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Abstract— The underground exploration and characterization 

via non-destructive imaging approaches is paramount for the 
modern scientific community. The reason of such a great interest 
is related to the wide range of applications this analysis is involved 
in, which spans from the civil engineering world until to the 
archaeological and forensic fields, and planetary explorations.  

In this framework, ground penetrating radar (GPR) is 
becoming one of the leading technologies due to its flexibility and 
ease of application, as it can be employed in different 
configurations and environmental conditions. Standard GPRs 
provide a user-dependent map of the underground and subsurface 
targets, known as “radargram´, whose interpretation requires a 
firm human expertise. Moreover, this technology does not allow, 
in its standard version, to infer about the nature of the targets 
buried below the soil, unless some a priori information is available.  

Aim of the work is to provide some guidelines to explore and 
move through the huge variety of conventional and 
unconventional approaches employed in the framework of 
underground exploration in order to underline the advantages 
deriving from the use of the more recent tomographic techniques, 
which can improve considerably the quality of the recoveries.  
 

Index Terms— ground penetrating radar, subsurface imaging, 
inverse scattering, non-linearity, regularization techniques. 
 

I. MOTIVATION 
HE topic of non-invasive and non-destructive 

exploration of the soil has proved to be of great interest for 
the scientific community over the last years [1]. As a matter of 
fact, many efforts from several disciplines have been devoted 
to the development of systems able to provide a reliable scan of 
the subsurface objects buried below the ground, as well as on 
the development of advanced techniques and processing able to 
improve the accuracy and reliability of the retrieved 
information. In this framework, ground penetrating radar (GPR) 
is nowadays considered as one of the most powerful 
underground non-destructive monitoring tools. Over time, this 
technology witnessed great development within several 
different fields of application spanning from demining to lunar 
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explorations, and including glaciology, archaeology, geology, 
and, of course, civil engineering [1-3]. 

Generally, it is an application-dependent technology, whose 
hardware and electronics are relatively variable according to the 
aim of the considered analysis. It represents an active 
technology based on radar systems which work by radiating an 
electromagnetic pulse into the ground and by measuring the 
strength of the echoes produced by the interactions with the 
buried structures. This one-dimensional (1-D) recording can be 
moved to a two-dimensional plot (2-D), known as radargram, 
by changing the antenna location and determining the echo-
delay time (which is related to the depth coordinate) versus the 
radar position.  

Despite the ease and fast processing of the standard operation 
mode, the generated map is hard to be interpreted, as shown in 
Fig. 1. As a matter of fact, an expert user and the availability of 
some a priori information regarding the domain under 
investigation are mandatory for a reliable interpretation. 
Moreover, this simple processing is able to survey only the 
presence and location of buried objects, but not their 
characteristics, unless some additional a priori information is 
provided. Furthermore, it can lead to misleading results in more 
complicated scenarios due to the assumption that the velocity 
of the investigating wave is constant, which is not realistic for 
many scenarios. 

Therefore, more user-friendly, complete and convenient 
approaches are desirable in order to improve the quality of 
subsurface analyses. From this point of view, tomographic 
approaches can play a very relevant role [4]. These techniques 
aim at providing images of the buried objects and/or 
information regarding the variations of dielectric permittivity 
and conductivity profiles of the scene under investigation. 
Accordingly, image formation requires an accurate modeling of 
the scattering phenomena in order to properly take into account 
the complex interactions among sources, receivers, ground and 
buried objects. However, the development of robust and 
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reliable recovery algorithms still has some issues related to both 
modeling errors as well as the presence of uncertainties on the 
data. 

The proposed paper aims at underlying the importance of the 
tomographic approaches in the framework of the under-ground 
exploration of the soil by exploiting a GPR technology. The 
main approaches to the solution of this problem will be 
considered in order to highlight the advantages deriving from 
their use.  

II. GPR SYSTEMS: TECHNICAL REQUIREMENTS AND 
LIMITATIONS  

There are essentially two kinds of GPR systems which are 
available for commercial and experimental devices: pulsed and 
stepped-frequency ones. A pulsed system radiates and receives 
the echoes deriving from the transmitted electromagnetic pulse. 
On the other hand, a stepped-frequency GPR decomposes the 
electromagnetic pulse into its spectral components and radiates 
them sequentially as a train of monochromatic sinusoidal 
signals [5].  

Due to the soil properties, which can be assumed as time-
invariant within the time needed for the GPR measurement 
campaign, both the pulsed and stepped-frequency systems can 
be considered equivalent from a theoretical point of view. In 
practice, although the pulsed GPR is quite common in 
commercial devices and it has been employed for a longer time, 
the stepped-frequency GPR technology has been claimed more 
performing. 

A key role in GPR systems is played by the frequency 
bandwidth and the spatial and frequency resolutions [5]. 
Regarding the frequency bandwidth, it depends on the 
considered application, and a sketchy classification can be 
provided. Generally, low frequencies (below 200 MHz) are 
employed for depths that overcome 5-7 meters or more (e.g., in 
some geological applications), radio frequencies (200 ± 700 
MHz) for applications where the depth to be reached is of the 
order of 3 m (e.g., some archeological prospecting), higher 

radio frequencies (700 ± 3000 MHz) for applications where the 
maximum required investigation depth can be limited to the 
order of 1 m (e.g., detection of fractures and asphalt monitoring) 
[5]. Finally, even higher microwave frequencies can be 
employed where the maximum investigated depth can be 
limited to the order of 50 cm (e.g., demining) [6].  

Concerning spatial resolution, it is quite hard to find a general 
analytic expression. Nevertheless, under some simplifying 
assumptions, such as in the diffraction tomography case, it is 
possible to obtain an order of magnitude for these quantities [6]. 
The evaluation of the spatial resolution proposed here is 
UefeUUed Wo Whe caSabiliW\ of diVWingXiVhing WZo ³eTXall\ VWUong´ 
scatterers at the same depth/lateral coordinate, giving a 
qualitative measure of resolution in both directions, assuming 
that both targets scatter the same energy. Table I reports also 
some qualitative formulas regarding the suboptimal spatial, 
temporal and frequency sampling for the GPR data sampling. 
More details regarding the quantities involved in Table I can be 
found in [6], not reported here for the sake of brevity. 

III. GPR DATA PROCESSING 
Different acquisition modalities are available. In the simplest 

one, the GPR data are collected relatively to a single spatial 
point versus the time coordinate, which is labelled as A-scan. 
The comprehensive set of GPR traces pertaining to an entire 
scanned line is referred to as B-scan, which corresponds to a 
matrix of values reporting scanning spatial positions versus 
time. It is equivalent to assume that the GPR system stops in 
each A-scan position for the acquisition, gathers the data in that 
position, and moves on the next one (both a continuous mode 
aV Zell aV ³VWoS-gather-and-go-on´ acTXiViWion modaliWieV can 
be employed). Finally, the acquisition of GPR data relative to a 
series of parallel B-scans is usually named as C-scan.  

Thus, the collected data, usually called raw data, if 
adequately processed, can allow target identification, but in 
general the formed image and its interpretation can be improved 
considerably after suitable pre- and post-processing. Indeed, 
GPR system is heavily contaminated by clutter and its reduction 
represents a key objective. The clutter usually is related to the 
part of signal which is not due to the buried target, that is the 
field reflected by medium interfaces as well due to antenna 

 
Fig. 1: Two-dimenVional conYenWional ³UadaUgUam´ 
with several buried scatterrers.  

TABLE I 
QUALITATIVE PERFORMANCE ASSESSMENT IN GPR PROCESSING [6]. 

IMAGING 
PERFORMANCE 

Horizontal resolution ൎ
𝜆௦௘௖

2 sin 𝜃௘௠௔௫
 

Vertical resolution ൎ 𝜆௦௘௖ 

DATA 
REQUIREMENTS 

Spatial sampling ൌ
𝜆௦௠௜௡

4 sin 𝜃௘௠௔௫
 

Time sampling ൌ
1

𝐵௜௡௧
 

Frequency sampling ൑
𝑐଴

2𝑏ඥ𝜀௦௥𝜇௦௥
 

𝜃௘௠௔௫:  maximum effective view angle (assumed symmetrical); 
𝜆௦௘௖:   effective central received wavelength in the soil; 
𝜆௦௠௜௡:  minimum wavelength in the soil for the selected bandwidth; 
𝑐଴:   speed of light in the vacuum; 
𝑏:    length of the two-dimensional imaging domain; 
𝜀௦௥:   relative permittivity of the soil; 
𝜇௦௥:   relative permeability of the soil; 
𝐵௜௡௧:   bandwidth of interest (after signal filtering). 

 
 

Fig. 1: Two-dimenVional conYenWional ³UadaUgUam´ ZiWh 
several buried scatterrers. 
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coupling, and so on. A key factor in clutter removal techniques 
is represented by the medium interfaces. Indeed, neglecting the 
electromagnetic interaction between antenna and the soil 
interface can become a limiting factor for detecting targets close 
to it [7]. This is related to the fact that the echoes scattered back 
from the air-ground interface present relatively high 
amplitudes, which may mask small objects shallowly buried. 
Filtering these first interface reflections by incorporating in 
scattering model the incident near-field distribution transmitted 
in the soil by the antenna can cancel the undesired reverberation 
effects and further improve the imaging results. Moreover, 
since the roughness profile of the interface separating the air 
from the ground is generally unknown, it could be useful to 
estimate the surface profile before the characterization of the 
buried targets by means of a pre-processing of the collected data 
[8, 9]. 

When two or more antennas are simultaneously used, another 
source of deterministic clutter is represented by the direct 
coupling between antennas, so that some techniques have been 
introduced to take into account this aspect [10, 11].  

The processing of GPR data represents a large topic for the 
signal processing community. In particular, two fundamental 
categories of processing can be identified, i.e. deconvolution-
based [12] and tomographic imaging approaches [6]. In the 
former, one essentially processes the single GPR traces by 
taking advantages from a simplified Fourier based model. The 
latter is usually concerned with a processing that regards all the 
traces within a B-scan or a C-scan and is aimed to focus within 
a vertical plane (2D models) or in a buried volume (3D models) 
the targets embedded in the host medium at hand. 

Fig. 2 shows a clear comparison between these two classes. 
It is clear that if the electric size of involved scatterers is small, 
then good recovery performance can be achieved exploiting 
both methods. But when moving to the realistic case of 
extended objects, the conventional deconvolution-based 
approaches fail, as they do not take into account the strong non-
linearity of the physical interactions among the scatterers; 
conversely, the tomographic approach manages to improve the 
detection performance considerably. 

Within this class, there is a plethora of models and related 
algorithms which have been developed in a context wider than 
that of the GPR data processing and belongs to the literature of 
microwave scattering, which is the physical mechanism 
underlying the tomographic approaches [13].  

IV. THE INVERSE SCATTERING PROBLEM 
In the following, the mathematical formulation of inverse 

scattering problems is introduced in more details with respect 
to the general 3D scalar case by assuming and dropping the time 
harmonic factor 𝑒𝑥𝑝ሼ𝑗𝜔𝑡ሽ. Moreover, for the sake of simplicity, 
non-magnetic media are considered and the magnetic 
permeability is assumed everywhere equal to that of free space 
𝜇଴. This assumption is quite realistic for most soils and targets 
involved in the GPR framework.  

A simple 3D sketch of a tomographic microwave imaging 
system for GPR applications is reported in Fig. 3. The scenario 
is composed of two media: the medium 1 (usually the air) 
represents the region where the probes are located, while the 
medium 2 (the soil) is the region wherein one wants to 

investigate. The non-magnetic unknown object-of-interests are 
locaWed inVide Whe imaging domain (ID) ȍ in the medium 2, and 
their electrical properties are denoted with 𝜀௦ሺ𝒓ሻ and 𝜎ୱሺ𝒓ሻ, 
being 𝒓 ൌ ሺ𝑥, 𝑦, 𝑧ሻ ∈ Ω the coordinates of the reference system. 
The relative permittivity and the electrical conductivity of the 
ID are identified by 𝜀௕ሺ𝒓ሻ and 𝜎௕ሺ𝒓ሻ, respectively. 

The aim of the GPR inverse scattering problem consists of 
retrieving the unknown contrast function 𝜒ሺ𝒓ሻ, which relates 
the electromagnetic features of the objects to the ones of the 
host medium. This function is defined mathematically as: 

𝜒ሺ𝒓ሻ ൌ
𝜀௦ሺ𝒓ሻ െ 𝑗𝜎௦ሺ𝒓ሻ 𝜔𝜀଴⁄
𝜀௕ሺ𝒓ሻ െ 𝑗𝜎௕ሺ𝒓ሻ 𝜔𝜀଴⁄ െ 1, (1) 

where 𝜔 ൌ 2𝜋𝑓, and 𝑓 is the working frequency. To this end, 
the region of interest is probed by means of 
receiving/transmitting radar antennas located on a measurement 
surface ī aboYe Whe inWeUface at given height.  

The two fundamental equations describing the relevant GPR 
imaging problem for a given generic incident field 𝑬௜  are the 
state equation and the data equation. The mathematical 
expressions of these latter, in case of non-magnetic media are, 
respectively [13]: 

𝑬୲
ሺ௩ሻሺ𝒓, ωሻ ൌ 𝑬୧

ሺ௩ሻሺ𝒓, ωሻ 

൅ න 𝑮୧ሺ𝒓, 𝒓ᇱ, ωሻχሺ𝒓ᇱ, ωሻ𝑬୲
ሺ௩ሻሺ𝒓ᇱ, ωሻ d𝒓,     𝒓, 𝒓′ ∈ Ω

ஐ

 
(2.a) 

𝑬ୱ
ሺ௩ሻሺ𝒓, ωሻ ൌ න 𝑮𝐞ሺ𝒓, 𝒓ᇱ, ωሻχሺ𝒓ᇱ, ωሻ𝑬୲

ሺ௩ሻሺ𝒓ᇱ, ωሻ d𝒓ᇱ

ஐ

,

𝒓 ∈ Γ 
(2.b) 

where 𝑣 ൌ 1, … , 𝑁௩, identifies the v-th different illuminations 
(or views) of the imaging system, and 𝑬୧, 𝑬୲, 𝑬ୱ are the incident 
electric field inside Ω, the total electric field inside Ω, and the 
scattered electric field measured on a domain Γ in medium 1, 
respectively. 𝑮୧ and 𝑮𝐞 are the internal and external dyadic 
Sommerfeld-Green functions, which represent the impulse 
response observed inside and outside the imaging domain Ω, 
respectively, by an elementary source located inside Ω. 
Assuming by the sake of simplicity a homogeneous soil, one 
can use the Sommerfeld-Green functions pertaining to the so-
called ³half-space´ configuration [6].  

Eqs. (2) need to be treated an solved, so after a proper 
discretization of domain Ω in integrals (2.a) and (2.b), which 
involves the discretization of 𝜒ሺ∙ሻ and 𝑬୲ሺ∙ሻ, unknown and state 
of the GPR problem [14], and after choosing a proper number 
of different measurement points for the scattered field 𝑬ୱ, data 
of the problem [4], it becomes, neglecting the view index v for 
sake of simplicity: 

ࢠ ൌ 𝒆௜ ൅ 𝐀௜ሺ𝒙 ⊙ ሻࢠ ൌ 𝒆௜ ൅ 𝐀௜
𝒙ሺࢠሻ,      in Ω (3.a) 

࢟ ൌ 𝐀௘ሺ𝒙 ⊙ 𝐳ሻ ൅ 𝒏,         on Γ (3.b) 

where the elements of vector x represent the unknown contrast 
χ, ei is the vector which samples the incident known field 𝑬୧, z 
is the vector which samples the total unknown field 𝑬୲ (the 
state), y is the vector which samples the scattered electric field 
𝑬ୱ on Γ (data of the problems), Ai and Ae are the discrete 
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counterparts of integrals in Eqs. (2.a) and (2.b), and n is the 
unavoidable additive measurement noise, here considered white 
and Gaussian. OSeUaWion ³⊙´ denoWeV Whe elemenW-by-element 
product between the two vectors x and z, and 𝐀௜

𝒙ሾሺ∙ሻሿ ൌ
𝐀௜ሾ𝒙 ⊙ ሺ∙ሻሿ. 

Solving eq. (3.a) for z, and substituting it in eq. (3.b), we 
obtain the final unknown-data equation: 

𝐲 ൌ 𝐀௘ሺ𝒙 ⊙ ሺ𝐈 െ 𝐀௜
𝒙ሻିଵ𝒆௜ሻ ൅ 𝒏 ൌ 𝑻𝒆೔

ሺ𝒙ሻ ൅ 𝒏 (4) 

where I is the identity operator. The explicit dependence of the 
of discrete operator 𝑻𝒆೔, on the incident field ei wants to stress 
that the link between the noisy measured scattered field samples 
 and the unknown contrast x is dependent also on how one can ࢟
choose incident fields, involving waveform design: how many, 
hoZ diffeUenW (SoViWion, fUeTXencieV, «), etc. 

The GPR imaging inverse problem, through the inversion of 
discrete operator 𝑻𝒆೔, aims at retrieving the unknown x from the 
knowledge of the noisy data ࢟. Such a problem is non-linear 
respect to x, and is ill-posed. The former circumstance descends 
from the dependence of the total field ࢠ on the unknown 
contrast x expressed by the state equation (3.a) [13], while the 
latter from the compactness of the radiation operator 𝐀௘, as 
described in the following sections. 

These difficulties are further worsened when, as in 
subsurface sensing, it is not possible to probe the targets from 
all the different directions, thus reducing the amount of 
available data and entailing an unavoidable deterioration of the 
imaging results. On the other hand, although commonly 
exploited in monostatic configuration, in order to increase as 
much as possible the essential dimension of data and to improve 
the performance of the inversion tomographic strategy, GPR 
systems in multiple-input-multiple-output (MIMO) 
configurations can be exploited. 

V. THE INTRINSIC LOSS OF INFORMATION IN INVERSE 
SCATTERING 

The forward scattering problem implies a certain loss of 
information on the unknown contrast, and this implies that one 
can seldom retrieve exactly the actual ground-truth. From a 
theoretical point of view, one can exactly say the problem is ill-
posed. In order to understand this concept, it is better to define 
what a well-posed problem is. AccoUding Wo HadamaUd¶V 
definition [13], a problem is well-posed if it satisfies all the 
following three conditions: 

x the solution exists; 
x it is unique; 
x it depends continuously on the data. 

If at least one of the previous conditions is not fulfilled, then 

 
Fig. 3: Three-dimensional geometry of the subsurface 
imaging problem. 

 
Fig. 2: Comparisons between deconvolution-based and tomographic imaging approaches in a 2D framework. (a)-(d)-(g) 
Permittivity of the reference profiles. Qualitative reconstructions via the former (b)-(e)-(h) and the latter (c)-(f)-(i) approaches. 
In the last example, the size of the objects is increased and the strong non-linearity limits the inversion performance of standard 
methodologies seriously. 
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the problem is named ill-posed. In order to understand properly 
the meaning of an ill-posed problem, it is important to define 
the class of objects to be imaged. This space is usually denoted 
aV ³objecW VSace´, and each elemenW of iW iV aVVociaWed ZiWh one 
elemenW of anoWheU VSace, called Whe ³image VSace´, b\ meanV 
of the forward problem, whose solution represents the link 
between these two spaces. A brief sketch is shown in Fig. 4.  

Due to the loss of information deriving from the properties 
of the operators in Eq. (4), two or more objects might have the 
same image, or images very close to each other, and this results 
in the ill-posedness of the inverse problem at hand. Moreover, 
due to the unavoidable presence of noise on data and the failure 
of Whe WhiUd HadamaUd¶V condiWion, small modifications of 
(measured) data will involve jumps in the solution. The above 
circumstances might drive into completely meaningless 
solutions from a physical point of view. Thus, there is a strong 
need to find efficient and reliable regularization strategies [13] 
to restore the well-posedness of the inverse problem and to 
obtain stable generalized solutions.  
 

VI. NON-LINEARITY 
From a physical point of view, in inverse scattering, non-

linearity stems from multiple interactions between scattering 
objects and/or parts of them (see Fig. 5). 

From a mathematical point of view, as discussed in the 
previous section, the radiator operator is compact, then it is not 
possible to invert the data equation and substitute it in the state 
equation. On the contrary, one can only invert the state equation 
and substitute in the data equation, giving rise to eq. (4). It is 
worth by observing eq. (4) that even though Ai and Ae discrete 
operators themselves are linear, the relation between the 
scattered field y (data) and the contrast function x (unknown) 
given by 𝑻𝒆೔  is non-linear. According to the above 
considerations, a generalized solution to inverse scattering is 
usually looked for by seeking the global minimum of [13]: 

Φሺ𝒙ሻ ൌ ෍ 𝜂ሺ௩ሻ ฯ࢟ሺ௩ሻ െ 𝑻𝒆𝒊
ሺ𝒗ሻሺ𝒙ሻ ฯ

૛
ேೡ

௩ୀଵ

, (5) 

where the explicit dependence on the different views has been 
restored, ‖∙‖ is the ℓଶ norm, and 𝜂ሺ௩ሻ are normalization 
coefficients. 

An alternative approach involves the simultaneous solution 
of the system of equations (3.a)-(3.b) for both the contrast x and 
the electric fields inside :. By so doing, a price is paid as the 
set of unknowns enlarges, but the degree of non-linearity 
reduces to that of a fourth order polynomial. In this case, the 
problem is generally solved by seeking the global minimum of: 

Φ൫𝒙, ,ሺଵሻࢠ ⋯ , ሺேೡሻ൯ࢠ

ൌ ෍ ቄ𝜂௘
ሺ௩ሻฮ࢟ሺ௩ሻ െ 𝐀𝒆ൣ𝒙 ⊙ 𝐳ሺ𝒗ሻ൧ฮ

૛
ቅ

ேೡ

௩ୀଵ

 

൅ ∑ ቄ𝜂௜
ሺ௩ሻฮࢠሺ௩ሻ െ 𝒆௜

ሺ௩ሻ ൅ 𝐀௜
𝒙ൣࢠሺ௩ሻ൧ฮ

૛
ቅேೡ

௩ൌ1 , 

(6) 

where  𝜂௘
ሺ௩ሻ and  𝜂௜

ሺ௩ሻ are two normalization coefficient sets for 
the data and state equations, respectively. 

Due to the non-linearity of the underlying problem, both the 
cost functionals (5)-(6) are non-quadratic ones, so that it may 
have several local minima which are ³false solutions´ of the 
problem (see Fig. 6). The more the problem departs from a 
linear one, the more the occurrence of false solutions. As a 
consequence, the obtained results depend on the considered 
initial guess.  

Several strategies do exist to tackle and defeat the occurrence 
of the false solutions. Next section underlines these main 
strategies and proposes a brief discussion regarding their 
advantages and limitations.  

VII. SOLUTION METHODS 
Even if the solution of an inverse scattering problem does not 

represent a trivial task, the achievable performance can be 
really impressive with respect to the one obtainable with 
deconvolution-based approaches, as witnessed in experimental 
results shown Fig. 7 and reported in [15]. A natural question 
then arises on how one can obtain the results in Fig. 7 and which 
inversion techniques are available. Nowadays, most of the 
tomographic approaches present in the literature for the solution 
of the above discussed problem can be classified into three main 
categories: 

 
x qualitative methods, which aim at detecting the 

scatterers hosted in the ID and retrieving only a limited 

 
Fig. 4: Ill-posedness of the inverse scattering problem. 
Different objects χ can share the same images Es or images 
which are very similar, due to the low-pass filtering 
properties of the scattering operator T. 

 
Fig. 5: Sketch of the physical meaning of the non-linearity. 
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amount of information, that are scatter location and 
shape. They usually trade the reduction of the 
achievable information, with the absence of 
approximation and with a low computational burden; 

x approximated methods, which adopt some 
approximations of the scattering phenomena that 
allow to simplify the mathematical model and to speed 
up the processing and reduce the computational 
complexity; 

x non-linear quantitative methods, which aim at 
retrieving both electrical and morphological properties 
of the ID, by tackling the inverse scattering problem 
(3) in its full non-linearity, without involving any 
approximations and by minimizing a cost functional, 
such as (5) or (6). The main practical drawback is the 
long (or extremely long) reconstruction times required 
in order to complete the minimization. 

 
A further class of minimization strategies includes hybrid 

approaches, which are usually based on a first qualitative step 
which aims at providing some rough information, which is then 
exploited in the next quantitative steps to avoid false solutions 
and to allow reliable and effective recoveries. 

 Fig. 8 provides a raw, qualitative classification of the 
solution approaches according to their estimated computational 
burden. 
 

A. Qualitative methods 
Qualitative methods aim at solving the inverse obstacle 

problem, which consists in reconstructing only the support of 
the unknown targets by processing the fields they scatter. 
Usually, these methods achieve the support information in a 
simple and effective way by working with exact models of the 
scattering phenomenon or by considering an auxiliary linear 
problem thus avoiding the difficulties related to the solution of 
the original (non-linear) inverse problem.  

Many different qualitative strategies have been developed in 
literature. Among them, the most popular category of qualitive 
methods are the sampling methods [16], which are valid for 
both dielectric and metallic targets. They identify the spatial 
support of the scatterer by computing an indicator function over 
an arbitrary grid of points which samples the scenario under 
investigation. This indicator function will assume very different 
values, depending on whether they are evaluated within or 
oXWVide Whe VcaWWeUeU¶V VXSSoUW. As a consequence, by 
identifying a fixed threshold, one can discriminate between 
point inside and outside the targets. The linear sampling (LSM) 
and factorization (FM) [16] methods belong to this class of 
inversion algorithms. They require a multistatic/ multiview/ 
single-frequency configuration but can be extended to the case 
of multifrequency data by a posteriori combining the results 
from single frequency data.  

Other approaches [17, 18] to get the shape of an obstacle 
amounts instead at solving corresponding inverse source 
problem, which aims at recovering the induced currents, 
defined as 𝒘 ൌ 𝒙 ⊙ 𝐳, from the knowledge of measured 
scattered field. These latter are based on the evidence that, 

whatever the performed scattering experiments, the support of 
the induced currents is exactly equal to the one of the unknown 
scatterer. By so doing, the problem could be dealt with as a 
linear one by just inverting equation (3.b). However, such 
inverse source problem is severely ill-posed, as many different 
contrast sources can produce the same scattered field. To 
overcome such a difficulty, it has been recently argued that 
some decisive profit can be gained by enforcing some expected 
properties on the currents and proper coherence relationships 
among the currents pertaining to each performed scattering 
experiment. To this end, approaches in [17, 18] profitably 
introduce the enforcement of joint sparsity, while approach in 
[18] also benefits from equivalence principles to deal with 
dielectric objects.  

When the targets have been already detected and their 
dielectric properties are known and constant, the qualitative 
characterization of the buried obstacle can be pursued by an 
iterative process based on a level-set formulation [8]. In this 
formulation, the problem is reduced to an optimization scheme 
where just the shape of the scatterer is looked for and the full 
non-linearity of the problem is considered. The algorithm 
involves the use of a level-set function in order to represent the 
boundary of the obstacle.  

The simultaneous detection and localization of multiple 
targets can be also pursued via time-reversal (TR) based 
approaches, which include TR imaging (TRI), decomposition 
of reverse time operator (DORT) and time reversal multiple 
signal classification (MUSIC) [19]. The TRI is the most direct 
and intuitional method for target localization, which is based on 
the reverse of the field in time domain (or phase-conjugated in 
frequency domain) would precisely retrace the path of the 
original wave back to the source where it is excited thus 
determining the target¶s position. As such, the imaging 
resolution is constrained to the diffraction limit. Moreover, in 
case of multiple scatterers TRI focuses more strongly on the 
dominant scatterer and masks the weaker scatterers, while the 
imaging process is very time consuming. DORT and TR-
MUSIC overcome these problems by exploiting the singular 
value decomposition of the multistatic response matrix, whose 
elements are defined as the scattered field detected at the 
different receiver due to the excitation of the transmitters. In 
particular, the signal and null space of the response matrix are 

 
Fig. 6: Pictorial representation of a generic monodimensional 
cost functional with main issues in inverse scattering 
problems. 
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used in order to define DORT and TR-MUSIC pseudo-
spectrums, respectively. With respect to DORT and TRI, TR 
MUSIC became very popular, because it is not only 
algorithmically efficient but also capable to achieve a resolution 
that can be finer than the diffraction limit [19].  

B. Approximated methods 
As a countermeasure to non-linearity, approximated methods 

allow a very easy implementation and require a limited amount 
of computer memory and computational time, even though they 
suffer from several limitations induced by the adopted 
approximated model. 

The most popular approximation of the scattering model (3) 
is the Born Approximation (BA) [10, 20]. In BA, the inverse 
scattering problem is linearized as the auxiliary unknown total 
field inside the object is assumed equal to the incident field. 
This hypothesis is fully satisfied only in absence of the object 
itself so that the BA is acceptable in case of weak scatterers, 
i.e., for objects whose internal characteristics are very close to 
the ones of the hosting medium, and/or for objects whose 
dimension is very small in terms of the wavelength in the 
external medium.  

Other examples of approximated methods is the physical 
optics approximation or Kirchhoff approximation (KA) [21]. 
The KA can be adopted in case of scattering from electrically 
large perfect electric conductors. Under such a linear 
approximation, the solution algorithm is formulated as the 
inversion of a linear integral operator who relates the scattered 
data to a distributional unknown function that is directly related 

to the illuminated boundary of the object. Therefore, the 
inYeUVion alloZV Wo UeWUieYe WaUgeWV¶ VXSSoUW. 

Another relevant linearized approach has been introduced in 
the last years within the virtual scattering experiments (VE) 
framework [14]. The approach is based on a proper linear 
combination of the original incident (in Ω) and corresponding 
scattered fields (on Γ), in order to introduce new (virtual) 
experiments. In particular, the VE design is pursued in such a 
way to condition the scattering phenomena and enforce a 
circular symmetry on the total field. Then, a novel 
approximation to effectively linearize the scattering problem, 
even in the case of non weak scattering regime, is introduced. 
The range of applicability significantly outperforms the usual 
BA, as the VE based approximation is target dependent and 
considers the contribution of the field scattered by the object.  

As improvement with respect to the above discussed 
linearized methods on the quadratic method [22] is also worth 
being mentioned. In this latter, a weak degree of non-linearity 
is introduced by adopting a second order approximation for the 
unknown-data mapping operator. In subsurface prospection the 
multiple interactions between scattering objects and/or parts of 
them occur inside a lossy medium. This circumstance allows to 
take into account just for the first order internal mutual 
interaction to adequately approximate the scattered field inside 
ȍ. With respect to the linear methods, as for instance BA, it 
allows to reconstruct a wider class of unknown profiles.   

Another interesting and efficient inversion method which 
goes beyond the limitations introduced with the BA has been 
proposed in [23], by exploiting a higher-order extended Born 

  
(a)                 (b) 

  
(c)                 (d) 

Fig. 7: Two-dimensional experimental reconstructions of the normalized amplitude of the contrast function for dielectric buried 
pipes. Water-filled case, tomographic (a) and migration-(c) approaches; air-filled case, tomographic (b) and migration-(d) 
approaches. Courtesy of Pettinelli et Al. [15]. 
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approximation to reconstruct the conductivity function of 
dielectric objects buried in a lossy soil. 

It is important to underline that the aforementioned 
approximated methods are quantitative, i.e. can give the full 
characterization of the targets, as long as the adopted 
approximated model holds true. Saying it differently, they are 
noW able Wo SUoYide an accXUaWe deVcUiSWion of Whe WaUgeWV¶ 
features when exploited outside the range of validity of the 
underlying approximations, although they may provide some 
interesting qualitative results. [10].  

C. Non-linear Quantitative methods 
Non-linear quantitative approaches allow to widen the class 

of retrievable objects considerably at the expense of a higher 
computational burden and longer processing time, and the 
occurrence of local minima in the minimization procedure, 
which may drive into false solutions. As a consequence, their 
convergence is guaranteed only when the initial step belongs to 
the attraction basin of the solution, which can be hardly 
estimated.    

In this class, an estimate of the contrast function is obtained 
through iterative procedures. Since there is no guarantee of 
avoiding false solutions unless a sufficiently accurate starting 
guess (i.e., a trial solution close to the global optimum) is 
available, global optimizations might represent valid tools 
thanks to their capability to explore the solution space by 
escaping from local minima [24]. Unfortunately, their 
complexity exponentially grows up with the number of 
unknowns: the more unknowns are considered, the higher their 
computational burden is [13].  

In order to bypass the limitations related to the use of global 
minimization approaches, some algorithms exploit a local 
optimization framework. Examples of the approaches 
belonging to this class can be grouped into two main families: 
the first group, the Newton-Kantorovich (NK) approaches, tries 
to solve Eqs. (3) by minimizing the function in (5), while the 
second class, known as modified-gradient (MG) class, handles 
the electromagnetic inverse scattering problem at hand by re-
arranging both the state and data equations in a single functional 
minimization (as reported in Eq. (6) ) [25].  

Distorted Born iterative methods [26] belongs to the first 
class and aims at solving the two coupled scattering integral 
equations via a succession of linear problems to update the 
internal fields and Green's function. The so called contrast 
source inversion scheme belongs to the second class. It tackles 
the problem by minimizing the functional (6) and by 

considering the currents induced inside the objects as auxiliary 
unknowns (rather than the total fields). Opposite to field-type 
approaches, one of the two fundamental equations of the 
electromagnetic scattering, i.e. the Eq. (3.b), becomes linear, 
thus reducing the overall non-linearity of functional (6).  

VIII. REGULARIZATION STRATEGIES 
Exploiting a regularization technique is equivalent to add 

some a-priori information to the problem at hand in order to 
compensate the loss of information implicit in the direct 
problem and restore the well-posedness. Such a-priori 
information cannot be derived from the data or from the 
properties of the mapping which relates data and unknowns, but 
it is something strictly related to the expected properties of the 
conWUaVW fXncWion Ȥ Wo be UeWUieYed. The effecWiYeneVV of Whe 
different regularizations will depend on how much the 
unknown scenario 'fits' the regularization model.  

 The simplest form to enforce some a priori information is to 
include a regularizing term Φோሺ𝒙ሻ in the cost functionals (5) or 
(6). Indeed, such additive term will allow to construct from the 
beginning a solution both compatible with the data (within the 
experimental error) and which exhibits the specific physical 
features. The additional information which can be exploited 
and/or enforced includes (but it is not limited to): 

1. a requirement on the energy of the solution such as for 
instance a minimum l2 energy requirement. This is the 
case of the well-known Tikhonov regularization 
technique [13]; 

2. a piecewise constant behavior on the contrast function 
[14]; 

3. physics induced bounds on the values of the unknown 
permittivity and conductivity functions (f.i., positive 
conductivities). 

 The main issue in such a kind of regularization strategies is 
related to the choice of the regularization parameters, i.e. the 
weight assigned at each Φோሺ𝒙ሻ term, whose selection is a 
crucial and critical point. As a matter of fact, no simple and 
general rules exist to perform such a choice in an optimal way.  

 While adding a penalty term is probably the most popular 
way of enforcing the regularization, there are of course other 
ways. Among the others, a possible strategy amounts to 
introduce proper statistical tools, such as in [27], in which a 
Markov-random-field approach based on maximum-a-
posteriori estimation method is proposed by the authors, which 
showed better performance also when compared with 
conventional techniques like Tikhonov regularization [13]. 

Another alternative is that of keeping the dimensionality of 
Whe XnknoZnV¶ VSace loZ b\ adoSWing a VXiWable (conYenienW) 
basis to represent the unknown function, that is: 

 
 𝒙 ൌPሺ𝒙ොሻ, (7) 

 
in which P represents the considered projection operator, 𝒙ෝ 
represents the lower-dimensional representation of the contrast 
function in the selected imaging domain. In fact, a necessary 
(still not sufficient) condition to overcome ill-posedness is that 
the dimension of the space where the unknown function is 
looked for is not greater than the one of the data space. Such a 

 

 
Fig. 8: Qualitative measure of computational complexity 
of the main solution methods. 
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VWUaWeg\ iV XVXall\ UefeUUed Wo aV µUegXlaUi]aWion b\ SUojecWion¶. 
As far as the choice of the projection operation is concerned, a 
great interest is covered by Wavelet decomposition. Indeed, the 
wavelet basis offers the possibility to decompose the unknown 
profile into two sets of coefficients, namely coarse and detail 
coefficients, thus allowing intrinsic multiresolution 
representation of the unknown.  
 A similar idea is adopted in multiresolution regularization 
techniques [4],[24]. These regularization techniques allow to 
accommodate the representation coefficients for the contrast 
unknowns in a non-uniform fashion within the investigated 
domain. The reason for which this feature is quite interesting is 
twofold: first of all, on the basis of some a priori information, it 
is possible to focus the processing only in those regions where 
the scatterers are located, and secondly, a variable degree of 
resolution is expected with different depths, as in the GPR case, 
by exploiting a coarser resolution for the deeper parts of the 
investigated domain and preserving a higher number on 
unknowns for the shallower regions [24]. 

 In order to restore the well-posedness of the problem, another 
interesting opportunity is offered by the sparsity  regularization 
techniques, which are based on the concept of sparsity, i.e the 
possibility to represent this latter through a limited number of 
nonzero coefficients of a convenient basis. Provided the proper 
expansion of the unknown is used, such techniques guarantee 
that an accurate retrieval of the unknown is possible even for a 
number of data much lower than the overall number of basis 
coefficient, but sufficiently larger than the number of nonzero 
elements. Note that sparsity regularized techniques are well 
developed and understood for the case of phenomena described 
through linear models, hence, they are usually exploited in 
conjunction with linearized model (see the section VII.B), 
which are usually referred to as sparse linear regression model. 
This latter has been an active research area for the signal 
processing community for several decades and different 
algorithms have been introduced in signal processing 
community, which can be roughly divided into three main 
categories: greedy search heuristics, iterative re-weighted linear 
least square, and lp-regularized methods.  

The widely used methods are probably the last ones, which 
estimatesthe regression coefficients by minimizing a lp-
regularized least square objective function [25]: 

 
 Φ௣ሺ𝒙ሻ ൌ ࢟‖ െ 𝐋𝒙‖௟మ

ଶ ൅ 𝜆‖𝒙‖௟೛
௣  , (8) 

 
where the constant 𝜆 ൐ 0 is the regularization parameter and 𝐋 
represents the linear(ized) GPR operator relating data (i.e., the 
scattered field samples ࢟) to the unknowns (i.e., the contrast 
function 𝒙), and ³p´ iV a SaUameWeU beWZeen 0 and 1.  
 With the advent of compressive sensing, a great attention has 
been paid to (8) by the signal processing community when 𝑝 ൌ
1. The theory of compressed sensing has shown that under 
sparsity and incoherent assumptions, solving the l1-
minimization problem is equivalent to solve the l0-minimization 
problem, i.e. Eq. (8) when 𝑝 ൌ 0 (where the limit is taken in the 
sense of [28, 29], which amount to count the number of non-
zero elements).  

Even though the l1-minimization is convex (which is the key 
advantage over the pseudo l0 norm), it is still a challenging 

problem to be solved due to the size of the system matrix and 
non-differentiability of the objective function. To circumvent 
this issue, different iterative algorithms have been proposed that 
are based on linear programming or interior-point methods [28, 
30]. However, these algorithms tend to suffer for computational 
burden and inaccuracy of the solution. As a consequence, faster 
approaches have been proposed aiming at overcoming these 
limitations via speeding-up and parallelizable strategies [29].  

The concept of sparsity has been further explored along the 
years in the signal processing community, since additional 
sparse structure in the form of non-zero elements can be 
analysed. An interesting example is represented by a type of 
sparsity which is referred to as group-sparsity or block-sparsity 
or joint sparsity, in which the nonzero elements are arranged in 
clusters that allows to achieve better reconstruction results than 
just treating the signal as being arbitrarily sparse [17, 18]. More 
in detail, joint sparsity can be taken into account via mixed l2/l0 
norm [17], which is normally utilized to count the number of 
nonzero blocks. Moreover, it can be also enforcing by defining 
an auxiliary variable as shown in [18]. 

IX. CONCLUSION 
This contribution aims at helping researchers, engineers and 

all the readers to have a first look and understanding of 
tomographic approaches for non-invasive and non-destructive 
exploration of the soil by means of GPR.  

With respect to standard GPR data processing, which 
requires human expertise and may show high probability of 
false alarms, tomographic approaches allow to obtain images 
that are more reliable and readable, as shown in the previous 
sections. However, such approaches involve the solution of an 
inverse scattering problem, that does not represent a trivial task. 
In the scientific literature, different methods to overcome the 
difficulties of the inverse scattering problem underlying 
tomographic approaches have been proposed.  

The choice of the best solution and regularization approach 
is up to the application and to the available a priori information. 
For instance, if the aim is just the detection of buried objects, 
qualitative methods, such as LSM or MUSIC, should be 
exploited. On the other hand, if one is also interested on object 
characterization (e.g., stone, mine or other), by paying a price 
in terms of computational burden, quantitative methods and in 
particular iterative non-linear methods can be adopted. 

The efforts of the scientific community for the incoming 
future will be devoted to develop faster and more reliable 
inversion strategies for the detection as well as characterization 
of the buried targets. Such an aim will require as mandatory step 
the use of hybrid approaches which combine the advantages of 
different methods coming from various disciplines, spanning 
from signal processing to other engineering fields. 
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