source strain field is uniform. The latter re-92

quirement for the stress response was subsequently incorporated into a more93

general locality recovery condition in (Polizzotto et al., 2006) (see Subsection94

2.2).95

A deeper insight on the Eringen nonlocal differential theory was given96

by Romano et al. (2017a), who discussed the basic role there played by the97

mentioned special boundary conditions. Romano and Barretta (2017a,b);98

Romano et al. (2017b) proposed a “stress-driven” nonlocal model featured99

by an integral equation formally like the Eringen’s one, but with the stress100

and strain state variables having interchanged roles. Extensions of this the-101

ory to mixture models, functionally graded materials and multi-dimensional102

domains were reported and discussed in Romano et al. (2018); Barretta et al.103

(2018). Indeed, the stress-driven nonlocal theory by Romano and co-workers104

seems to have given a clear understanding about the limits of validity of the105

Eringen’s nonlocal theory.106

It emerges from the above that the Eringen nonlocal differential theory107

seems to be unable by its own nature to predict size effects of structures108

without the mentioned drawbacks, nor to predict size effects agreeing with109

those (in general of stiffening type) predicted by strain gradient elasticity110

theory (Mindlin, 1965; Mindlin and Eshel, 1968; Gao and Park, 2007) and111

detected by laboratory experiments (Fleck et al., 1994; Lam et al., 2003; Sun112

et al., 2008; Zhao et al., 2009; Abazari et al., 2015; Li et al., 2018).113
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Therefore, it seems to be useful to investigate on the possibility to replace114

the Eringen’s nonlocal model with another one also belonging to the strain-115

integral model family, but exempt from all the previously described drawbacks116

and capable to predict stiffening size effects like the strain gradient model.117

The improved constitutive models, previously mentioned as remedies to the118

drawbacks of the Eringen nonlocal model, comply each only in part with119

the above requirement; for instance, the two-phase local/nonlocal model,120

originally proposed by Eringen himself (Eringen, 1972, 1987), does lead to a121

Fredholm integral equation of the second kind, but it arrives at stresses not122

satisfying the locality recovery condition.123

In the present paper we will show that, for the analysis of (stiffening) size124

effects in small-scale structures, the so-called strain-difference based nonlocal125

elasticity model cast in the form envisioned in (Polizzotto et al., 2006) can126

be usefully applied in competition to the strain gradient model. As better127

explained subsequently, this nonlocal model is featured by properties not128

shared by the Eringen one, that is:129

1. It obeys the locality recovery condition, which implies that the classical130

Hooke law is recovered in the presence of a uniform strain field, no131

matter the value of the length scale parameter.132

2. It leads to a Fredholm integral equation of the second kind.133

Additionally, like the original Eringen model (Eringen, 1972, 1987), the134

mentioned strain-difference based model does not require that the kernel135

function be the Green function of a differential equation.136

Since the mentioned strain-difference model incorporates a linearized elas-137

ticity theory, only linear problems within statics and dynamics can be ad-138

dressed with it. Extensions to nonlinear situations are possible in principle,139

but not available so far. In the present paper only applications to static prob-140

lems are considered, indeed a framework where the strain-difference based141

model lends itself to a solution method that may be of interest; vibration142

and buckling problems will be addressed in the near future. For simplicity,143

axial displacements and shear deformation with warping of the cross section144

(Reddy, 2007, 2010; Polizzotto, 2015, 2017) are disregarded, but both of them145

may be straightforwardly implemented with the present model.146
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1.1. Outline147

The outline of the present paper is as follows. In Section 2, the Eringen148

nonlocal differential method is discussed to point out, aside its basic appeal-149

ing conceptual framework, the accompanying drawbacks. A brief account150

of the remedies proposed in the literature is reported. In Section 3, the151

strain-difference based nonlocal elasticity model is briefly presented and its152

one-dimensional version for beam structures in bending is reported for later153

use. The general beam bending problem is discussed in Section 4, where it is154

found that the typical beam problem can be reverted to the solution of three155

mutual independent Fredholm integral equations of the second kind, each be-156

ing independent of the beam ordinary boundary conditions, while only one of157

them is affected by the load. Section 5 is devoted to the applications whereby158

five beam cases usually considered in the literature are addressed and the re-159

lated results are reported graphically together with analogous results from160

the literature. Conclusions are drawn in the final Section 6.161

1.2. Notation162

A standard notation is used throughout. The meaning of particular sym-163

bols used on occasion will be given in the text at their first appearance.164

2. Some remarks on the Eringen nonlocal elasticity model165

In this section, some useful remarks on the Eringen nonlocal elasticity166

model (Eringen, 1972, 1983, 1987, 2002) are reported. For this purpose,167

reference is made to a simple Euler–Bernoulli beam of length L, referred to168

orthogonal co-ordinates (x, y, z), with x coinciding with the beam axis, z169

along the beam height, y in the width direction. The Hooke stress reads as170

σ = Eε, where σ = σxx, ε = εxx, whereas E is the Young modulus. The171

plane (x, z) coincides with the bending plane, the z axis is a principal inertia172

axis.173
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2.1. Equivalence to a Fredholm integral equation of first kind174

Written in terms of bending moment M and bending curvature χ, the175

stress-strain relation of the Eringen nonlocal model for a homogeneous beam176

reads as177

M(x) = EI

∫ L

0

g(x, x̄)χ(x̄) dx̄ (1)

where I is the second area moment of the cross section. For a one-dimensional178

domain, the kernel function g(x, x̄) was suggested by Eringen (Eringen, 1983,179

2002) in the form of a bi-exponential function, that is,180

g(x, x̄) =
1

2`
exp
(
−r
`

)
(2)

where r := |x̄−x|, and ` > 0 is a length scale parameter. The kernel g proves181

to be the Green function of the Helmholtz equation182

M(x)− `2M ′′(x) = EIχ(x) (3)

and it moreover satisfies the normalization condition183 ∫ +∞

−∞
g(x, x̄) dx̄ = 1 ∀x (4)

The latter equality implies that, at the limit for ` → 0+, the kernel g → δD184

(Dirac delta), hence (1) recovers its classical form, M = EIχ, correspond-185

ingly.186

A serious drawback of (1) is that, considering M(x) as a specified field,187

(1) constitutes a Fredholm integral equation of the first kind for the unknown188

curvature χ(x), indeed, an integral equation known to may lead to not well-189

posed boundary-value problems with multiple solutions, or even no solution190

at all (Tricomi, 1985; Polyanin and Manzhirov, 2008). Additionally, in order191

that the solution of the Helmholtz equation (3) be also a solution of the192

integral equation (1), it is necessary that the given function M(x) satisfies193

the special boundary conditions (Tricomi, 1985; Polyanin and Manzhirov,194

2008):195

−M ′(0) + 1
`
M(0) = 0

M ′(L) + 1
`
M(L) = 0

}
(5)
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But, as already pointed out by Romano et al. (2017a), the boundary con-196

ditions (5) may likely be in so strong contrast with the ordinary (static)197

boundary conditions of the beam problem such as to impede a solution of198

the nonlocal integral problem to exist.199

Often in the literature (see e.g. Peddieson et al. (2003); Reddy (2007);200

Challamel and Wang (2008); Polizzotto (2014)) the nonlocal beam problem201

is addressed through only the differential equation (3) combined with the202

equilibrium equation M ′′(x) = −p(x) and the ordinary boundary conditions,203

by which a unique solution can be obtained. This solution may coincide204

with the classical counterpart (like in the case of a cantilever beam under205

a point load), but in general it is not a solution of the Eringen nonlocal206

integral problem, which latter has no solution as long as the special boundary207

conditions (5) cannot be satisfied (Romano et al., 2017a).208

As reported in the preceding section, a remedy to this drawback consists209

in replacing the Eringen fully nonlocal model with a two-phase local/nonlocal210

one with specified volume fractions, which leads to a Fredholm integral equa-211

tion of the second kind. However, as mentioned previously (and better ex-212

plained in next subsection), the latter model does not comply with the lo-213

cality recovery condition.214

2.2. The locality recovery condition215

The “locality recovery condition” recalled here was first advanced in216

(Polizzotto et al., 2006) with reference to nonlocal elastic materials, then it217

was extended to plasticity (Polizzotto, 2007) and generalized continua (Poliz-218

zotto and Pisano, 2012). To the readers’ benefit, here we briefly recall the219

inherent essential concepts.220

The locality recovery condition constitutes a thermodynamic requisite of221

a nonsimple material which under any uniform strain mechanism behaves222

like a simple material, featured by a Helmholtz free energy independent of223

the inherent length-scale parameter. In order that the latter requisite be224

satisfied, it is required that the Energy Residual (ER) (that is, the energy225

density transmitted to the generic particle within the body from all other226

particles therein as a consequence of the non-locality effects) has to vanish227

identically under any uniform strain field.228

The necessity of a locality recovery condition serves to guarantee that229

the constitutive model be able to capture a basic behavioral micro-scale phe-230

nomenon whereby no size effects occur under uniform strain. For a strain231
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gradient material, in which the free energy is a function of the strain and the232

strain gradient(s), the locality recovery condition is automatically satisfied233

due to the correspondingly vanishing of the strain gradient(s).234

Instead, for a nonlocal strain-integral (or strain-driven) model, in which235

the free energy depends on the average of the strain over the whole domain236

and is thus influenced by the boundary effects, the locality recovery condition237

is not automatically satisfied, hence it needs to be enforced by eliminating238

the mentioned boundary effects.239

There is not a general consensus in the literature about the necessity240

of a locality recovery condition. Nonlocal models not obeying the locality241

recovery condition (like e.g. the two-phase local/nonlocal models) are in242

fact often used in research, but obviously one has to be aware that then243

some sort of size effects remain active under any uniform strain mechanism.244

Nevertheless, in the present paper the mentioned condition is considered as a245

basic requisite for a nonlocal material model suitable to size effects analysis246

problems.247

In the case of a homogeneous nonlocal elastic material the locality re-248

covery condition takes on the simpler form of local stress recovery condition,249

that is, the nonlocal stress response is uniform whenever the imposed local250

strain is uniform.251

For a nonlocal beam model under a uniform curvature, say χ = χ0 =252

constant, (1) gives a bending moment as253

M(x) = γ(x)EIχ0 (6)

where γ(x) is a weight function defined as254

γ(x) :=

∫ L

0

g(x, x̄) dx̄ (7)

Indeed, Eq. (1) gives a bending moment response to a given uniform255

imposed curvature, which is non-uniform and affected by size effects through256

the ` parameter (carried in by the kernel function incorporated into the257

function γ); in other words, (1) does not obey the locality recovery condition.258

A remedy to this drawback is obtained by rewriting (1) in the form259

M(x) = EIχ(x) +

∫ L

0

g(x, x̄)EI[χ(x̄)− χ(x)] dx̄ (8)

or equivalently260
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M(x) = [1− γ(x)]EIχ(x) +

∫ L

0

g(x, x̄)EIχ(x̄) dx̄ (9)

The latter equations describe a mixed local/nonlocal model which obvi-261

ously satisfies the locality recovery condition and concomitantly makes the262

boundary effects be entirely compensated. Both Eqs. (8) and (9) were pro-263

posed in (Polizzotto, 2002; Polizzotto et al., 2004). As previously recalled in264

the Introduction, an equation substantially equivalent to (9) was indepen-265

dently contributed by (Borino et al., 2002, 2003).266

2.3. Incomplete redistribution of the source local bending moment267

The Eringen nonlocal model (1) can be interpreted as an analytical tool268

by which the source local bending moment M lc(x) := EIχ(x) at x is re-269

distributed within the beam length, giving rise to a smooth long distance270

specific bending moment µ(x̄, x) := g(x̄, x)M lc(x) at the generic point x̄271

within (0, L); (the dimension of µ is a force).272

A good physically consistent property of the nonlocal beam may be that273

the totality of long distance bending moments µ(x̄, x) within (0, L) be equal274

to M lc(x) at every x in (0, L). Indeed, for a beam enjoying this property275

(here qualified as stress saving beam), the inherent non-locality consists in a276

complete redistribution of the source local bending moment M lc(x) at every277

point of the beam, without losses, nor additions.278

This desirable property is naturally satisfied in the case of unbounded279

domain, but it is not in the opposite case, since in fact the related resultant280

long distance specific bending moment proves to be281 ∫ L

0

µ(x̄, x) dx̄ = γ(x)M lc(x) (10)

Since 0 < γ(x) ≤ 1 ∀x ∈ (0, L), it results that, at every point x where282

γ(x) < 1 , only the fraction γ(x)M lc(x) of the source local bending moment is283

redistributed while the remaining part, amounting to [1−γ(x)]M lc(x), is just284

thrown away, with consequent loss in stiffness. This behavior of the Eringen285

nonlocal model is likely the very reason why this model predicts softening286

size effects in the majority of cases; it constitutes a drawback that manifests287

itself through the previously mentioned boundary effects.288
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A remedy to this drawback is to express the bending moment M(x) as289

the sum of the non-redistributed part of the local bending moment M lc(x),290

along with the total long distance bending moment arriving at x from all291

other points of the beam, that is,292

M(x) = [1− γ(x)]EIχ(x)︸ ︷︷ ︸
non−redistributed local bending moment

+

∫ L

0

g(x, x̄)EIχ(x̄) dx̄︸ ︷︷ ︸
total long distance bending moment

(11)

which happens to coincide with (9).293

Eq. (11) was the source of inspiration for the strain-difference nonlocal294

model advanced in (Polizzotto et al., 2004) and then of the improved one in295

(Polizzotto et al., 2006).296

In closing this section, we state that the strain-difference based nonlocal297

model proposed by Polizzotto et al. (2006) is capable to overcome all the298

above drawbacks. Indeed, this model is stress-saving (i.e. the stress redistri-299

bution process is complete everywhere within any body of finite extension).300

Furthermore, it leads to a Fredholm integral equation of the second kind,301

complies with the locality recovery condition and generally predicts stiffen-302

ing size effects.303

3. The strain-difference based nonlocal elasticity model304

In this section, the strain-difference based nonlocal elasticity model in the305

form advanced in (Polizzotto et al., 2006) is briefly described for later use.306

3.1. General307

The strain-difference based nonlocal model is a phenomenological model308

capable to cope with inhomogeneities of both the moduli and the inter-309

nal length scale. It is thermodynamically consistent, as it is centered on310

a Helmholtz free energy, say ψ, which for a three-dimensional body is cast311

in a compact form as 1
312

1In the case of homogeneous materials, an alternative form of ψ of (12) may be ψ =
0.5 ε : C : ε + 0.5 ε : αC : R(ε), which would lead to the simpler stress-strain equation
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ψ =
1

2
ε : C : ε+

1

2
R(Dε) : (αC) : R(Dε) (12)

where C = C(x) is the standard elastic moduli tensor of anisotropic elasticity,313

α is a non-negative material constant. The symbol Dε denotes the strain314

difference at points x, x̄, that is,315

Dε(x, x̄) := ε(x̄)− ε(x) ∀(x, x̄) ∈ V (13)

whereas the symbol R(Dε) is defined as316

R(Dε)(x) :=

∫
V

g(x, x̄)[ε(x̄)− ε(x)︸ ︷︷ ︸
Dε(x,x̄)

] dV (x̄) (14)

Here, the (symmetric) kernel g(x, x̄) is a two-point attenuation function317

similar to the analogous kernel presented in Section 2; it satisfies the normal-318

ization condition (4), but is not necessarily the Green function of a differential319

equation.320

As reported in (Polizzotto et al., 2006), the attenuation function g(x, x̄)321

is taken in the form322

g(x, x̄) = ḡ
(
−req

`0

)
(15)

where `0 is the reference length scale parameter taken equal to the largest323

value of the space-variable length scale parameter `(x), whereas req denotes324

the equivalent distance defined as325

req := r + r∗ (16)

Here, r is the so-called geodetical distance, meant as the length of the326

shortest path between any two points of a domain without intersecting its327

boundary. For a non-convex domain (due e.g. to holes or cracks) it is r ≥328

|x̄ − x|, but r = |x̄ − x| for a convex one. The quantity r∗ constitutes a329

fictitious (non-negative) distance which accounts the additional attenuation330

effects due to the material inhomogeneities through the stiffness tensor C(x)331

and the length scale parameter `(x). Motivations to consider additional332

σ = C : [ε+αR(ε)] often used in the literature, but it does not satisfy the locality recovery
condition since, for ε = ε̄= const., it is σ = C : ε̄[1 + αγ(x)].
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attenuation effects in the presence of inhomogeneities are given in (Polizzotto333

et al., 2006). In the present work, however, we consider convex domains and334

homogeneous materials, hence r = |x̄− x|, ` = constant throughout.335

R(Dε) is the weighted mean value of the strain difference Dε around336

the field point x ∈ V ; it is a measure of the nonlocal part of the strain at337

x̄. Obviously, was ε uniform within V , it would be R(Dε) ≡ 0, that is,338

the locality recovery condition is automatically satisfied, like with a strain339

gradient model.340

The energy ψ, a quadratic form of the strain ε and the nonlocal strain341

difference R(Dε), is the sum of two contributions, one from a local constitu-342

tive behavior of unit density, the other from a nonlocal constitutive behavior343

whose density depends on the α coefficient. On increasing α the relative344

importance of the local phase with respect to the nonlocal one will decrease;345

for α→∞ the model tends to lose the accompanying local phase. Therefore,346

α also plays the role of phase parameter.347

The stress-strain relation is obtained from (12) by writing (Polizzotto et348

al., 2006):349

t =
∂ψ

∂ε
= C : ε

τ =
∂ψ

∂R(Dε)
= αC : R(Dε)

〉
(17)

σ = t +R(Dτ )

After some mathematics not reported here for brevity sake (for which we350

refer to (Polizzotto et al., 2006)), Eq. (17)3 reads either as351

σ(x) = C(x) : ε(x)− α
∫
V

J(x, x̄) : [ε(x̄)− ε(x)] dV (x̄) (18)

or equivalently as352

σ(x) = C(x) : ε(x) + α

∫
V

S(x, x̄) : ε(x̄) dV (x̄) (19)

The nonlocal stiffness tensors J and S are expressed as353
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J(x, x̄) := [γ(x)C(x) + γ(x̄)C(x̄)]g(x, x̄)
−
∫
V
g(x, ξ)g(x̄, ξ)C(ξ) dV (ξ)

S(x, x̄) := 1
2

[
γ2(x)C(x) + γ2(x̄)C(x̄)

]
δD(x, x̄)− J(x, x̄)

 (20)

and satisfy the equalities354 ∫
V

J(x, x̄) dV (x̄) = γ2(x)C(x)∫
V

S(x, x̄) dV (x̄) = 0

 ∀x ∈ V (21)

3.2. The strain-difference beam model in bending355

In the case of homogeneous Euler–Bernoulli beam in bending like the356

one introduced in Section 2, in which ε = εxx is the only meaningful strain357

component, the transverse attenuation effects are assumed to be of so modest358

amplitude such that the kernel g can be considered to be a function of the x359

co-ordinate only, that is, g = g(x, x̄). Then, the stress-strain equation (18)360

simplifies as follows:361

σ(x, z) = Eε(x, z)− αE
∫ L

0

κ(x, x̄)[ε(x̄, z)− ε(x, z)] dx̄ (22)

or, equivalently,362

σ(x, z) = E [1 + αγ2(x)]ε(x, z)− αE
∫ L

0

κ(x, x̄)ε(x̄, z) dx̄ (23)

Here, κ(x, x̄) (dimensionally an inverse length) is given by363

κ(x, x̄) =
[
γ(x) + γ(x̄)

]
g(x, x̄)−

∫ L

0

g(x, ξ)g(x̄, ξ) dξ (24)

Analogously, the stress-strain relation (19) simplifies as364

σ(x, z) = Eε(x, z) + αE

∫ L

0

H(x, x̄)ε(x̄, z) dx̄ (25)
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where365

H(x, x̄) :=
1

2
[γ2(x) + γ2(x̄)]δD(x̄− x)− κ(x, x̄) (26)

The following conditions hold true:366 ∫ L
0
κ(x, x̄) dx̄ = γ2(x)∫ L

0
H(x, x̄) dx̄ = 0

∀x ∈ (0, L) (27)

Next, using (22), denoting by χ(x) the beam curvature at x and recalling367

that ε(x, z) = zχ(x), the bending moment M(x) =
∫
A
zσ dA takes on the368

expression369

M(x) = EI
{[

1 + αγ2(x)
]
χ(x)− α

∫ L

0

κ(x, x̄)χ(x̄) dx̄
}

(28)

Eq. (28) is the fundamental bending moment/curvature relation featuring370

the strain-difference based nonlocal model under discussion.371

3.3. The weight function γ(x)372

For applications to micro- and nano-beams, it may be useful to construct373

the weight function γ(x) of (7) for the bi-exponential kernel (2). This function374

is a (non-dimensional) function that varies continuously within (0, L) and is375

symmetric with respect to middle point x = L/2; it provides the nonlocal376

strain associated to a (uniform) unit local strain field within the body. For377

the bi-exponential kernel function (2), by a simple integration we can obtain378

the function γ(x) as follows:379

γ(ξ, λ) = 1− 1

2

[
exp
(
− ξ
λ

)
+ exp

(
−1− ξ

λ

)]
(29)

The dependence of γ on the length scale parameter ` is explicitly accounted380

by considering the ratio λ := `/L as an argument of γ. The symbol ξ := x/L381

is the non-dimensional abscissa (0 ≤ ξ ≤ 1).382

Eringen (1983) suggested to set ` = e0a, where a denotes a characteris-383

tic length of the microstructure (particle spacing, grain size, and the like),384

whereas e0 is a (non-dimensional) material constant identified as e0 ≈ 0.39.385

15



The function γ(ξ, λ) is plotted in Figure 1 for different values of λ =386

0.01; 0.05; 0.1; 0.2.387

Since γ(ξ, λ) is non-decreasing for ξ increasing within the interval (0, 0.5)388

while λ is taken fixed, we can write:389

min
ξ∈(0,1)

γ(ξ, λ) = γ(0, λ) = c1(λ) :=
1

2

[
1− exp

(
−1

λ

)]
(30)

max
ξ∈(0,1)

γ(ξ, λ) = γ(0.5, λ) = c2(λ) := 1− exp
(
− 1

2λ

)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Weight function(, ) plotted as a function of the non-dimensional 

abscissa  x/L for  0.01 (solid line), 0.05 (dash dot line), 0.1 (dashed line) 

and 0.2 (solid line with triangles).  

Figure 1: Weight function γ(ξ, λ) plotted as a function of the non-dimensional abscissa
ξ = x/L for λ = 0.01 (solid line), 0.05 (dash dot line), 0.1 (dashed line) and 0.2 (solid line
with triangles).

The bound functions c1(λ) and c2(λ) are plotted in Figure 2, which shows390

that c1(0) = 0.5, c2(0) = 1 and that both tend to zero for λ→∞; also, they391

satisfy the inequalities392

0 < c1(λ) ≤ 1

2
, 0 < c2(λ) ≤ 1, ∀λ ≥ 0 (31)

Since the kernel g is approximately zero at any distance larger than the393

influence distance, R = m`, (with m ≈ 6), then the plots of the functions394
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c1(λ) and c2(λ) exhibit each an initial constant piece, namely c2(λ) = 1395

for 0 ≤ λ ≤ λ∗ where λ∗ := 1/(2m) ≈ 0.0833, whereas c1(λ) = 0.5 for396

0 ≤ λ ≤ 2λ∗. Therefore, the bound relation for γ(x, λ), that is,397

c1(λ) ≤ γ(x, λ) ≤ c2(λ) ∀ λ (32)

for λ values smaller than λ∗ can be approximated as398

0.5 ≤ γ(x, λ) ≤ 1 ∀ λ ≤ λ∗ (33)

The latter bound relation holds for L ≥ 2R, that is whenever there exists a399

core domain of length Lc := L − 2R = `( 1
λ
− 1

λ∗
) > 0. No core domain can400

exist whenever λ > λ∗, whereas for λ = λ∗ the core domain exists collapsed401

at the isolated middle point x = L/2.402  

 

 

Figure 2. Minimum (c1) and maximum (c2) values of the weight function 

(, ) plotted as functions of l L 

Figure 2: Minimum (c1) and maximum (c2) values of the weight function γ(ξ, λ) plotted
as functions of λ = `/L.

403

4. The bending beam problem under static loads404

Assuming that the beam deforms only in bending without extension, the405

beam equilibrium equation reads as406
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M ′′(x) + p(x) = 0 ∀x ∈ (0, L) (34)

where p(x) is the assigned transverse distributed load. By integration of Eq.407

(34) we can write for convenience:408

M(x) = −f(x)− EI

L2

(
C1x+ C2L

)
(35)

Here, f(x) is a particular function that satisfies the equation409

f ′′(x) = p(x) ∀x ∈ (0, L) (36)

whereas C1, C2 are arbitrary (non-dimensional) constants. Therefore, recall-410

ing that χ(x) = −w′′(x), Eq. (28) can be rewritten as411

[
1 + αγ2(x)

]
w′′(x)− α

∫ L

0

κ(x, x̄)w′′(x̄) dx̄ =

=
1

EI
f(x) +

1

L2
(C1x+ C2L) (37)

Since 1 + αγ2(x) > 0 ∀x ∈ (0, L), following (Tricomi, 1985), let us posit412

s(x) :=
√

1 + αγ2(x) (38)

and413

φ(x) := Ls(x)w′′(x) (39)

Next, solving (39) for w′′(x) we can write414

w′′(x) =
1

L

φ(x)

s(x)
(40)

Hence, substituting (40) into (37) leads to the desired Fredholm integral415

equation of the second kind for the unknown (non-dimensional) function416

φ(x), namely,417

φ(x) = α

∫ L

0

K(x, x̄)φ(x̄) dx̄+
L

EIs(x)
f(x) + C1

x

L
+ C2 (41)

where the (symmetric) kernel K(x, x̄) is defined as418
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K(x, x̄) :=
κ(x, x̄)

s(x)s(x̄)
(42)

The deflection w(x) can be determined by (40) which by integration gives419

w(x) = LΨ(x) + C3x+ C4L (43)

where C3 and C4 are (non-dimensional) arbitrary constants, whereas Ψ(x) is420

a particular non-dimensional function satisfying the condition421

LΨ′′(x) =
φ(x)

s(x)
∀x ∈ (0, L) (44)

This Ψ(x) is here chosen in the form422

Ψ(x) :=
1

L2

∫ x

0

(x− x̄)
φ(x̄)

s(x̄)
dx̄ (45)

The constants C1, C2, C3, C4 must be determined by the ordinary bound-423

ary conditions of every specific beam problem, that is, the standard (static424

and/or kinematic) boundary conditions known from classical beam theories.425

4.1. Solution scheme426

The integral equation (41), on which the beam problem is centered, can427

be usefully transformed by splitting the unknown function φ(x) as428

φ(x) = φ0(x) + C1φ1(x) + C2φ2(x) (46)

Substituting (46) into (41) gives the equality429

{
φ0(x)− α

∫ L

0

K(x, x̄)φ0(x̄) dx̄− Lf(x)

EIs(x)

}
+C1

{
φ1(x)− α

∫ L

0

K(x, x̄)φ1(x̄) dx̄− x

Ls(x)

}
+C2

{
φ2(x)− α

∫ L

0

K(x, x̄)φ2(x̄) dx̄− 1

s(x)

}
= 0 (47)

Since the latter equality has to hold for arbitrary values of C1 and C2, the430

following three integral equations must be satisfied, that is,431
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φn(x) = α

∫ L

0

K(x, x̄)φn(x̄) dx̄+ Fn(x), (n = 0, 1, 2) (48)

where it is432

F0(x) :=
Lf(x)

EIs(x)

F1(x) :=
x

Ls(x)

〉
(49)

F2(x) :=
1

s(x)

Eq. (48) provides a set of three mutually independent Fredholm integral433

equations of the second kind, all of which hold no matter how the beam434

ordinary constraints may be; additionally, only the first equation (n = 0)435

depends on the loading conditions.436

Next, let (46) be substituted into (45) to obtain437

Ψ(x) = Ψ0(x) + C1Ψ1(x) + C2Ψ2(x) (50)

where we have set438

Ψn(x) :=
1

L2

∫ x

0

(x− x̄)
φn(x̄)

s(x̄)
dx̄, (n = 0, 1, 2) (51)

Then, substituting (50) into (43) gives the deflection w(x) cast in the439

form440

w(x)

L
= Ψ0(x) + C1Ψ1(x) + C2Ψ2(x) + C3

x

L
+ C4 (52)

This equation together with (35) constitute a closed-form representation of441

the solution of the generic beam problem.442

The solution for every specific beam problem must be determined tak-443

ing in account the inherent loading and boundary conditions. This task is444

achieved in the following section devoted to applications.445
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5. Applications446

Equations (35) and (52) have been applied to a few simple beam cases,447

that is:448

a) Clamped-free beam under a point load P at the free end;449

b) Clamped-free beam under uniform distributed load p0;450

c) Pinned-pinned beam under uniform distributed load p0;451

d) Clamped-pinned beam under uniform distributed load p0;452

e) Clamped-clamped beam under uniform distributed load p0.453

For this purpose, the integral equations (48) have been addressed by a454

routine computational algorithm known from the literature (Press et al.,455

1997). The resulting deflection curve w(x) and bending moment function456

M(x) have been computed by (52) and (35) for every case taking α = 50, each457

computation being repeated for λ varying within the interval (0 ≤ λ ≤ 0.2).458

The following ordinary boundary conditions were adopted in the above459

computations:460

a) Clamped-free beam under end point load:461

w(0) = w′(0) = M(L) = 0, M ′(L) = P ;462

b) Clamped-free beam under uniform load:463

w(0) = w′(0) = M(L) = M ′(L) = 0;464

c) Pinned-pinned beam under uniform load:465

w(0) = w(L) = M(0) = M(L) = 0;466

d) Clamped-pinned beam under uniform load:467

w(0) = w′(0) = w(L) = M(L) = 0;468

e) Clamped-clamped beam under uniform load:469

w(0) = w′(0) = w(L) = w′(L) = 0.470
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5.1. Numerical algorithm to solve the integral equations471

Let the typical integral equation (49) be here reported again in the form472

φ(x) = α

∫ L

0

K(x, y)φ(y) dy + ψ(x) (53)

where ψ(x) identifies itself with Fn(x), (n = 0, 1, 2).473

The numerical algorithm used to solve the integral equation (53) is the474

Nystrom method reported in the quoted book (Press et al., 1997), pp. 782–475

785, by which the desired solution is obtained as the solution of an algebraic476

linear equation system. The main point consists in choosing a set of quadra-477

ture points xi, (i = 1, 2, ..., N), and a set of weights Wi (Gauss–Legendre478

quadrature rule). Then, Eq. (53) can be written at every xi in a discrete479

form as480

φ(xi) = α
N∑
j=1

WjK(xi, yj)φ(yj) + ψ(xi) (54)

Next, writing φi for φ(xi), K̃ij for WjK(xi, yj), ψi for ψ(xi), and collecting481

all of them in vector and matrix forms, we get482 (
I− αK̃

)
· φ = ψ (55)

This is a set of N linear equations which generally provides sufficiently483

accurate values of the unknowns in φ in terms of the data in ψ.484

Once the vector φ is known, the function φ(x) at the generic point x485

within (0, L) can be obtained by writing the relation486

φ(x) = α

N∑
j=1

WjK(x, yj)φj + ψ(x) (56)

Whenever it may be required, the eigenvalues of the matrix K̃ can be487

obtained, with the aid of a straightforward symmetrization technique, by488

addressing the eigenvalue problem489

K̃ · φ = βφ, (β = 1/α) (57)

According to (Press et al., 1997), the solution of the integral equation with490

the Nystrom method described above is usually well-conditioned, unless α is491

very close to an eigenvalue.492
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5.2. Numerical procedures for the other considered models493

For comparison, the analogous plots for other three methods of the lit-494

erature were also accomplished, of which one is based on the first strain495

gradient model (Mindlin and Eshel, 1968; Papargyri-Beskou et al., 2003a,b;496

Polizzotto, 2014) and constitutes the main reference for the present work;497

another is based on the stress-driven nonlocal model with a bi-exponential498

kernel (Romano and Barretta, 2017a,b), which is chosen for its similarities499

with the strain gradient model.2 The third method is the Eringen nonlocal500

differential method (Eringen, 1983; Peddieson et al., 2003). The following501

procedures were adopted to address these comparison models.502

(1) Strain gradient model503

The strain gradient beams were addressed by solving the differential504

equation (Papargyri-Beskou et al., 2003a,b; Polizzotto, 2014)505

(
w(x)− `2w′′(x)

)′′′′
=
p(x)

EI
(58)

This equation is associated with the ordinary boundary conditions506

listed above, 3 along with the higher order boundary conditions whereby507

either the bending curvature χ = −w′′, or the higher order bending mo-508

ment M (1) = `2EIχ′ = −`2EIw′′′, is specified at the beam ends (Poliz-509

zotto, 2014). This implies that, at each beam end, the rotation and the510

curvature are allowed to be both fixed, or both free, or even one fixed511

and the other free, according to the actual constraint conditions.512

Among several possible choices for the higher order boundary condi-513

tions, we assumed that the curvature is fixed or free according to whether514

2The strain gradient model and the nonlocal stress-driven one are founded on different
theoretical bases, but in the case under consideration they are strictly related to a same
Helmholtz differential equation, i.e. M = EI(χ − `χ′′). This implies that they share a
same governing differential equation, i.e. (w(x) − `2w′′(x))′′′′ = p/EI, and are different
from each other only for the respective nonstandard boundary conditions. For this reason
the stress-driven nonlocal model has been considered suitable for comparisons with the
strain gradient model.

3Though in the case of multi-dimensional domain the traction (natural) boundary con-
ditions are different for simple and strain gradient materials, they instead are coincident
with each other for one-dimensional domains as in the case under discussion (Polizzotto,
2014).
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the rotation is fixed or free, respectively. More precisely, the higher or-515

der boundary conditions used to address the beam cases listed above516

are as follows:517

w′′(0) = w′′′(L) = 0 for cases a), b), d)
w′′′(0) = w′′′(L) = 0 for case c)
w′′(0) = w′′(L) = 0 for case e)

 (59)

(2) Stress-driven nonlocal model518

The solutions for the stress-driven nonlocal beams were taken from519

(Barretta et al., 2018), where functionally graded materials are ad-520

dressed. A comparison of the results of the latter paper with those of521

the present homogeneous beam model is possible since in (Barretta et522

al., 2018) the effective Young modulus IE is constant along the beam523

axis and its specific influence disappears from the dimensionless quan-524

tities therein adopted in equation (91). The solution equations (33),525

(55), (66), (80) and the numerical data of the tables reported in (Bar-526

retta et al., 2018) (with IE = EI) were directly exploited to derive527

the inherent representative curves. Suitable checks were executed to528

verify that we were able to exactly reproduce the numerical data col-529

lected in the tables reported in (Barretta et al., 2018) by the use of the530

accompanying closed-form solutions.531

A main difficulty for the planned comparison arises from the α coeffi-532

cient appearing in both models with the role of phase parameter, but533

with different meanings (in (Barretta et al., 2018): α = 0→ fully non-534

local; α = 1 → fully local; in the present work: α = 0 → fully local;535

α → ∞,→ fully nonlocal). Additionally, whereas in (Barretta et al.,536

2018) the kernel just identifies itself with the bi-exponential function,537

instead in the present work the kernel incorporates squared forms of the538

latter function, which implies that, at parity of local source strain, the539

attenuation effects are in some way more pronounced with respect to540

the former model. Within the planned comparison, this phenomenon541

may be heuristically accounted by considering as a realistic phase pa-542

rameter of the present model the quantity
√
α.543

Therefore, looking at equation (31) of (Barretta et al., 2018) and Eq.544

(25) of the present work, a relation between the respective phase pa-545

rameters may be attempted by writing the equation546
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√
αF : 1 = (1− αB) : αB (60)

Here, the subscripts appended to α serve to distinguish the α coefficient547

of (Barretta et al., 2018) (αB) from the present one (αF ). From (55)548

we get549

αB =
1

1 +
√
αF

(61)

For αF = 50, the latter relation gives αB ≈ 0.124. The value αB = 0.1550

was used for the computation of the solutions given by (Barretta et al.,551

2018), which amounts to considering a mixture model with a density552

of 90 % of the nonlocal phase. 4
553

(3) Eringen’s nonlocal model554

The solutions pertaining to the Eringen nonlocal model were taken555

from (Peddieson et al., 2003), except for the doubly clamped beam556

not reported in the latter quoted paper, but addressed in (Barretta557

and Marotti de Sciarra, 2015) and worked out by the authors with the558

Eringen’s method.559

It may be useful to note that the doubly clamped Eringen nonlocal560

beam mentioned above does not exhibit size effects on the deformation,561

but it does on the bending moment M(x). This is shown in Figure562

3, where the M(x) diagram shifts upward on increasing λ (in such a563

way that the maximum bending moment M(L/2) goes from p0L
2/48564

(classical value) for λ = 0 to 0 for λ ≈ 0.2, while the deflection w(x)565

remains fixed in its classical form. It may also be useful to explain the566

reason of such particular behavior.567

It is worthy of mention that the characters of the solution of the doubly568

clamped beam e) are shared by any other Eringen’s beam under uniform569

load p0, but constrained in such way that the bending moment is not570

involved within the boundary conditions (i.e. the rotation is assigned at571

4In (Barretta et al., 2018) the numerical/graphical solutions for αB = 0.1 are not
reported, but we have been able to obtain these solutions using the closed-form solutions
offered by the mentioned authors, except in the case of the clamped-pinned beam d) for
which the closed-form solution is not reported.
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both beam ends. The latter particular set of beams includes, beside the572

beam of case e) (for which w(0) = w(L) = w′(0) = w′(L) = 0), at least573

another analogous beam with the boundary conditions w(0) = w′(0) =574

w′(L) = 0,M ′(L) specified.575

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Clamped-clamped beam subjected to uniform distributed load. 

Normalized bending moment (obtained with Eringen differential) versus non-

dimensional abscissa x/Lfor  =0 (solid line),  =0.05 (dash dot line),  =0.1 

(solid line with triangles) and  =0.2  (dashed line). 

p0 

L 

Figure 3: Clamped-clamped Eringen’s nonlocal beam under uniform distributed load
p0. Bending moment diagrams M(x), 0 ≤ x ≤ L, reported for different values of
λ = 0, 0.5, 0.1, 0.2.

Then, considering a beam belonging to this particular set, the general576

governing differential equation, that is,577

w′′′′(x) =
1

EI

[
p(x)− `2p′′(x)

]
(62)

since p = p0, simplifies by losing its dependence on `, namely578

w′′′′(x) =
1

EI
p0 (63)

whereas the bending moment is given by579

M(x) = −EIw′′(x)− `2p0 (64)

Since the bending moment M(x) does not intervene into the (ordinary)580

boundary conditions (but its derivative M ′(x) possibly does), then the581

26



deflection w(x) obtained by integration of (63) does not contain `, hence582

it coincides with the classical deflection; moreover, the bending moment583

M c(x) := −EIw′′(x) is the classical bending moment. Therefore the584

actual bending moment M(x) is expressed as585

M(x) = M c(x)− `2p0 (65)

That is, M(x) is coincident with M c(x), but shifted by `2p0 upward,586

the more, the larger is `, as shown in Figure 3.587

An equivalent explanation based on the analogy proposed by (Barretta588

and Marotti de Sciarra, 2015) may also be given, but we have preferred589

the use of direct arguments.590

5.3. Description and discussion of the obtained results591

The obtained results are illustrated in Figures 4–8, where the maximum592

beam deflection (here called “normalized deflection”, denoted with the sym-593

bol ŵ) is plotted as a function of λ := `/L varying within the (meaningful)594

interval (0 ≤ λ ≤ 0.2).595

Figures 4–8 show that —except the Eringen’s nonlocal method— the596

other three methods (hereafter collectively referred as the “comparison meth-597

ods”) predict stiffening size effects for all the considered beam cases. The598

curves ŵ(λ) obtained with these comparison methods for every beam case are599

generally sufficiently close to one another, which means that the size effects600

predictions by the considered methods are in substantial agreement with one601

another.602

The normalized deflection curves, ŵ(λ), are all characterized by a negative603

slope, namely dŵ
dλ

< 0. This indicates that there is a reduction of the nor-604

malized deflection with increasing λ, or equivalently that there is an increase605

of the stiffening effects with decreasing the specimen size. This result is a606

natural consequence of the physical circumstance whereby the microstruc-607

ture with its stiffening effects becomes dominant the more, the smaller is the608

specimen size.609

610

611

612
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Figure 3. Cantilever beam subjected to a point load at the free end. Normalized 

deflection at the free end cross section versus internal length parameter for 

strain gradient (Polizzotto 2014, dashed line), strain-difference integral (present 

model, solid line), stress-driven (Barretta et al. 2018, dash dot line) and Eringen 

differential (Peddieson et al. 2003, solid line with triangles) constitutive 

behavior. 

P 

L 

Figure 4: Cantilever beam subjected to a point load at the free end. Normalized deflection
at the free end cross section versus internal length parameter λ for strain gradient (Poliz-
zotto 2014, dashed line), strain-difference integral (present model, solid line), stress-driven
(Barretta et al. 2018, dash dot line) and Eringen differential (Peddieson et al. 2003, solid
line with triangles) constitutive behavior.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Cantilever beam subjected to uniform distributed load. Normalized 

deflection at the free end cross section versus internal length parameter  for 

strain gradient (Polizzotto 2014, dashed line), strain-difference integral (present 

model, solid line), stress-driven (Barretta et al. 2018, dash dot line) and Eringen 

differential (Peddieson et al. 2003, solid line with triangles) constitutive 

behavior. 

p0 

L 

Figure 5: Cantilever beam subjected to uniform distributed load. Normalized deflection
at the free end cross section versus internal length parameter λ for strain gradient (Poliz-
zotto 2014, dashed line), strain-difference integral (present model, solid line), stress-driven
(Barretta et al. 2018, dash dot line) and Eringen differential (Peddieson et al. 2003, solid
line with triangles) constitutive behavior.
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Figure 5. Simply supported beam subjected to uniform distributed load. 

Normalized deflection at mid cross section versus internal length parameter for 

strain gradient (Polizzotto 2014, dashed line), strain-difference integral (present 

model, solid line), stress-driven (Barretta et al. 2018, dash dot line) and Eringen 

differential (Peddieson et al. 2003, solid line with triangles) constitutive 

behavior. 
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Figure 6: Simply supported beam subjected to uniform distributed load. Normalized
deflection at mid cross section versus internal length parameter for strain gradient (Poliz-
zotto 2014, dashed line), strain-difference integral (present model, solid line), stress-driven
(Barretta et al. 2018, dash dot line) and Eringen differential (Peddieson et al. 2003, solid
line with triangles) constitutive behavior.
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Figure 7: Clamped-pinned beam subjected to uniform distributed load. Normalized deflec-
tion at mid cross section versus internal length parameter λ for strain gradient (Polizzotto
2014, dashed line), strain-difference integral (present model, solid line) and Eringen differ-
ential (Peddieson et al. 2003, solid line with triangles) constitutive behavior. (The curve
relative to the stress-driven model is not reported because the related closed-form solution
is not reported in (Barretta et al., 2018).)
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Figure 6new. Clamped-clamped beam subjected to uniform distributed load. 

Normalized deflection at mid cross section versus internal length parameter  for 

strain gradient (Polizzotto 2014, dashed line), strain-difference integral (present 

model, solid line), stress-driven (Barretta et al. 2018, dash dot line) and Eringen 

differential (Peddieson et al. 2003, solid line with triangles) constitutive 

behavior. 
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L 

Figure 8: Clamped-clamped beam subjected to uniform distributed load. Normalized
deflection at mid cross section versus internal length parameter λ for strain gradient
(Polizzotto 2014, dashed line), strain-difference integral (present model, solid line), stress-
driven (Barretta et al. 2018, dash dot line) and Eringen differential (Peddieson et al. 2003,
solid line with triangles) constitutive behavior.

613

Figures 4–8 show that the normalized deflection curves relative to the614

strain-difference based model exhibit a waved pattern. This means that, after615

the latter model, the rate at which the stiffening effects increase is increasing616

with λ increasing from zero to some inflection point, say λi, but is decreasing617

with λ increasing beyond λi. This prediction of the strain-difference based618

model seems to be in contrast with the strain gradient model and the stress-619

driven one, which in fact lead to normalized deflection curves that apparently620

do not exhibit a waved pattern.621

However, a deeper insight on Figures 4–8 shows that both the strain622

gradient model and the stress-driven one may also lead to waved curves623

ŵ(λ), though with less pronounced wave amplitudes, for certain beam cases.624

This has been ascertained by computing the slope dŵ/dλ as a function of λ.625

We found a waved normalized deflection curve for the doubly pinned beam626

case addressed with either the strain-gradient and the stress-driven models,627

as well as for the clamped-pinned and doubly clamped beam cases addressed628

with the stress-driven model.629

For a full validation of the above waved pattern of the normalized de-630
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flection suitable experimental data would be required, but —to the au-631

thors’ knowledge— such data are not available. In the wait of the necessary632

(likely difficult) laboratory experiments, the existence of normalized deflec-633

tion curves with a waved pattern remain as just a prediction of the existing634

constitutive models.635

6. Conclusion636

We have applied the so-called strain-difference based nonlocal elasticity637

model previously devised elsewhere (Polizzotto et al., 2004, 2006) to simple638

Euler-Bernoulli beam structures subjected to static loads. Stiffening size ef-639

fects have been found for the five beam cases herein considered, while the640

proposed method is expected to lead to the same kind of size effects for other641

types multi-dimensional structures. For comparison, the beam responses642

based on other constitutive models have been also reported, namely, the643

strain gradient model (Mindlin and Eshel, 1968; Papargyri-Beskou et al.,644

2003a,a; Polizzotto, 2014), along with the stress-driven nonlocal model (Ro-645

mano and Barretta, 2017a,b; Romano et al., 2017b). Stiffening size effects646

were also found with these latter models. The comparison was enriched by647

reporting the analogous plots obtained with the Eringen nonlocal differential648

model, known to lead to inconsistent solutions (paradoxes).649

The major notable result obtained with the present work is that stiffen-650

ing size effects on the deformation for the five considered beam cases (and651

likely for other multi-dimensional structures) are predicted with the pro-652

posed strain-difference based nonlocal model, which belongs to the family of653

strain-integral nonlocal models.654

The obtained results prove to be in sufficient agreement with those ob-655

tained with the widely accepted strain-gradient constitutive model, as well656

as with the stress-driven model by Romano and Barretta (2017a,b), which657

seems to corroborate the well-known smaller-is-stiffer phenomenon. For a658

full validation of these results, arguments based on adequate laboratory ex-659

periments would be required. Due to the difficulty to find out adequate660

experimental data, here a theoretical study has been performed.661

In the authors’ opinion, the obtained results deserve to be further pursued,662

first in order to find improved models to adhere more accurately to the actual663

(experimentally validated) specimen behavior, second in order to extend the664

application framework. This is the subject of an ongoing research.665
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