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Abstract: In next-generation Internet of Things (IoT) deployments, every object such as a wearable
device, a smartphone, a vehicle, and even a sensor or an actuator will be provided with a digital
counterpart (twin) with the aim of augmenting the physical object’s capabilities and acting on
its behalf when interacting with third parties. Moreover, such objects can be able to interact and
autonomously establish social relationships according to the Social Internet of Things (SIoT) paradigm.
In such a context, the goal of this work is to provide an optimal solution for the social-aware placement
of IoT digital twins (DTs) at the network edge, with the twofold aim of reducing the latency (i) between
physical devices and corresponding DTs for efficient data exchange, and (ii) among DTs of friend
devices to speed-up the service discovery and chaining procedures across the SIoT network. To this
aim, we formulate the problem as a mixed-integer linear programming model taking into account
limited computing resources in the edge cloud and social relationships among IoT devices.

Keywords: Internet of Things; Social Internet of Things; edge computing; digital twin; optimization problem

1. Introduction

A wide variety of Internet of Things (IoT) objects ranging from personal devices (such as,
for example, body sensors, high-, medium- and low-end wearable devices, consumer devices, etc.) to
intelligent measuring devices, sensors, and even actuators is massively used in smart environments.
Such a remarkable rise in connected devices has caused a severe growth of mobile data traffic [1],
contributing to the advent of the fifth-generation (5G) system, which is to be rolled out worldwide in
the upcoming years. This brings explosive growth opportunities for novel IoT applications leveraging
the opportunity of exchanging data with every object with a minimum level of computation and
storage capabilities. According to the recent forecast in [2], the number of IoT connections will reach
24 billion by the end of 2025.

The Social Internet of Things (SIoT) paradigm [3,4] has gained ground in recent literature as a
valuable means to integrate humans and machines into one global social network and to allow IoT
heterogeneous devices to interact, share, and exchange data by taking into account both their physical
constraints and their “social” behavior.
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The combination of social networking concepts with the IoT offers a number of advantages.
First, SIoT enables effective discovery of the services offered by IoT objects, based on typical social
network mechanisms. Second, it allows the exchange on a social basis of information associated
with/generated by devices, also through new group-based communication schemes like sociocast [5,6].
Third, it ensures scalability through social collaboration among nodes. A further remarkable beneficial
aspect is the possibility to establish social relationships between objects that use different technologies;
this allows device interoperability across different IoT platforms. Finally, SIoT can leverage the degree
of interaction between objects to guarantee trusted connections between friend devices [7].

However, IoT devices are typically resource-constrained, hence creating and managing social
relationships would further challenge their design. A widespread adoption of IoT, even more when
the social dimension is considered, is unlikely without embracing the concept of cloud computing.
Indeed, the cloud can complement resource-constrained IoT devices with additional computing,
storage, and context-awareness capabilities. In particular, the digital twin (DT) [8,9] concept has gained
momentum as a concrete means to implement such a vision by bridging the physical world with the
digital one. Physical objects are augmented with a digital footprint hosted in the remote cloud and,
thus, enabled to perceive the environment better and understand their role in the context in which
they are immersed.

Unlike the existing literature [10–12], in this work, we align the DT concept with the edge
computing paradigm [13], among the most important technological trends that dominate the IoT
market in 2020 [14]. Edge computing [15–17] aims to localize processing resources closer to end-devices
rather than to a centralized cloud computing environment. Since data do not traverse over a network to
the cloud to be processed, the network load and the data latency are significantly reduced. This enables
faster response times and improved user satisfaction, while also benefiting network operators and
cloud providers.

As a further advancement w.r.t. state-of-the-art [18,19], we consider DTs of physical objects
enhanced with social capabilities, namely Social DTs (SDTs). Early germs of such an approach can be
found in [20,21], where the concept of the Social Virtual Entity (SVE) is preliminarily introduced.

Notwithstanding, hosting applications and SDTs in particular, at the edge, raise several challenges
to be addressed. Some of them are generic issues inherited from the literature dealing with the
placement of virtualized applications [22–24] at the edge; others specifically arise due to the SIoT
environment. First, resources at the network edge are limited and unevenly distributed among the
available edge servers colocated with access points (APs), base stations (BSs), etc. Second, low-latency
connectivity may need to be ensured between the physical and the corresponding virtual counterparts
to fulfill the DT objectives. This is especially true when interactive applications are considered. Third,
SDTs may also need to be linked among each other in view of a quick navigation of the social network
of IoT devices, whenever resources or capabilities of friend devices (e.g., in the event of a road traffic
accident or a disaster, for health monitoring, and even for infotainment in public places) need to be
discovered and/or chained.

In such a context, the paper aims to provide the following main contributions:

• propose a framework for the Social-aware Closest Edge Placement (SoCEP) of DTs that builds
upon the edge computing and SIoT paradigms;

• formulate the SDT placement as a Mixed Integer Nonlinear Programming (MINLP) problem.
The proposal accounts for the limited computing resources of edge servers, social relationships
among IoT devices, and constraints on the latency in the connectivity between a physical device
and the corresponding DT and in the inter-DT connectivity;

• further transform the MINLP problem into a Mixed Integer Linear Programming (MILP) problem
by linear relaxation;

• evaluate the performance of the proposal against a baseline solution, which places the DT at the
closest edge server and is agnostic w.r.t. social relationships, under different settings in terms of
storage constraints on edge servers and latency demands.
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The paper is structured as follows. Section 2 gives a brief overview of background material for our
work by scanning the literature related to edge computing, digital twins, and SIoT. A general overview
of the proposed SoCEP framework is outlined in Section 3. Section 4 focuses on the mathematical
formulation of the proposal as an optimization problem. In Section 5, simulation experiments and
comparative analysis are presented. Final remarks and conclusions are drawn in Section 6.

2. Background and Motivations

2.1. Edge Computing for IoT

As most IoT objects are resource-hungry, the gap between required and locally available resources
widens and, in this context, cloud computing is proposed as a valuable means to overcome the problem.
However, some IoT applications require short response times (e.g., automation control in a smart
factory), others produce vast volumes of data to be processed (e.g., augmented reality), whereas some
of them may also demand security guarantees (e.g., surveillance in a public place). Cloud computing
cannot satisfy these requirements and fails to support this type of IoT applications. By hosting storage
and processing resources, as well as applications, closer to the end-users, edge computing can handle
the aforementioned issues [25].

In recent years, there has been considerable interest in edge computing for IoT [26,27], also fueled
by the activities in the European Telecommunications Standards Institute (ETSI), which refers to such
a paradigm as multiaccess edge computing (MEC) [17,28].

A large body of literature addresses computing offloading [29,30] in the view of allowing IoT devices
to speed up data processing, thus reducing energy consumption. Among others, in [31], the problem of
selecting the appropriate offloading routes for the IoT services is addressed. The optimization of the
response time of IoT applications is done in [32,33], where computation offloading methods improve
user experience in terms of latency.

Further, edge computing opens up new opportunities in the field of IoT that would not be possible
by leveraging traditional cloud-based systems. For instance, Digital Twins, which have already been
shifted from concept to reality [19], can be effectively implemented at the edge. The idea of DTs was
first introduced in [34] and later formalized in [10], where the main elements of the DT concept are
identified, namely, a real space (physical objects), a virtual space (virtual objects), and the link for
the data flow between real and virtual domains. Virtual objects provide the semantic description of
the related physical objects and of their resources (e.g., memory, storage, processing) and capabilities
(e.g., sensing, actuation, computing), which are abstracted into a set of attributes. This abstraction
allows performing an effective search of the capabilities/resources needed for creation and composition
of IoT services at the application layer [20].

The virtualization layer has become a key component of many reference IoT platforms
(e.g., iCore [35], IoT-A [36]) and commercial implementations (e.g., Amazon Web Services IoT) [20],
and the interest for it has been further boosted by the emerging concept of digital twins [37]. However,
as recently investigated in [19], the communication processes between a physical object and its virtual
counterpart and among different DTs are still open issues attracting considerable interest, as well as the
proper placement of such virtual entities at the edge to cope with the distributed and limited nature of
computing and storage resources of edge servers.

A growing body of literature has investigated the possibilities of edge networks to satisfactorily
meet the latency constraints on pairing a physical device and its DT [21,38]. A cost-aware cloudlet
placement strategy accounting for the cost of deploying edge servers and the end-to-end latency
between physical objects and their avatars is proposed in [24]. In [39], the placement problem is
considered as a generalized assignment problem to reduce latency. Further related works focus on
virtual machine replica placement problem [40,41], service entity problem [23,42], and joint service
placement [43,44] with additional focuses on, e.g., request routing/scheduling [22,45].
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2.2. SIoT Basics

In the past years, the concept of using elements of social networks in IoT has attracted an
unprecedented amount of attention of the research community [46–50]. The synergy of social
networking and IoT paradigms can offer several benefits and allow the devices to create relationships
in an autonomous way.

The paradigm of “social network of intelligent objects” was proposed in [3]. SIoT aims to simplify
the navigability of a network of billions of devices and to enhance their trustworthiness. The key idea
of SIoT consists in enabling devices to create their social network and effectively search through social
links for the desired services offered by their friend devices [51]. Social relationships can be created,
for instance, between objects belonging to the same owner, between fixed devices located in the same
place, between objects carried by people who meet frequently, between objects of the same model,
vendor, and production batch. SIoT supports many novel enthralling applications and services for
the IoT in a more powerful and productive [52] way by facilitating the interaction between physical
objects through the digital world. In particular, the exploitation of social network principles in the
IoT domain has proven to foster resource visibility, enhance device and service discovery, and enable
practical object reputation assessment, service composition, and source crowding [53,54].

Researchers have followed various approaches to design a SIoT architecture and implement a
platform for the construction of a SIoT service environment and the virtualization of applications [52,55].
In [56], a technique for the implementation of Virtual Entities (virtual equivalents of the physical
objects [20]) is addressed. In [57], a cloud-based social IoT solution, wherein each physical device has a
virtual counterpart, is developed. The platform has four major features, i.e., social agents, Platform as a
Service model, reusability, and cloud storage. An analogous approach is presented in [58], where virtual
objects of physical devices hosted at the edge are enabled to browse the social network of devices.

Indeed, IoT applications can be built in order to exploit data and resources provided by friends.
For instance, some applications may need to push (query) data to (from) categories of friends [21].
Moreover, a composite service may be instantiated through the chain of resources (e.g., cached data)
provided by the SDTs of friend devices. In these special cases endowed by social flavor, the discovery
of resources/capabilities of friend devices over the social network may be facilitated by the presence
of social DTs at the edge, which expose them on behalf of the physical devices. Hence, applications
that may need to quickly browse the social network by visiting SDTs of friend devices could benefit
from finding SDTs of friends either in the same or nearest edge servers. This would result in a short
latency and in a reduction of the amount of data traversing the edge infrastructure.

2.3. Motivations and Objectives

The surveyed literature shows that prior research efforts (i) identified DTs as a prominent solution
for IoT and also for SIoT and (ii) recognized the need to push their deployment at the edge. However,
they fall short of addressing the proper placement of DTs, augmented with a social dimension,
in network edge deployments with multiple servers.

In order to fill this gap, we propose a framework for the social-aware placement of DTs at the network
edge. By this meaning that, on the one hand, we address the placement problem by considering the
common proximity-driven approach for pairing physical devices and the corresponding DTs [24];
on the other hand, we also target to minimize the latency experienced between edge servers hosting
DTs, for which the corresponding physical devices have a social relationship. This is meant to ensure
that SIoT objects can quickly communicate and discover services querying their social relationship
network on the virtualization layer hosting digital twins.

3. System Overview

In this section, our framework for the social-aware placement of digital twins in Edge IoT
networks is presented. We define the architecture and introduce the system model for SDTs placement
management. The main notations employed in this paper are summarized in Table 1.
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Table 1. Description of notations.

Parameter Description

GP(VP, EP) Weighted undirected graph of physical IoT devices
vP ∈ VP Set of physical IoT devices
eP ∈ EP Set of links between physical IoT devices
GS(VS, ES) Weighted undirected graph of edge servers
vS ∈ VS Set of edge servers
eS ∈ ES Set of links between edge servers
Lik Latency between physical device i ∈ VP and its SDTs placed at edge server k ∈ VS
Lkl Latency between edge servers k, l ∈ VS
Cikjl Cost of connections between devices i, j ∈ VP and their SDTs placed at edge servers

k, l ∈ VS
Γ Capacity of an edge server (maximum number of SDTs to be stored per edge server)
Lmax Maximum latency between a physical device and its SDT
dik Physical distance between IoT device i and edge server k (that hosts its SDT)
dkl Physical distance between SDTs deployed at edge servers k, l

Binary Variable Description

wij = 1 Physical IoT device i ∈ EP is connected to device j ∈ EP
xik = 1 SDT of device i ∈ VP is mapped to edge server k ∈ VS
yikjl = 1 SDT of device i ∈ VP is mapped to edge server k ∈ VS and SDT of device j ∈ VP is

assigned to edge server l ∈ VS

3.1. Reference Architecture

In alignment with the existing literature [35,36], we consider the reference layered IoT architecture
shown in Figure 1. The bottom layer accommodates physical IoT objects belonging to the real world
(e.g., wearable devices, smartphones, sensors, actuators, etc.). These IoT objects are connected with
each other and with other entities through the connectivity facilities offered by the 5G infrastructure.

Social links between IoT devices 
Links between IoT devices and corresponding SDTs placed at the edge servers

Physical IoT device 
Social Digital Twin (SDT)

virtualization layer

physical layer

Figure 1. Layered Internet of Things (IoT) architecture.

The upper layer is the virtualization layer, where the digital representations of physical devices, i.e.,
the SDTs, are deployed. The SDT augments the physical device with storage and computing capabilities
like DTs typically do. More in detail, it provides caching and preliminary filtering/aggregation of
raw data streamed by the corresponding IoT device, before feeding IoT applications processing them.
In addition to the semantic description of the corresponding physical device, the SDT also keeps



Sensors 2020, 20, 6181 6 of 17

the information about all the social relationships established by the corresponding physical device
according to the SIoT paradigm [3]. In particular, the SDT stores metadata describing the type of friend
devices and the SIoT relationship type for each friend device.

An IoT device willing to query friend devices, to discover services and/or push data to them,
needs to read the friendship information stored in the SDT. Once such a piece of information is retrieved,
the SDT itself can interact with its peers on behalf of the physical device. Then, SDTs of all (a subset of)
friend devices can be contacted one-by-one, according to what we refer to as friends browsing.

We emphasize that SDTs are instantiated only for the most powerful devices (e.g., smartphones,
tablets) able to connect to the Internet directly, which act as head devices. More constrained devices
(e.g., wearable sensors, health, and fitness trackers), which are constrained in memory, computational
capacity, and power, instead, may be associated with the SDT of the corresponding head device.

We assume that SDTs are deployed as virtualized applications, e.g., as containers [59] and
instantiated in edge servers.

3.2. System Model

As illustrated in Figure 1, we consider an edge infrastructure consisting of M edge servers
associated with wireless access points (e.g., a BS, a Wi-Fi AP) covering a specific area where N static IoT
devices are located and establish relationships according to the SIoT paradigm. One SDT is associated
to each IoT device. Since SDTs can store data and perform some processing, they have both CPU and
storage demands that have to be taken into account when deploying them in an edge server, which has
typically a finite amount of resources. Explicitly, we define the parameter Γ, Γ ≥ 1, which limits the
number of SDTs that can be deployed in an edge server; this number is the same for all edge servers.

The social network of IoT devices is represented by the graph GP = (VP, EP). The set of vertices
VP of graph GP corresponds to the physical devices connected by links in the set EP; the links represent
social relationships between devices. The weight of a link between physical devices i and j is denoted as
wij. It tracks the information about the social relationship(s) between two physical devices. In particular,
wij is a binary variable and is given by:

wij =

{
1, if device i has a social relationship with device j according to SIoT

0, otherwise.
(1)

The edge network is represented by the graph GS = (VS, ES), where VS is a finite set of edge
servers intended to host SDTs, whereas ES is a set of links between the edge servers. We reasonably
assume that the number of IoT devices is larger than the number of edge servers, |VP| = N > |VS| = M,
which does not limit the generality of the presentation.

The latency between each pair of edge servers, which represents the weight of the link between
two vertexes k and l (k, l ∈ VS) is given by Lkl . Similarly, we denote the latency between node i ∈ VP
and node k ∈ VS as Lik, and it corresponds to the latency between the device and its SDT. The latency
depends on the distance between the involved nodes; more details will be given in Section 5.

4. Optimization Problem

4.1. Problem Definition

We aim to allocate SDTs at edge servers so that a cost function is minimized which is expressed as
a combination of (i) latency of connections between physical devices and their virtual representatives
and (ii) latency between SDTs of physical devices linked by social relationships, while meeting a set of
constraints on communication latency and capabilities of edge servers (see Figure 2, where the SDTs of
two friend IoT devices, i and j, are deployed at edge server k and l, respectively).

We first formulate the SDT placement at the network edge as an MINLP optimization problem.
We then transform the objective function by linear relaxation and proceed with the optimization
problem using MILP.
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To model the problem of SDTs placement on the given set of edge servers, we introduce a decision
variable, xik ∈ {0, 1}, which indicates whether the SDT of device i is assigned to edge server k.
The binary variable xik is equal to 1, if the SDT of device i is placed at edge server k, otherwise xik = 0.

The mathematical problem can be formulated in terms of integer programming as follows:

min
x ∑

i∈VP

∑
k∈VS

xikLik + ∑
i∈VP

∑
k∈VS

∑
j∈VP

∑
l∈VS

xikxjlwijLkl , (2)

subject to

∑
k∈VS

xik = 1, ∀ i ∈ VP, (3)

∑
i∈VP

xik ≤ Γ, ∀ k ∈ VS, (4)

Lik ≤ Lmax, ∀ i ∈ VP, ∀ k ∈ VS, (5)

xik, xjl ∈ {0, 1}, ∀ i, j ∈ VP, ∀ k, l ∈ VS. (6)

Constraint (3) holds the condition that the SDT of device i ∈ VP can be assigned to one edge
server only. Constraint (4) means that the maximum number of SDTs that can be deployed at an edge
server k ∈ VS is limited by Γ. Constraint (5) includes a limitation on the latency between the physical
device and the edge server hosting the corresponding SDT, which is upper bounded by Lmax. Finally,
Constraint (6) reminds that we conveniently model the placement problem through binary variables.

IoT device i IoT device j

Edge server k Edge server l

Lkl

w ij

Lik

Figure 2. The cost function to be minimized includes the latency between the device and its SDT placed
at the edge (Lik) and the latency between a couple of friend SDTs placed at edge servers (Lkl).

4.2. Complexity Analysis

Theorem 1. Social digital twins placement problem is NP-hard.

Proof. We prove the SDT placement problem’s hardness by reducing it from the quadratic assignment
problem (QAP), well known to be NP-hard [60].

Quadratic Assignment Problem: QAP solves the placement problem of a set of facilities to a set
of locations with (i) the cost being a function of the distance and flow between the facilities and (ii)
the cost associated with the placement a facility at a location. The optimization objective is to assign
each facility to a location minimizing the total cost. Providing that n is the number of facilities and
locations, N = {1, 2, ..., n}, the facilities’ placement is given by the bijection N → N, i.e., a facility can
be assigned to one location, and a location can accommodate one facility only.
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Social-Aware Closest Edge Placement problem: SoCEP represents the relaxed version of QAP, wherein
the requirement of objectivity and surjectivity of mapping the set of facilities (SDTs) to the set of
placement positions (edge servers) is removed. We consider the problem of allocating SDTs with (i)
the cost being a function of the latency Lkl between edge servers and weight of social connections wij
between the IoT devices (see Figure 2) and (ii) the placement cost associated with SDTs of IoT devices
being placed at edge servers. In our model, N SDTs are assigned to M edge servers such that SDTs
corresponding to friend IoT devices are placed closer with the maximum possible proximity between
SDTs and their IoT devices while allowing some flexibility for selecting/not selecting edge servers.
More specifically, in comparison with QAP, wij can be correlated with the flow between a couple of
facilities, Lkl can be associated with the distance between a couple of locations, and Lik can be closely
related to the cost of placing facilities at locations.

This is a formulation of the quadratic assignment problem, which is NP-hard.

4.3. Linearization

As one may deduce that there is a nonlinearity in the cost function in Equation (2) due to the
quadratic form. To remove the nonlinearity, we perform the linearization of the objective function
by introducing a new binary variable, yikjl , that equals 1 if SDTs of devices i and j are placed at edge
servers k and l, respectively [61,62], i.e.,:

yikjl =

{
1, if xik = 1 and xjl = 1,

0, otherwise.
(7)

We also denote the cost contributions related to the latency between the SDTs of IoT devices i and
j placed at edge server k and l, respectively, as Cikjl , by replacing wijLkl .

Then, it is straightforward to verify that the cost function may be rewritten as:

min
x,y ∑

i∈VP

∑
k∈VS

xikLik + ∑
i∈VP

∑
k∈VS

∑
j∈VP

∑
l∈VS

yikjlCikjl , (8)

by satisfying the following constraints:

∑
k∈VS

xik = 1, ∀ i ∈ VP, (9)

∑
i∈VP

xik ≤ Γ, ∀ k ∈ VS, (10)

∑
l∈VS

yikjl = xik, ∀ k ∈ VS, ∀ i, j ∈ VP, (11)

∑
k∈VS

yikjl = xjl , ∀ l ∈ VS, ∀ i, j ∈ VP, (12)

Lik ≤ Lmax, ∀ i ∈ VP, ∀ k ∈ VS, (13)

xik, xjl , yikjl ∈ {0, 1}, ∀ i, j ∈ VP, ∀ k, l ∈ VS. (14)

Constraints (11) and (12) make it possible to take into account mutual social connections between
a couple of SDTs. It indicates that SDTs of friend devices i and j can be allocated at the corresponding
edge servers k and l only if the corresponding binary variables xik and xjl are equal to 1. Constraint (13)
bounds the latency between the physical device and the edge server hosting the corresponding SDT.
Constraint (14) ensures that xik, xjl , yikjl are binary variables.

5. Performance Evaluation

In this section, we numerically elaborate on the performance of the proposed framework. First,
we describe the simulation environment, which accepts the input parameters listed in Table 2, and
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characterize the baseline solution of interest by also describing the considered metrics. Then, we evaluate
our model via simulations by using the IBM ILOG CPLEX Optimization Studio 12.10.0 software suite
(to use branch-and-bound algorithm to solve the integer linear programming model) [63,64] on an
Intel(R) Xeon(R) CPU E5-2620 v4 at 2.10 GHz with 19.7 GB RAM.

Table 2. Main simulation parameters.

Parameter Value

Number of IoT devices, N 150
Number of edge servers, M 9
Capacity of an edge server, Γ var
Maximum latency between a devices and an edge server, Lmax var
Distance to latency mapping coefficient, ε 3.33 ms/km [65]

5.1. Simulation Scenario

The simulation scenario, as shown in Figure 3, corresponds to the city center of Santander (Spain).
The settings we used, in terms of area of interest and object’s metadata, are detailed in [66]. We restrict
our analysis to an area that is roughly 4 km × 4 km (including uninhabited zones). Here, we assume
that M = 9 base stations are deployed. Each BS is located at the center of the area and has a coverage of
1 km2. An edge server is associated with each BS. We assume there are N = 150 static IoT devices inside
the area (which corresponds to public devices from the SIoT dataset (http://www.social-iot.org)).
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Figure 3. Snapshot of the considered dataset: black squares denote the IoT devices in the area, whereas
the links indicate social interconnection between a couple of devices.

From the dataset described in [66], we extract real IoT objects’ information (IDs, types, positions,
and adjacency matrix with the social relationships). Here, value wij defines the existence of a social
relationship between a couple of devices, Equation (1). In this simulation, the set of relationships
is given by R ∈ {POR} [3], where POR represents Parental Object Relationship (relationship among
objects belonging to the same production batch) [3]. The average number of social relationships per
IoT device is 80.

Similarly to [23,24], the latency Lik between device i and edge server k, as well as the latency
Lkl between edge serves k and l are estimated to be proportional to the distance between them.
More precisely, Lik = εdik and Lkl = εdkl , where ε is the distance to latency mapping coefficient,

http://www.social-iot.org/index.php?p=downloads
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dik and dkl are physical distances between device i and edge server k and between edge servers
k, l, respectively.

The following assumptions also hold in our study: (i) when the edge server k that hosts the SDT
is colocated to the same BS which its corresponding device, i, is connected to, then dik = 0, Lik = 0;
and (ii) when two SDTs are deployed at the same edge server (i.e., dkl = 0, ∀k = l), then Lkl = 0.
The first assumption is common in the literature [32] and allows to neglect the latency experienced
over the radio interface. The second one neglects the intraedge server delay.

5.2. Benchmark

We compare the proposed model with a baseline solution, we refer to it as Closest Edge Placement
(CEP), according to which SDTs of IoT devices are placed at the nearest edge server, neglecting social
features. Hence, the CEP optimization problem can be expressed by:

min
x ∑

i∈VP

∑
k∈VS

xikLik, (15)

with the same constraints as the SoCEP optimization problem.

5.3. Metrics

The following metrics are defined for the sake of evaluation:

• Average latency among SDTs of friend IoT devices. We measure this metric as the average latency
between each couple of edge servers hosting SDTs whose corresponding physical devices
are friends.

• Average latency for friends browsing. This metric includes both the latency between an IoT device
and the edge server hosting the corresponding SDT plus the latency for browsing, one-by-one,
all friend devices’ SDTs hosted in the edge infrastructure. The latter contribution is computed
as the sum of the latencies experienced by an SDT to reach the edge servers hosting the SDTs of
all friend devices, as read in the SDT table. The metric is used as an evaluation criterion for the
proposed optimization model as it preserves all the kinds of latency contributions considered in
Equation (8). It also allows one to figure out how the SDT placement affects the time needed for
an IoT device to reach all friend devices, via the corresponding SDTs.

The second metric is especially relevant to assess the effectiveness of the service discovery
procedure that implies considering friendship chains. Browsing the social network implies to “hop”
from one SDT to the one of a friend of its, and so on. For instance, some applications may need to push
(query) data to (from) categories of friends. It is the case of a given software patch that needs to be
safely delivered to all the devices or sensors of the same brand/batch.

Reported results for both metrics refer to the solution of a specific instance of the optimization
problem (both CEP and SoCEP) with inputs and settings as described before.

5.4. Simulation Results

In this section, we examine the performance of the proposed placement solution, SoCEP,
against the benchmark scheme, CEP, when varying the maximum latency, Lmax, in the range 0–14 ms
and the edge server’s capacity, Γ, in the range 20–60.

Figure 4 reports one instance for the SoCEP solution, corresponding to the following settings:
edge server’s capacity, Γ, equal to 40, and maximum latency between IoT devices and edge servers,
Lmax, equal to 5 ms. At the bottom of the Figure, physical IoT devices are shown in the map, whereas
at the top of the Figure, the placement of the corresponding SDT among the nine available edge servers
is reported.
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Figure 4. SDTs placement in the edge infrastructure for SoCEP with Γ = 40, Lmax = 5 ms.

In Figure 5, we report the average latency between SDTs of friend IoT devices. It can be observed
that the proposed solution performs significantly better than the benchmark solution with gains up to
35.1 and 56.7% for Lmax = 14 ms (as illustrated in Figure 5a,b , respectively) and up to 20.6 and 55.7%
for Γ = 60 (as demonstrated in Figure 5c,d).
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Figure 5. SoCEP vs. CEP: average latency between SDTs of friend IoT devices.
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The metric decreases for SoCEP as the latency constraint is relaxed. In this case in fact, relaxing the
constraint of the proximity of SDTs with their physical counterpart allows SDTs of friend IoT devices
to be placed closer. The poorer performance (i.e., higher latency values) of the CEP scheme has to be
ascribed to the fact that it attempts to place SDTs closer to their physical counterparts, while being
oblivious of social relationships among IoT devices.

It should be further noticed that for Γ = 20 (Figure 5a) no optimal solution is found by solving (8)
and (15) for Lmax < 4 ms, since edge servers cannot accommodate the SDTs for all the IoT devices
covered by the colocated BS.

As the capacity of the edge servers increases, SoCEP provides lower latency (as shown in
Figure 5c,d) as a consequence of the fact that SDTs of friend devices are likely placed either in
the same edge server or in one server in close vicinity (Figure 5b). In these cases, one may observe
some fluctuations of SoCEP curves. The tightness of social communities among IoT devices (or among
SDTs) can explain this behavior. Indeed, even slight relaxation of the capacity constraint may notably
change the SDT placement scheme.

Finally, in Figure 6, we examine the effectiveness of the proposal in providing low latency in
browsing the friends by the SDTs. Results confirm that the proposal is quicker in the browsing
procedure compared to CEP. Delay values are more than halved when the maximum latency Lmax

exceeds 10 ms and Γ = 40. This finding is quite crucial as it proves that accounting for social features
in the SDT placement allows one to significantly improve the browsing procedure.
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Figure 6. SoCEP vs. CEP: average latency for friends’ browsing.

5.5. Computation Time

We solve the problem optimally by applying a branch-and-bound algorithm, which is a variation
of the exhaustive search method by considering an acceptable solution set. The computational
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complexity of such precise algorithms is generally exponential. The problem complexity grows with
the increase in the problem size. Moreover, we emphasize that not only the problem size but also
its constraints affect the computational complexity. For instance, in Table 3, one may observe that
the relaxation on the maximum latency, Lmax, slows down the process of finding optimal solutions.
Such a trend can be explained by the increase in the number of acceptable options for placing SDTs.

Table 3. Computation time.

Lmax 3 ms 3.5 ms 4 ms 4.5 ms 5 ms 5.5 ms 6 ms 6.5 ms >7 ms

Time 1.6 s 3.7 s 5.8 s 7.1 s 46.8 s 1534.4 s 2601.5 s 2718.4 s 4380.9 s

Clearly, the reported values for the computation time become unacceptable for less stringent
latency constraints. Hence, as a future work we target the design of an efficient (in terms of computation
time) heuristic algorithm that can solve the problem in large networks by targeting the SoCEP objectives
with a little compromise in the solution optimality.

In our proposal, we assume that the optimal algorithm, and then also the heuristics, for the
placement of SDTs in edge servers is implemented in a centralized manner by the orchestrator
of the edge infrastructure. In the case of an edge infrastructure compliant with the European
Telecommunications Standards Institute (ETSI) MEC specifications, the placement of SDTs would be
decided by the ME orchestrator [67] handling a certain number of edge servers.

6. Conclusions and Future Works

In this paper, we have presented a cutting-edge solution for digital twins placement at the edge,
which accounts not only for proximity requirements but also for relationships among IoT devices
established according to the SIoT paradigm. We have formulated the proposal as an optimization
problem and obtained promising results. Indeed, the proposal can actually contribute to make the
SIoT more viable, by reducing the time for the browsing procedures.

The proposal has some room for improvements. First, the type and the number of social
relationships can be considered in the social graph and to derive the cost function by differently
weighing the latency contributions between SDTs of friend devices. Indeed, some types of friend
devices may require the corresponding SDTs to interact more quickly than others.

Second, more intelligent placement strategies that take into account the specifics of the network
deployment, the types of IoT devices, and the mobility patterns are of special interest for future
research contributions. For instance, the mobility patterns can be considered in the formulation
of the optimization algorithm as proposed in [24] and, in addition, the placement decision can be
dynamically modified when the latency constraints do not comply anymore with the required ones for
the connectivity between physical IoT devices and their digital counterparts. In this case, the challenge
of running in real-time the replacement of digital twins is not only related to the need of rerunning
the optimization algorithm but also to the migration of the SDT from one edge server to another
(see, e.g., [68]). How to achieve seamless migration among edge servers is still an open issue in the
literature which deserves to be investigated.
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