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Abstract The paper deals with the determination of the symmetric model
and proper boundary conditions for solving nonlocal elastic symmetric struc-
tures. The above concepts, in the context of nonlocal integral elasticity, turn
out to be different with respect to the standard ones, classically applied when
dealing with local elastic symmetric structures. Indeed, when only a symmet-
ric portion of the structure is analyzed, the nonlocal effects induced by the
remaining (cut) portions are lost, this necessitates the consideration of an en-
larged symmetric model on which appropriate nonlocal boundary conditions
have to be imposed. It has to be pointed out how the width of such an en-
larged model depends on the nonlocal material parameters, while the correct
unknown nonlocal boundary conditions are here obtained and enforced by an
iterative procedure. The accuracy of the proposed approach in solving non-
local structural symmetric problems is tested with the aid of two numerical
examples.

Keywords Symmetric structures · Nonlocal integral elasticity · Nonlocal
boundary conditions.

1 Introduction and motivations

In the field of solid mechanics and continuum media, the relevant literature
of the last few decades has shown a growing interest for nonlocal models.
This interest is justified by the attempt to solve paradoxes/problems related
to the application of the classical local continuum theories. Examples are,
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among others: the singularity of the stress field predicted by the local elas-
tic fracture mechanics theory ([6], [3]) at a tip of a crack; or the inability to
consistently describe the mechanical behaviour of some innovative materials,
like nanotubes or nanocomposites [11]; or other complex materials, such as
those involved in biomechanics ([10], [14]); and, in general, all those problems
where the diffusive processes arising at nanoscale level influence the mechan-
ical behaviour of the material at macroscopic level. Nonlocal continuum the-
ories seem to overcome the above drawbacks thanks to the presence, in the
constitutive nonlocal laws, of additional internal material parameters. In this
context, starting from the early papers of Edelen and Eringen ([4], [5], [3]), a
variety of formulations have been proposed which, without pretending to be
exhaustive, can be summarized as follows: the integral [7] and the gradient [2]
approaches, the continualizations procedures [1], the peridynamic models [13].
The above formulations are theoretically and mathematically more complex
with respect to the local ones and, consequently, their numerical application
results computationally more challenging and burdensome. Then, there is the
need, more than in the local context, to take advantage of all the computing
strategies that can reduce the analysis cost. Among such strategies, one, cer-
tainly effective, consists in the exploitation of structural symmetries that, as
well known, can half or more the structural model to be analyzed. For this rea-
son, structural symmetries are extensively used also in nonlocal applications
where, the classical (local) simplified schemes with the related assumptions
and boundary conditions are used in a straightforward manner. Unluckily, it
can be shown that these assumptions lead to an incorrect solution of the origi-
nal nonlocal problem. Indeed, when only a symmetric portion of the structure
is analysed, the nonlocal effects induced by the neglected portions are lost. In
order to recover the correct solution, the paper proposes the use of an enlarged
symmetric model and the definition of appropriate nonlocal boundary condi-
tions. The width of such an enlarged model depends on the nonlocal material
parameters, while the correct nonlocal boundary conditions are obtainable it-
eratively. The determination of the nonlocal boundary conditions, proposed
in this paper, provides the answer to an open question posed by the authors
in a previous article [9] on the subject. Even if the arguments defined above
are of general validity in the nonlocal context, in the following reference it is
made to a nonlocal elasticity model of integral type and, more precisely, to an
enhanced version of the two-phases nonlocal integral Eringen model, already
used by the authors in previous researches ([12], [8]). Two symmetrical struc-
tures, made up of nonlocal elastic material, are analysed in order to highlight
both the incoherencies arising in the results when a classical symmetric struc-
tural portion with classical boundary conditions is considered and to show
the effectiveness of the proposed remedies. The numerical examples are car-
ried out by means of a nonlocal finite element method (NL-FEM), developed
and implemented by the authors in [8]. For the sake of clarity, details on the
constitutive assumptions as well as on the NL-FEM are briefly recalled in the
following sections.
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2 The strain-difference nonlocal integral model

To describe the constitutive behavior of the material the structural elements
are made with, the strain-difference nonlocal integral model, proposed in [12],
is employed. It is a two-phases local-nonlocal model that, for a continuum
body, occupying a volume V , has the shape:

σ = D : ε+ αA [4 (D : A(4ε))] . (1)

In the above expression D is the elastic moduli tensor in its standard form,
while A(·) is a nonlocal operator defined as:

A(ε)|x :=

∫
V

g(x,x′) ε(x′) d x′ ∀ x ∈ V, (2)

and

A(4ε)|x :=

∫
V

g(x,x′) [ε(x′)− ε(x)] d x′ ∀ x ∈ V. (3)

The function g(x,x′) entering equations (2) and (3) is known as attenuation
function. It plays a crucial role in the nonlocal model taking into account,
for each point x in V , the nonlocal effects coming from a neighborhood sub-
domain centered at x. In many nonlocal models, as the one hereafter em-
ployed, the function g(x,x′) satisfies the normalization condition in the shape∫
V∞

g(x,x′) dV ′ = 1.
The literature offers different analytical expressions for the attenuation func-
tion g(x,x′) which essentially depends on the Euclidean distance between
points x and x′ of the domain as well as on a nonlocal material parameter,
say `, measure of the domain seat of the diffusive process. Then, the proposed
constitutive model contains two nonlocal parameters that are α and `. The
two parameters possess a different physical meaning; precisely: while α gives
the proportion of the nonlocal phase in the constitutive model, ` defines the
so called influence distance, say LR, i.e. the “length” defining the “width of
the continuum region” within which long distance nonlocal interactions act.
The nonlocal effects increase with α and `, while the material model identifies
with the local one for α and/or ` approaching to zero.
By substituting (2) and (3) in (1) the strain-difference model can be rewritten
as

σ(x) = D(x) : ε(x)− α
∫
V

J(x,x′) : [ε(x′)− ε(x)] dx′, (4)

where the following positions hold:

γ(x) =

∫
V

g(x,x′) dV ′ (5)

k(x,x′) =

∫
V

g(x, z)g(x′, z)D(z) dz (6)

J(x,x′) = [γ(x)D(x) + γ(x′)D(x)] g(x,x′)− k(x,x′). (7)
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From equation (4) it appears evident the dependency of the nonlocal phase
by the strain difference field. It has been proved in [12] that such kind of
model is thermodynamically consistent and that it is possible to realistically
describe the constitutive behavior of a nonlocal elastic material occupying a
finite domain.

3 The nonlocal finite element method

This section briefly recalls some theoretical and computational aspects related
to the numerical tool utilized in solving the analyzed nonlocal elastic symmet-
ric structures. It comes in a nonlocal version of the standard finite element
method, known as nonlocal finite element method (NL-FEM). The NL-FEM
has been theoretically presented in [12] and implemented, in its enhanced ver-
sion, in [8]. The two above quoted papers give all the details on the method and
the Reader is invited to refer to them to gain a full understanding. Neverthe-
less, the method is here recalled both for general sake of clarity, and because its
correct knowledge helps in the comprehension of the strategy proposed later
on to solve nonlocal elastic symmetric structures.

To proceed further, let us consider a nonlocal elastic body occupying a
volume V whose boundary surface is S. The body is subjected to body forces
b(x) in V and surface tractions t(x) on St. Kinematic boundary conditions
u (x) = ū(x) are also specified on Su = S − St. The pertinent boundary
value problem (BVP) is defined by the standard equilibrium and compatibility
equations, together with the nonlocal stress strain relation given in (4). It has
been shown ([12],[8]) that for such nonlocal BVP the associated nonlocal total
potential energy functional can be written as:

Π [u(x)] =
1

2

∫
V

∇u(x) : D(x) : ∇u(x) dV +

+
α

2

∫
V

∇u(x) : γ2(x)D(x) : ∇u(x) dV +

−α
2

∫
V

∫
V

∇u(x) : J(x,x′) : ∇u(x′) dV ′ dV +

−
∫
V

b(x) · u(x) dV −
∫
St

t(x) · u(x) dS. (8)

The displacement field u(x) that minimizes (8), together with ε = ∇su and
σ obtained from (4), furnish the solution of the boundary value problem.
Functional (8) allows to derive a consistent nonlocal FEM formulation which,
for the discretized problem and with reference to the global DOFs of the system
all collected in the vector U, leads to the following global system of algebraic
equations:

K̃ U = F, (9)
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formally appearing as the one of the standard (local) FEM. In eq.(9) F denotes

the standard global vector of the element nodal forces, while K̃ denotes a pe-
culiar (novel with respect to the standard FEM) matrix, namely the nonlocal
global stiffness matrix. More detailed, if the displacement and strain fields are
described, as usual, in terms of element nodal displacements, that is, refer-
ring to element #n in terms let’s say of the element vector dn, the following
standard relations hold:

u(x) = Nn(x)dn, ε(x) = Bn(x)dn ∀x ∈ Vn (10)

with Nn(x) collecting the element shape functions and Bn(x) their derivatives.
By substituting eqs.(10) in (8), after some algebra, it is easy to obtain a
discretized form of functional Π [u(x)], precisely:

Π [dn] =
1

2

Ne∑
n=1

dn
Tkloc

n dn +

α

2

Ne∑
n=1

[
dn

Tknonloc
n dn −

Ne∑
m=1

dn
Tknonloc

nm dm

]
−

Ne∑
n=1

dn
Tfn (11)

where:

kloc
n =

∫
Vn

Bn
T(x)D(x)Bn(x)dVn, (12)

fn =

∫
Vn

Nn
T(x)b(x)dVn +

∫
St(n)

Nn
T(x)t(x)dVn, (13)

are the element stiffness matrix and element nodal force vector, respectively,
in their standard format. The operators with apex “nonloc” are instead a set
of element nonlocal matrices given by:

knonloc
n =

∫
Vn

Bn
T(x)γ2(x)D(x)Bn(x)dVn, (14)

knonloc
nm =

∫
Vn

∫
Vm

Bn
T(x)J(x,x′)Bm(x′)dVmdVn. (15)

Through inspection of equations (14) and (15), it appears how the “nonlocal
behavior” of the element generates a set of element nonlocal stiffness matrices
affected by contributions coming from other elements in the mesh and this
by the presence of operators γ(x),J(x,x′) and, even more explicitly, by the
presence of Bm(x) in the cross-stiffness element matrix given by eq.(15). In
the latter expression, for the current element #n, #m ranges over all the
elements in the mesh. The summation symbol in (11) mimics the assembling
procedure, carried on with the usual identification procedure of the local DOFs
(nodal element displacements dn) with the global ones (U). Such assembling
eventually produces the nonlocal global stiffness matrix of eq.(9) which turns
out to be the sum of two contributions:

K̃ = K
loc

+ K
nonloc

(16)
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where K
loc

is the standard local global stiffness matrix, while K
nonloc

is a non-
local part. The latter, takes into account, for each point x, the effects of diffu-
sive processes arising in all the other points, x′, of the discretized domain V.
The matrix K̃ is proved to be symmetric and positive definite; moreover, K

loc

and K
nonloc

are banded matrices, but K
nonloc

possesses a larger bandwidth
due to the contributions coming from the cross integrations. It is important
to outline how these cross integrations are performed only with regards to a
limited zone of the domain individuated by the influence distance LR, and this
because the nonlocal operators γ and J, being functions of g, vanish beyond
LR. Each nonlocal element is influenced indeed only by the nonlocal effects of
a certain number of neighbors elements.

4 Symmetric structures and nonlocal elasticity

4.1 Mechanical modeling and boundary conditions

Symmetry and antisymmetry are well known properties advantageously usable
when dealing with structural problems. The exploitation of such properties al-
low to significantly reduce the part of structure to consider for the analysis and
then allow to shoot down computational time and memory required for its nu-
merical analysis. In fact, taking advantage from one or more symmetries owned
by the structural problem, the solution provided by the analysis of a reduced
(symmetric) portion of the structure, if properly mirrored with respect to the
lines of symmetry, furnishes the solution of the entire structure. As known, the
above assertion turns out to be true if, along the symmetry lines (planes), are
applied the correct boundary conditions reproducing the “restraints” or the
“freedoms” imposed on the analysed part by the ones removed. In local con-
text, the handling of a structural symmetric problem is well established either
in terms of portion of structure to analyze, which is simply the one bordered
by the lines (planes) of symmetry, either in terms of boundary conditions to
be enforced along such lines (planes). Conversely, in nonlocal context further
considerations are needed, proving that the straightforward application of the
standard rules of symmetry leads to incorrect results, [9].
A first consideration is related to the implications given by the hypothesized
constitutive model (4). To remove the portion of the structure beyond the
symmetry lines means to neglect the nonlocal effects exerted by the cut portions
on the analyzed one. Indeed, bearing in mind the meaning of the influence
distance, LR, the nonlocal effects neglected are those of a sub-domain, of
constant width LR, beyond the symmetry lines and belonging to the removed
portion of the structure. This consideration induces to conceive for the analysis
an enlarged symmetric model obtained by adding to the standard symmetric
one, just the above mentioned sub-domain, that is a boundary symmetric zone
of constant width LR.
A second, crucial, consideration concerns the definition of the appropriate
boundary conditions to apply on the enlarged symmetric model. Such condi-
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tions have to be now enforced not only along the symmetry line (cut) but also
within the boundary symmetric zone. In this sense they can be named nonlo-
cal boundary conditions (NL-BCs). It has been proved in [9] that the correct
solution is obtainable only if the NL-BCs applied in the boundary symmetric
zones coincide with the displacements evaluated in the corresponding zones of
the original, entire, structure. Of course, the above result has only a theoretical
validity, being such boundary conditions part of the solution. In the present
work, the indeterminacy of the NL-BCs is solved by means of an iterative
procedure applied to a NL-FE discretization of the nonlocal enlarged sym-
metric structure. At a first analysis (iteration) the enlarged symmetric model
is considered with only the standard boundary conditions applied along the
symmetry axes. In the second analysis, the displacements evaluated in the
first analysis within the zone symmetric to the boundary symmetric zone, are
applied as NL-BCs, and so on from one iteration to another till the results
of two subsequent iterations are equal within a certain tollerance. The proce-
dure, despite the lack of a theoretical proof of convergence, is validated from
the numerical evidences, and is hereafter summarized in a flow-chart style.

Flowchart. Iterative scheme to enforce the NL-BCs
—————————————————————————————————–

• Initialization
Set k=0
Set geometry, material data and loading of the enlarged symmetric model
Set local BCs along the symmetry lines

Set NL-BCs within the boundary symmetric zone, say d̄
(0)
i = 0

Perform NL-FE analysis and output nodal displacements di
(0), stresses,

strains ...
Read d̄

sym(0)
i , namely the nodal displacements within the zone symmetric

to the boundary symmetric zone
• Start Iteration

Set k = k + 1
Apply the NL-BCs d̄

(k)
i = d̄

sym(k−1)
i

Perform NL-FE analysis and output nodal displacements di
(k), stresses,

strains ...
If |di(k) − di(k−1)| ≥ Toll

Read d̄
sym(k)
i and perform a new iteration

Else
Exit
Endif
End Iteration

—————————————————————————————————–
It is worth noting that an alternative “direct enforcement” of the NL-BCs
would be to set the unknown displacements of the nodes falling within the
boundary symmetric zone equal to the unknown displacements of the corre-
sponding (symmetric) nodes falling within the zone symmetric to the bound-
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ary symmetric zone. The equality of such couples of unknowns concerns their
moduli being the couples’ terms of opposite sign by symmetry. Such an opera-
tion would imply a reordering/reduction of the global solving equation system,
namely the entries in the relevant rows and columns of the global stiffness ma-
trix pertaining to a couple of equal unknowns have to be added/subtracted to
take into account the enforced equivalence. The main difference between the
iterative and the direct enforcement of the NL-BCs, both sharing an initial
identification of the couples of symmetric nodes, is that the proposed proce-
dure requires an iterative updating of assigned displacements without actions
on the assembled global stiffness matrix built from the beginning taking into
account the presence of nodes with assigned DOFs; the direct enforcement re-
quires instead a reordering of the global matrix after assembling. The Authors
experienced the direct enforcement of the NL-BCs that, however, resulted in
being computationally very cumbersome already for problems with few DOFs.

4.2 Numerical examples

The numerical examples analyze the two square plates in tension sketched in
Figures 1a and 3a, respectively. The plates have side dimension L = 5a and
thickness t and for both of them it is assumed that the constituent material
satisfies the stress-strain law given in (4), i.e. the material is nonlocal elas-
tic. The nonlocal material parameters are set `=0.1 cm and α=50 and the
attenuation function has the following bi-exponential form:

g(x,x′) =
1

2π `2 t
exp

(
−|x− x′|

`

)
. (17)

Moreover, it is assumed that the plates are both nonhomogeneous, possessing
one and two inclusions, respectively.
The first example presents a square central inclusion of side dimension a,
as shown in Fig.1a, which also reports the constraints acting on the upper
and lower edges together with the prescribed displacements, ūx = 0.001 cm,
applied on the left and right edges. For the posed problem, two central axes
of symmetry can be easily identified, so in a local context, only a quarter of
the structure, as for example the one highlighted in the quarter upper right
of Fig.1a, could be analyzed. Conversely, in the addressed context, in which
a nonlocal material is employed, the symmetric scheme to be analyzed is the
one reported in Fig.1b in which two boundary symmetric zones of constant
width LR = 11` (hatched areas beyond the symmetry lines) have been added
to the standard symmetric quarter model. The value LR = 11`, also known as
computational influence distance (see again [8] for further details), guarantees
the normalization condition (recalled in Section 2) that has to be met by the
assumed bi-exponential form of the attenuation function (17). Precisely, with
this choice the loss on the unit value is equal to 0.02 %.
To solve the problem the NL-FEM is applied on the discretized model qualita-
tively drawn in Fig.1c. In this last figure are also sketched with white arrows
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Data

2 210 GPaE 
1 84 GPaE 

0.2 

1 cm; 0.5 cma t 
0.001 cmxu 

Fig. 1 Double symmetric square plate with one inclusion. Mechanical model of: a) en-
tire structure; b) enlarged symmetric structure; c)NL-FE model of the enlarged symmetric
structure with d̄ sym

i denoting the nodal displacements computed within the zone symmet-
ric to the boundary symmetric zone and used to apply iteratively the NL-BCs, in terms of
|d̄i|=|d̄ sym

i |.

the NL-BCs (nodal element displacements) applied on the boundary symmet-
ric zones and obtained following the discussed iterative procedure. In order to
perform the analysis, a uniform mesh with 256 isoparametric 8-nodes NL-FEs
is considered. The results, given in terms of strain components profiles εx and
εy, are plotted in Fig.2 in correspondence to the two symmetry axes. The
inspection of Fig.2 validates the arguments discussed throughout the paper,
indeed, the solution obtained by considering the standard symmetric model
(SSM) of the structure deviates from the reference one, evaluated by consider-
ing the whole model (WM), while the solution given by the enlarged symmet-
ric model (ESM), endowed with the appropriate NL-BCs enforced iteratively,
converges, after some iterations, to the correct one.

The same considerations can be repeated by observing the results provided
by the second example. The latter consists in a plate having the same geom-
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etry, constraints and material properties of the first one, but characterized
by the presence a double inclusion, as shown in Fig.3a. Moreover, a uniform
traction, with σ̄x = 85 MPa, is applied along the left and right edges. This sec-
ond example has been conceived with the purpose of validating the proposed
procedure also when two inclusions, each falling in the influence zone of the
other, are present. The above circumstance produces a more complex nonlocal
solution that the enlarged symmetric model has to be able to pursue. Again,
the mechanical scheme to be considered for the analysis is the one represented
by the enlarged symmetric model of Fig.3b with applied NL-BCs in the same
iterative fashion. The results, obtained with the pertinent NL-FE model of
Fig.3c, are shown in Fig.4. Also in this case, the proposed procedure succeeds
in solving the nonlocal symmetric structure correctly.

5 Conclusions

The paper has addressed the problem of symmetric structures in the context of
nonlocal elasticity of integral type. It has been pointed out that classical sym-
metric models and related boundary conditions, commonly utilized also in the
field of structures made of nonlocal materials, produce incorrect results. The
physical reason of such incorrectness can be traced to the loss of the nonlocal
effects exerted by the removed symmetric portion on the reduced (standard
symmetric) one. To recover the correct solution, the paper has proposed the
use of an enlarged symmetric model. The latter has been obtained by adding,
beyond the symmetry lines of the standard symmetric model, boundary sym-
metric zones of width equal to the (nonlocal) influence distance. Such distance,
related to the internal length of the nonlocal material, defines at which extent
the nonlocality effects diffuse. The promoted remedy, whose effectiveness was
shown in a recent contribution of the authors, has been drastically improved
by the appropriate definition of the nonlocal boundary (symmetry) conditions.
Such conditions, to be enforced within the boundary symmetric zones, are part
of the solution and are here specified and applied through an iterative proce-
dure. The numerical evidences seem to confirm the effectiveness of the entire
procedure.

6 Compliance with Ethical Standards:
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Fig. 2 Double symmetric square plate with one inclusion. Strain component profiles along
the symmetry axes: εx, a) and b); εy , c) and d). Solution computed on the whole model of
the plate (WM); solution computed on the standard symmetric model of the plate (SSM);
solution computed on the enlarged symmetric model of the plate (ESM) at iterations 1, 5,
15.
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Fig. 3 Double symmetric square plate with two inclusions. Mechanical model of: a) en-
tire structure; b) enlarged symmetric structure; c)NL-FE model of the enlarged symmetric
structure with d̄ sym

i denoting the nodal displacements computed within the zone symmet-
ric to the boundary symmetric zone and used to apply iteratively the NL-BCs, in terms of
|d̄i|=|d̄ sym

i |.
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Fig. 4 Double symmetric square plate with two inclusions. Strain component profiles along
the symmetry axes: εx, a) and b); εy , c) and d). Solution computed on the whole model of
the plate (WM); solution computed on the standard symmetric model of the plate (SSM);
solution computed on the enlarged symmetric model of the plate (ESM) at iterations 1, 5,
15.


