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Abstract. Certain twisted product CR-submanifolds in a Kähler manifold and some inequalities of the
second fundamental form of these submanifolds are presented ([14]). Then the length of the second
fundamental form of a twisted product CR-submanifold in a locally conformal Kähler manifold is considered
(2013), ([15]).

In this paper, we consider the relation of the mean curvature and the length of the second fundamental
form in two twisted product CR-submanifolds in a locally conformal Kähler space forms.

Introduction

The study of twisted product submanifolds was initiated in 2000 by B. Y. Chen, ([10]). Twisted products
M1× f M2 are natural generalizations of warped products, namely, the function may depend on both factors,
when f depends only on M1 the twisted product becomes a warped product, ([7]). For a survey on geometry
of warped product submanifolds in various ambient manifolds see [11]. During the last few years a broad
scientific production has appeared on warped product submanifolds and in [11]. B. Y Chen has divided
more than 100 published papers into 16 categories of warped product submanifolds. The length of the
second fundamental form and the mean curvature in certain submanifolds of a Riemannian manifold are
both interesting and important features in submanifold theory. In this paper, we consider these problems
in twisted CR-submanifolds in locally conformal Kähler space forms.

In §1, we recall a twisted product manifold and give the Riemannian curvature tensor, the Ricci tensor
and the scalar curvature. In §2 and §3, we consider a locally conformal Kähler manifold with a constant
holomorphic sectional curvature (an l.c.K.-space forms) and its CR-submanifolds. In §4, we define two
kinds of twisted product CR-submanifolds in a locally conformal Kähler manifold and give some essential
properties of these submanifolds. In §5, we consider the length of the second fundamental form and the
mean curvature of the above submanifolds in an l.c.K.-space forms (See Theorems 5.1, 5.2 and 5.3).
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1. Twisted Product manifolds

Let (M1, 11) and (M2, 12) be Riemannian manifolds and M be a (topological) product manifold of M1 and
M2. We define a Riemannian metric 1 of M as

1(U,V) = e f 2
11(π1∗U, π1∗V) + 12(π2∗U, π2∗V) (1)

for any U,V ∈ TM, where, f denotes a positive differentiable function on M, TM the tangent bundle of M,
π1 (resp. π2) a projection operator of M to M1 (resp. M2) and π1∗ (resp. π2∗) the differential of π1 (resp. π2).
Then, the manifold M is called a twisted product manifold with an associated function or a warping function f ,
and we write it M = M1 × f M2 ([10]). In particular, if the associated function f is in M2, then the manifold
M is a warped product ([16]).
Let M = M1 × f M2 be a twisted product manifold with the associated function f and let dim M1 = n1,
dim M2 = n2 and dim M = n = n1 + n2. Moreover, let (x1, x2, ..., xn1 ), (xn1+1, ..., xn1+n2 ) be local coordinate
systems of M1 and M2, respectively. Then (x1, x2, ..., xn) is a local coordinate system of M.

Using the above local coordinate systems, we can write

(1µλ) =

(
1 ji 0

0 1ba

)
=

(
e f 2
11 ji 0

0 12ba

)
, (2)

where the indices ( j, i, ..., h), (d, c, ..., a) and (ν, µ, ..., λ) vary in the ranges (1, 2, ...,n1), (n1+1,n1+2, ...,n1+n2)
and (1, 2, ...,n1 + n2 = n), respectively.

Then, by the straightforward calculation, the covariant differentiation ∇VU with respect to 1 is given by
∇YX = ∇1YX + f 2

{(Y log f )X + (X log f )Y}
− f 2
{41 log f + e f 2

42 log f }11(Y,X),
∇XZ = ∇ZX = f 2(Z log f )X, ∇ZW = ∇2ZW

(3)

for any Y,X ∈ TM1 and Z,W ∈ TM2, where ∇1 (resp. ∇2) denotes the covariant differentiation with respect
to 11 (resp. 12) and we put 41 log f = 11

l j∂ j log f∂l (resp. 42 log f = 12
cb∂b log f∂c ).

We have from the above equation, the Riemannian curvature tensor Rωνµλ, the Ricci tensor ρµλ and the
scalar curvature τ with respect to 1 are respectively given by

Rkji
h = R1

kji
h + (2 − f 2) f 2[(∂i log f ){(∂k log f )δ j

h
− (∂ j log f )δk

h
}

−(∂1
h log f ){(∂k log f )11 ji − (∂ j log f )11ki}]

+ f 2
{(∇1k∂i log f )δ j

h
− (∇1 j∂i log f )δk

h

−(∇1k∂1
h log f )11 ji + (∇1 j∂1

h log f )11ki} + f 4(‖∇1 log f ‖2

+e f 2
‖∇2 log f ‖2)(11 jiδk

h
− 11kiδ j

h),
Rkji

a = f 2e f 2
[2(∂2

a log f ){(∂ j log f )11ki − (∂k log f )11 ji}

+(∂ j∂2
a log f )11ki − (∂k∂2

a log f )11 ji],
Rkjb

h = 2 f 2(∂b log f ){(∂k log f )δ j
h
− (∂ j log f )δk

h
}

+ f 2
{(∂k∂b log f )δ j

h
− (∂ j∂b log f )δk

h
},

Rkbi
h = − f 2(∂b log f ){(∂i log f )δk

h
− (∂1

h log f )11ki}

− f 2
{(∂k∂b log f )δi

h
− (∂b∂1

h log f )11ki},

Rkbi
a = f 2e f 2

{(2 + f 2)(∂b log f )(∂2
a log f ) + (∇2b∂2

a log f )}11ki,

Rkba
h = − f 2

{(2 + f 2)(∂b log f )(∂a log f ) + ∇2b∂a log f }δk
h,

Rkjb
a = 0, Rkcb

a = 0, Rdcb
h = 0, Rdcb

a = R2
dcb

a,

(4)
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ρ ji = ρ1
ji − (n1 − 2) f 2

{(2 − f 2)(∂ j log f )(∂i log f ) − ∇1 j∂i log f }
− f 2
{(2 − 2 f 2 + n1 f 2)‖∇1 log f ‖2 + ∇1l∂1

l log f
+(2 + n1 f 2)e f 2

‖∇2 log f ‖2 + e f 2
(∇2e∂2

e log f }11 ji,

ρ ja = −(n1 − 1) f 2
{2(∂ j log f )(∂a log f ) + ∂ j∂a log f },

ρba = ρ2
ba − n1 f 2

{(2 + f 2)(∂b log f )(∂a log f ) + ∇2b∂a log f },

(5)

and

τ = e− f 2
τ1 + τ2

− (n1 − 1) f 2e− f 2
{(4 − 2 f 2 + n1 f 2)‖∇1 log f ‖2 (6)

+2∇1l∂1
l log f } − n1 f 2

{(4 + f 2 + n1 f 2)‖∇2 log f ‖2 + 2∇2e∂2
e log f },

whereR1
kji

h (resp. R2
dcb

a), ρ1
ji (resp. ρ2

ba) and τ1 (resp. τ2) mean the curvature tensor, the Ricci tensor and
the scalar curvature with respect to 11 (resp. 12).

2. Locally conformal Kaehler manifolds

A Hermitian manifold M̃ with structure (J, 1̃) is called a locally conformal Kaehler (an l.c.K.) manifold if
each point x ∈ M̃ has an open neighbourhood U with a positive differentiable function ρ : U→ R such that
1̃∗ = e−2ρ1̃|U is a Kaehlerian metric on U, that is, ∇∗ J = 0, where J is the almost complex structure, 1̃ is the
Hermitian metric, ∇∗ is the covariant differentiation with respect to 1̃∗ and R is a real number space ([17]).
Then, we know ([12])

Proposition 2.1. A Hermitian manifold M̃ with structure (J, 1̃) is an l.c.K.-manifold if and only if there exists a
global 1-form α which is called Lee form satisfying

dα = 0 (α : closed), (7)

(∇̃V J)U = −1̃(α],U)JV + 1̃(V,U)β] + 1̃(JV,U)α] − 1̃(β],U)V (8)

for any V,U ∈ TM̃, where ∇̃ denotes the covariant differentiation with respect to 1̃, α] is the dual vector field of α, the
1−form β is defined by β(X) = −α(JX), β] is the dual vector field of β and TM̃ indicates the tangent bundle of M̃.

An l.c.K.-manifold M̃(J, 1̃, α) is called an l.c.K.-space form if it has a constant holomorphic sectional curvature.
We know that the Riemannian curvature tensor R̃ with respect to 1̃ of an l.c.K.-space form with the constant
holomorphic sectional curvature c is given by ([12]):

4R̃(X,Y,Z,W) = c{1̃(X,W)1̃(Y,Z) − 1̃(X,Z)1̃(Y,W) + 1̃(JX,W)1̃(JY,Z) (9)

−1̃(JX,Z)1̃(JY,W) − 21̃(JX,Y)1̃(JZ,W)} + 3{P(X,W)1̃(Y,Z)

−P(X,Z)1̃(Y,W) + 1̃(X,W)P(Y,Z) − 1̃(X,Z)P(Y,W)}

−P̃(X,W)1̃(JY,Z) + P̃(X,Z)1̃(JY,W) − 1̃(JX,W)P̃(Y,Z)

+1̃(JX,Z)P̃(Y,W) + 2{P̃(X,Y)1̃(JZ,W) + 1̃(JX,Y)P̃(Z,W)}

for any X,Y,Z,W ∈ TM̃, where P and P̃ are respectively defined by

P(X,Y) = −(∇̃Xα)Y − α(X)α(Y) +
1
2
‖ α ‖2 1̃(X,Y) (10)

and

P̃(X,Y) = P(JX,Y) (11)

for any X,Y ∈ TM̃, where ‖ α ‖ is the length of the Lee form α.

Remark 2.2. To get (9), we have to assume that the symmetric (0,2)-tensor P is hybrid or, equivalently P̃ is skew-
symmetric. This means that the Ricci tensor R̃1 is hybrid ([12]).
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3. CR-submanifolds in an l.c.K.-manifold.

In general, for a Riemannian manifold (M̃, 1̃) and its Riemannian submanifold, we know the Gauss and
Weingarten formulas

∇̃XY = ∇XY + σ(X,Y), (12)

∇̃Xξ = −AξX + ∇⊥Xξ (13)

for any X,Y ∈ TM and ξ ∈ T⊥M, where σ is the second fundamental form and Aξ is the shape operator with
respect to ξ ([7]). The second fundamental form σ and the shape operator A are related by

1̃(AξY,X) = 1̃(σ(Y,X), ξ)

for any Y,X ∈ TM and ξ ∈ T⊥M.
Moreover, we know the Gauss equation is given by

R(X,Y,Z,W) = R̃(X,Y,Z,W) + 1̃(σ(X,W), σ(Y,Z)) (14)

−1̃(σ(X,Z), σ(Y,W)),

for any X,Y,Z,W ∈ TM, where R is the curvature tensor with respect to 1 ([8]).
A submanifold M in an almost Hermitian manifold M̃ is called a CR-submanifold if there exists a

differentiable distributionD : x→Dx ⊂ TxM on M satisfying the following conditions:
(i)D is holomorphic, i.e., JDx = Dx for each x ∈M and
(ii) the complementary orthogonal distributionD⊥ : x→ D⊥x ⊂ TxM is totally real, i.e., JD⊥x ⊂ T⊥x M for

each x ∈M, where TxM (resp. T⊥x M) denotes the tangent (resp. normal) vector space at x of M ([1],[2], [6]).
If dimD⊥x = 0 (resp. dimDx = 0) for each x ∈ M, then the CR-submanifold is holomorphic (resp. totally

real). A CR-submanifold M is said to be anti-holomorphic if JD⊥x = T⊥x M for any x ∈M.
In [13], is proved the following

Proposition 3.1. In a CR-submanifold M in an l.c.K.-manifold M̃, we have
(i) the distributionD⊥ is integrable,
(ii) the distributionD is integrable if and only if

1̃(σ(X, JY) − σ(Y, JX) + 21̃(JX,Y)α], JZ) = 0 (15)

for any X,Y ∈ D and Z ∈ D⊥.

A CR-submanifold is said to be proper if it is neither holomorphic nor totally real.
A CR-submanifold is said to be mixed geodesic if the second fundamental form σ satisfies σ(D,D⊥) = {0},

and to be D (resp.D⊥)-geodesic if the second fundamental form σ satisfies σ(D,D) = {0} (resp. σ(D⊥,D⊥) =
{0}).

In a CR-submanifold M of an almost Hermitian manifold M̃, we denote by ν the complementary orthog-
onal subbundle of JD⊥ in the normal bundle T⊥M. Then we have the following direct sum decomposition

T⊥M = JD⊥ ⊕ ν, JD⊥⊥ν. (16)

For the next section, we define a twisted submanifold in a Riemannian manifold.

Definition 3.2. Let M̃ be a Riemannian manifold with a metric tensor 1̃. A submanifold M is said to be a twisted
product submanifold of M̃ if it satisfies the following conditions:

(i) M is a Riemannian submanifold of M̃,
(ii) M is a twisted product manifold of two submanifolds M1 and M2 of M̃,
(iii) for a certain Riemannian metric 11 (resp. 12) of M1 (resp. M2),

1(U,V) = e f 2
11(π1∗U, π1∗V) + 12(π2∗U, π2∗V) (17)

is an induced metric of 1̃ for any U,V ∈ TM and a positive differentiable function f on M, where π1 (resp. π2) is the
projection operator of M̃ to M1 (resp. M2), and π1∗ (resp. π2∗) is the differential of π1 (resp. π2).

(iv) the submanifolds M1 and M2 are orthogonal, that is, 1̃(X,Z) = 0 for any X ∈ TM1 and Z ∈ TM2.
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4. Twisted product CR-submanifolds in a locally conformal Kaehler manifold.

In this section, we consider a special twisted product submanifold in an l.c.K.-manifold.

Definition 4.1. A submanifold M in an l.c.K.-manifold M̃ is said to be a first (resp. second ) kind twisted product
CR-submanifold in M̃ if it satisfies

(i) M is a product manifold of a holomorphic submanifold M> and a totally real submanifold M⊥,
(ii) for a certain Riemannian metric tensor 11 (resp. 12) on M> (resp. M⊥) and a positive differentiable function

f on M,

1(V,U) = e f 2
11(π∗V, π∗U) + 12(η∗V, η∗U) (18)

(resp.)

1(V,U) = 11(π∗V, π∗U) + e f 2
12(η∗V, η∗U) (19)

is a induced metric of 1̃, that is, 1̃(V,U) = 1(i∗V, i∗U), for any V,U ∈ TM, where π (resp. η) is a projection operator
of M to M> (resp. M⊥) and i is an identity map of M to M̃.

Remark 4.2. We writeD (resp. D⊥) instead of TM> (resp. TM⊥).

Remark 4.3. In our submanifold, since the holomorphic distribution D is integrable, we have to assume that the
second fundamental form σ satisfies (15).

Remark 4.4. Warped product and doubly warped product CR-submanifolds in an l.c.K.-manifold, can be found in
[3], [4] and [5].

In a CR-submanifold M of an l.c.K.-manifold M̃, let dimD = 2p, dimD⊥ = q, dim M = n, dim ν = 2s and
dim M̃ = m.

Now we recall an adapted frame on M̃. We take a following local orthonormal frame on M̃,
(i) {e1, e2, ..., ep, e∗1, e∗2, ..., e∗p} is an orthonormal frame ofD,
(ii) {e2p+1, e2p+2, ..., e2p+q} is an orthonormal frame ofD⊥,
(iii) {en+q+1, en+q+2, ...en+q+s, e∗n+q+1, e∗n+q+2, ..., e∗n+q+s} is an orthonormal frame of ν. We call such a frame

{e1, e2, ..., e∗n+q+s} an adapted frame of M̃.
First of all, we consider the first kind twisted product CR-submanifold M in an l.c.K.-manifold M̃. Then,

by the definition, the induced metric 1 on M is defined by (18).
Then we have
∇YX = ∇1YX + f 2

{(Y log f )X + (X log f )Y}
− f 2
{41 log f + e f 2

42 log f }11(Y,X),
∇XZ = ∇ZX = f 2(Z log f )X, ∇ZW = ∇2ZW

(20)

for any Y,X ∈ D and Z,W ∈ D⊥. Then we easily have, from (8) and (20)

Proposition 4.5. For a proper first kind twisted product CR-submanifold M = M> × f M⊥ in an l.c.K.-manifold M̃,
we have

(1) 1̃(σ(X, JY), JZ) = 1̃(α],Z)1̃(X,Y) − 1̃(α], JZ)1̃(X, JY)
− f 2(Z log f )1̃(X,Y),

(2) 1̃(σ(X,Y), JZ) = 1̃(α], JZ)1̃(X,Y) and 1̃(α],Z) = f 2(Z log f ),
(3) 1̃(σ(JX,Z), JW) = −1̃(α],X)1̃(Z,W)
for any Y,X ∈ D and Z,W ∈ D⊥.

By virtue of (2) in the above proposition, we can easily see
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Proposition 4.6. There does not exist a proper first kind of twisted product CR-submanifold in an l.c.K.-manifold
whose the Lee vector field α] is normal toD⊥.

Next, we consider the second kind twisted product CR-submanifold M = M⊥× f M> in an l.c.K.-manifold
M̃. Then, (19) means

(1µλ) =

(
1ba 0

0 1 ji

)
=

(
e f 2
12ba 0

0 11 ji

)
. (21)

In a similar way to a first kind case, we obtain
∇ZW = ∇2ZW + f 2

{(Z log f )W + (W log f )Z}
− f 212(Z,W){(42 log f ) + e f 2

(41 log f )},
∇ZX = ∇XZ = f 2(X log f )Z, ∇YX = ∇1YX

(22)

for any Y,X ∈ D, Z,W ∈ D⊥.
Using (21) and (22), we obtain

Rkji
h = R1

kji
h, Rdji

h = 0, Rdci
h = 0,

Rbji
a = − f 2

{(2 + f 2)(∂ j log f )(∂i log f ) + (∇1 j∂i log f )}δb
a,

Rcib
h = f 2e f 2

{(2 + f 2)(∂i log f )(∂1
h log f ) + (∇1i∂1

h log f )}12cb,

Rdib
a = − f 2(∂i log f ){(∂b log f )δb

a
− (∂2

a log f )12db}

− f 2
{(∂d∂i log f )δb

a
− ∂i∂2

a)12db},

Rdci
a = 2 f 2(∂i log f ){(∂d log f )δc

a
− ∂c log f )δd

a
}

+ f 2
{(∂d∂i log f )δc

a
− (∂c∂i log f )δD

a
},

Rdcb
h = f 2e f f 2

[2(∂1
h log f ){(∂c log f )12db − (∂d log f )12cb

+(∂c∂1
h)12db − ∂d∂1

h log f )12cb],
Rdcb

a = R2
dcb

a + ((2 − f 2) f 2[(∂b log f ){(∂d log f )δc
a
− (∂c log f )δd

a
}

−(∂2
a log f ){(∂d log f )12cb − ∂c log f )12db}]

+ f 2
{(∇2d∂b log f )δc

a
− (∇2c∂b log f )δd

a
− (∇2d∂2

a log f )12cb

+(∇2c∂2
a log f )12bd} + f 4(‖∇2 log f ‖2

+e f 2
‖∇1 log f ‖2(12cbδd

a
− 12dbδc

a).

(23)



ρ ji = ρ1
ji − n2 f 2

{(2 + f 2)(∂ j log f )(∂i log f ) + ∇1 j∂i log f },
ρ ja = −(n2 − 1){2(∂i log f )(∂a log f ) + ∂a∂ j log f },
ρba = ρ2

ba − (n2 − 2) f 2
{(2 − f 2)(∂b log f )(∂a log f ) − ∇2b∂a log f }

− f 2
{(2 − 2 f 2 + n2 f 2)‖∇2 log f ‖2 + ∇2e∂2

e log f
+(2 + n2 f 2)e f 2

‖∇1 log f ‖2 + e f 2
(∇1l∇1

l log f )}12ba,

(24)

and

τ = e− f 2
τ2 + τ1

− (n2 − 1) f 2e− f 2
{(4 − 2 f 2 + n2 f 2)‖∇2 log f ‖2 (25)

+2∇2e∂2
e log f } − n2 f 2

{(4 + f 2 + n2 f 2)‖∇1 log f ‖2 + 2∇1l∂1
l log f }.

Now, by virtue of (8) and (23), we obtain

Proposition 4.7. For the second kind twisted product CR-submanifold in an l.c.K.-manifold M̃, we have
(1) 1̃(σ(Y, JX), JZ) = 1̃(α],Z)1̃(X,Y) + 1̃(α], JZ)1̃(X, JY),
(2) 1̃(σ(X,Y), JZ) = −1̃(α], JZ)1̃(X,Y) and 1̃(α],Z) = 0,
(3) 1̃(σ(JX,Z), JW) = {−1̃(α],X) + f 2X log f }1̃(Z,W)

for any Y,X ∈ D and Z,W ∈ D⊥.
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5. The length of the second fundamental form and the mean curvature.

In this section, we consider the length of the second fundamental form and the mean curvature of two
kind twisted product CR-submanifolds in an l.c.K.-space form.

Let M̃(c) and {e1, e2, ..., em} be an l.c.K.-space form with the constant holomorphic sectional curvature c
and an adapted frame of M̃(c), respectively.

By virtue of (9), the curvature tensor R̃ωνµλ in M̃(c) is written as

4R̃lk ji = 4R̃l∗k∗ j∗i∗ = c(δliδkj − δl jδki) + 3(δkjPli − δkiPl j

+δliPkj − δl jPki),
4R̃lk ji∗ = 3(δkjPli∗ − δl jPki∗ ) − δkiPl j∗ + δliPkj∗ − 2δ jiPlk∗ ,

4R̃lk j∗i∗ = c(δliδkj − δl jδki) − δkjPli + δkiPl j − δliPkj + δl jPki,

4R̃lk∗ j∗i = c(δliδkj + δl jδki + 2δlkδ ji) + 3(δkjPli + δliPkj)
−δkiPl j − δl jPki − 2(δlkP ji + δ jiPlk),

4R̃lk∗ j∗i∗ = 3(δkjPli∗ − δkiPl j∗ ) − δliPk∗ j + δl jPk∗i + 2δlkP j∗i,

4R̃lk j(2p+a) = 3{δkjPl(2p+a) − δl jPk(2p+a)},

4R̃lk j∗(2p+a) = δl jPk∗(2p+a) − δkjPl∗(2p+a),

4R̃lk∗ j(2p+a) = −3δl jPk∗(2p+a) + δkjPl∗(2p+a) + 2δlkP j∗(2p+a),

4R̃lk∗ j∗(2p+a) = 3δkjPl(2p+a) − δl jPk(2p+a) − 2δlkP j(2p+a),

4R̃l∗k∗ j∗(2p+a) = 3{δkjPl∗(2p+a) − δl jPk∗(2p+a)},

R̃lk(2p+b)(2p+a) = 0, 2R̃lk∗(2p+b)(2p+a) = δlkP(2p+b)∗(2p+a),

R̃l∗k∗(2p+b)(2p+a) = 0,
4R̃l(2p+c)(2p+b)(2p+a) = 3{δcbPl(2p+a) − δcaPl(2p+b)},

4R̃l∗(2p+c)(2p+b)(2p+a) = 3{δcbPl∗(2p+a) − δcaPl∗(2p+b)},

4R̃(2p+d)(2p+c)(2p+b)(2p+a) = c(δdaδcb − δdbδca) + 3{δcbP(2p+d)(2p+a)−

δcaP(2p+d)(2p+b) + δdaP(2p+c)(2p+b) − δdbP(2p+c)(2p+a)},

4R̃ j(2p+b)(2p+a)i = 4R̃ j∗(2p+b)(2p+a)i∗ = cδ jiδba

+3{P jiδba + δ jiP(2p+b)(2p+a)},

4R̃ j(2p+b)(2p+a)i∗ = 3δbaP ji∗ − δ jiP(2p+b)∗(2p+a),

(26)

where the indices k, j, ..., i and c, b, ..., a run over the range 1, 2, ..., p and 1, 2, ..., q, respectively. And we write
R̃(eω, eν, eµ, eλ) = R̃ωνµλ, etc., for any ω, ν, ..., λ ∈ {1, 2, ...,n.}

Now, the mean curvature vector H and the mean curvature ‖H‖ are respectively given by ([8])

H =
1
n

n∑
µ=1

σµµ, ‖H‖2 =
1
n2

n∑
ν,λ=1

1̃(σνν, σλλ). (27)

The length ‖σ‖ of the second fundamental form σ is given by

‖σ‖2 =

n∑
µ,λ=1

1̃(σµλ, σµλ) =

n∑
µ,λ=1

m∑
τ=n+1

1̃(σµλ, eτ)2. (28)

By virtue of (27), (28) and the Gauss equation, we have

4τ = 4
n∑

ν,µ=1

R̃νµµν + 4n2
‖H‖2 − 4‖σ‖2, (29)

where τ is the scalar curvature with respect to the induced metric 1 in M.
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By virtue of (26), we can write

4
n∑

ν,µ=1

R̃νµµν = 8
p∑

j,i=1

(R̃ jii j + R̃ ji∗i∗ j) + 8
p∑

j=1

q∑
a=1

(R̃ j(2p+a)(2p+a) j

+R̃ j∗(2p+a)(2p+a) j∗ ) + 4
q∑

b,a=1

R̃(2p+b)(2p+a)(2p+a)(2p+b).

So, using (26) and the above equation, we get

4
n∑

ω,ν=1

R̃ωννω = c(n2 + 4p − q) + 6(n − 1)
n∑
µ=1

Pµµ − 6
2p∑
j=1

P j j. (30)

Substitution of (30) into (29) gives us

4τ = c(n2 + 4p − q) + 6(n − 1)
n∑
µ=1

Pµµ − 6
2p∑
j=1

P j j (31)

+4n2
‖H‖2 − 4‖σ‖2.

Thus we have

Proposition 5.1. In a CR-submanifold M in an l.c.K.-space form M̃(c), the length of the second fundamental form
‖σ‖ and the mean curvature ‖H‖ respectively satisfy the following inequalities

4‖σ‖2 ≥ c(n2 + 4p − q) + 6(n − 1)
n∑
µ=1

Pµµ − 6
2p∑
j=1

P j j − 4τ, (32)

and

4n2
‖H‖2 ≥ 4τ − c(n2 + 4p − q) − 6(n − 1)

n∑
µ=1

Pµµ + 6
2p∑
j=1

P j j. (33)

In particular, if the above first (resp. second) inequality satisfies equality, then the submanifold is minimal (resp.
totally geodesic).

Now, we assume that our submanifold M is the first kind twisted product CR-submanifold in an l.c.K.-space
form M̃(c). Since we know ([14])

‖σ‖2 = 2{p‖α]
D⊥
‖

2 + q‖α]
D
‖

2
} + 2p

q∑
a=1

{1̃(α], e2p+a) (34)

− f 2(e2p+a log f )}2 +

q∑
c,b,a=1

{1̃(σ(e2p+c, e2p+b), e∗2p+a)}2

+

m∑
r=n+q+1

n∑
µ,λ=1

{1̃(σ(eλ, eµ), er)}2,

the mean curvature ‖H‖ satisfies

4τ = c(n2 + 4p − q) + 6(n − 1)
n∑
µ=1

Pµµ − 6
2p∑
j=1

P j j (35)
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+4n2
‖H‖2 − 4[2{p‖α]

D⊥
‖

2 + q‖α]
D
‖

2
}

+2p
q∑

a=1

{1̃(α], e2p+a) − f 2(e2p+a log f )}2 +

q∑
c,b,a=1

{1̃(σ(e2p+c, e2p+b), e∗2p+a)}2

+

m∑
r=n+q+1

n∑
µ,λ=1

{1̃(σ(eλ, eµ), er)}2],

where ‖α]
D⊥
‖ (resp. ‖α]

D
‖) denotes the length of α] inD⊥ (resp. D)-part. Thus we have

Theorem 5.2. In the first kind twisted product CR-submanifold in the l.c.K.-space form M̃(c), the mean curvature
‖H‖ satisfies the inequality

4n2
‖H‖2 ≥ 4τ − c(n2 + 4p − q) − 6(n − 1)

n∑
µ=1

Pµµ + 6
2p∑
j=1

P j j (36)

+4[2{p‖α]D⊥‖2 + q‖α]D‖2} + 2p{
q∑

a=1

{1̃(α], e2p+a) − f 2(e2p+a log f )}2].

In particular, the equality case is the second fundamental form satisfies σ(TM,TM) ⊂ JD⊥ and σ(D⊥,D⊥) ⊂ ν.
Moreover if the submanifold is anti-holomorphic, then it isD⊥-geodesic.

In our case, by virtue of (6), the scalar curvature τ is written as

τ = e− f 2
τ1 + τ2

− 2(2p − 1) f 2e− f 2
{(2 − f 2 + p f 2)‖∇1 log f ‖2 (37)

+∇1l∂1
l log f } − 2p f 2

{(4 + f 2 + 2p f 2)‖∇2 log f ‖2 + 2∇2e∂2
e log f },

where τ1 (resp. τ2) means the scalar curvature with respect to 11 (resp. 12). Thus, we have from Theorem
5.1,

Theorem 5.3. In the first kind twisted product CR-submanifold in the l.c.K.-space form M̃(c), the mean curvature
‖H‖ satisfies the inequality

n2
‖H‖2 ≥ P + Q, (38)

where we put

P = e− f 2
τ1 + τ2

− 2(2p − 1) f 2e− f 2
∇1l∂1

l log f (39)

−4p f 2
∇2e∂2

e log f −
c(n2 + 4p − q)

4
−

3(n − 1)
2

n∑
µ=1

Pµµ

+
3
2

2p∑
j=1

P j j + 2{p‖α]D⊥‖2 + q‖α]D‖2}

+2p{
q∑

a=1

1̃(α], e2p+a) − f 2(e2p+a log f )}2

and

Q = −2(2p − 1) f 2e− f 2
(2 − f 2 + p f 2)‖∇1 log f )‖2

−2p f 2(4 + f 2 + 2p f 2)‖∇2 log f )‖2.
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As a corollary of Theorem 5.1, we can easily obtain

Corollary 5.4. In the first kind proper twisted product CR-submanifold in the l.c.K.-space form M̃(c), the mean
curvature ‖H‖ satisfies the inequality

4n2
‖H‖2 ≥ 4τ − c(n2 + 4p − q) − 6(n − 1)

n∑
µ=1

Pµµ + 6
2p∑
j=1

P j j. (40)

Proof. In fact, if the above inequality satisfies equality, then by Proposition 4.2 follows that the submanifold
is not proper.

Next, we assume that M is the second kind twisted product CR-submanifold in the l.c.K.-space form M̃(c).
Then, using Proposition 4.3, the length ‖σ‖2 satisfies ([14])

‖σ‖2 = 2p‖α]JD⊥‖
2 + 2q{‖α]

D
‖

2
− f 2

2p∑
i=1

1̃(α], ei)(ei log f )

+ f 4
2p∑
i=1

{(ei log f )(e∗i log f )}2} +
q∑

c,b,a=1

{1̃(σ(2p+c)(2p+b), e∗2p+a)}2

+

m∑
r=n+q+1

n∑
µ,λ=1

{1̃(σµλ, er)}2].

By virtue of the above equation and (31), the mean curvature ‖H‖ satisfies

4τ = c(n2 + 4p − q) + 6(n − 1)
n∑
µ=1

Pµµ − 6
2p∑
j=1

P j j (41)

+4n2
‖H‖2 − 4[2p‖α]JD⊥‖

2 + 2q{‖α]
D
‖

2
− f 2

2p∑
i=1

1̃(α], ei)(ei log f )

+ f 4
2p∑
i=1

{(ei log f )(e∗i log f )}2} +
q∑

c,b,a=1

{1̃(σ(2p+c)(2p+b), e∗2p+a)}2

+

m∑
r=n+q+1

n∑
µ,λ=1

{1̃(σµλ, er)}2].

Thus we have

Theorem 5.5. In the second kind twisted product CR-submanifold in the l.c.K.-space form M̃(c), the mean curvature
‖H‖ satisfies the inequality

4n2
‖H‖2 ≥ 4τ − c(n2 + 4p − q) − 6(n − 1)

n∑
µ=1

Pµµ + 6
2p∑
j=1

P j j (42)

+8{p‖α]JD⊥‖
2 + q‖α]

D
‖

2
− q f 2

2p∑
i=1

1̃(α], ei)(ei log f ) + q f 4
2p∑
i=1

(ei log f )2(e∗i log f )2
}.

In particular, the equality case is the second fundamental form satisfies σ(TM,TM)
⊥ ν and σ(D⊥,D⊥) ⊥ JD⊥.
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