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Abstract—The orthogonality sampling method is a recently 

introduced qualitative inverse scattering approach for the 
estimation of the morphological properties of unknown targets. 
Both the simplicity of implementation and the applicability to 
various measurement configurations make this method very 
effective. In this paper, a general physical understanding of the 
method is given for the first time. Such an interpretation is derived 
from the relationship between the currents induced in the 
investigated scenario and the so-called reduced scattered field, 
which is the core of the orthogonality sampling indicator function. 
Interestingly, the convolutional nature of such a relationship 
implies that the reduced field can be related to the radiating 
component of the induced currents. A direct consequence of such 
a result is that the orthogonality sampling method is capable of 
imaging discontinuities within the unknown targets and hence 
identify regions with different electromagnetic properties. This 
possibility represents a unique feature among qualitative inverse 
scattering methods, as these methods have been introduced as tools 
to image just the morphology of the unknown targets. The new 
interpretation, as well as the distinctive capability of the 
orthogonality sampling method are proved with examples with 
both simulated and experimental data.  
 

Index Terms—inverse scattering problem, microwave imaging, 
orthogonality sampling method, shape reconstruction. 

I. INTRODUCTION 
ICROWAVE imaging (MWI) has the potential to 
quantitatively retrieve in a non-invasive way the 

electromagnetic and morphological properties of unknown 
targets, by relying on a proper combination of scattering 
experiments and data processing techniques [1]. As a 
consequence, MWI is relevant to several applications, such as 
biomedical imaging [2],[3], subsurface sensing [4],[5], or 
through-wall imaging [6], only to mention some. However, 
successful application of MWI requires to deal with the non-
linearity and ill-posedness of the underlying inverse scattering 
problem [7],[8]. 

Among the various approaches developed in literature [1], 
qualitative inverse scattering methods overcome the problem’s 
non-linearity by relying on simpler, yet typically still ill-posed, 
problems and without requiring approximations [9]. In doing 
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so, they turn down the possibility to retrieve the 
electromagnetic properties of the scatterers and only aim at 
recovering the support of the unknown targets. 

Many different qualitative strategies have been proposed in 
the literature, such as multiple signal classification (MUSIC), 
the decomposition of time reversal operator (DORT), the linear 
sampling method (LSM), the factorization method (FM) and the 
orthogonality sampling method (OSM) [10]-[14]. Another 
promising and recently introduced approach is based on 
equivalence principles and compressive sensing [15],[16]. 
Typically, all these methods rely on an indicator function, 
whose behavior qualitatively provides an estimate of the 
target’s shape. In doing so, they require solving a linear ill-
posed inverse problem. As such, they need to be equipped with 
proper regularization strategies.  

In this respect, the OSM represents a remarkable exception, 
as computing its indicator does not require solving an inverse 
problem [14] but is based on the evaluation of a reduced 
scattered field, simply defined as the scalar product between the 
measurements of the far-field pattern and a test function. For 
this reason, the OSM exhibits a significant robustness to noise, 
paired with an incomparable straightforwardness of 
implementation. Moreover, the OSM is very effective in 
practice, as it can be adapted to different measurement 
configurations, by exploiting diversity achieved through 
different combinations of incidence directions, observation 
directions and frequencies. Recently, the OSM has been 
extended to the case of near-field measurements [17], thus 
bridging the gap between the far-field data required in the 
original mathematical formulation [14] and the scattered fields 
actually measured in experiments. 
 Because of these interesting features, an understanding of the 
physics underlying the OSM is of course desirable, in order to 
take full advantage of the method, as well as comprehend its 
limitations. In this respect, a first interpretation recognizes the 
reduced scattered field as a superposition of plane waves back-
propagated into the region of the scatterer [14],[17]. Additional 
understanding has been provided in [18], where the indicator 
function is related to the zeroth order Fourier coefficient of the 
far-field pattern of the scattered field (in a suitably translated 
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coordinate system). However, this latter interpretation holds 
true only when the size of the scatterers is small with respect to 
the wavelength. Other considerations are given in [19] but 
without achieving a general physical interpretation. 

In this paper, a further and deeper investigation on the 
physics underlying OSM is given. This latter is built on the 
derivation of the mathematical relationship between the 
reduced scattered field and the currents induced inside the 
investigated domain, which is reinterpreted as a convolution 
product. Then, the reduced scattered field is directly related to 
the radiating currents induced in the targets, thus explaining the 
capability of the method of retrieving the support of the 
unknown targets embedded in the domain under investigation. 
A second interesting consequence of the identified relation 
between the induced currents and the reduced field is that the 
OSM indicator can detect discontinuities inside the investigated 
objects and thus reveal regions with different electromagnetic 
properties. Hence, the proposed physical insight unveils the 
unique capability of OSM as compared to other qualitative 
imaging methods of providing additional information on the 
unknown targets besides their morphology. 

The paper is organized as it follows. In Section II, the inverse 
scattering problem is formulated. In Section III, a brief review 
of the OSM is reported, while section IV introduces the physical 
interpretation herein proposed. Finally, in Section V some 
examples against simulated and experimental data are reported 
to demonstrate the capability of OSM of imaging 
discontinuities inside the investigated objects. Conclusions 
follow. Throughout the paper the case of scalar fields for which 
OSM theoretical results hold true [14],[17] is considered and a 
time harmonic factor 𝑒𝑥𝑝{𝑗𝜔𝑡} is assumed and dropped. 

II. STATEMENT OF THE PROBLEM 
Let Ω denote the region under test where the targets are 

located. The contrast function 𝜒(𝒓) = 𝜖 (𝒓) 𝜖 −  1 relates the 
unknown properties of the scatterers to those of the host 
medium, being 𝜖  and 𝜖  the complex permittivities of the 
scatterer and the background medium, respectively and 𝒓 ∈ ℝ  
or ℝ . The unknown targets are probed with a set of incident 
fields transmitted by some antennas located in 𝒓𝒕 = 𝑅 𝒓𝒕 on a 
close circular curve Γ of radius 𝑅 located in the far zone of the 
scatterers. Without any loss of generality, let us assume that the 
scattered fields are measured by receiving antennas at 𝒓𝒎 ∈  Γ, 
with 𝒓𝒎 = 𝑅 𝒓𝒎. Under the above assumptions, the equations 
describing the scalar scattering problem can be expressed in the 
integral form as [1],[7]:  

𝐸𝒔(𝒓𝒎, 𝒓𝒕) = 𝐺 (𝒓𝒎, 𝒓 ) 𝜒(𝒓′)𝐸(𝒓 , 𝒓𝒕)𝑑𝒓 = 풜 [𝜒𝐸]

= 풜 [𝑊] 
(1) 

𝐸(𝒓, 𝒓𝒕) = 𝐸 (𝒓, 𝒓𝒕) + 𝐺 (𝒓, 𝒓 ) 𝜒(𝒓′)𝐸(𝒓 , 𝒓𝒕)𝑑𝒓

= 𝐸 +풜 [𝜒𝐸] = 𝐸 +풜 [𝑊] 
(2) 

where 𝐸 , 𝐸  and 𝐸 are the incident, scattered and total field, 

respectively, W is the contrast source, 𝒓 ∈ Ω. 𝐺 (𝒓, 𝒓 ) is the 
Green’s function pertaining to the background medium. 
Finally, 풜  and 풜  are a short notation for the integral radiation 
operators.  

The problem (1)-(2) is non-linear, as the contrast sources 𝑊 
(or equivalently the total field 𝐸) also depend on the unknown 
of the problem, i.e. the contrast function χ. Moreover, it is also 
ill-posed due to the properties of the operator 풜  [7],[8]. 

III. ORTHOGONALITY SAMPLING METHOD: A BRIEF 
SUMMARY 

The OSM consists in reconstructing the reduced scattered 
field from the far-field pattern 𝐸 (𝒓𝒎,𝒓𝒕), defined as: 

 

𝐸 (𝒓𝒎, 𝒓𝒕) = 𝐺 (𝒓𝒎, 𝒓 ) 𝜒(𝒓′)𝐸(𝒓 , 𝒓𝒕)𝑑𝒓  

(3) 
with 𝐺  denoting the Green’s function in far-field zone: 
  

𝐺 (𝒓𝒎, 𝒓) = 𝛾𝑒 𝒓∙𝒓  

(4) 

wherein 𝑘 = 𝜔 𝜇 𝜀  is the wavenumber in the host medium 
and 𝛾 is a constant for a fixed frequency [14],[17]. Then, the 
reduced scattered field is defined as [14]: 

 

𝐸 (𝒓, 𝒓𝒕) = 𝐸 (𝒓𝒎, 𝒓𝒕) 𝑒 𝒓∙𝒓𝒎 𝑑𝒓𝒎 =
1
𝛾
〈𝐸 ,𝐺 〉  

(5) 

where 〈∙,∙〉 denotes the scalar product. Equation (5) simply 
represents the scalar product over the measurement domain Γ 
of the measured far field pattern with the test function 𝑒 𝒓∙𝒓𝒎. 
As such, the equation tests the orthogonality relation between 
the far-field pattern and the Green function in far zone (apart 
from the constant 𝛾).  

The OSM indicator function 𝐼(𝒓) is defined as [14]: 
 

𝐼(𝒓) = 𝐸 (𝒓, 𝒓𝒕) 𝑑 𝒓𝒕 = 𝐸 (𝒓, 𝒓𝒕)
ퟐ
 

(6) 

where ‖∙‖  is the 𝑙 -norm on Γ. By construction, the indicator 
𝐼(𝒓) achieves large values when the far-field pattern 
approaches the one of the background Green’s function for the 
considered sampling point. In particular, larger values are 
assumed in sampling points belonging to the support of the 
targets [14]. As a consequence, by selecting a fixed threshold, 
the indicator function allows to discriminate between points 
inside and outside the targets, thus characterizing their shape. 
 It is worth noting that, opposite to other qualitative methods, 
the OSM does not involve the solution of any ill-posed inverse 
problem, since its indicator (6) is directly obtained from the 
evaluation of the scalar product (5) in each sampling point of 
the imaged region.  

As a further feature, it is important to recall that unlike the 
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LSM or the FM which only work with multiview-multistatic 
data, the OSM exhibits some flexibility with respect to data to 
be processed. For instance, in equations (5) and (6), multiview 
data at a single frequency are considered. However, 
multifrequency measurements for a single-view can be 
exploited by simply replacing the integration with respect to 
incidence directions with the one on the available frequencies. 
Of course, the use of both multifrequency and multiview data is 
also possible. In this case, the indicator is defined as it follows: 
 

𝐼 (𝒓) = 𝐸 (𝒓, 𝒓𝒕,𝜔) 𝑑 𝒓𝒕 𝑑𝜔 

(7) 
where the angular frequency 𝜔 ∈ 𝐵 and 𝐵 is the relevant 
frequency band. 

IV. PHYSICAL INTERPRETATION OF OSM 
In order to get a better physical understanding of the method, 

it proves useful to exploit an alternative expression of the 
reduced scattered field. To this end, following [14], one can 
substitute into (5) the explicit relation (3) between the far-field 
pattern and the induced currents. By inverting the integration 
order, equation (5) can be rewritten as: 

 

𝐸 (𝒓, 𝒓𝒕) = 𝑊(𝒓 , 𝒓𝒕)𝑑𝒓 𝛾𝑒 (𝒓 𝒓)∙𝒓 𝑑𝒓𝒎 

(8) 
Then, by taking advantage from the Funck-Hecke formula 

[9] (which is valid as long as Γ is a closed curve), the reduced 
scattered field, at a fixed frequency and for a fixed illumination 
condition, can be rewritten as [14],[17]: 
 

𝐸 (𝒓) =

{
 
 

 
 𝛾𝛼  𝐽 (𝑘 |𝒓 − 𝒓 |)𝑊(𝒓 ) 𝑑𝒓 , 𝒓 ∈ ℝ

𝛾𝛼  𝑗 (𝑘 |𝒓 − 𝒓 |)𝑊(𝒓 ) 𝑑𝒓 , 𝒓 ∈ ℝ

 

(9) 
where 𝛼  is a constant related to the Funck-Hecke formula, 
(which is equal to 2𝜋 and 4𝜋 in 2D and 3D geometry1, 
respectively), and 𝐽  and 𝑗  stand for the Bessel function of 
zeroth order and spherical Bessel function of zeroth order, 
respectively.  

By the sake of simplicity and taking into account that the 
induced currents have the same support of the targets (so that 
the actual contrast sources assume zero values outside it), let us 
extend the integrals (9) to ℝ  and ℝ , respectively. By so doing, 
the left-hand side can be interpreted as the convolution product 
between the contrast source 𝑊 and the relevant zero order 
Bessel function, (which also represents the non-singular part of 
the Green function, see [7]). Accordingly, the alternative 

 
1 The 3D scalar problem is considered. 
2 Notably, the results in [22],[23] still do not imply that the Fourier transform 

of the radiating currents are located just on the circle (sphere) of radius 𝑘 , as 

expression of the reduced scattered field can be cast in a 
compact way as it follows: 

 

𝐸 (𝒓) ∝
𝐽 (𝑘 |𝒓|) ∗ 𝑊(𝒓) = ℱ ℱ{𝐽 } ℱ{𝑊} , 𝒓 ∈ ℝ

𝑗 (𝑘 |𝒓|) ∗ 𝑊(𝒓) = ℱ ℱ{𝑗 } ℱ{𝑊} , 𝒓 ∈ ℝ
 

(10) 
wherein the symbol ∗ indicates the convolutional product, while 
ℱ and ℱ  represents the Fourier transform and its inverse, 
respectively. Thanks to this convenient rewriting of the 
equation (5), the reduced scattered field can be seen as the 
output of a linear system whose impulsive response is given 
(apart from a constant) by the Bessel functions, and whose input 
are the contrast sources. As a consequence, in the spectral 
domain the reduced scattered field is the product between the 
Fourier transform of 𝑊 and the one of the Bessel function at 
hand. Then, by taking advantage from the Fourier transform of 
the Bessel functions (which is given by a single layer 
distribution along the circle (sphere) 𝑘 = 𝑘  [20],[21]), the 
Fourier Transform of the reduced scattered field can be finally 
read (but for a constant) as the restriction to the circle (or 
sphere) of radius 𝑘  of the Fourier transform of the contrast 
sources.  

Such a circumstance has two interesting consequences.  
First, the presence of the Bessel function in the integral 

entails the selection of the spectral components of the currents 
located on a circle (sphere) of radius 𝑘 . This is a very 
interesting result in view of the fact, discussed in detail in 
[22],[23], that the radiating sources exactly oscillate at the 
frequency 𝑘 . Hence, the reduced scattered field 𝐸  can be 
related to the radiating sources induced by a given 
illumination2.  

Then, as the actual contrast sources have the same support as 
the targets, and the reduced scattered field is a kind of subset of 
these latter, one has a simple understanding of why the OSM 
indicator permits to retrieve their support. In fact, in (6) and (7) 
one is plotting the superposition of the square amplitude of the 
contrast sources at hand. 

An interesting consequence of both equations (9) is that the 
reduced scattered field, being related to the currents and, hence, 
to the contrast function, is expected to exhibit a distribution 
which depends on the electromagnetic properties of the 
investigated objects. In fact, since the scalar fields at hand are 
continuous at discontinuities, the OSM indicator will be 
characterized by larger values in those points corresponding to 
electrically denser regions inside the target, thus allowing to 
identify the presence of discontinuities within the retrieved 
support. This relevant feature will be discussed and validated in 
the numerical Section, where some exemplification of the 
physical meaning of the reduced field is also given.  
 Finally, it is important to underline that the herein proposed 
physical interpretation holds true for near field [17] and aspect 
limited [19],[24] measurement configurations, as in both cases 

truncation effects in the spatial domain come into play.  
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the corresponding reduced scattered field (see [17],[19],[24] for 
more details) is related to the induced currents by means of the 
linear relationship in eq. (9). 

V. NUMERICAL VALIDATION  
In this section a controlled assessment with simulated data is 

firstly carried out. Then, the OSM performance are evaluated 

 
                       (a)                                            (b)                                             (c)                                             (d) 

 
                       (e)                                            (f)                                             (g)                                             (h) 

 
                     (i)                                              (j)                                             (k)                                               (l) 
 

Figure 1. Assessing the physical interpretation of OSM on simulated data. (a) Real part of the reference contrast. Normalized 
(b) LSM, (c) OSM and (d) multifrequency OSM indicators. Amplitudes and phases of (e)-(f) the reduced scattered field and (g)-
(h) reconstructed radiating currents. (i)-(j) as (b)-(c) but for SNR=10 dB. (k)-(l) as (b)-(c) but for SNR=3 dB.  
 

 
                       (a)                                            (b)                                             (c)                                             (d) 

 
                     (e)                                              (f)                                              (g)                                             (h) 
 

Figure 2. Assessing the OSM capability of identifying regions with different electric properties: (a)-(e) Reference contrast 
functions. Normalized (b)-(f) LSM, (c)-(g) OSM and (d)-(h) multifrequency OSM indicators.  
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against the experimental data-set provided by the Institute 
Fresnel of Marseille [25],[26], typically adopted to benchmark 
inverse scattering procedures. In the following, we consider the 
canonical 2D scalar problem (TM polarized fields). 

A. Simulated data  
In these examples, one or more unknown objects have been 

positioned inside a square domain of side L and, following [27], 
the same number of receivers and transmitters N = M, modelled 
as line sources located on a circumference Γ of radius R, has 
been considered. The scattered field data, simulated by means of 
a full-wave forward solver based on the method of moments, 
have been corrupted with a random Gaussian noise with a given 
SNR. A working frequency of 5GHz has been considered. In the 
multifrequency case, the adopted frequency range is 4-7GHz 
with a step of 0.25GHz.  

The results have been compared with those obtained with the 
LSM. In particular, in order to perform a fair comparison, both 
indicators have been normalized. In particular, the OSM 
indicator (6) has been normalized to its maximum value, while 
the LSM indicator has been rescaled as described in [28]. Note 
that in (6) we focus on 𝑙 -norm but similar results can be 
obtained by adopting the 𝑙 -norm.  

The first example deals with a lossless and inhomogeneous 
circular cylinder embedded in the air, see figure 1.(a), with L =
1.67 λ. Following [29], a number of cells 𝑁  equal to 50 × 50 
has been used (with size 0.034 λ), while N = M = 16, SNR =
30dB and R = 3.33 λ. In order to validate the proposed physical 
interpretation, the reduced scattered field defined in equation (5) 
has been compared with the reconstructed radiating currents 
obtained from (1) via Tikhonov regularization [8]. The 
amplitudes and phases of the reduced scattered field and the thus 
obtained currents for a single transmitter position 𝒓𝒕 are shown 
in figures 1.(e)-(h).  

Figures 1.(b)-(d) depict the normalized LSM, OSM and 
multifrequency OSM indicators, respectively. As it can be seen, 
in both cases the position and shape of the unknown cylinder has 
been correctly retrieved, especially in case of multifrequency 
data processing. Moreover, unlike LSM, the OSM indicator 
assumes higher values, i.e., closer to 1, in the denser part of the 
targets and lower values in the remainder part of the support, 
thus allowing to identify the discontinuity which is present in the 
unknown profile. A further analysis has been performed by 
changing the SNR, thus confirming the robustness of the OSM 
with respect to the measurement errors (see figures 1.(i)-(l)). 

The interesting capability of OSM to identify the inner 
discontinuities encourages us to further investigate its 
performance by considering other inhomogeneous profiles. In 
particular, with respect to the same imaging domain and 
measurement setup as in the first example, a non-homogeneous 
square target and a ring scatterer have been considered (see 
figure 2). As it can be seen, both LSM and OSM correctly 
retrieve the support of the two targets. However, the OSM 
indicator allows to detect the presence of a denser region inside 
the square target and the hole inside the non-convex target, 
respectively. As such, OSM can retrieve the support of unknown 
targets also in case of not simply connected objects. Conversely, 

the LSM maps does not allow to identify discontinuities or holes 
inside the scatterers. 

B. Experimental data 
In this subsection, we have considered three dataset in the 

Fresnel database, namely: 
 
- FoamDielIntTM, which is a piecewise inhomogeneous 

dielectric target made by two nested, non-concentric, 
circular cylinders, where the inner one has a higher 
contrast (𝜖 = 3 ± 0.3) than the outer one (𝜖 = 1.45) [26]; 

- FoamTwinDielIntTM, in which another circular cylinder 
(ε = 3 ± 0.3) is placed in contact with the 
FoamDielIntTM target [26]. 

- U-TM shaped, which is a metallic U-shaped target with 
dimension 80 × 50 mm2[25].  

The data are collected under a partially aspect limited 
configuration, where primary sources completely surround the 
targets, but, for each illumination, the measurements are taken 
only on an angular sector of 240°, that is, excluding a 120° 
sector centered on the incidence direction. The complete 
description of the targets and the measurement set-up can be 
found in [25],[26].  

The investigated area of 0.2 x 0.2m2 has been discretized in 
78 × 78 cells. For the FoamTwinDielIntTM target, the working 
frequency has been selected equal to 4GHz, while a 36 × 18 
multiview-multistatic data matrix has been considered. On the 
contrary, for the FoamDielIntTM target, a 45 × 36 multiview-
multistatic data matrix at 5GHz has been processed. Finally, for 
the last target, the results have been obtained by processing at 
12GHz a 72 × 36 data matrix 

The indicators are shown in figure 3. In particular, figures 
3(a)-(f) again confirm that OSM allows to clearly discriminate 
the presence of inhomogeneities inside the targets. In particular, 
the OSM indicator can be quantized in three different levels 
pertaining to the different electrical properties (of course, the 
value of these properties cannot be guessed from it).  

The results of the last example, reported in figures 3(g)-(i), 
confirm that OSM succeeds also in imaging non-convex targets, 
as already observed in the previous subsection (see figures 2(e)-
(h)). Note that OSM indicator is also reliable in case of metallic 
targets, which are characterized by induced currents only 
localized in proximity of the boundary of the targets. 

VI. CONCLUSIONS 
 Among qualitative methods, the OSM has recently gained 
increasing interest in inverse scattering literature, thanks to its 
simplicity and flexibility. However, despite these interesting 
properties, a full understanding of the physics underlying the 
method has been not yet given.  

In this paper, an original physical interpretation of the OSM 
has been introduced, by properly handling the reduced scattered 
field formulation. In particular, the reduced scattered field has 
been related to the radiating part of the induced currents. This 
may suggest that a more proper terminology would be to refer 
to it as reduced contrast source. 
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Besides lexicon, the proposed physical interpretation allows 
to immediately understand why the OSM indicator is capable 
of identifying the support of the unknown targets, since contrast 
sources and scatterers share the same support. Furthermore, it 
allows to foresee the expected limitations of OSM, which will 
be related to the presence of a significant non-radiating 
component of the contrast sources. Indeed, this component will 
leave no trace into the measured data which are used to build 
the indicator function.  

Finally, as the induced currents have not only the same 
support as the scatterers, but also the same internal 
discontinuities, the proposed interpretation has allowed us to 
show that the OSM indicator is able to identify regions within 
the unknown targets where abrupt changes in electromagnetic 
properties occur. This interesting circumstance represents a 
unique feature in the framework of qualitative methods, as 
confirmed here by the compared application of the OSM and 
the LSM to simulated and experimental benchmark data. In 
these examples, the OSM has also exhibited an improved 
capability of identifying the support of non-convex targets. 

The good performance observed as well as the relevant 
physical meaning herein proposed, makes the OSM and the 
reduced scattered field (or the reduced contrast source) mostly 

attractive in quantitative imaging. Indeed, any information 
about radiative components of the currents [30],[31] and the 
inner structure of the region under test [32],[33] can play a key 
role in quantitatively determining the electromagnetic 
properties of the targets, or even build new approximate 
inversion. To this end, future work will be devoted at exploiting 
the proposed physical interpretation and information about 
discontinuities to retrieve not only the morphology of the 
targets but also their electromagnetic properties, as well as to 
exploit the OSM in the so-called virtual experiments framework 
[28],[34]. 
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