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Abstract—Arbitrary shaping the field intensity is a challenging

problem relevant in many applications. To date, procedures

addressing such a challenging problem have been developed

assuming a full knowledge of both the scenario and the target.

However, this is not the case in many application where the

medium is only approximately known and/or modeled on the

basis of some auxiliary imaging methods. In this paper, we

propose a novel adaptive procedure able to shape the field

intensity in an unknown (or partially unknown) scenario without

the need of a quantitative scenario retrieval. The approach takes

advantage from the Linear Sampling method, which belongs to

the class of qualitative imaging methods, in oder to focus the field

intensity with respect to different control points belonging to the

target. Then, the desired spatial field intensity shaping is obtained

by recombining the results from such single focusing problems

and by exploiting an additional degree of freedom, which is

represented by phase shifts of the field in the considered control

points. A preliminary numerical validation and assessment is

given against in-homogeneous unknown 2-D scenarios.

Index Terms—Linear Sampling method; spatial field intensity

shaping; support estimation; wave-field focusing.

I. INTRODUCTION

Shaping the field intensity over an arbitrary extended target
volume or focusing it in two (or more) smaller target volumes
embedded into an unknown (or partially unknown) scenario
is a challenging problem of intrinsic theoretical interest and
also relevant in several applications. Energy harvesting [1]–
[6], hyperthermia treatment planning [7], near field focusing
[8], virtual and augmented reality gestural interfaces [9], [10],
human posture recognition and medical rehabilitation [11],
indoor navigation [12], and finally elderly and disabled people
monitoring and assistance [13] are some of the most relevant
applications. This problem is typically addressed determining
the complex excitations coefficients feeding the antenna array
of fixed geometry. So far, due to its intrinsic challenging
nature, to the best of our knowledge, no strategies exist in
literature directly able to arbitrary shape the field intensity
within an unknown scenario.

One possibility consists in exploiting an adaptative proce-
dure which could tackle the problem splitting it into three
parts, as schematized in Figure 1. First, a preliminary sensing
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step aims at collecting information on the unknown scenario
by illuminating it with known incident fields and by measur-
ing the corresponding scattered fields. Second, geometry and
electromagnetic properties of the unknown scenario, encoded
in the so-called contrast function, are retrieved through an
inverse scattering problem [14], [15]. This step also yields
the evaluation of the total field within the domain of interest.

Third step deals with the shaping problem cast as the
determination of the complex excitations “optimally” driving
the antenna array by assuming the scenario to be accurately
known as the second step. A very straightforward idea is that
of superimposing many field intensity distributions focused
in different target (say “control”) points within a given target
volume, as recently proposed in [16], [17]. In particular, in [17]
the different coefficient sets able to focus a wave-field in the
different control points have been evaluated through the well-
known time reversal [18]. Then, the latter are superimposed in
an “optimal” fashion by exploiting the phase shifts amongst
the field at the different control points, which represent, as
discussed in [17], [19], an additional degree of freedom of the
problem to be optimally determined. However, performance of
all the field intensity shaping approaches strictly depend on the
accuracy of the reconstruction of the scenario. Unfortunately,
the inverse scattering problem in the second step is a non-
linear and ill-posed problem [14], [15]. The solution of such
a problem is not trivial task affected by significant errors
or uncertainties. moreover, most of the scattering procedures
exhibit a non negligible computational burden.

In this paper, we propose an original adaptive shaping
strategy which is based on the linear sampling method (LSM)
[20] and is able to shape the field intensity distribution within a
(partially) unknown scenario bypassing the complex retrieving
step and directly going into the third step (see Figure 1).
The LSM is one of the most popular and effective qualitative
approaches to detect and retrieve unknown objects morphology
through a simple and efficient processing of their scattered
field [21]–[24]. The interesting capabilities and properties of
the LSM are not limited to the above ones. Indeed, the LSM
has been also physically interpreted as a tool to focus the
electromagnetic field in presence of an unknown or (partially
unknown) obstacle. Indeed, the LSM can provide the array
complex excitation required to enforce a field which is focused
in the considered target points [25].

The idea underlying the proposed blind shaping procedure
has been triggered by both the physical interpretation of the
LSM and the evidence that the additional degree of freedom
introduced in [17], [19] (and above briefly described) yields a
better control of the field intensity distribution.

postprint



3

Fig. 1. Scheme of the proposed field intensity shaping methodology in unknown scenarios.

More in details, the bricks of the LSM (i.e. the excitations
of the single target focusing problems and, consequently, the
corresponding field induced in the scenario) are suitably com-
bined by determining the “optimal” phase shifts configuration.
The determination of this latter, which is usually based on a-
posteriori observation of the shaping results, does not represent
a trivial task as the total field induced in the scenario are not
known. To overcome such difficulty, in this paper, the criterion
yielding the “optimal” phase shifts selection, herein adopted
for the first time, is based on an effective approximation of
the total field, recently introduced in [26]. This latter has been
derived from the physical meaning of the LSM and falls within
the framework of the virtual scattering experiments [27], [28],
as given in more details in the following sections.

Besides presenting the proposed approach, named Opti-
mized multi-target LSM (O-mt-LSM), a preliminary numerical
assessment is given. Moreover, to evaluate the actual improve-
ments delivered by O-mt-LSM, this latter has been compared
to the “simple” multi-target LSM (mt-LSM) in which the fields
focused at the different control points are superimposed in-

phase. Finally, with reference to four different 2-D homoge-
neous unknown scenarios, our approach have been tested to
obtain: 1) a uniformly shaped distribution over a wider area;
2) a multi-spot focused distribution in two (or more) smaller
target areas.

II. FOCUSING THROUGH THE LINEAR SAMPLING METHOD

Let us consider a (canonical) 2-D scalar electromagnetic
scattering problem and an unknown scatterer, hosted in a
region under test ⌦, whose cross section ⌃ is invariant along
the z-axis. Moreover, let us suppose ⌦ is probed by means of
N transmitting and M receiving antennas, located respectively
on r t and rm on a closed curve �, polarized along the target’s
axis of invariance.

The LSM is one of the most famous qualitative methods
to retrieve objects’ support ⌃ from the measurements of the
corresponding scattered field by solving an auxiliary linear
problem [20], [22]. More in details, the LSM consists in
sampling the region under test ⌦ into an arbitrary grid of
points and solving for each point, say rp , the so-called “far
field integral equation” (FFIE) as given in:

N’
t=1
↵t (r t, rp)Es(r t, rm) = G(rm, rp) (1)

wherein ↵t represents the unknown function and G is the
Green’s function pertaining to the background medium, i.e.,
the field radiated by an elementary source located in rp and
observed in rm 2 � , when the targets are not present. Despite
the linearity of eq. (1), the evaluation of the solution ↵t is not

straightforward due to the ill-posedness, so a regularization
technique is required. An effective choice is that of solving it
by adopting the Tikhonov regularization [24].

The estimation of the unknown support ⌃ is then pursued
by evaluating the L2-norm (i.e., the “energy”) of the unknown
function ↵t (r t, rp), given by:

⌥(rp) =
N’
t=1

���↵t (r t, rp)
���2 (2)

The above defined indicator depends on the sampling point
rp and it turns to be bounded when the sampling point
belongs to the unknown object, i.e., rp 2 ⌃, and keeps
unbounded elsewhere. As a consequence, by selecting a given
threshold, one can discriminate between points inside and
outside the scatterers and finally retrieve ⌃. Note that, in
case of not connected and not convex targets, the standard
LSM formulation is able to retrieve at least their convex hull.
However, in order to overcome such limitations, one can take
advantage from the generalized version of the FFIE [29].

Interestingly, the FFIE can be physically interpreted as an
attempt to focus in each sampling point rp the volumetric cur-
rent induced by the interaction between the probing incident
field and the target [24], [25]. Indeed, by solving equation (1),
one is enforcing on the measurement curve a fitting between
the field radiated by an elementary current in rp , namely
G, and the scattered field Es recombined according to the
coefficients ↵t . Note that, as one is acting on the scattered
fields, by construction the radiating components of the induced
currents will be focused around the selected pivot points,
whereas it is not possible to foresee its non-radiating behavior.
This represents a limitation of the LSM, as discussed in [24],
[25].

Due to the linearity of the scattering phenomena with
respect to the primary sources, the coefficients ↵t can be used
as complex excitations for the antenna array in order to induce
currents (or equivalently total fields) focused in rp 2 ⌦. More
in details:

Einc(r, rp) =
N’
t=1
↵t (r t, rp)Einc(r, r t ) (3)

is the recombined incident giving rise to the total field focused
in rp , whose expression is:

E(r, rp) =
N’
t=1
↵t (r t, rp)E(r, r t ) (4)

wherein E(r, r t ) is the actual total field arising in ⌦ as from
the sensing stage step.



4

Note that the LSM focuses the total field E in rp while
keeping under control the amplitude of the undesired side
lobes which may arise only within the scatterer’s support ⌃. On
the contrary, it does not have control outside the target support
⌃ [25]. On the other hand, the focusing via LSM represents an
efficient procedure as the kernel of the FFIE is the same for
all sampling points and the FFIE can be solved only once by
processing all together the equations pertaining to the different
points rp [24].

III. THE PROPOSED SHAPING APPROACH

Field intensity shaping approaches generally tackle the
problem by “optimally” designing the complex excitation
coefficients, say It , feeding the antenna array surrounding ⌦.
In this contribution, the problem of generating an arbitrary
shaped field intensity distribution in an unknown (or partially
unknown) scenario is addressed. In this framework, exploiting
the LSM physical interpretation, a two-steps-procedure is
proposed able to shape the field intensity distribution within
an arbitrary target volume ⇧(r) 2 ⌃ and, at the same time,
avoiding the challenging quantitative reconstruction of the
scenario under test [15]. In particular, in the herein proposed
approach the arbitrary shaped field intensity distribution is
obtained through the superposition of different field intensity
distributions focused in a set of control points rpk

(k = 1, .., L)
representing a sub-group of the above introduced sampling
points arbitrary located within ⇧(r) [17], [19].

More in details, the proposed procedure can be summarized
as it follows (see green arrow in Fig. 1):

1) sensing stage: the antennas surrounding ⌦ are exploited
in order to collect information on the unknown scenario.
The scenario is illuminated with known incident fields
and then the corresponding scattered fields are measured.

2) shaping stage: this in turn is articulated in two step:
a) LSM-based focusing: the FFIE underlying the LSM is

solved by processing the data collected in step 1) and
the evaluated ↵t coefficients are exploited as complex
excitation coefficients to focusing the field intensity
in each single control point rpk

. Note, such focusing
procedure only makes sense when the control points
belongs to the support ⌃, because of the physical
interpretation of the LSM.

b) optimal phase shifts configuration: the L focused field
distributions as in step 2a) are conveniently superim-
posed, as described in the following.

Indicating with Ed(r) the “desired” shaped field intensity
distribution, a first “basic” shaping approach, called mt-LSM,
would frame the shaping problem as:

Ed(r) =
L’

k=1
E(r, rpk) (5)

where E(r, rpk) represents the field focused in the control
point rpk

through the LSM, as in step 2). This simply
corresponds to an in-phase superposition of the field intensity
distribution focused in the different control points. However,
sub-optimal results are expected as not all the degrees of
freedom of the problem are exploited [17], [19].

Let us introduce an auxiliary variable, say �k 2 [0, 2⇡],
having the physical meaning of the phase shift between the
fields in the control point rp1 and rpk

. For each (sampled)
value of auxiliary variables �k , the proposed O-mt-LSM
approach casts the shaping problem as the combination of the
fields focused through the LSM in correspondence of rpk

as:

Ed(r) =
L’

k=1
E(r, rpk)e

j�k (6)

where �k is an additional degree of freedom of the problem1

to be optimally determined within the range [0, 2⇡]. Such field
intensity distribution can be achieved when the array is fed by
the complex excitation coefficients, It , as in:

It (r t ) =
L’

k=1
↵t (r t, rpk)e

j�k (7)

When dealing with more control points, the shaping problem
is cast as the determination of the phase shifts configura-
tion delivering some optimality of the overall shaped field
distribution, i.e., Ed(r). Note, in case L control points are
considered, the phase shift configuration is represented by the
vector � = {�k}k=1,..,L containing the L auxiliary variables
representing the phase shift between the field at the reference
control point rp1 and the k-th control point.

Finally, note that, both in equations (5) and (7) the total
fields Ed(r) focused in the control points are not known as
we are dealing with a blind shaping problem.

IV. THE OPTIMAL � IN UNKNOWN SCENARIOS

A crucial role in the proposed approach, as well as in
[17], [19], is represented by the determination of the optimal
phase shifts configuration. Hence, the definition of an objective
function and the application of some optimization criterion is
needed. In this work we have intuitively selected the average
field intensity in the target volume, say

Ø
⇧(r)

��Ed(r)
��2, as cost

function to be maximized. However, the evalutation of this
cost function would require a quantitative knowledge of the
scenario. As a consequence, such an optimization problem
is prevented by the impossibility of knowing the total fields
E(r, rpk) inside the region under test. Fortunately, the LSM has
been recently exploited to introduce an original and effective
approximation of the total fields [26]. This latter has directly
been derived both from the FFIE’s physical interpretation and
the framework of the virtual scatering experiments [27], [28].

More in details, the LSM-based total fields approximation
reads as follows:

bE(r, rpk) = Einc(r, rpk) + LP{G(r, rpk)} (8)

wherein the second addendum is the low pass filtered version
of the elementary field having singularity in the origin of
the sampling point, as disccused in [26]. The total field
approximation in (8) states that the total field arising in eq.
(4) can be approximated as the contribution of the recombined
original field according to eq. (3) plus the filtered version

1Notably, �1 = 0
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TABLE I
PARAMETERS FOR THE TESTED NUMERICAL CONFIGURATIONS.

Configuration L NTX ro l⌦ mesh grid

I 2 16 1.6�b 1.6�b 64⇥64
II 3 16 1.6�b 1.6�b 64⇥64
III 2 18 4�b 4�b 64⇥64
IV 3 26 4�b 4�b 50⇥50

of the field pattern radiating in ⌦ by an elementary current
located in rpk . Further details are repoted in [26].

As a consequence, the optimization problem for the selec-
tion of the optimal � can be re-cast as:

argmax
�

π
⇧(r)

���bEd(r)
���2 (9)

subject to:

bEd =

L’
k=1

bE(r)e j�k (10)

Obviously, the optimization outcome depends on the quality
of the approximation in eq. (8).

When just a few control points are of interest, the opti-
mal solution can be determined in an enumerative fashion
observing a-posteriori the different �-solutions and picking the
most convenient solution according to the adopted and most
suitable cost function for the application at hand. Notably,
dealing with L control points and M sampled values of
the auxiliary variables in [0, 2⇡] will require M

P�1 linear
superposition, thus impacting the computational time. As a
consequence, when considering more control points and finer
sampling grids for the auxiliary variable, parallel computing
can be exploited as well as more sophisticated optimization
strategies are required. Hereto, the optimization problem (9)-
(10) has been tackled in an enumerative fashion since our main
aim is that of demonstrating the usefulness of the introduced
additional degree of freedom and testing it in the hard task
of shaping the field intensity in unknown scenarios. Present
efforts are aimed at designing alternatives fruitful procedures
addressing such a need.

V. VALIDATION RESULTS AND DISCUSSION

Performance and limitations of the proposed approach have
been tested over 4 different scenarios and two different shaping
configurations. In particular, two of them concern with the
generation of a uniformly shaped field intensity distribution
exploiting respectively two and three control points, say con-
figuration I and II. On the other hand, the last two configu-
rations deal with the generation of a multi-spot focused field
intensity distribution exploiting again two and three control
points, say configuration III and IV respectively.

In our numerical analysis we supposed the unknown target
embedded into a square region ⌦ with permittivity ✏b = 1,
conductivity �b = 0 and side l⌦ surrounded by a circular
array of antennas, of radius ro. Such an array is both able to
probe ⌦ in the sensing stage and to radiate the fields during the
shaping stage. In particular in the sensing stage such array is

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Contrast function (a) and normalized LSM indicator map in
logarithmic scale (b) for configuration I. The Normalized squared field
amplitudes achieved by means of mt-LSM and O-mt-LSM are respectively
depicted within the whole domain of investigation, (c) and (e) respectively,
and thresholded to the actual support of the unknown objects, (d) and (f)
respectively. Control points are marked as “x”.

(a) (b)

(c) (d)

Fig. 3. Contrast function (a) and normalized LSM indicator map in logarith-
mic scale (b) for configuration II. The normalized thresholded squared field
amplitudes achieved by means of mt-LSM and O-mt-LSM are respectively
depicted (c) and (d). Control points are marked as “x”.

fed with unit amplitude currents and a multiview-multistatic
configuration is exploited [24]. The array is supposed to be
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Contrast functions (a)-(d) and normalized LSM indicator map in logarithmic scale (b)-(e) for configurations III and IV respectively. The normalized
thresholded squared field amplitudes achieved by means of mt-LSM and O-mt-LSM are respectively depicted in (c) and (d) for configuration III and in (g)
and (h) for configuration IV. Control points are marked as “x”.

embedded into the background medium, while the number of
antenna elements NTX has been determined in a non-redundant
way as well as to provide a non super-directive arrays. In
particular, according to [30], NTX ⇡ 2kba, where kb is the
wavenumber in the host medium and a the radius of the
minimum circle enclosing the investigated scenario. Table I
reports the specific parameters values adopted.

Before presenting the validating results, let us again stress
that because of the LSM physical interpretation, the shaping
has a meaning only when rpk 2 ⌃. Hence, the target area
and the control points selection has been pursued only after
the identification of the target support ⌃ through the LSM
indicator map (see eq. (2)). In the following, according to
[17], [19], [31], the target area ⇧(r) has been indicated as
the superposition of spheres of radius ⇡ �b/42 centered at
rpk . Quantitative performance evaluation have been pursued
exploiting the coverage factor (CF) as a quality metric. TC
has been defined as the fraction of ⇧(r) in which the squared
amplitude of the field is higher than the 25% of its maximum
value3.

In order to understand the effective role of the auxiliary
parameters � and of the adopted cost function, a first result
against configuration I is reported in Fig. 2. Fig. 2.(a) and (b)
depict the scenario and its inherent qualitative reconstruction
through LSM, wherein the exploited two control points are
marked as white crosses. In order to visually enlighten the
crucial role played by the introduced degrees of freedom, i.e.,
�, the normalized squared amplitudes of the fields obtained
through both mt-LSM (Fig.s 2.(c)-(d)) and O-mt-LSM (Fig.s
2.(e)-(f)) have been reported. For this first example, the CF
passed from 39% to 77% when the proposed approach is ex-
ploited. Finally, to validate the appropriateness of the adopted
cost function, both the normalized squared amplitude of the

2�b being the wavelength in the host medium
3Ideally, CF=1.

fields over the whole domain of interest, i.e., ⌦, and its version
thresholded to the actual true support of the hosted objects are
reported in figure 2. This clearly shows the impossibility of the
LSM in controlling the field intensity distribution outside the
target support, alike also other focusing/shaping approaches
[17], [18].

Then, the proposed approach has been tested to achieve a
wider uniformly shaped field intensity with an arbitrary shape.
The normalized squared amplitudes of the field intensities dis-
tributions obtained by means of both mt-LSM and O-mt-LSM
for configuration II are depicted in Fig. 3. In this configuration
an L-shaped field intensity distribution is achieved by means
of three control points. Note that the CF increases from 33% to
90% when exploiting the O-mt-LSM, while the not-optimized
mt-LSM completely fails.

Lastly, as far as the possibility to achieve multi-spot shaped
field intensities is concerned, Fig. 4 depicts the normalized
squared amplitudes of the fields obtained by means of both
mt-LSM and O-mt-LSM for configurations III and IV. In
these latter configurations, respectively two and three control
points have been exploited. When exploiting the O-mt-LSM,
the CF increases from 0% 4 to 60% for configuration III and
from 26% to 71% for configuration IV. Again, let us note that
the not-optimized mt-LSM completely fails in achieving the
desired multi-spot field intensity distribution.

VI. CONCLUSIONS

In this work, for the first time we proposed an approach for
blind shaping, i.e. able to arbitrary shape the field intensity
distribution into a (partially) unknown scenario without the
need of quantitative retrieving the electromagnetic properties
of the targets herein embedded. Starting from the LSM phys-
ical interpretation as a tool to focus the electromagnetic field

4This value means that the amplitude of the field is not higher than the
25% of its maximum value, which unfortunately occours outside the support
of the targets.
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intensity in presence of unknown obstacles, a novel approach
is proposed which takes advantage from considering single
focusing problem as well as additional degrees of freedom,
surprisingly neglected so far, that are the phase shifts of the
field in the considered control points.

While the computational time of the proposed approach is
very limited and advantageous as compared to other more
cumbersome approaches, two main limitations(/cons) are af-
fecting the proposed technique. First, the limitations of the
technique are related to the ones of the LSM [24]. As a
consequence, the herein proposed blind shaping procedure
woks fine as long as the LSM is able to focus the field
intensity in the selected control points. Moreover, the approach
is able to shape a wave-field only over a target area belonging
to the unknown obstacles. This could not represent a strict
limitation as one is interested in shaping the field intensity
distributions only within the detected unknown objects. On
the other hand, the LSM can be easily extended to the case of
non homogeneous scenario and, hence, the proposed approach
can be applied when an approximated a priori knowledge of
the scenario of interest is available. Second, determining the
optimal phase shifts configuration represents a case-specific,
challenging and open problem. Driven by the assumption that
the LSM has only control within the scatterers support, in this
work the average value of the squared amplitude of the field
into the detected target area has been chosen as cost function
to be maximized. Moreover, a selection criterion based on a
recently introduced total field approximation has been adopted
[26]. Then, the determination of the optimal phase shifts
configuration is robust as long as the approximated total field
within the domain ⌦ is close to the actual one. This depends
on the validity range of the adopted VE-based approximation
[26].

Present efforts are aimed at devising novel selection crite-
rion as well as optimization strategies for the optimal phase
shift selection and at exploiting the proposed procedure within
a real 3-D application scenario.
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