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A Trust-based Team Formation Framework for
Mobile Intelligence in Smart Factories

Abstract—In Smart Factories, Automated Guided Vehicles
(AGVs) accomplish heterogeneous tasks as moving objects,
restoring connectivity or performing different manufacturing
activities into production-lines. These kinds of devices combine
several capabilities, as artificial intelligence (visual and speech
recognition, automatic fault detecting, pro-active behavior) and
mobility, into the so-called “mobile intelligence”. A typical
scenario is represented by a workshop with a large number
of mobile intelligent devices with associated agents, mutually
interacting on their behalf. Here, to reach a given target by
contemporary satisfying some basic requirements like effec-
tiveness and efficiency, it is often necessary to organize ad-
hoc teams of free-moving vehicles, sensors and smart devices.
Therefore, a specific issue is the adequate representation of
the reciprocal agent/device trustworthiness for advantaging such
team formation processes within a smart factory environment.
To this end, in this paper (i) we define a trust measure based on
reliability and reputation of AGVs, which are computed based
on the feedbacks released for the AGVs activities in the factory;
(ii) we design a trust framework exploiting the defined measures
to support the formation of virtual, temporary and trust-based
teams of mobile intelligent devices; and (iii) we present a set
of experimental results highlighting that the proposed trust
framework can improve the workshop performance in terms of
effectiveness and efficiency.

Index Terms—Smart Factories, Mobile Intelligence, Team For-
mation, Multi-agent System, Trust

I. INTRODUCTION

The fourth industrial revolution has led to the development
of smart factories [1] whose production adaptability is enabled
by the presence of self-organizing production-lines. At the
same time, self-organization implies that tasks are distributed
across more processing units. In particular, all the activities
occurring within such distributed, fine-grained and possibly
movable processing units, as information exchange, raw ma-
terials delivery and work-in-progress, lead to the adoption of
wireless communication systems and of free-moving vehicles.

Guided vehicles like laser guided vehicles, rail guided
vehicles, mobile robots, unmanned vehicles, are capable of
performing pre-defined tasks such as moving objects for
short destinations, repeatedly welding, or other tasks on the
production-lines. Enabled by the technological advancements,
these devices combine computational, communication and
mobility capabilities, providing the so-called “mobile intelli-
gence”. Such flexible exploitation of the mobile intelligence
along with the tight integration of wired and wireless com-
munications, as wired/wireless fieldbus networks and wireless
sensor networks [2], pave the way towards an effectiveness
and efficiency (E&E) improvement.

To accomplish this goal, free-moving vehicles, sensors and
smart devices can be organized in ad-hoc teams with a suitable
composition for a given target. This solution is quite common

if each workshop area of a Smart Factory demands flexibility,
adaptivity, and the involvement of different materials, assem-
bling tasks and devices (e.g., a workshop area dedicated to the
assembly on-demand different models of vehicles with a high
level of customization, like top-cars).

To deal with the scenario described above, a number of
Internet of Things (IoT) architectures and standards have
been developed based on communication, sensory, information
and networking technologies [3]. However, none of the past
proposals, to the best of our knowledge, has been tailored
to appositely support the formation of teams among mobile
intelligent devices within a workshop area of a Smart Factory.

If mobility and social interactions are key to enable the
teams formation within the Smart Factory context, conversely,
dynamically determining the most suitable team members
to accomplish a given target is notably challenging, due
to the mobile nature and the heterogeneous features (skills,
autonomy, etc.) of the devices. A first approach present in
literature proposes the teams formation on the basis of both
structural and semantic similarities existing among “partners”
[5]. However, these properties could not be adequate in a Smart
Factory for a twofold reason: the potential high variability
in the task-specific devices’ performance, and the absence of
historical data or central, shared repository. Alternatively, to
provide devices with a reasonably high probability to have
positive interactions, ad-hoc, temporary teams can be formed
on the basis of some social properties existing among the team
structure members. In such direction, a promising criterion
consists in forming teams on the basis of the members’ trust-
worthiness levels [6]. In this case, to dynamically compute the
trustworthiness of a large number intelligent devices (and asso-
ciated agents) and form teams, a solution is selecting members
on the basis of both the reliability shown in performing their
own tasks and the reputation gained within the workshop
area (i.e., agent community) [7]. Such two information,
respectively expressed in terms of efficiency and effectiveness,
are usually embedded in a single measure named trust and can
be shared within the workshop area (thus obviating the need
of a centralized repository and also providing a higher fault
tolerance, concurrency, etc.). To this end, a suitable solution
is associating a device with one or more software agents,
leveraging on the well-known social attitude, smartness and
coordination capabilities of Multi-Agent Systems (MAS) [4].

A. Our contribution

Aiming to form effective and efficient AGV teams in the
mobile and collaborative Smart Factory context previously
described, in this paper we provide the following three con-
tributions:

Administrator
Casella di testo
This is the postprint version of the paper. The final version can be found at DOI: 10.1109/TII.2020.2963910
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including eprinting/republishing this material for advertising or promotional purposes, creating newbcollective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Administrator
Casella di testo
Giancarlo Fortino , Fabrizio Messina , Domenico Rosaci, Giuseppe M. L. Sarné ,
and Claudio Savaglio



2

First, we present a new model that defines the devices’
reliability, reputation and trust measures, i.e., the efficiency,
effectiveness and trustworthiness of the agents with respect to
the activities they perform on the production-line. Therefore,
in our model we consider:

• the effectiveness of an AGV, measuring its level of
appreciation received for its contributions from the items
customers;

• the efficiency of an AGV, measuring its capability to
correctly perform one or more specific tasks on the
production-line;

• the trustworthiness of an AGV, combining its efficiency
and effectiveness (purposely weighted based on the fac-
tory policies) to obtain a single, characterizing, synthetic
measure.

As second contribution, we design a strategy to form AGV
teams by leveraging the measure of trustworthiness defined
above. In particular, AGVs are classified based on their
time availability (i.e., the time they need to accept a new
task) suitably weighted by the trustworthiness value which,
in its turn, embeds efficiency and effectiveness information
combined accordingly to the factory policies. AGV teams are
hence formed by choosing the top classified in this ranking.

Thirdly, for exploiting the aforementioned benefits featuring
the agent-based computing paradigm, we introduce a MAS
on the workshop areas to support the formation of virtual,
temporary teams of mobile intelligent devices. In particular, by
associating each AGV with a software agent that automatically
updates its trust information, the MAS will allow the automatic
implementation of the team formation strategy mentioned
above.

We tested our framework and a team formation strategy
on a simulated agent-based scenario, showing that combining
mobile intelligence, team formation, reliability, reputation and
trust information leads to a measurable improvement of the
simulated workshop area in terms of E&E.

B. Advantages and limitations of our approach

An important advantage introduced by our approach with
respect to the state-of-the-art is represented by the capability of
our trust framework to form efficient and effective AGV teams,
also in presence of highly dynamic and non homogeneous
environments. As matter of fact, even in the most critical
scenario of the simulation set (which is given by a combination
of maximum loss of E&E), our team formation strategy based
on our trust model leads to a significant improvement of both
E&E of the production-line. We highlight that our approach is
the first attempt, at the best of our knowledge, to obtain such
an improvement using a distributed MAS without the need
of a central management system (which, instead, very likely
would introduce an unacceptable overhead).

However, we have to also highlight that our approach
introduces a cost in terms of average “loss” time (in seconds)
for single AGV and working day. In other words, the strategy
adopted to form AGVs team is not optimized with respect
to the AGV’ time availability because it is suitably weighted
by the AGV’s trust score. To evaluate this “loss” of time, we

have performed apposite simulations, presented in Section VI,
showing that this limitation is negligible with respect to the
obtained improvement in terms of E&E. Finally, although we
have used realistic simulation parameters for modelling the
workshop areas, real situations contemplate random events
whose influence on our model performances has still to be
accurately determined.

C. Structure of the paper

The remaining of the paper is structured as follows. Sec-
tion II provides an overview on the related literature. Sec-
tion III describes the proposed framework scenario while
Section IV deals with the trust model. Section V makes a
connection between the contributions of these two Sections
(i.e., the main architecture presented in Section III and the
trust model of Section IV), showing how the trust model
can be exploited to perform a team formation activity on the
AGVs of the smart factory in a distributed way. The results
of our experiments are discussed in Section VI. Finally, in
Section VII conclusions are drawn.

II. RELATED WORK

Nowadays, the IoT represents an enabling technological
paradigm for the Industry 4.0, Smart Factory and supply chain
management [8]. Indeed, the IoT revolutionized the informa-
tion exchange and codification processes [9], disclosing the
benefits of a flexible and smart industry where devices are
capable of exchanging real time information. This enables a
high production flexibility by means of real time parameter
optimization and customization as well as an extensive inte-
gration among customers, companies, and suppliers [10].

AGV are widely adopted in smart cyber-physical manufac-
turing contexts to perform novel, fundamental activities like
real-time monitoring, connectivity restore and collaborative
control [11]. For instance, Theunissen et al. [12] illustrate a
real case study about smart manufacturing shopfloors where a
smart AGV eases the collaborations between typical workers
and robots. The proposed smart AGV system uses radio
frequency identification (RFID) and wireless communication
standards for interactions. The authors demonstrate the con-
tribution given by the adoption of the AGV by illustrating a
few results and observation obtained from the real case study.
In [13], AGVs are used in a hybrid (fixed and mobile) indus-
trial wireless sensor networks featured with a task-oriented
model. The authors design a heuristic modeling method to
assign tasks to a controller as well as a collaborative routing
algorithm used for the AGVs mobility. The experiments have
shown that the mobility features of the AGVs support promptly
network repair in case a link fails or the detected quality
is low, thus improving the reliability of the industrial IoT
system. Authors of [14] address the problem of AGV planning
in a workshop through a co-evolutionary framework which
supports the whole production process. The twofold goal is
the reduction of the material transporting costs in the man-
ufacturing process and the introduction of flexibility as well
as reconfiguration capabilities. Moreover, recent advances of
low-latency communication technologies as 5G allowed AGVs
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to form groups of coworkers which are able to communicate
very efficient way, as described in [15].

All these works [12], [13], [14] demonstrate the advantages
coming from the adoption of AGV in smart manufacturing
scenarios. Our proposal relies on this research step, with the
AGVs which are enhanced through the multi-agent technology
and fully integrated with the trust system.

In this direction, an interesting study about group formation
for smart cooperating devices in a smart factory can be found
in [16], where the specific requirements of Cyber Physical Lo-
gistics Systems are illustrated together with a real-world sce-
nario comprising both autonomously and cooperatively agent-
based devices. Similarly, in [17] software agents are employed
to accomplish tasks like controlling the materials handling
and factory scheduling to automate the factory environment
and its activities. Then, in [18] an agent-based controller
is deputed to find the optimal, collision- and deadlock-free
motion planning of its associated AGV. In the context of
the Supply Chain Management, the authors [19] present
and discuss a real case study to illustrate the applications
and advantages of an Industrial IoT (IIoT) and design a
framework which integrates neutrosophic Decision Making
Trial and Evaluation Laboratory technique with an analytic
hierarchy process. The combination of the two techniques
allows the operators to deal effectively with uncertain and
incomplete information, in order to overcome the challenges
of traditional Supply Chain Management. A recent work of
Wan et Al. [20], instead, illustrates a combined solution for
the IIoT: an OLE (Object Linking and Embedding) for process
control technology; a software defined industrial network,
and; a device-to-device communication technology to achieve
efficient dynamic resource interaction and management (to
this end, an ontology modeling with multi-agent technology is
used). With respect to these contributions, in our proposal the
effective team formation is performed by means of a trustwor-
thiness measure whose implementation (and the preliminary
information exchange it requires) is enabled by the exploitation
of the multi-agent technology in the entire framework.

A. Trust-based collaborative approaches in IoT contexts
Trust and reputations systems, as well as group formation,

can play a crucial role in IoT contexts: while cryptographic
techniques are designed to safeguard privacy and authenti-
cation [21], trust and reputation systems allow providing an
effective support to estimate the trustworthiness of potential
partners. One of the basic building block of trust measures,
as we discuss later in this work, is the reliability measure
obtained from direct experiences. In addition, any potential
partner or service customer might wonder how much the
community (or a subset of it) trusts a certain peer [22]. As
a consequence, trust is often estimated by evaluating direct
agents experiences (reliability) and

/
or opinions of others (rep-

utation). Finally, reliability and reputation are usually arranged
in a single synthetic measure as, for instance, in [23]. To this
regards we report, in the following paragraphs, a few relevant
efforts to integrate trust and reputation models in IoT contexts.

The model proposed in [24] provides a dynamic trust
management protocol which exploits the “social nature” of

relationships among IoT devices to perform a trust-based
service composition. Authors of [25] describe a trust system
which is able to follow the evolution of social relationships
over time; it has the capability to adapt itself to the possible
trust fluctuations.

In [26], authors emphasize that IoT devices hold hetero-
geneous skills which are enabling for composite and complex
tasks execution: therefore, IoT devices can exploit direct expe-
riences and available recommendations (i.e., first and second-
hand information/observations) to assess the trustworthiness
of their peers and accordingly to match services’ demand and
offer.

BETaaS [27] is an approach for Machine-to-Machine appli-
cations that integrates a trust model (encompassing different
aspects as security, QoS, scalability, availability and gateways
reputation) to evaluate smart devices reliability by monitoring
them and their behaviors.

Smart devices can form groups of like-minded peers by
means of their social interactions and mutual trust evalua-
tion [28]. Nevertheless, a few, very important aspects, such
as scalability (e.g. billions of devices) and countermeasures
against bad-mouthing attacks, have to be considered when
forming trust-based groups in IoT environments. To this re-
gards, in [29] it is proposed an approach for scalable trust-
based IoT clustering joined with an intelligent method for
countering bad-mouthing attacks on trust systems. Also in this
work the authors take into account trust computation and trust-
based migration of IoT nodes from one cluster to another. The
convergence among IoT, software agents and cloud comput-
ing [30] to form groups of agents (each one associated with an
IoT device and living on the cloud) has been recently studied
in [6], where an algorithm to form agent groups on the basis
of information about reliability and reputation collected by
the agents is presented. The experimental results prove that
the proposed approach leads to form groups with high values
of mutual trust.

The researches discussed above prove how trust and rep-
utation systems can give a contribution to the organization
and collaboration of “social” IoT devices. In addition, in our
proposal, the trust system is supported by the adoption of the
multi-agent technology, as detailed in the next Section III.

III. THE APPLICATION SCENARIO

In the next future, cooperative assembly methodologies will
lead the manufacturing activities of most of companies. Perfor-
mance of the assembly methodologies strongly depends on the
capability of each actor to cooperate in a highly coordinated
way with its humans or robotic coworkers. Let consider a
production-line requiring the cooperation of heterogeneous
smart AGVs and human workers to reach a specific goal:
for example, as depicted in Figure 1, a smart factory and
its working areas (dashed line rectangles) where cars are
assembled. The movements of cars, AGVs teams and humans
through the working areas (represented by dashed-dotted lines)
gives the idea of that swarm intelligence to be implemented in
the production-line and enabling the cooperation of multiple
intelligent actors (humans and AGVs) for assembling products
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Fig. 1. An example of smart factory adopting a swarm intelligence approach to assembly cars

(the cars). In this Section we present such a kind of scenario,
relying on the trust framework we later describe.

More in detail, in the proposed scenario, we assume the
presence of a variable number of smart AGVs, as it depends
on the adopted processing technique. AGVs, in their turn, have
different typologies (according to their tasks, like transporta-
tion, welding, etc.) as well as efficiency (depending on their
model, age, sensing capabilities, usury, etc.) and effectiveness
(e.g., skills and so on) values. Production-lines adopting a
swarm assembly approach have to face such heterogeneity
to form suitably sets of coworkers (human and AGVs) for
reaching the desired production goals in the required time.

Enabled by the well-known social, smart and cooperative
attitudes of software agents [4], we also assume that each
AGV is assisted by a software agent that, on its behalf, will
support its working activity within the team of coworkers (see
Figure 2).

At the same way, production-lines are organized by a
software agent named Manufacturing-Manager (MM), that
executes the tasks to produce the items by forming the “best”
team/teams of AGV coworkers. In particular, the MM selects
the AGV members by choosing the best available smart AGVs
(in terms of E&E) on the basis of their trust measures (see
Section IV), built over time on the basis of their past activities
in the workshop area. More formally, let W be the workshop
area of our smart factory and let SC be the daily set of
customers requiring to the smart factory the assembly of a
customized item. Each customer c ∈ SC has a reference to a
software agent called Manufacturing Manager MM. The goal
of a MM is building for each item the best team/teams of
AGVs capable of optimizing the production process in terms
of E&E. We have introduced a MAS in our framework aiming
to distribute the information load over the entire set of AGVs,
avoiding to centralize it into a unique repository. This way, in
order to reach its goal, MM periodically updates the measures
of efficiency and effectiveness of the workshop agents, and
consequently computes and updates the trustworthiness mea-
sure, combining efficiency and effectiveness as described in
the next Section. The MM saves a copy of these values in
its internal memory, while each agent that has interacted with
the MM saves a local copy of its measures. Therefore, when

the agent will interact in the future with a novel MM, it will
transmit the information about its efficiency, effectiveness and
trustworthiness, as a sort of references. In the next Section,
we will describe the trust model we have adopted to represent
the measures of efficiency and effectiveness, and how we
have integrated them into a unique measure of trustworthiness.
Then, in Section V we will show how this model can be used
in our framework to perform the team formation activity in a
distributed way.

IV. THE TRUST MODEL

In this section we present the trust model specifically
designed to take into account the E&E of AGVs within a
smart factory.

In particular, in the following we define:
• the AGV effectiveness as the the customer satisfaction

with respect to the job performed by the AGV; namely,
the effectiveness represents the reputation that an AGV
has in the customer community;

• the AGV efficiency as the capability of complying with
the assembly constraints (e.g., time) during the product
assembly process; namely, the efficiency represents a sort
of reliability with respect to the production-line operation;

• the AGV trustworthiness as a single trust measure taking
into account both E&E to suitably drive the AGV team
formation processes.

We assumed that, in a controlled environment such as a
smart factory, there are no malicious agents so that specific
countermeasures against unsuitable behaviors (e.g., collusive,
complainer, alternate, whitewashing and so on) aimed to gain
undue advantages are not necessary to be implemented.

A. Definition of Effectiveness, Efficiency and Trustworthiness

The AGV Effectiveness (ρ) refers to the level of appreciation
that the AGV receives for its contributions from the items
customers. The value of ρ, with ρ ∈ [0, 1] ⊂ R, is computed
on the basis of the feedback ψ, with ψ ∈ [0, 1] ⊂ R, provided
by the customers to the agent (i.e., the AGV). More formally,
ρ is computed as:

ρnew = β · ρold + (1− β) · ψ (1)
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Fig. 2. Agent-based architecture

where β ∈ [0, 1] ⊂ R is a parameter to assign a certain
relevance to ψ (which is referred to its latest task) in updating
ρ with respect to its current value, i.e. the feedback it received
in the past.

The AGV Efficiency (σ) is the capability of the smart
AGV to correctly perform one or more specific tasks on
the production-line. This capability is measured by σ, with
σ ∈ [0, 1] ⊂ R, on the basis of objective measures (m)
(e.g., the time required to complete a task) that can be
suitably combined in a single measure φ ∈ [0, 1] ⊂ R, with
φ = f(m1, · · · ,mn). More formally, σ is computed as:

σnew = α · σold + (1− α) · φ (2)

where α ∈ [0, 1] ⊂ R is a parameter giving more or less
relevance to φ in updating σ with respect to its current value
(i.e., the past tasks of the AGV can be considered more or
less relevant with respect its latest one).

The Trustworthiness (τ ) combines Efficiency and Effec-
tiveness (i.e., reliability and reputation) to obtain a single
synthetic measure characterizing a specific agent (i.e., AGV).
The model of trust we propose in this paper is the well-known
linear combination of reliability measures already used with
substantial results in our previous works (e.g [6], [23]) but
contextualized in other multi-agent domains. This proposal
seems adequate given the reasonable supposition that, if a
given increment of efficiency ∆σ (resp. effectiveness ∆ρ)
generates a given increment of trustworthiness ∆τ , then the
percentage ratio ∆τ

∆σ (resp. ∆τ
∆ρ ) should be the same for any

increment of ∆σ) (resp. ∆ρ). Obviously, other proposals are
possible, supposing that in some particular contexts the estab-
lishment of mathematical relationships between effectiveness
(resp. efficiency) and trustworthiness might not be linear. The
experiments we describe in Section VI show that the linear
model very well reproduces the considered simulated scenario.
Future experiments on real scenarios could disclose the neces-
sity of different mathematical models for best approximating
other measured results. More formally, τ is computed as:

τ = γ · σ + (1− γ) · ρ (3)

where γ ∈ [0, 1] ⊂ R is a parameter giving more or less
relevance to σ with respect to ρ; γ is to be suitably set
according to the factory policies in terms of E&E.

As detailed in Section VI, in our experiments we have used a
value γ = 0.4 for giving more importance to the effectiveness
with respect to the efficiency (generally, producing a good
item which satisfies the customer has priority over chasing
extreme assembly rates), but without exceeding (we have
limited such difference of importance to 10%). But the setting
of τ is arbitrary, and we plan for the future to make a
sensitivity analysis of the model performances with respect
to this parameter.

V. TEAM FORMATION

In this section, we argument how the architecture described
in Section III and the trust model introduced in Section IV can
be usefully combined to form AGVs teams within the smart
factory.

First of all, we recall that our framework associates a
software agent to each AGV, thus enabling the update, storage
and share of its effectiveness, efficiency and trust information
over the entire workshop/MAS through the MM agent. Just
the exploitation of the agent-based computing paradigm rep-
resents an important advantage of our framework, avoiding
the necessity of central factory management server and its
consequent drawbacks (bottleneck effect, single point failure,
communication overhead, etc.).

Furthermore, we remark that the introduced trust model
allows the team formation activity by taking into account both
present and past AVG results, in terms of E&E. In order
to exploit such a possibility, based on the measure τ above
defined we here present the strategy described below to form
AGV teams. Each MM agent classifies AGVs on the basis of
their time availability TA (i.e., the time the AVGs need to
accept a new task) suitably weighted on the trustworthiness τ
value which, in its turn, embeds E&E information combined
accordingly to the factory policies. AGV teams are hence
formed by each MM by choosing the top classified in this
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ranking.
More formally, a distributed algorithm is executed by the set
A = {a0, a1, .., an} comprising all the n AGV agents and
the MM agent, where a0 is the MM agent and ai is the
i-th AGV agent. The algorithm is composed of five tasks,
namely the formation assignment task, the request task, the
response task, the selection task, and the team formation task.
While the formation assignment, request, selection and team
formation tasks involves by the MM agent a0, the response
task is executed by each agent ai, i = 1, .., n. In detail, the
five tasks operate as follows:

1) formation assignment task: the MM agent a0 receives
by its administrator (usually, a human manager or a
workflow process) the assignment of forming a team. To
this end, the MM agent a0 yield as inputs for the task:

• the number k of agents required for the team forma-
tion;

• the maximum allowed waiting time st before starting
the team formation;

• the minimum trustworthiness value mt required to
an AVG for joining the team.

2) request task: the MM agent a0 sends an information
request to each agent ai, i = 1, .., n, for obtaining its
time availability TAi, representing the time that ai needs
to accept the task, and its trustworthiness τi.

3) response task: following a request information from the
MM agent a0, an agent ai has to compute the required
values before providing a reply:

• its time availability TAi, based on the other tasks in
which it is already involved;

• the trustworthiness τi by combining the measures
of efficiency σ and effectiveness ρ as described in
Section IV.

Note that each agent ai continuously updates these two
measures according to both the time consumed for com-
pleting the various tasks in which it has been involved
and the feedbacks received by the customers. After these
operation, both TAi and τi are sent to the MM agent a0

(note that the value of τi that is sent to MM agent a0 is
computed with respect to the last update of σi and ρi).

4) selection task: the MM agent a0 continuously monitors
the list R containing all the responses received by the
AGV agents, containing the pairs (σi, ρi); for each i =
1, .., n, the MM agent a0 computes the following score:

Ri = TAi · τi (4)

Therefore, the MM agent a0 deletes from the list all
those agents ai whose TAi > st or τi < mt, since their
associated AGVs are not suitable to contribute to the team
formation. Moreover, the MM agent a0 maintains the list
R ordered by a decreasing value of the score Ri.

5) team formation task: when the time st is reached, the
MM agent a0 examines the list R and provides a response
to its administrator, that will contain:

• the list of the first k agents of R, if the cardinality
of the list R is greater than or equal to k.

Administrator Agent 0 Agent 1 Agent N

formation assignment
[t=0]

request

TA1 and t1
update

TAN and tN
 update

response

selection

team formation
[t=st]
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Fig. 3. Team formation algorithm: in bold the tasks executed by Adminis-
trator, Manufacturing Manager a0 and other agents ai.

• a notification that the team formation process has
failed, otherwise.

A sequence diagram representing the distributed team for-
mation algorithm is reported in Fig. 3.

Note that all the tasks described above are independently
performed by the agents of the set A, avoiding the manufac-
turing manager the need of maintaining a central repository of
the trustworthiness information regarding the AGVs. In that
case, the central repository management would imply a con-
tinuous updating of the AGV information with a consequent
overhead for the internal communication network, obviously
resulting in a loss of efficiency. Note also that other and more
sophisticated strategies could be adopted: however, inspecting
these alternative strategies is beyond our primary aim, which
instead consists in verifying that trustworthiness information
about smart AGVs can be profitably exploited also in the
production-line of an smart factory scenario.

VI. EXPERIMENTS

In order to test and validate the proposed framework,
we simulated a smart factory scenario in which both the
production-line and swarm assembly organization are assisted
by a MAS. We simulated a number of working days, where
in each day a random number of customers’ orders must
be satisfied. The assembly of each item needs four highly
customized and serial manufacturing processes. In turn, each
manufacturing process is carried out by three mobile smart
AGVs without the participation of humans as coworkers or
supervisors.

Furthermore, we assumed that (i) AGVs have heterogeneous
performance in terms E&E, and (ii) the item manufacturing
process is denoted by a high customization level. The above
assumptions imply that (i) a different amount of time is
required to each AGV for completing its task (performance
and customization), and (ii) a different appreciation (i.e.,
the feedback ψ) is given by the customer who required its
assembly.

As introduced in Section III, to form the best AGV team
for a specific manufacturing task, a MM agent is associated
with a production line and it supports the assembly of each
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item ordered by a customer c ∈ CS. The MM interacts with
the software agents associated with the AGVs to form, at a
given time, the best possible team by optimizing the members
selection with respect to the availability trustworthiness of the
AGVs.

For each AGV, after each manufacturing task, reliability (σ),
reputation (ρ) and trust (τ ) are updated.

A. Experimental settings

The smart factory has been simulated by considering a
single swarm assembly production-line with the following
parameters (also reported in VI-B):

• 60 working days, each one formed by 8 working hours;
• 150 customers’ orders per day;
• 1 production-line consisting of 25 assembly slots, where

an item changes its slot after each manufacturing task;
• 4 serial customized manufacturing tasks for each item;
• 400 AGVs (i.e., 100 for each of the 4 required item

manufacturing task) are active on the production-line.
The parameters introduced above play an important role in
driving the production- line operation and the AGVs behaviors:
therefore, after an apposite inquire, we retrieved and set the
parameters with those common values actually adopted in
some European factories assembling cars.

After some preliminary tests, the trust framework was set
as follows:

• the values of σ and ρ have been both initially set to 1.0,
adopting the strategy of giving maximum reliability in
absence of information and then varying this reliability
over the time, based on the experience;

• the value of τ has been initially set to 1.0;
• the parameters α and β, respectively used to update σ

and ρ, have been set both to 0.95, aiming to consider
a sufficiently little variation of both E&E with the new
feedbacks obtained over the time;

• the parameter γ, used to update the τ has been set to 0.4,
following the considerations explained in Section IV.

B. Results

We simulated different scenarios where each AGV’s E&E
values vary in different ranges, and within them in a uniform

Fig. 4. Efficiency reputation (σ) for different losses of efficiency varying
from −1% to −5% with step −1.

Fig. 5. Effectiveness reputation (ρ) for different losses of effectiveness varying
from −5% to −25% with step −5.

manner. For the AGV efficiency, we assumed that the loss of
efficiency varied up to a maximum of the 1, 2, 3, 4 and 5%.
Similarly, for the AGV effectiveness we assumed that the loss
of effectiveness varied up to a maximum of the 5, 10, 15, 20
and 25%.

Figures 4 and 5 show the results related to the accuracy
of σ and ρ to represent such behaviors for some AGVs.
These experiments highlighted that the two measures reflect
a realistic situation in which the system properly reacts to an
increasing loss of E&E. We only observed a very negligible
loss of sensitivity for σ when the AGV performances are very
high. For example the curve labelled 1% of Figure 4 is partially
overlapped with the curve in the same plot labelled 2%.

The second set of experiments focuses on the parameter τ ,
considering it as an indicator of the performance of whole the
production-line with respect to specific policies (represented
by the parameter γ, see Section IV). Figure 6 reports the
results for γ = 0.4: we observe that the computed values of τ
reflect the behaviors of the AGV in terms of E&E. Figure 7
reports the trend of the Trustworthiness for three AGVs which
represent respectively the best, the median and the worst
in terms efficiency/effectiveness (i.e., the best: 1%/5%, the
middle: 3%/15%, and the worst: 5%/25%). We observe that
Figures 4,5 and 7 contain some slight peaks and valleys. The
presence of such shapes is a consequence of simulating a
variability in the E&E loss: such choice has been made in order

Fig. 6. Average Trustworthiness for different values of E&E loss respectively
varying from −1% to −5% with step −1 and from −5% to −25% with step
−5.
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Fig. 7. Trustworthiness for working days for the scenarios (-1%; -5%), (-
3%; -15%) and (-5%; -25%) in terms of efficiency and effectiveness loss,
respectively.

to represent a real word scenario, as detailed in the beginning
of this section. In other words, such behavior is compliant with
both the simulated parameters and the behavior expected in a
real word scenario.

Finally, the last set of experiments we present focuses on
the capability of our trust framework to form efficient and
effective AGV teams. To this aim, we considered the most
critical scenario of our simulations set, which is given by
a combination of maximum E&E loss of the 5% and 25%,
respectively. The results of these experiments are shown in
Figures 8 and 9.

In particular, Figure 8 represents the overall advantages,
in terms of σ, ρ and τ , obtained by considering all the 60
simulated working days. The advantage in terms of σ has been
calculated by adding the differences between the efficiency
value of the AGVs chosen by means of the strategy proposed
in Section IV to form an AGV team for a manufacturing task
and that of the AGVs that would be chosen only considering
temporal availability. Same with the effectiveness and the
trustworthiness measures. This experiment proofs that our trust
framework allows improving both E&E of the production-
line. However, all this has a cost, in terms of average daily
“loss” of time (in seconds) for AGV, as reported in Figure 9.
In other words, the strategy adopted to form AGVs team is
not optimized with respect to the AGVs’ time availability
because it is suitably weighted on the AGV’s trust score (i.e.,
also its E&E is taken into account in the AGV selection
process). Therefore, the chosen AGV might not have the best
time availability but the best ranking in terms of weighted
time availability (see Section IV). To evaluate this “loss” of
time, more simulations have been carried out, also for periods
up to 365 working days, obtaining values that are always
around one minute, in average with respect to all the AGV
set. This average loss of time, strictly related to the available
hardware over which the team formation algorithm runs, could
be considered acceptable in the light of the improvement
obtained in terms of E&E.

VII. CONCLUSIONS

Forming AGVs teams in a mobile and distributed environ-
ment as smart factories might lead devices to interact with

interlocutors whose effectiveness and efficiency (E&E), with
respect to their specific skills, are not the best possible in
the workshop area. In this paper, we argued that a possible
way to form a team is selecting its members on the basis
of their reliability and reputation. Therefore, we introduced
the definition of device’s reliability, reputation and trust with
respect to its associated agent’s effectiveness, efficiency and
trustworthiness, and then we presented a novel trust-based
framework to support the formation of virtual, temporary
teams of mobile intelligent devices in the workshop area.
The simulation we have performed on an industrial scenario
modelled in compliance with realistic settings (aiming to con-
sider our approach as suitable for real industrial applications)
highlighted that combining reliability, reputation and trust in-
formation leads to a measurable improvement in terms of E&E
of the workshop area. Moreover, we have observed that also
the computed values of trustworthiness reproduce the E&E
of the AGVs. These simulation results, obviously, need to be
confirmed to further experiments on real environments. Indeed,
some random, unpredictable events due, for instance, to the
generation of faults, can affect the framework performances.
We plan to address this aspect in our ongoing research.

As future work, we will assess the suitability of the
framework for the context of Industrial Cloud, aiming to
implement a collaborative production process among multiple
smart factories and related asset. We finally observe that Group
Role Assignment (GRA) and the E-CARGO (Environments
- Classes, Agents, Roles, Groups, and Objects) model are
declared as a good way to support team formation [31], [32],
[33], [34], therefore it is valuable to investigate the team
formation with GRA and E-CARGO.
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