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Abstract— The linearity of the scattering phenomenon with 

respect to primary sources allows to recombine a posteriori the 
available experiments and build, in a synthetic fashion, new 
‘virtual’ experiments. Starting from this circumstance, an 
iterative procedure is proposed as an effective approach to tackle 
non linear inverse scattering problems. In this procedure, the 
Green's function, the virtual experiments and the corresponding 
field approximations are updated at each iteration. The structure 
and the complexity of the approach are comparable with those of 
the widely adopted distorted Born iterative method, but its 
performances are remarkably better, thanks to extended validity 
of the exploited field approximation. The overall approach also 
takes advantage of a Compressive Sensing based regularization 
scheme to further improve the accuracy of the imaging results. 
Examples with numerical and experimental data are given to 
assess the method. 
 

Index Terms— Inverse Scattering, Distorted Born Iterated 
Method, Virtual Experiments, Compressive Sensing, Linear 
Sampling Method, Truncated Singular Value Decomposition.  
 

I. INTRODUCTION 
ICROWAVE imaging techniques are an active 
research topic in applied electromagnetics, owing to 
their relevance in both theory and applications. In this 

framework, one of the main still open challenges is to develop 
methods and techniques capable to overcome the difficulties 
arising from the non-linearity and ill-posedness of the 
underlying inverse scattering problem [1,2].  

As a countermeasure to non-linearity, Born, Rytov, and 
Kirchhoff [2-4] field approximations, have been exploited to 
linearize the problem and solve it in an efficient and simple 
way. However, this is only possible within the (limited) 
validity of the underlying linear models. For example, the 
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Born approximation (BA) is viable only for the weak 
scattering regime [1-3]. Similar limitations hold for the 
distorted Born approximation (DBA) [5], where one looks for 
the perturbations in a known inhomogeneous scenario.  

A possible extension of DBA to the case of non-weak 
scatterers is the distorted Born iterative method (DBIM) [6-
13], which consists of iterated linear approximations, achieved 
by progressively updating the scenario (i.e., the relevant Green 
function and the total field) and looking for the perturbation. 
Obviously, the final outcome depends on the starting guess as 
well as on the range of validity of the intermediate 
linearizations.  

Notably, it can be argued that the wider the range of validity 
of the approximations, the larger the possibility to recover the 
actual (ground truth) contrast profile. In fact, at any iteration 
the approach will more easily contain the actual solution 
within its range of validity. Also, it will more easily include 
points belonging to the attraction region of the actual solution. 

Hence, it makes sense to look for field approximations 
having a validity range as broad as possible. In this respect, 
the field conditioning enforced by means of suitably designed 
virtual experiments (VE) [14-16] is worth to be considered. In 
fact, the VE allow to introduce a new, “scatterer aware”, field 
approximation [14], which is viable for a large class of non-
weak targets [15], as well as for the case of partially known 
scenarios [17]. 

Then, in the same spirit as DBIM, we introduce and develop 
in the following a new iterative inversion scheme. In each 
iteration of this latter, after the scenario’s update, the VE are 
also re-designed, thus allowing convenient VE based linear 
approximations. By so doing, each step relies on a linear 
approximation with an extended validity (as compared to 
DBA). In fact, the nature of the scatterer is somehow taken 
into account. As such, the resulting Distorted Iterated Virtual 
Experiments (DIVE) scheme is expected to be more robust 
than DBIM.  

Obviously, in each step of DIVE, one still has to face an ill-
posed (linear) inverse problem, which requires a regularization 
to obtain physically meaningful solutions. To this end, we 
consider two possible strategies. The first is a “general 
purpose” approach, based on the truncated singular value 
decomposition (TSVD) [14], which allows us to assess the 
effectiveness of the basic idea underlying DIVE. The second 
is based on the Compressive Sensing (CS) theory [18-20], 
already exploited in inverse scattering when using BA [21,22] 
or DBIM [11,12]. In this paper, we exploit it into DIVE as a 
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regularization strategy for objects exhibiting piece-wise 
constant permittivity distributions. 

The paper is organized as follows. In Section II, the basic 
mathematical formulation of the inverse scattering problem 
and the VE framework are recalled. In Section III, the 
proposed iterative procedure is introduced and described in 
detail, while in Section IV the inversion strategies exploited 
for the solution of the linear ill-posed problem involved in 
each iteration are outlined. Section V presents the assessment 
of the DIVE method’s performance with benchmark numerical 
and experimental data. The results fully confirm the 
expectations and demonstrate it as a reliable and effective 
imaging tool for the non-weak scattering regime. Conclusions 
follow.  

Throughout the paper we consider the canonical 2D scalar 
problem (TM polarized fields) and we assume and drop the 
time harmonic factor 𝑒𝑥𝑝{𝑗𝜔𝑡}. 

II. MATHEMATICAL BASICS AND THE VE FRAMEWORK 
Let Ω denote the compact, possibly not connected, support of 
an unknown object with relative permittivity 𝜀! and electric 
conductivity 𝜎". The object is embedded in a homogeneous 
medium with permittivity 𝜀# and conductivity 𝜎#. The 
magnetic permeability is everywhere equal to that of the free 
space 𝜇$. The relevant contrast function is defined as: 
 

𝜒(𝒓) =
𝜀!(𝒓) − 𝑗𝜎!(𝒓) 𝜔𝜀$⁄
𝜀# − 𝑗𝜎# 𝜔𝜀$⁄ − 1 

(1) 
 

where 𝒓 = (𝑥, 𝑦) ∈ Ω and 𝜔 = 2𝜋𝑓 with 𝑓 the working 
frequency. 

The unknown scatterer is probed with a set of incident fields 
transmitted by some antennas located in 𝒓𝒕 on a closed curve 
Γ. Without any loss of generality, let us assume that the 
scattered fields are measured by means of receiving antennas 
at 𝒓𝒎 ∈ 	Γ. 

Under the above, the equations describing the scattering 
problem can be expressed as:  
 

𝐸!(𝒓𝒎	, 𝒓𝒕	) = 𝑘( @𝐺#(𝒓𝒎, 𝒓))
*

𝜒(𝒓′)𝐸(𝒓), 𝒓𝒕	)𝑑𝒓) = 𝒜+[𝜒𝐸] 

(2) 

𝐸(𝒓, 𝒓𝒕) = 𝐸,(𝒓, 𝒓𝒕) +	𝑘( @𝐺#(𝒓, 𝒓))
*

𝜒(𝒓′)𝐸(𝒓), 𝒓𝒕	)𝑑𝒓)

= 𝐸, +𝒜,[𝜒𝐸] 
(3) 

 
where 𝐸,, 𝐸! and	𝐸 are the incident, scattered and total field, 
respectively, 𝑘 = 𝜔H𝜇#𝜀# is the wavenumber in the host 
medium, 𝐺# is the Green’s function pertaining to the 
background medium. If the background is the free space 
𝐺#(𝑟, 𝑟)) = −𝑗/4	𝐻$((𝑘#|𝑟 − 𝑟)|), being 𝐻$( the zero order and 
second kind Hankel function. In general case of non 
homogenous background, 𝐺# cannot be calculated in closed 
form, except for some canonical scenarios. Finally, 𝒜+ and 𝒜, 

are a short notation for the integral external and internal 
radiation operators, respectively.  

The inverse scattering problem consists in estimating the 
contrast function 𝜒 from the (noise corrupted) measured 
scattered field 𝐸!. Due to the properties of the involved 
operators, such a problem is ill posed [2] and non-linear, as the 
total field also depends on the unknown contrast. The standard 
DBIM, originally proposed by Chew and Wang [6], 
overcomes this difficulty by considering a series of 
intermediate linearizations. In each step, it involves the 
solution of a forward problem to update the background field 
as well as the relevant Green’s function. The final outcome 
strongly depends on the initial guess and on the range of 
validity of the intermediate linearizations. 

A. The virtual experiments framework 
In the above formulation of the inverse scattering problem, 

multiple experiments have been considered to increase as 
much as possible the amount of independent information and 
improve the performances of the inversion strategy. However, 
due to ill-posedness, only a finite number of independent 
experiments is available [23]. That is, increasing the number 
of incidence directions (and, by reciprocity, of measurement 
positions) is only useful up to some extent. The number N (M) 
and the positions on Γ of the transmitting (receiving) probes 
can be properly chosen in a non-redundant fashion by relying 
on theoretical arguments [23]. 

The collected independent information can be re-organized 
by taking advantage of the linearity of the scattering 
phenomena. In fact, a linear combination of the incident fields, 
(with known coefficients) gives rise to a scattered field given 
by the linear combination (ruled by the same weighting 
coefficients) of the corresponding scattered fields. Starting 
from this simple “transformation” of the scattering data, the 
concept of VE has been introduced and exploited in [14-16]. 
Notably, the VE represent a re-arrangement of the original 
experiments, so that they do not require additional 
measurements, but can possibly provide a more convenient 
way to handle the inverse problem.  

III. DIVE - DISTORTED ITERATED VIRTUAL EXPERIMENTS  
 The idea of transforming the original experiments into new 
(virtual) ones in such a way that the scattered fields exhibit a 
given behavior has opened the way to a number of interesting 
possibilities.  

In particular, in [14] suitably designed VE and a new 
approximation for the internal fields have been introduced and 
described for the case of a homogeneous background. Herein, 
in the same spirit of DBIM, we pursue the idea of exploiting 
this approximation (rather than BA and DBA) as the core of 
an iterative procedure, which involves successive 
linearizations. Unlike DBIM, each linearization of DIVE is 
based on properly re-designed VE, which are updated on the 
basis of intermediate results.  

The new procedure is articulated in five steps. 
 

1) Initialization: a first estimation 𝜒- of the contrast function 
is obtained by using the VE based linear approximation [14]. 
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Obviously, the proposed iterative procedure can consider other 
more favorable starting guesses, when available. 
 
2) Scenario update: the forward scattering problem pertaining 
to the last reconstructed contrast profile 𝜒., which represents 
the background medium at the kth iteration, is solved. Such a 
solution allows to update the background field 𝐸#., that is, the 
total field occurring when 𝜒 = 𝜒., and the anomalous field 
∆𝐸". (that is, the difference between 𝐸" and the field scattered 
when 𝜒 = 𝜒.). Furthermore, the Green’s function 𝐺#. 
pertaining to the achieved estimation of the background 
permittivity is also computed, by using reciprocity. 
 
3) Convergence control: a stopping rule is considered by 
defining the relative residual error (RRE) at kth iteration as 
𝑅𝑅𝐸. = ‖∆𝐸!"‖( ‖𝐸!‖(⁄ . If 𝑅𝑅𝐸. is less than a pre-set 
threshold (10/0) or is larger than the 𝑅𝑅𝐸./-, the procedure is 
stopped and 𝜒. is considered the solution of the overall 
problem. Otherwise, the iterative procedure continues until the 
stopping criterion is fulfilled. 
 
4) VE update: this step and the following one are the main and 
most important differences between DBIM and DIVE. In fact, 
we consider new Virtual Experiments, which are re-designed 
in such a way to focus the anomalous field only in those points 
where perturbations, say ∆𝜒., with respect to the last 
reconstructed profile (	𝜒.) are expected. To this end, we solve 
in each sampling point 𝒓𝒔 the (distorted) linear sampling 
method (LSM) equation [24,25]: 
 

R∆𝐸!.(𝒓𝒕, 𝒓𝒎)𝛼.(𝒓𝒕	, 𝒓𝒔)
2

34-

= 𝐺#.(𝒓𝒎, 𝒓𝒔) 

(4) 
 

wherein 𝛼.(𝒓𝒕	, 𝒓𝒔) are the sought auxiliary excitations 
coefficients which allow a convenient design of the kth set of 
VE (see below). To solve eq. (4) and counteract its ill-
posedness, the singular value decomposition (SVD) of ∆𝐸! 
and the Tikhonov regularization are exploited [2].   

According to [24], the energy of the coefficients 𝛼. 
provides an estimation of the shape of Δ𝜒.. In particular, the 
support indicator Υ. normalized over the sampling grid is 
defined as  
 

Υ.(𝒓𝒔) =
𝑙𝑜𝑔-$‖𝛼.‖ − 𝑙𝑜𝑔-$‖𝛼.‖567

𝑚𝑖𝑛	{𝑙𝑜𝑔-$‖𝛼.‖ − 𝑙𝑜𝑔-$‖𝛼.‖567}
 

(5) 
 

wherein ‖∙‖ is the 𝓵𝟐-norm.  
Then, we select a number of pivot points 𝒓𝒑 belonging to 

the estimated support of the anomaly to build the VE [14]. For 
instance, saying ℰ#. the virtual background field, this is 
obtained by recombining 𝐸#. through the coefficients 𝛼., i.e.: 
 

ℰ#._𝒓, 𝒓:` =R𝐸#.(𝒓, 𝒓𝒕)
2

34-

𝛼.(𝒓𝒕	, 𝒓𝒑) 

(6) 
5) Contrast update via linear inversion: the relevant data 
equation (1) is applied to the case of partially known scenario 
and recast in terms of VE as: 
 

∆ℰ!._𝒓𝒎, 𝒓𝒑` = @𝐺#.(𝒓𝒎, 𝒓))
*

∆𝜒.(𝒓′)ℰ._𝒓), 𝒓𝒑`𝑑𝒓)

= 𝒜+
𝒌[∆𝜒.ℰ.] 

(7) 
where ∆ℰ!. and ℰ. are the anomalous and total fields arising 
in the VE, respectively, and 𝒜+

𝒌 is the external radiation 
operator at kth iteration.  

By considering that the solution of eq. (4) enforces the 
scattered field to fit the elementary field pattern originating at 
the pivot point in the actual reference scenario [24,25], the 
unknown total field ℰ. in eq. (7) can be approximated by:  
	

ℰ._𝒓, 𝒓:` = ℰ#._𝒓, 𝒓:` + 𝐿𝑃{𝐺#.(𝒓, 𝒓:)} 
(8) 

 
i.e. by the sum of the virtual background field ℇ#. and a low 
pass filtered version of 𝐺#., as numerically computed by 
means of a forward solver. Note that approximation (8), unlike 
the DBA, takes into account the contribution of the anomaly 
through ℰ#. at each step, so that it can be considered a 
“scatterer aware” approximation. 

After solving the linearized problem (7) (see section V for 
details), a new profile is generated adding the reconstruction 
to the current reference scenario, that is 𝜒.<- =	𝜒. + ∆𝜒..  
 
6) Return to step 2. The iteration continues until the stopping 
criterion is fulfilled. 
 
The overall DIVE scheme is summarized in fig. 1.  
 

IV. TSVD AND CS BASED INVERSION STRATEGIES 
In step 5), a linear ill-posed problem has to be solved. To 

this end, we consider two regularization approaches. The first 
approach is the well-known truncated singular value 
decomposition (TSVD) [2], whose regularization parameter, 
the truncation index NT, can be conveniently determined by 
exploiting the Picard’s plot technique [14,26,27]. We use this 
approach to prove the effectiveness of the VE iterations 
underlying the proposed method. 

The second approach is based on the emerging Compressive 
Sensing (CS) paradigm [18-20]. In particular, let us suppose to 
deal with extended targets exhibiting piecewise constant 
dielectric profiles, which is a rather common circumstance 
when dealing with man-made objects and (some kind of) 
biological scenarios. Notably, they can be considered to be 
sparse when represented in terms of step functions. 
Alternatively, one can say that they have a gradient that is 
sparse in the usual pixel basis [28,29].  

Let 𝑫𝒉 and 𝑫𝒗 be the vectors containing the horizontal and 
vertical forward differences [28,29] of the considered 
function. Moreover, in order to counteract, at least in a partial 
fashion, the (geometrical) anisotropy of more usual schemes  
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enforcing piecewise constant profiles, let us also define 𝑫𝒅
< 

and 𝑫𝒅
/ as the vectors which contain the forward differences 

along directions parallel to the principal and secondary 
diagonal (𝑥 = ±𝑦) of the matrix of pixels representing a given 
function [29]. Accordingly, by paralleling [28], the linearized 
inverse problem can be solved by means of minimization of 
the following objective function: 
 

𝒎𝒊𝒏
∆𝝌𝒌

ij𝑫𝒉	𝝌𝒌<𝟏j𝓵𝟏 + j𝑫𝒗	𝝌𝒌<𝟏j𝓵𝟏 + j𝑫𝒅
<𝝌𝒌<𝟏j

𝓵𝟏

+ j𝑫𝒅
/𝝌𝒌<𝟏j

𝓵𝟏
l 

𝒔𝒖𝒃𝒋𝒆𝒄𝒕	𝒕𝒐				j𝑨𝒌∆𝝌𝒌 − 𝒚j
𝓵𝟐
≤ 𝛿 

(9) 
 
where 𝒚 is the data vector containing the anomalous scattered 
fields ∆ℰ!. arising in the VE, and 𝑨𝒌 is the matrix that relates 
the unknown vector to the data vector according to the linear 
relationship (7), with ℰ. given by expression (8).  

A crucial point is the choice of the parameter 𝛿 in (9), 
which represents the level of accuracy required in satisfying 
(7). Of course, it has to take into account the noise level as 
well as the model error introduced by the approximation (8). 
In order to avoid the trivial solution, that is the null vector, 𝛿 
must be selected lower than ‖∆𝓔𝒔‖D&, since with 𝛿	 ≥ ‖∆𝓔𝒔‖D& 
the null vector could satisfy the constraint on the data and 
simultaneously minimize the objective function. Accordingly, 
in performing the numerical analysis, 𝛿 is such that 𝛿 =
𝛿{‖𝓔𝒔‖𝓵𝟐 with 0 < 𝛿{ < 1. Moreover, since in the Initialization 
step a larger model error is expected, a larger value of 𝛿 is 
chosen with respect to the one adopted in the following steps. 

Finally, it is worth to observe that while the TSVD 
regularization acts at each iteration on the perturbation ∆𝝌𝒌, 
the CS inspired regularization in eq. (9) enforces sparsity on 
the whole contrast profile at each iteration. This is expected to 
improve the accuracy in the unknown profile reconstructions. 
 

V. ASSESSING DIVE PERFORMANCES 

A. Synthetic data: the kite target 
The imaging results in [14,15] show that the linear 

inversion method based on the approximation (8) can be 
applied in a range of cases much wider than the standard first 
order BA. On the other hand, the approach has anyway 
limitations with increasing the electrical dimensions (with 
respect to the background wavelength) and the contrast values 
of the scattering system [14]. Hence, to provide an assessment 
of DIVE, we have considered the ‘kite’ scatterer analyzed in 
[15], for which the VE based linear inversion fails. The 
leading dimension of the kite is 1	𝜆#, being 𝜆# the wavelength 
in the background, while the permittivity and the conductivity 
are, respectively, equal to 2.2 and 0.1 S/m at 5 GHz. The 
target is positioned inside a square domain of side L = 2.16	𝜆# 
discretized in 42 × 42 cells [30] (see fig. 3(a)-(b)). Moreover, 
following [23], 24 receivers and transmitters (both located on 
a circumference Γ of radius R = 1.66	𝜆#) have been 
considered. The scattered field data, simulated by means of a 
full-wave solver based on the method of moments, have been 
corrupted with a random Gaussian noise with SNR = 25	dB. 

To evaluate the accuracy of the retrieved contrast function, 
we use the normalized mean square error defined by 𝑒𝑟𝑟 =
‖𝜒 − 𝜒�‖( ‖𝜒‖(⁄ , where 𝜒 is the actual contrast profile and 𝜒� 
the estimated one.  

In fig. 2(c), the support indicator obtained in the 
Initialization step is shown. As it can be seen, the LSM is able 
to fairly identify the support of the target, thus allowing the 
selection of the pivot points and the design of the initial set of 
VE (k=1). As expected, the linear approximation fails. The 
corresponding TSVD reconstruction in shown in figs. 2(e)-(f). 
Nevertheless, this partial reconstruction is assumed as the new 
reference scenario and the pertaining forward scattering 
problem is solved. Then, the VE are updated on the basis of a 
new indicator, shown in fig 2(d), which allows to identify the 
support of the (geometrical and physical) variation ∆𝜒-.  

 
 

Fig. 1 The iterative scheme of DIVE method. 
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By iterating the design of VE, the proposed method in 
conjunction with TSVD is able to correct progressively the first 
reconstruction 𝜒- and finally obtain a satisfactory and 
quantitative reconstruction (err=18%) after a number of 
iterations equal to 7 (see figs 2(g)-(h)). Note that during the 
iterative procedure NT is set equal to 
[53,76,91,118,126,69,108,88], respectively. 

For the sake of comparison, the same analysis has been 
performed by using the DBIM equipped with the same TSVD 
regularization (see fig. 2(i)-(l)). In this case, the iterative 
scheme diverges, with a reconstruction error of 199%. Since 
the Picard’s plot cannot be safely exploited, because of the 
large model error associated to the DBA, some trial and error 
has been used to set the truncation index NT, which has been 
finally set to the values where the singular values become 15 
dB smaller than the first one. 

The same analysis has been performed by using the CS 
approach to carry out the inversion at each iteration of DIVE. 
As it can be seen from figs. 2(m)-(p), the joint use of DIVE 
and CS provides a nearly optimal reconstruction, with a final 
reconstruction error as low as 3%. In this case, we have 
considered 𝛿{ = 0.75 for the Initialization step and 𝛿{ = 0.55 
for the following iterations. Notably, the DBIM still diverges, 
even in conjunction with CS (err=120%). 

For more details on the number of iterations, err and RRE 
relative to each method are reported in Table 1. 
 

 err (k=0) err RRE # iterations 
DBIM-TSVD 1.00 1.99 0.194 3 
DIVE-TSVD 0.89 0.18 0.005 7 
DIVE-CS 0.76 0.03 0.003 7 

 
Table 1. The kite target: details of the inversion procedure for different 

exploited approaches. 
 

B. Experimental data: Fresnel database 
In this subsection we have considered three targets from the 

Fresnel database: 
- TwinDielTM, which consists of two identical dielectric 

cylinders of radius 1.5 cm and relative permittivity 3 ± 
0.3 [31]; 

- FoamDielIntTM, which is a piecewise inhomogeneous 
dielectric target made by two nested, non concentric, 
circular cylinders, where the inner one has a higher 
contrast (ε = 3 ± 0.3) than the outer one (ε = 1.45) [32]; 

- FoamTwinDielIntTM, in which another circular 
cylinder (ε = 3 ± 0.3) is placed in contact with the 
FoamDielIntTM target [32]. 

The complete description of the targets and the 
measurement set-up can be found in [31, 32]. Note the 
experiments have been carried out under a partially aspect 
limited configuration, where primary sources completely 
surround the targets, but, for each illumination, the 
measurements are taken only on an angular sector of 240°, that 
is, excluding a 120° sector centered on the incidence direction. 
In each example, the incident field has been estimated 
according to the calibration procedure in [16].  

It is worth noting that all the reconstructions have been 
obtained using single frequency data. Besides being different 
from what is usually done in the literature (see for instance 

[8,33,34]), it is important to remark that the chosen frequency 
is such that the targets cannot be assumed to be “weak”. In 
addition, no a priori information on the admissible values of 
permittivity and conductivity is enforced through 
regularization. Finally, to appraise the robustness of DIVE, we 
have also carried out an analysis when decreasing the number 
of data exploited in the quantitative inversion procedure. In 
particular, the reduction affects both the number of 
transmitting and receiving antennas, and the dimension of the 
processed data matrix is referred to as Z in Tables 2, 3 and 4. 

For the TwinDielTM target, the working frequency is 6 GHz 
and the investigated area is 0.15x0.15 m2. The results reported 
in fig. 3 have been achieved with M×N = 72 × 36. The 
outcome of the DIVE-TSVD approach is shown in figs. 3(b)-
(c). As it can be seen, the method is able to retrieve the two 
cylinders. Nevertheless, the reconstruction with DIVE-CS (see 
figs. 3(d)-(e)) exhibits remarkable improvements, both in 
terms of electromagnetic properties and scatterers’ shapes. 
Even when reducing experiments and data, using a 36 × 18 
multiview-multistatic data matrix, the results are fully 
satisfactory, see figs. 3(f)-(g). For more details on the number 
of iterations and RRE relative to each method see Table 2. 

For the FoamTwinDielIntTM target, the results are reported 
in fig. 4 and Table 3, repsectively. The working frequency is 4 
GHz and the side of the investigated area is 0.175x0.175 m2. 
Two size of the exploited multiview-multistatic data matrices 
are 45 × 18 and 23 × 18 respectively. Again, DIVE-CS gives 
back a more accurate reconstruction both in term of shape and 
electromagneties properties of the target (figs. 4(d)-(e),(f)-(g)) 
with respect to DIVE-TSVD (figs.4(b)-(c)).  

Finally, for the FoamDielIntTM target, we have considered 
the data at 4 GHz and investigated a 0.125x0.125 m2 domain. 
The results are reported in fig. 5 and have been achieved with 
23 × 18 and 9 × 9 multiview-multistatic data matrices. 
DIVE-TSVD results are shown in figs. 5(b)-(c), while DIVE-
CS ones in figs. 5(d)-(e),(f)-(g). As it can be seen, even in this 
case the improvements provided by the CS tool are obvious, as 
indeed DIVE-S is able to provide a nearly optimal 
reconstruction of the nominal electromagnetic properties of 
both the two nested cylinders. More details on the number of 
iterations, and the final value of RRE, are given in Table 4. 

Note that in processing these data, we have used 𝛿{ = 0.40 
where a larger number of data is used and, so, a higher level of 
accuracy can be required, and 𝛿{ = 0.55 in case of a reduced 
number of data. Finally, for the initial estimate of 𝜒- a value 
𝛿{ = 0.75 has been used.  

In all cases, the iterative procedure stops because of the 
fulfillment of the convergence criterion in terms of RRE. For 
the sake of brevity, the unsuccessful inversions obtained with 
DBIM in the same conditions have not been reported. 
 

 RRE # iterations 
DIVE-TSVD, Z=72x36 0.06753 12 
DIVE-CS, Z=72x36 
DIVE-CS, Z=36x18 

0.06826 
0.05374 

5 
7 

 
Table 2. The Fresnel TwinDielTM: details of the inversion procedure. 

 
 
 

 RRE # iterations 
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DIVE-TSVD, Z=45x18 0.01669 17 
DIVE-CS, Z=45x18 0.01419 7 
DIVE-CS, Z=23x18 0.09123 6 

 
Table 3. The Fresnel FoamTwinDielIntTM: details of the inversion procedure. 

 
 

 RRE # iterations 

DIVE-TSVD, Z=23x18 0.0182 10 
DIVE-CS, Z=23x18 0.0188 5 
DIVE-CS, Z=9x9 0.0354 6 

 
Table 4. The Fresnel FoamDielIntTM: details of the inversion procedure. 

 
 

 
 

  

 

  
                             (a)                                                      (b)                                                      (c)                                                      (d) 

    
                             (e)                                                      (f)                                                       (g)                                                      (h) 

    
                             (i)                                                       (j)                                                       (k)                                                       (l) 

    
                            (m)                                                      (n)                                                      (o)                                                      (p) 

  
Fig. 2. The kite target: (a) real part and (b) imaginary part of the reference profile. Distorted LSM indicator (c) in the Initialization step and (d) for k = 1. 
Real part and imaginary part of the retrieved contrast function with DIVE-TSVD: (e)-(f) starting guess and (g)-(h) at final reconstruction. (i)-(l) and (m)-(p) 
are the same of (e)-(h) in the case of DBIM-TSVD and DIVE-CS, respectively. 
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                                                         (a)                                                                                    (b)                                                     (c) 
   

 
                            (d)                                                      (e)                                                     (f)                                                       (g) 

 
Fig. 3. The Fresnel TwinDielTM target at 6 GHz: (a) Reference profile. Real part and imaginary part of the retrieved contrast function with DIVE-TSVD 
(b)-(c) (during the iterative procedure NT = [140, 117, 90, 148, 106, 91, 126, 115, 154, 122, 131, 142]). (d)-(e) are the same of (b)-(c) in the case of 
DIVE-CS. (f)-(g) are the same of (d)-(e) for reduced number of processed data. 

 
 

                                                                               
                                                          (a)                                                                                  (b)                                                     (c) 
 

 
                            (d)                                                      (e)                                                     (f)                                                      (g) 

 
Fig. 4. The Fresnel FoamTwinDielIntTM target at 4 GHz: (a) Reference profile. Real part and imaginary part of the retrieved contrast function with 
DIVE-TSVD (b)-(c) (during the iterative procedure NT = [86, 86, 73, 96, 72, 50, 74, 34, 67, 68, 83, 69, 48]). (d)-(e) are the same of (b)-(c) in the case of 
DIVE-CS. (f)-(g) are the same of (b)-(c) for reduced number of processed data. 
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VI. CONCLUSIONS 
In this paper, a novel iterative approach for quantitative 

inverse scattering is introduced, described and assessed.  
The proposed DIVE procedure consists in successive 

linearizations based on the virtual scattering experiments 
framework. In particular, at each iteration, on the basis of 
intermediate results, the relevant Green's function is updated, 
and the VE are re-designed to achieve convenient 
linearizations of the relationship between the (rearranged) data 
and the unknown dielectric and conductivity properties. This 
relationship is then used to refine at each step the contrast 
profile by solving the underlying ill-posed problem via CS or 
TSVD based inversions.  

The DIVE-CS scheme allows to obtain nearly optimal 
reconstructions of extended but piecewise constant targets, 
which can be considered to be sparse when represented in 
terms of step functions. At each step, it involves the solution 
of a constrained optimization problem, which relies on an 
iterative procedure, so it is less computationally efficient with 
respect to DIVE-TSVD. On the other side, considerable 
advantages are gained in terms of the achieved spatial 
resolution, also due to the capability of enforcing at each step 
sparsity on the whole contrast profile. Moreover, a significant 
reduction of the number of antennas (and hence of the 
measurement apparatus complexity and the computational 
time) can be gained. In fact, one is able to achieve very 
accurate results also under aspect limited configurations and 
considering a reduced number of sensors with respect to all 
the existing literature. 

Another interesting feature of DIVE, besides its much larger 
applicability as compared to the usual DBIM, is the fact that 
iterative linearizations allow to take profit in a simple way 
from the VE and CS paradigms, which is instead not the case 

when using non-linear inversion schemes, such as modified 
gradient [35] or contrast source inversion [36] approaches. 

Results obtained by processing Fresnel experimental data 
have shown that DIVE, either using TSVD or CS, is actually 
capable of successfully imaging targets with just 
monochromatic data and without enforcing any kind of priori 
information on the admissible values of contrast profile. This 
is very relevant in all those cases (such as biomedical or 
subsurface imaging) where media are dispersive. 
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