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Simple Summary: Liothrips oleae (Costa, 1857) (Thysanoptera: Phlaeothripidae) is widespread in
the Mediterranean area, and in all regions, it is reputed to be a secondary pest in olive crops,
mainly associated with damage to leaves and secondarily with damage to drupes, for which this
thrips pest has a marginal impact on olive production. Taking into account the increase in the
frequency of extreme damage by this species in Southern Italy in the last decade, this research aimed
to elucidate the real impact (i.e., damage to leaves and drupes) by feeding thrips’ activity in olive
orchards. Our results revealed that the impact of thrips was significant in all monitored olive orchards
and the estimated damage level on drupes and leaves was higher in organic olive than in integrated
olive management. A detailed morphological description of the Italian specimens and their molecular
characterization are also provided.

Abstract: This study investigated a resurgence of Liothrips oleae Costa (Thysanoptera: Phlaeothripidae),
an insect pest of olive crops, in a focal Southern Italian olive-producing area (Calabria Region).
The young and adult olive thrips feed on the leaves and fruits of wild and cultivated olive trees,
producing distortions, necrosis, and premature dropping of fruit. In our study, organic and integrated
olive groves were compared for two years in order to establish the relationship between leaf and fruit
damage among olive groves managed under different phytosanitary conditions. Sampling techniques
were used in order to collect and count leaves and fruits (on plants and dropped premature drupes)
presenting symptoms of thrips’ feeding activity. The impact of the thrips was significant in all orchards,
and the estimated damage level on drupes and leaves was higher in organic olive management in
each year. A morphological description of the adult females of the species is provided, and the
first molecular characterization of the Calabrian olive thrips population was performed by using
three different genetic regions (cytochrome c oxidase subunit I (COI), 28S ribosomal subunit (28S),
and internal transcribed spacer 2 (ITS2)).

Keywords: Liothrips oleae; Oleae europea; olive pest; phytosanitary management;
molecular characterization

1. Introduction

Liothrips oleae (Costa, 1857) is normally viewed as a secondary pest in many olive-growing
areas [1,2], and it has rarely been considered harmful to the vegetative (leaves and shoots) and
reproductive structures (drupes) of plants. The geographical distribution of the species comprises the
countries of the Mediterranean region, including those of both the European coast and the Northern
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African side, where olive cultivation is largely developed and plant species of the genus Olea are native.
Moreover, L. oleae has been also recorded in Poland [3] and Yemen [4].

Reports of severe thrips infestations of specialized olive crops in the Calabria Region of Southern
Italy [5], from the late spring to mid-summer of 2017 and in the following years, always in the same
seasonal period, have been recorded. Samples of olive plant parts (sprouts and drupes with evident
symptoms of thrips attacks) as well as specimens (mainly adults) have been sent to the Entomology
Section of the Agriculture Department at the Mediterranean University of Reggio Calabria. This has led
to the identification of the responsible species, Liothrips oleae (Costa, 1857), a phlaeothripid belonging
to the order of Thysanoptera. L. oleae has been found to exclusively affect plants of the Olea genus.
In general, some species of the genus Liothrips have been studied for their potential role in biological
control, for example, Liothrips tractabilis [6], which has been recorded in a control program of invasive
herbs [7], and for the role they play in damaging the vegetative structure and modifying the architecture
of plants [8,9].

Priesner [10] included the species in the genus Liothrips, whereas Uzel [11] and Mound [12]
recognized the synonym of Leurothrips linearis that Bagnall described in 1908 [13] with L. oleae.
The genus Liothrips is among the largest in the Thysanoptera order, including approximately 230
listed species when also considering those from the synonymic genus Rhynchothrips. In this study,
the identification of the genus Liothrips was treated in the sense of Stannard [14] to include a wide range
of dark-bodied species with one sense cone on antennal segment III and three on antennal segment IV,
the pronotum with five pairs of major setae, the prosternal basantra absent, and most of the body setae
long and dark.

The life cycle of the species coincides with the beginning of spring. Usually, in April, after mating,
a large number of males appear, while females lay during May. One female lays approximately
200 eggs, which will hatch after approximately 15 days. The young nymphs live gregariously on
tender shoots and leaves. The appearance of adults occurs after 18–20 days. Generally, the species
has three annual generations. The first adult generation appears early in July, and a second larvae
generation in the middle of the month. Immature stages are scarce from mid-August to the end of
September. Adult females lay their eggs into bark plants or on the underside of leaves near the main
rib. Adults hibernate in the galleries of Scolytids and in other sheltered places on the trees from
November [15–17]. L. oleae has been observed only on Olea spp., although some adults may have been
taken from related plant species inside the olive groves. Symptoms of heavy infestations on olive
drupes and leaves can be seen from the end of spring to the beginning of winter (Figure 1a–c).

Liothrips oleae is amply diffused, and natural antagonists can control its possible infestations [15].
Among its natural enemies, Silvestri [15] reported an unidentified Cecidomyiid, the Eulophid
Tetrastichus gentilei (del Guercio), which sometimes parasitizes up to 75% of the larvae and completes its
life cycle in approximately 20 days, as well as an Anthocorid (Ectemnus reduvinus, H.-S.), including its
nymphs and, to a lesser extent, its adults, which destroy large numbers of thrips [15].

In relation to the new phytoiatric emergency in Southern Italian olive crops, investigations have
been carried out to quantify the possible factors causing this secondary pest to act as a key parasitic insect.
The aim of this study was to determine the damage caused by thrips on different parts of the olive plant
and to assess its damage according to evaluable specific symptoms that characterize the feeding activity
of herbivores. In addition, we used a comparative method to evaluate how phytosanitary management
(organic vs. integrated) could affect damage to olive drupes by Liothrips oleae. In consideration of the
difficulties in recognizing the thrips species in this study, the morphological description of the adult
female specimens collected was based on the main characters, and their molecular characterization
was performed by using three different genetic regions.
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Figure 1. (a) Damage to new shoots; (b) damage to leaves; (c) damage to olive fruits.

2. Materials and Methods

2.1. Study Site

This study involved four olive groves located in the territory of Catanzaro on the Ionian coast,
where Carolea cv. represents the most commonly grown olive variety. The olive groves are located
at altitudes between 131 and 460 m. The direct distance between the olive fields is more than 600 m,
and they are grown with two different phytosanitary management systems (organic and integrated)
(Table 1). The olive groves are cultivated in pot form, and their age varies from 40 to 60 years.
In integrated management, the main insecticide treatments concern attacks of Bactrocera oleae (Diptera,
Tephritidae) and, in some years, a few interventions were carried out against Prays oleae (Lepidoptera:
Praydidae). Phytoiatric interventions in the sampled olive groves (IPM management) include two
insecticide treatments with dimethoate during the production season after July and three phytosanitary
treatments (pyraclostrobin and cupric products) against fungal attacks.

Table 1. Locations and different management systems of olive groves used in the comparison of damage
caused by Liothrips oleae. Organic management (O), integrated management (I).

Sites Location Province Latitude Longitude Management

1 Stalettì Catanzaro 38◦45′45.9” N 16◦31′10.3” E O

2 Stalettì Catanzaro 38◦64′24.4” N 16◦32′7.2” E O

3 Belcastro Catanzaro 38◦59′35.7” N 16◦50′28.9” E I

4 Belcastro Catanzaro 39◦1′30.4” N 16◦48′34.2” E I

The climate at the study site is marked by a rainy season from November to March, followed by a
dry summer and autumn from June to September. For the olive groves investigated in the years of the
experiment, insecticide treatments were limited to two sprayings with dimethoate. For organic olive
groves, no intervention with an eco-sustainable product was adopted.



Insects 2020, 11, 887 4 of 13

2.2. Sampling of Olive Fruits and Olive Shoots

In each olive grove, a field monitoring plan was designed to be carried out weekly. In relation to
the possible herbivore damage to drupes and leaves, in July (2018 and 2019), four plants homogeneous
in age and productivity were selected from each field, with a total of 400 drupes and 100 sprouts of a
minimum of 15 cm in length (100 drupes and 50 shoots per plant) sampled. The samples were collected
from the different sectors of exposure (northeast (NE); southeast (SE); southwest (SW); northwest (NW),
and the middle of the plant). All drupes were examined under a stereoscopic microscope (Olympus
SZX 9), and the leaves with symptoms of thrips feeding were counted. The evaluation of the damage
to the drupes was derived from the number of necrotized stings, considering scale values from
0 to 3 (0 = drupes free of bites from thrips; 1 = drupes with 1–3 bites; 2 = drupes with 4–10 bites;
3 = drupes with over 10 bites; Figure 1c). Moreover, for each drupe, the mean diameter was calculated.
The damage, relating the premature dropping of drupes, caused by thrips feeding was determined one
time in each study year by selecting at random 4 trees from each olive orchard. To assess damage,
we counted the number of prematurely dropped drupes in four iron quadrats (100 cm × 100 cm−1 m2).
Iron quadrats were placed evenly around the base of each randomly selected tree at ≈180 cm from
its base in the four directions of sun exposure (northeast, southeast, southwest, and northwest).
The drupes were harvested from each tree’s quadrants every 3 days for three weeks. A drupe was
determined to have been dropped by L. oleae, rather than simply falling off, if it showed typical
symptoms of infestation (see above).

2.3. Thrips Sample Collection

The vegetable parts of olive trees that had symptoms caused by pest attack were collected.
Then, the samples were sorted on the basis of their morphological characteristics and were inserted
individually into an Eppendorf tube containing 98% alcohol. The samples were then inserted into
plastic clips with descriptions. The location of sampling was marked using a Global Positioning System
(GPS) to obtain coordinates.

2.4. Morphological Identification of the Target Thrips Species

The morphological identification of the species was performed using the keys of identification in
Mound and Kibby [18], Marullo [19], and ThripsID [20].

The slide preparation of adult specimens of both sexes was based on the recorded methods of
Mound and Marullo [21] and Marullo [19]. Voucher specimens were deposited in the Dipartimento di
Agraria, Università degli Studi Mediterranea, Reggio Calabria, Italy.

2.5. Molecular Identification of the Southern Italian L. oleae Adult Specimens

DNA Extraction, Amplification, and Sequencing

Samples of adult specimens of L. oleae (20 for each olive orchard) were collected from olive trees at
monitoring sites and were stored individually in Eppendorf tubes with absolute ethanol at −20 ◦C.
Rather than grinding the specimens, total genomic DNA was extracted using a Chelex–proteinase
K-based nondestructive method [22]. DNA extraction was performed on individual insects, incubated
in 5 µL of proteinase K (20 mg/mL) and 80 µL of 5% Chelex 100 suspension at 55 ◦C for 1 h. Proteinase K
was then inactivated at 100 ◦C for 8 min. The supernatant containing the DNA was removed after
centrifugation and stored at −20 ◦C. Three genes were sequenced: the mitochondrial cytochrome c
oxidase subunit I (COI), and two nuclear ribosomal regions, namely, the expansion segment D2 of the
28S ribosomal subunit (28S-D2), and the internal transcribed spacer 2 (ITS2).

Polymerase chain reaction (PCR) was used to amplify a fragment of the mitochondrial COI
using the primers HCO-2198 forward (5’-TAAACTTCAGGGTGACCAAAAAATCA-3′) and LCO-1490
reverse (5’- GGTCAACAAATCATAAAGATATTGG-3’) [23] and a long fragment of ITS2 and 28S-D2
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ribosomal DNA using universal primers ITS2 forward (5’- TGTCAACTGCAGGACACATG -3’) and
D2R reverse (5’- TTGGTCCGTGTTTCAAGACGGG -3’) [24].

For COI (~700 bp), ITS2, and 28S-D2 (~1200 bp) fragments, PCR amplification was performed on a
Mastercycler® Nexus X2 Series thermocycler using 20 µL reaction volumes, consisting of 1×Promega
PCR buffer (containing MgCl2), 0.2 mM of each dNTP, 0.25 µM of each primer, 10 mg/mL bovine
serum albumin, 1.5 units GoTaq G2 DNA polymerase (Promega Italia, Milan, Italy), and 2 µL of
DNA template. The thermocycler conditions were as follows: Initial denaturation at 95 ◦C for 1 min,
followed by 40 cycles at 94 ◦C for 30 s, 48 ◦C for 90 s, 72 ◦C for 1 min, and a final extension at 72 ◦C
for 7 min. The thermocycler conditions for ITS2-28S-D2 were as follows: initial denaturation at 93 ◦C
for 5 min, followed by 34 cycles at 93 ◦C for 15 s, 48 ◦C for 45 s, 72 ◦C for 45 s, and a final extension
at 72 ◦C for 7 min. The concentration of the DNA samples was determined by Nanodrop analysis
(qualitative and quantitative), and the PCR products were checked on a 1.2% agarose gel stained
with GelRED® (Biotium, Fremont, CA, USA), visualized and photographed under UV light. All PCR
products produced a single band and were cleaned using the ExoSAP protocol. To confirm the identity
of L. oleae, Sanger sequencing was performed in both directions through the same primer pairs used
for the amplification reactions.

All sequences were aligned via manual trimming in BioEdit version 7.2.5 [25] and were virtually
translated into the corresponding amino acid chain to detect frame-shift mutations and stop codons
using EMBOSS Transeq [26]. Edited sequences were checked against the GenBank database and
BOLD using “BLASTn” [27]. However, no gene sequence for L. oleae appeared in the research records
(accessed on 30 March 2020). All sequences obtained in this study were submitted to the GenBank
database under the accession numbers reported in Table 2. To demonstrate the COI genetic differences
between Liothrips oleae and other Liothrips species (available in genetic database), a phylogenetic
tree was developed. Using Partition Finder version 2.1.1 [28], the best-fitted model was identified,
and then cluster analysis was carried out using the maximum likelihood (ML) method [29] via MEGA
version 7 [30]. Bootstrap analysis was performed based on 1000 resampling. The COI sequence of
Gynaikothrips ficorum (KX687006) was used as an outgroup (Figure 3).

Table 2. Information about Liothrips oleae and the accession numbers related to the gene sequences of
the samples analyzed.

Thrips
Population

Code

Date of
Record Host Plant Location Coordinates Gene

Sequences
Accession
Number

1LO4 17/05/2018 Olea europea
Carolea cv.

Stalettì
(CZ)

38◦45′45.9” N
16◦31′10.3” E

COI MT466525

ITS2 MT559509

28S MT498786

MLO9 08/06/2018 Olea europea
Carolea cv.

Belcastro
(CZ)

38◦59′35.7” N
16◦50′28.9” E

COI MT466530

ITS2 MT559514

28S MT498796

2.6. Statistical Analysis

Data on the damage levels of the drupes and leaves were tested for normality using
Kolmogorov–Smirnov (K-S) tests (p = 0.05). We used a generalized linear model to assess the
damage to drupes and leaves on the plants. The multinomial model (link function: cumulative logit)
with damage level intervals of 0–3 was used to compare differences in damage to the drupes in each
year. The categorical variables of phytosanitary management and the compass direction of the drupes
(n = 5; NE, SE, SW, NW, and the center of the plant) were included. The mean diameter of the drupes
was added as a continuous variable. For symptomatic leaves, a normal model was used with the
total number of leaves used as a scaled weight variable. Finally, comparisons of the damage level of
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the drupes and the mean number of leaves with symptoms at each sector of exposure were made by
calculating partial correlation coefficients, with the total number of leaves held constant. A generalized
linear model for counting the data to compare differences in the premature drop of drupes from canopy
plants was used.

We used SPSS version 23 [31] for all data analyses and Sigmaplot 13.0 [32] (2018, Systat Software,
San Jose, CA, USA) to produce graphs. All data are expressed as untransformed mean
values ± standard error (SE).

3. Results

3.1. Morphological Description of the Southern Italian L. oleae Specimens

The morphological identification of the adult specimens of both sexes taken from the monitored
olive trees revealed that they all belonged to the thrips species Liothrips oleae (Costa), commonly known
as “olive thrips.” It belongs to the sub-order Tubulifera and to the family Phlaeothripidae, and is
widespread and common on olive trees.

Female macropterous (Figure 2): dark brown body, including legs, antennal segments III–VI
and basal half of VII yellow, forewings pale but slightly darker distally, major head and pronotum
setae dark brown, tergite X setae pale brown. Antennae eight-segmented, segment III with one
sense cone, segment IV with three sense cones, all of them being emerged and simple sensoria.
Head longer than it is wide, without a pair of stout setae at the basal third of cheeks; maxillary stylets
retracted to postocular setae, without a bridge. Postocular setae shorter than the distance of the setal
base from the eye, each with a capitate or broadly expanded apex. Pronotum, faintly sculpturated,
with five pairs of stout elongated major setae, the posteriors longer than the anteriors; basantra absent.
Metanotum with closely spaced longitudinal and anastomosing reticulations. Forewings parallel-sided
margins, with more than 20 pairs of duplicated cilia and three stout sub-basal setae. Tergite I with a
triangular-shaped pelta, tergites II–VII with two pairs of curved wing-retaining setae each, tergite IX
setae capitate, tergite X complete and as long as the width of the head.

Figure 2. Liothrips oleae. Slide-mounted adult female.
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Male macropterous: similar to the female; short and thickened setae B2 of tergite IX; sternite VIII
without a glandular area; aedeagus with a pair of sclerotized ridges at the apex (similar to hooks when
viewed in profile).

3.2. Larvae

Larval instars I and II are whitish with red eyes. The dark antennae and legs, the head, and the
last abdominal segments have a dark plaque on the sides. The prepupa is orange in color, and all of the
dark areas in the body are paler at this stage. The antennae are very short. Two orange nymphal stages
follow: their antennae are turned backward along the cheeks and the wing sketches are well evident.

3.3. Molecular Analysis

3.3.1. Amplification and Alignment of the COI, ITS2, and 28S Genes

The polymerase chain reaction of mt-COI produced fragments of ±620 bp, and, after trimming,
the final alignment consisted of 482 bp. The nucleotide composition of these sequences was
T(U) = 29.9%, A = 44.6%, C = 13.6%, and G = 11.9%. The average A + T content was high (74.50%),
which is in agreement with values for insects in general [23,33]. The nucleotide compositions of two
nuclear ribosomal regions sequences were T(U) = 18.4%, A = 19.9%, C = 34.2%, and G = 29.1% for 28S
fragments and T(U) = 19.4%, A = 23.1%, C = 27%, and G = 30.6% for ITS2 fragments.

There were no molecular differences among the COI sequences obtained from all thrips samples
analyzed. Similar results are evident in the sequences of both regions of rRNA. Alignment of sequences,
through the use of BioEdit software, showed no existence of haplotypes in the olive thrips populations
analyzed in the present study. In particular, the PCR produced fragments of ±675 bp for the highly
conserved 28S genetic region and a ±627 bp aligned matrix of ITS2 sequences.

A maximum likelihood phylogenetic tree based on the general time-reversible model [34] of
mitochondrial genes (COI) was constructed using MEGA version 7 software, using the general time
reversible (GTR) G + I (gamma + invariant) model, suggested by Partition Finder version 2.1.1 (Figure 3).

Figure 3. Bootstrap consensus tree generated using the maximum likelihood (ML) method and general
time reversible (GTR) G + I (gamma + invariant) model showing the genetic differences and relationship
between Liothrips oleae obtained by mt-COI sequences and all other Liothrips species available in
GenBank. Gynaikothrips ficorum was used as an outgroup. Species name and GenBank accession
number are shown in the figure.
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3.3.2. Damage Levels of the Drupes and Leaves

The generalized linear model analysis showed that the attack level was related to different
variables; among these, phytosanitary management had an effect on the level of attack on the drupes
and on the symptomatic leaves (Table 3). The organic drupes were more damaged by the thrips
in all years studied (Figure 4). Moreover, the damage to the leaves was also higher with organic
management (Table 3 and Figure 5). The average drupe diameter had an effect on the attack level
of drupes, and, inversely, the exposure sector did not affect the level of damage to the drupes or the
number of symptomatic leaves (Table 3).

Table 3. Generalized linear model (GLM) evaluating the main effects on the damage level of drupes
(2018: n = 1600; 2019: n = 1600) and symptomatic leaves (Figure 1b,c). Organic management (O),
integrated management (I).

Year Drupes Leaves

Level of Damage to
Drupes df Wald

Chi-Square p Symptomatic
Leaves df Wald

Chi-Square p

2018

Management (O, I) 1 83.09 <0.001 Intercept 1 1879.67 <0.001

Sectors of exposure 4 8,88 0.064 Management
(O, I) 1 173.45 <0.001

Average diameter
drupe 1 144.64 <0.001 Sectors of

exposure 4 9.25 0.055

2019

Management (O, I) 1 356.65 <0.001 Intercept 1 2056.03 <0.001

Sectors of exposure 4 3.88 0.422 Management
(O, I) 1 11.26 0.002

Average diameter
drupe 1 113.22 <0.001 Sectors of

exposure 4 16.85 0.001

For the damage level, the likelihood ratio Chi-square was 427.37 (df = 6; p < 0.001) and 452.07 (df = 6; p < 0.001) for
2018 and 2019, respectively. For symptomatic leaves, the likelihood ratio Chi-square was 162.90 (df = 5; p < 0.001)
and 27.94 (df = 5; p < 0.001) for 2018 and 2019, respectively. Sectors of exposure: northeast (NE), southeast (SE),
southwest (SW), northwest (NW), and the middle of the plant.

Drupe size was negatively related to the attack level (2018: coefficient B = −3.295 (0.274),
Wald Chi-square = 144.64, p < 0.001; 2019: coefficient B = −2.835 (0.266), Wald Chi-square = 113.22,
p < 0.001, n = 1600). The average diameter of the drupes was lower in the organic management system
of the olive grove in 2018 (organic drupe mean diameter = 1.509 (0.007) cm, n = 800; integrated mean
diameter = 1.708 (0.006) cm, n = 800), while in 2019, the average diameter was similar (organic mean
diameter = 1.614 (0.007) cm, n = 800; integrated drupe mean diameter = 1.545 (0.005) cm, n = 800).
The comparison between the level of damage and symptomatic leaves produced a positive value (2018:
r = 0.317; p < 0.001, df = 1597; 2019: r = 0.42; p < 0.001, n = 1597). There was significant variation in
the premature drupes that dropped from the canopy according to different types of phytosanitary
management and secondarily, with respect to direction of sun exposure (Table 4). The mean number
of drupes that prematurely dropped on the soil due to thrips activity varied between the two types
of orchard management and was significantly higher in the biologically managed orchard (mean:
O = 12.38 ± 0.75 vs. I = 7.016 ± 0.39) and less in the NE sector of exposure (mean SE = 9.958 ± 0.653 >

mean NE = 8.062 ± 0.957).
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Figure 4. Proportion of drupes damaged by Liothrips oleae at different levels of damage with different
types of phytosanitary management (see Figure 1c). Damage to drupes was evaluated using a scale of
0 to 3 according to the number of necrotized stings (see Material and Methods).

Figure 5. Proportion of leaves with symptoms of Liothrips oleae attack (see Figure 1b) with different
types of phytosanitary management.
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Table 4. Generalized linear model (GLM) evaluating the effects of different variables on the dropped
drupes (2018–2019: n = 192).

Source df Wald Chi-Square p

Intercept 1 8288.32 <0.001

Year 1 0.88 0.065

Sectors of exposure 3 10.730 0.013

Management (O, I) 1 135.55 <0.001

Sectors of exposure (n = 4): NE, SE, SW, and NW.

4. Discussion and Conclusions

The unexpected heavy infestations and the serious damage (necrosis and desiccation of sprouts
and dropping of drupes) recorded in recent years have prompted researchers of thrips linked to
Mediterranean agro-ecosystems to undertake monitoring activities of olive groves in order to evaluate
the possible predisposing factors to the pest activity of this thrips species.

In olive ecosystems, as in other agrosystems [35,36], disrupting key predators has probably reduced
effective suppression of other pests, as it may lead to secondary outbreaks. This hypothesis, however,
was not confirmed from the data obtained from organic olive groves herein. In fact, the herbivore
was particularly harmful to this type of management system. Some studies have shown that climate
change can be considered the cause of alterations in the dynamics of populations of thrips species and
other insects [37,38]. Ouyang et al. [39] suggested that climate change and agricultural intensification
of the Anthropocene could potentially induce outbreaks of many pest insects by weakening the
density-dependent population regulation. Other factors are to be considered, such as those related to
particular microclimatic variations or sudden hot or cold snaps [40] that have probably affected the
area and that is being analyzed with new research.

The results highlighted that the analyzed herbivore is capable of damaging the drupes and leaves
throughout the crown of the plant, without revealing any preference regarding the exposure of the
foliage (Table 3). It should also be pointed out that the number of drupes that dropped as a result of
thrips’ sucking puncture was greater in organically managed olive groves. In order not to confuse the
attacks on the drupes with those of other carpophages (e.g., B. oleae), a careful observation of drupes
is necessary. However, the results of the prematurely dropped drupes confirmed that strong attacks
on the foliage (leaves and fruits) are closely related to the dropping of drupes. The level of attack on
drupes, and therefore, the number of punctures was negatively related to the average diameter of the
drupes (Table 3 and estimated relative coefficient B). In fact, attacks on the drupes caused an arrest
of their growth, highlighting how the studied herbivore is very harmful to the olive tree. Injury to
various plant tissues by the feeding activity of thrips species on pollen, flowers, fruit, and leaves varies
for different commercial crops, as does the range of damage and differences arising through attacks on
the same plant at different stages of development [41]. The correlation between the levels of damage to
the drupes and symptomatic leaves highlighted that these herbivores attack high-density symptomatic
leaves and drupes with no preference.

In order to contribute to the correct identification of the species and to provide data that may
constitute useful knowledge in the implementation of intervention protocols, the following contributions
were made: The description of the species based on the morphological characteristics of the adults,
their economic importance, the variation in their essential biology, and their relationships with
olive-growing management. Olive crop production is hampered by pests that reduce the production
and quality of olive oil [42], and this thrips species is re-emerging as a primary pest because its feeding
on the drupes determines the suberification of the mesocarp, making the fruit unsuitable for olive
milling and pickled olives. Although pest organism management information is available from different
sources, their identification as L. oleae is difficult and often requires consultation with a specialist.
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DNA sequences generated by PCR have the potential to be extremely useful tools in the identification of
pest species. The molecular characterization of L. oleae on three distinct genetic regions (i.e., COI, ITS2,
and 28S) was provided to support morphological identification. The sequencing of the PCR products
showed no molecular differences among the olive thrips populations collected in the investigated
areas. As investigated for other Phaleothripidae species, a short geographical distance would not
be a determinant factor in the structure and genetic diversity of populations [43]. No molecular
data on L. oleae were available in genetic databases before this study, which coupled morphological
identifications with subsequent barcode analysis. The maximum likelihood phylogenetic tree based on
mitochondrial gene revealed that L. oleae is well separated from all other Liothrips species (Figure 3).
As recently described, Marullo et al. [44] also successfully distinguished some thrips species of the
same genera based on mt-COI gene sequences. Furthermore, COI gene sequencing possibly identifies
unknown specimens by comparing their COI sequence, and it has been used for identification purposes
in projects known as species barcoding. Furthermore, as described by Inoue and Sakurai [45] and
Buckman et al. [46], the amplification of mitochondrial and nuclear gene fragments (ITS2 and 28S)
may prove useful in studies on the intra- and interspecific genetic variability of a species and its
evolutionary relationships and phylogeny. Basically, biodiversity and polymorphism can be seen from
DNA sequences of certain fragments of an organism genome [47].

No evidence relating to the containment of this pest was found in these two years of investigation.
Further studies will aim to identify the causes of this resurgence of the pest and the containment factors
of the species.
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