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 SUMMARY    

Analysis of civil structures at the scale of life-cycle requires stochastic modeling of degradation. Phenomena 

causing structures to degrade are typically categorized as aging and point-in-time overloads. Earthquake effects 

are the members of the latter category this study deals with in the framework of performance-based earthquake 

engineering (PBEE). The focus is structural seismic reliability, which requires modeling of the stochastic 

process describing damage progression, due to subsequent events, over time. The presented study explicitly 

addresses this issue via a Markov-chain-based approach, which is able to account for the change in seismic 

response of damaged structures (i.e., state-dependent seismic fragility) as well as uncertainty in occurrence 

and intensity of earthquakes (i.e., seismic hazard). The state-dependent vulnerability issue arises when the 

seismic hysteretic response is evolutionary and/or when the damage measure employed is such that the 

degradation increment probabilistically depends on the conditions of the structure at the time of the shock. The 

framework set up takes advantage also of the hypotheses of classical probabilistic seismic hazard analysis, 

allowing to separate the modeling of the process of occurrence of seismic shocks and the effect they produce 

on the structure. It is also discussed how the reliability assessment, which is in closed-form, may be virtually 

extended to describe a generic age- and state-dependent degradation process (e.g., including aging and/or when 

aftershock risk is of interest). Illustrative applications show the options to calibrate the model and its potential 

in the context of PBEE. 

Keywords: state-dependent fragility, damage, stochastic process, reliability, performance-based earthquake 

engineering. 

1. INTRODUCTION 

Mainly because of the importance of sustainability-related issues, there is an increasing interest in the 

life-cycle analysis of civil constructions; i.e., at the time-scale of years in which multiple seismic 

events, and or aging, may affect the structure leading to deterioration; e.g., [1-3]. Aging may be 

related to an aggressive environment, which worsens the mechanical features of structural elements 

(e.g., corrosion of reinforcing steel due to chloride attack, carbonation in concrete, etc.) or shocks the 

occurrence of which may be difficult to observe (e.g., ambient vibrations, traffic loads, fatigue, etc.). 

Degradation due to aging is typically described assuming that it takes place gradually over time. 

Earthquake shocks potentially accumulate damage on the hit structure during its lifetime. In general, 

mainly because earthquake occurrences can be treated as instantaneous with respect to structural life, 

that is safety-threating point-in-time events, it is advantageous to model the cumulative seismic 

damage process separately from aging (i.e., gradual deterioration); see [4] for example. This study 

focuses on this latter issue; i.e., stochastic modeling seismic damage accumulation, as one of the 

component of life-cycle analysis of structures. A sketch of the issues tackled is given in Figure 1.  

The motivation stays in the classical formulation of performance-based earthquake engineering 

(PBEE) framework [5] that features a mathematically convenient time-invariant representation of 

failure probability, which however may be not the best option to tackle issues related to degradation 

of structural performance. Indeed, PBEE does not explicitly consider the case in which, for example, 

partially-damaging events lead seismic losses to accumulate. On the other hand, most of the studies 
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attempting to address stochastic modeling of degrading structures (e.g., [6]) relies on hypotheses 

sometimes believed to be strong in the civil engineering context, for example independent damage 

increments from one shock to another. In fact, it may be that the response of the structure and/or its 

susceptibility to damage change through shocks, an issue considered only in a few cases; e.g., [7,8].  

 

 

Figure 1. Sketch of the deterioration process for a structure subject to cumulative earthquake damage. 

The simplest form of dependency between damage increments assumes that structural vulnerability 

(i.e., susceptibility to increase damage in one earthquake), given the features of the earthquake, 

depends (only) on the state of the structure at the time of the shock. On these premises, the study 

presented in the following tackles stochastic modeling of structures accumulating seismic damage 

when the structural fragility is state-dependent, and hazard is represented by means of random 

earthquake occurrence and random ground motion intensity given the occurrence of one earthquake. 

To probabilistically account for state-dependent vulnerability a Markov-chain-based description 

of degradation is developed; i.e., a discrete-time homogenous Markovian process. Also the state of 

the process is treated as a discrete variable within the developed model. In particular, the domain of 

the structural performance is partitioned in a series of damage states, and transition probabilities 

between these states, given the occurrence of an earthquake, are derived. Random occurrence of 

seismic shocks is described via a homogenous1 Poisson process (HPP), a classical assumption in 

seismic hazard analysis [9]. Combining the probabilistic description of the earthquake occurrence and 

its intensity, and the possible transitions between damage states in one earthquake event, the 

stationary matrix, which collects unit-time transition probabilities between states, and completely 

characterizes the damage process, is obtained. This leads to a closed-form solution for the reliability 

problem, easily allowing probabilistic predictions of the structural lifetime.  

The paper is structured such that the formulation of the considered reliability problem is given 

first. In particular, it is discussed, from the structural engineering point-of-view, when a state-

dependent [10] representation of damage accumulation is required, that is: (1) when evolutionary 

hysteretic behaviors are employed, but also (2) when non-evolutionary hysteretic rules are 

considered, yet the considered damage measure requires to keep track of the state of the structure. 

Then, the damage accumulation is addressed modeling both the process of occurrence of seismic 

shocks and the effect they produce. Subsequently, the Markov-chain-based solution for the reliability 

problem is derived. Then, some illustrative applications, referring to evolutionary and non-

evolutionary hysteretic behavior structures, consistent with principles of PBEE, are exploited to 

describe the structural reliability issues the model allows to address and to show some options for 
 

1 It should be noted, however, that the model is capable of accounting for others earthquake occurrence process featuring 

neither independent nor stationary increments, as discussed briefly in the appendix.  
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case-specific calibration. Finally, in the appendix, a brief discussion about possible extensions of the 

model toward inclusion of aging and/or other forms of degradation is given. 

2. RELIABILITY FORMULATION UNDER DAMAGE 

ACCUMULATION HYPOTHESIS 

The objective of this study is to enable the computation of the failure probability of structures that 

degrade due to accumulating seismic damage. The effect of degradation is measured in terms of 

residual seismic capacity, ( )t . From the analytical point of view, the degradation process is that in 

Equation (1), where 0  is the initial capacity, ( )D t  is the total degradation at the time t; the initial 

time is assumed to be zero, that is, 0 0t = . 

( ) ( )0t D t = −  (1) 

( )D t , in the case aging is neglected,2 can be defined as the cumulated loss of resistance due to all 

earthquake events, ( )EN t , occurring until time t, in Equation (2). The damage increment in a single 

seismic shock ( )i , as well as ( )EN t , are random variables (RVs).  

( )
( )

1

EN t

i

i

D t 
=

=   (2) 

Given the formulation in Equation (1), the probability the structure fails within t, ( )fP t , or the 

complement to one of the structural reliability ( )R t , is the probability that the structure passes a 

threshold related to a certain limit state, LS , at any time before t, Equation (3). In other words, it is 

the probability that in ( )0, t  the capacity reduces travelling the distance,  , between the initial value 

and the threshold. Note that, by definition, Equation (3) also provides the cumulative probability 

function of structural lifetime, ( )TF t . 
 

( ) ( ) ( ) ( ) ( ) ( )01f T LS LSP t R t F t P t P D t P D t    = − = =  =  − =             
(3)

 

Reliability problems with formulations similar to that in Equation (3) were addressed in [4,11-12]. 

With respect to those studies, which consider damage increments in subsequent shocks as 

independent and identically-distributed RVs, the one herein relaxes an assumption that may be 

considered strong in the structural engineering context. In particular, it is explicitly considered that 

the damage increment RV in each shock is dependent on state of the structure at the time of the shock. 

This may happen because of two, possibly concurring, reasons:  

(1) the hysteretic behavior is evolutionary, that is the structure responds differently to future 

earthquakes as a function of the cumulative effect of shocks it has already experienced; 

(2) the damage measure considered is such that it is necessary to keep track of previous damages 

to measure the damage increment in a shock. 

These issues are discussed in the following two sections. In the first one, accumulating damage, ( )D t

, is discussed from the structural engineering point of view first; in the second one, from the 

probabilistic modeling side.  

 
2 See, for example, [4] for an analogous formulation, which accounts for aging. 
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3. STATE-DEPENDENT SEISMIC DAMAGE INCREMENT 

To model degradation in structures with possible energy dissipation during seismic shaking (e.g., 

hysteretic behavior) an index measuring accumulating damage, and its effect on structural 

performance, is needed. This has been, and currently is, a relevant topic in the earthquake engineering 

research. According to the review in [13], damage indices may be grossly categorized in two main 

classes labeled as displacement-related and energy-related. In the former case, the principle is that 

the structure reaches the limit state of interest because it exceeds a maximum displacement threshold, 

that is, maximum strain. The latter case refers to structures in which damage is related to the amount 

of energy dissipated by hysteretic loops. Indeed, the most representative strain-based damage index 

is the maximum displacement demand imposed by the seismic shock, while hysteretic energy (i.e., 

the summation of the areas of plastic cycles during seismic shaking) is the most direct energy-based 

index. Hybrid damage indices, accounting for both damage phenomena in a single metric, also exist; 

the best known is that by Park and Ang [14]. 

The main issue in modeling the stochastic evolution of accumulating seismic damage is that the 

probability of observing a certain increment of deterioration (i.e., the vulnerability) in a generic 

earthquake shock may be dependent on the history prior to its occurrence. If the damage increment 

in one earthquake depends on the seismic history only via the state of the structure at the time the 

seismic event occurs, then the stochastic process describing/predicting the evolution of structural 

conditions in time may be categorized as a Markovian one.  

In structures, there are two concurrent seismic vulnerability issues which call for Markov-type 

reliability models: (1) the hysteretic behavior of the structure does not remain the same in subsequent 

earthquakes; and (2) the way damage is measured introduces a dependency on history, even if the 

structural behavior remains the same. In the following subsections these two issues are further 

discussed for two different structural systems, subsequently, it will be shown how state-dependent 

vulnerability, jointly with the classical probabilistic seismic hazard analysis, leads to a global 

Markovian failure risk process. 

3.1. Energy-based damage indices  

To better illustrate the dependency on the state due to evolutionary seismic response, it may be useful 

to refer to the simplest hysteretic behavior of a single degree of freedom (SDOF) system, that is, the 

elastic-perfectly-plastic (EPP) loop depicted in Figure 2 (left). The horizontal force versus horizontal 

displacement relationship defines the hysteretic (seismic) behavior of this simple structure.  

If the response of such a system does keep the same strength and unloading/reloading stiffness 

through different cycles, and then in different seismic events (i.e., the cycle is stable), then the 

response is defined as non-evolutionary. It is easy to recognize, then, that if the damage is measured 

in terms of dissipated hysteretic energy (i.e., sum of hysteretic cycle areas) the damage increment in 

one earthquake only depends on the response of the system in that earthquake, not on what happened 

previously. This is because the areas of hysteretic loops only depend on the amplitude and number of 

cycles in the specific earthquake and not on the history (see also Figure 3). 

To better clarify this concept, it may be useful to now consider an evolutionary SDOF system, for 

example the pinching (PIN) model in Figure 2 (right). This is a system adapted from [15], which has 

a multi-linear backbone curve and a behavior such that the reloading stiffness and target strength 

depend also on the residual displacement and the maximum/minimum transient displacements 

observed, that is the displacements from which the reloading starts in a new earthquake and the target 

to which the reloading path is oriented. Therefore, in this case, even if the hysteretic energy is chosen 

to measure the variation of damage in one event, to be able to compute it, one has to know 

displacement history from the previous earthquakes, in addition to the response in the current seismic 

shock. In this sense the PIN system, conversely to the EEP-SDOF, has a state-dependent response in 

the case of energy-based damage indices.  
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Figure 2. Elastic-perfectly-plastic non-evolutionary behavior (left), and a ‘pinching’ evolutionary model, adapted 

from [15] (right). 

In general, in the case of evolutionary systems, seismic damage may change dynamic properties of 

the structure and then the response in further eventual shocks. This is also the case of systems defined 

in [13] as degrading. In these systems the hysteretic features degrade (change) as a function, for 

example, of the number of cycles the system has sustained. In this case the response is still state-

dependent, but the state may be defined by different/more parameters as, for example, the number of 

plastic excursions.  

3.2. Displacement-based damage measures 

It has been clarified why the type of hysteretic behavior can induce state-dependent seismic response 

and then state-dependent vulnerability. However, even if the hysteretic loop of the structure may be 

considered non-evolutionary, that is, its shape does not change through shocks, as in the EPP-SDOF, 

the damage-criterion may still let the damage increment to be history-dependent. Indeed, considering 

a maximum-displacement-based (i.e., maximum strain) criterion, damage accumulation in an 

earthquake occurs only once the maximum displacement reached in it is larger than the maximum in 

those previous [13], which makes the probability of observing a certain damage increment dependent 

on the distance between the residual displacement from which shaking starts (depending on seismic 

history) and the maximum transient until that shock. This may be argued by Figure 3, where the effect 

of a generic seismic shock is depicted referring to the envelope response of an EPP-SDOF (the same 

reasoning applies to cyclic response).  

In the figure it is illustrated that, while the area of hysteretic loops do not depend on the previous 

behavior of the structure, the maximum absolute displacement (and then the damage increment) does. 

Indeed, the amount of damage in a shock, which is the strain increment in this case, depends on the 

maximum recorded strain in previous shocks and also on the residual displacement. This is because 

the amount of plastic displacement required to increase damage is the difference between the 

maximum transient ever recorded and the residual displacement at the time of the shock. Therefore 

in this case the vulnerability is state-dependent also if the response is non evolutionary. 

In a series of previous studies, stochastic modeling of damage accumulation in structures was 

addressed: [4], [11-12]. In these works, an energy-based criterion was considered with reference to 

EPP-SDOF systems, therefore a series of reliability models based on independent increments was 

developed. Herein, conversely, a Markovian model is developed to accommodate state-dependent 

vulnerability because either of the (1) hysteretic behavior and/or (2) the considered damage measure. 

In particular, to isolate the effect of (2), the developed model is calibrated for an EPP-SDOF system 

when damage is based on the maximum displacement demand (or an equivalent of it; e.g., the drift 

ratio), while, to consider also the effect of (1), a PIN-SDOF systems is investigated, with the same 

damage measure. 
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Figure 3. Envelope (simplistic) scheme of response in terms of maximum displacement and dissipated hysteretic 

energy. It is to note that if a maximum strain threshold has to be reached to collapse, the damage increment in 

one shock depends on the maximum ever recorded (which has to be surpassed for the damage to increase) and 

the residual displacement, which determines the starting point. 

4. RELIABILITY MODEL FOR MARKOV-TYPE SEISMIC 

DAMAGE ACCUMULATION PROCESS  

In this study damage accumulation is of concern; it is assumed that the attainment of a certain damage 

level (e.g., failure) may also be produced by multiple partially-damaging seismic shocks, and not only 

in a single catastrophic event as implicitly assumed in the fragility function employed in PBEE. An 

approach to address this issue was proposed in some studies; see for example [4]. As discussed, a 

remarkable limitation of this kind of models stays in the probabilistic assumption that damage 

increments are independent (and identically distributed), which means that the structure is 

characterized by the same structural response in different events and that the damage increment in 

one event is independent of the seismic history of the structure.  

An alternative approach consists in modeling state-dependent vulnerability; i.e., modeling the 

probability of transition, in one event, between progressively worse damage states, given the state of 

the structure prior to the event. Indeed, if one is able to adjust the structural vulnerability as a function 

of the state of the structure, it is then possible to probabilistically predict the behavior of the already-

damaged structure. This, although leading to a more elaborated formulation/calibration of the 

resulting models, enables to describe forms of stochastic dependence among damage increments, 

which approaches such as that in [4] neglect. In fact, if a probabilistic description of the occurrence 

of shock exists (as it happens in the case of classical probabilistic seismic hazard analysis; to follow), 

in conjunction with state-dependent vulnerability, one is able to probabilistically predict, in closed-

form, the path of the structure from as-new condition to collapse, via multiple state-changing 

earthquakes.  

A reliability solution of this type is derived herein based on modeling the damage process via a 

Markov chain (i.e., a discrete-time and discrete-state Markovian process). The time t is discretized in 

intervals of fixed width equal to  , which may be considered to be the time unit (e.g., one year), then 

1 =  (the index used to indicate a certain time in the discretized domain is k). The domain of the 

considered damage index (structural performance measure) is partitioned to have a finite number (n) 

of damage states (DS). The various  , 1,2, , ,iDS i n= are factually limit states, identifying intervals 

of the damage metric considered between as-built conditions and failure, the structure has to walk 

(not necessarily one-by-one) to reach collapse (Figure 4).  
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Figure 4. Sketch of discretization of degradation states of a damage-accumulating structure. 

In this context, the transition probabilities between the i-th and j-th generic damage states, given the 

occurrence of an earthquake, are indicated as 
,i jP . These are the probabilities that after one event the 

structure is in the j-th DS given that it was in the i-th DS previous to the earthquake. Arranging 
,i jP  

in the form of a matrix, which contains probabilities of observing transitions between any possible 

couple of damage states, computed under the hypotheses that a seismic event is occurred, a Markovian 

transition matrix in the case of event occurrence is obtained, Equation (4).  

 

( ) ( )

1, 1,2 1,

2

2, 2,

3

1 , 1 ,

1

0 1

0 0 1

0 0 1

n

j n

j

n

j n

j

n n n n

P P P

P P
P

P P

=

=

− −

 
− 

 
 

− 
=  
 
 

− 
 
 




 (4) 

In the matrix, the rows and columns are labeled with the damage states of the structure; therefore, the 

first state is the as-new (or initial) conditions and collapse (or failure) is represented by the n-th state. 

The latter, in the Markov chain context, is referred to as an absorbing state, that is, once the structure 

is in it cannot escape from it. The lower triangle of the matrix is comprised of zeros because of the 

monotonic nature of deterioration. The matrix may be used entering the row with the pre-event 

condition of the structure to get the probability to find it in any of the other states given the occurrence 

of an earthquake. 

Even if in the applications also an alternative approach will be used to calibrate the model (see 

section 5), it is worth noting that, consistent with the PBEE framework, the individual elements of 

the matrix can be computed combining: (i) the probability density function (PDF) of the intensity in 

a seismic shock (IM), conditional to the earthquake event occurrence ( )E , available from hazard 

analysis [9], and (ii) the transition probability of the structure conditional to IM, as per the simple 

application of the total probability theorem in Equation (5). 

( ),i j IM E

im

P P j th state i th state E P j th state i th state IM z f z dz=  − −   =  − −  =      

 

(5) 

Note that, as per classical probabilistic seismic hazard analysis, or PSHA, the random variables 

representing ground motion intensities of different earthquakes are independent and identically 

distributed; i.e., ( )IM E
f z  is always the same in different shocks and does not depend on time. This 

leads to time-invariant 
,i jP , if the other term in the integral also do not change with time; i.e., the 

P1,2 P2,i Pi,n

P1,i

P1,n

P2,n
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structure is not affected by aging (see the appendix for further discussions). Note also that the 

P j th state i th state IM z − −  =    term is factually equivalent to (i.e., it is derived by) a state-

dependent fragility curve of the damaged structure (e.g., [16]), as illustrated in section 5.

 

4.1. Occurrence of seismic shocks 

PSHA typically refers to the HPP as the process modeling the occurrence of earthquakes at a specific 

seismic source. HPP is such that the counting process for earthquakes is completely defined by one 

parameter; i.e., the rate of occurrence of earthquakes, E . In fact, it may be worthwhile to recall that, 

in PSHA, also the process of occurrence of events causing exceedance of a specific ground motion 

intensity threshold at a site of interest is represented by a HPP, whose rate, im , is computed as in 

Equation (6), where it is assumed, for simplicity, that one seismic source affects the site of interest. 

In the equation, usually referred to as the hazard integral, 
,M R E

f  is the distribution of magnitude and 

source-to-site distance of earthquakes from the source of interest, and ,P IM im M x R y  = =    is 

the probability of exceeding im in an earthquake of known magnitude (M) and source-to-site distance 

(R), or a ground motion prediction equation (GMPE). 

( ),
, ,im E E M R E

r m

P IM im E P IM im M x R y f x y dx dy  =     =    = =        
 

(6)

 

On the premises of Equation (6), and if the unit-time rate of occurrence of earthquake shocks is small 

enough, such that the probability of observing more than one seismic event in the unitary time interval 

is negligible, it is possible to compute, for any pair of damage states ( )i j , the probability of the 

structure passing from one to another in an unit-time interval  , 1k k + . It is simply the product of the 

rate of earthquake events times 
,i jP , Equation (7). In other words, the unit-time transition probability 

between two states is the rate of earthquakes filtered by the probability that structure moves between 

the two states given the occurrence of one event. 
 

( ) ,1 E i jP j th state at k i th state at k P − + −  =    
(7) 

4.2. Formulating the damage accumulation process 

On the basis of Equation (7), the matrix reporting the probabilities of the structure moving between 

any two states in a unit-time interval,  , 1k k + , is given by Equation (8). In the equation:  I  is the 

identity matrix representing the certitude that the structure remains in the same state if no earthquakes 

occur in the unit-time interval; and ( )1 E−  is the probability of not observing an earthquake in the 

unit-time interval. 

( )   ( )  

( ) ( )

 

1, 1,2 1,

2

2, 2,

3

1 , 1 ,

, 1 1

1

0 1

0 0 1

0 0 1

E E

n

E j E E n

j

n

E j E n

j E

E En n n n

P k k P I

P P P

P P
P

P P

 

  

 

 

=

=

− −

+ =  + −  =  
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−   
= = 
 
 

−   
 
 




 

(8) 
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In these conditions the stochastic damage accumulation process results to be an homogeneous Markov 

chain, which is completely characterized by the transition matrix,  EP , in Equation (8). This means 

that the transition matrix for m time units, ( ),P k k m+   , is given by the m-th power of the unit time 

transition matrix that characterizes the process, as in Equation (9). 

( )

( ) ( )

 

1, 1,2 1,

2

2, 2,

3

1 , 1 ,

,

1

0 1

0 0 1

0 0 1

m
n

E j E E n

j

n

E j E n m
j E

E En n n n

P k k m

P P P

P P
P

P P

  

 

 

=

=

− −

+ =  

 
−    

 
 

−   
= = 
 
 

−   
 
 



  (9) 

In other words, if one wants to know the probability of finding the structure in any of the possible 

states (including collapse) at time k m+ , given a vector (size 1 n ) collecting the (initial) 

probabilities of structure being in one of the states at k, 0 0 0

1 2 nP P P   , one has to simply do 

the product in Equation (10).  

( ) ( ) ( )0 0 0

1 2 1 2, , ,
m

n E nP P P P P k k m P k k m P k k m    = + + +       (10) 

It is to note that the Markov chain resulting from this model is homogeneous (i.e., the transition matrix 

for m time units does not change through time; i.e., does not depend on k) because the transition 

probabilities given the occurrence of one event are dependent on the state of the structure and not on 

its age, and because the rate of occurrence of earthquakes also does not depend on time, due to PSHA 

hypotheses. However, the model is able to accommodate both for the variation in time of the transition 

probabilities due to aging of the structure, and rate of occurrence of earthquakes which is time-variant 

(for example during aftershocks sequences); these issues, which are outside the scope of this study, 

are briefly discussed in the appendix.  

Based on the model of Equation (10) it is possible to compute the mean of the time to collapse, 

fE k   , that is the average time to get to the last (absorbing) state. The derivation of the relationship 

to compute the mean number of time units to collapse the structure is given in Equation (11), where 

( ) nP DS i DS    is the probability that at time i the structure has not failed yet, as nDS  is the last 

(absorbing) state.3 

( )

( ) ( ) 

  

0 0

1 1 1

0 0 0

1 2

1

1

1

1 0 0 1

f f f f

i i

f n n

i i i

i T

n E

i

E k i P k i i P k i P k i

P k i P DS i DS P DS i DS

P P P P

+ +

= =

+ + +

= = =

+

=

       =  = =   −  + =       

 =  =  = −  =       

   = −     

 

  



 (11) 

 
3 Note that the mean time-to-failure is not especially sensitive to the number of states selected for the discretization of the 

damage domain, because the simulation-based calibration procedures described in section 5, allow the model to well 

approximate it, even in the case a very small number of state is considered. 



 10 

Finally, although it is out of the scope of this study, which focuses on damage accumulation, it is 

worth to briefly discuss how to include the effect of repair in the developed Markov chain. The effect 

of repair may be readily introduced in the context of this model following the approach described in 

[17]. The latter makes use of the so-called reset matrix, which is a transition matrix analogous to that 

describing damage accumulation, yet defined to represent maintenance in a probabilistic manner. In 

fact, it is filled with the probabilities that repair moves the structure from any damage state to any 

other damage state. 

5. MODEL CALIBRATION 

5.1. Damage states 

In this section the calibration of the reliability model resulting in Equation (9) is illustrated. In 

particular, two structural systems, represented for simplicity, yet without harm to generality, via 

SDOF systems are discussed: the EPP and the PIN systems of Figure 2. The damage criterion 

considered is a strain-based one, that is the damage states are identified by means of maximum 

transient displacement thresholds until collapse (drift ratio, in fact, and to this aim both SDOFs are 

assumed to be 1m in height). Five damage states are arbitrarily defined: as-new (AN) conditions, 

immediate occupancy (IO), life safety (LS), collapse prevention (CP), and failure (F) indicating 

collapse. The DS’ thresholds are identified on the backbones of the two systems in Figure 5. The 

corresponding values of drift rotations identifying the damage states are common to the two systems 

and are listed in Table 1.  

 

Figure 5. Damage states and limit state thresholds arbitrarily identified for the two systems (figure not to scale). 

Table 1. Damage state thresholds in terms of transient drift angle for the two considered systems. 

AN ( )1x   IO ( )2x  LS ( )3x  CP ( )4x  F 

0.0076 0.0175 0.0497 0.1  – 

A structural systems travels from a damage state ( )i  to a worse one ( )j i  in one earthquake, if and 

only if, the maximum (over the history) transient drift has put the structure in state i and in the specific 

earthquake the maximum drift exceeds the historical maximum and is such to put the structure in state 

j. It is to note at this point that the transition probabilities in one earthquake depend not only on the 

transient drift thresholds identifying the DS’, but also on the residual displacement the structure has 

at the time of the earthquake. It is easy to recognize, indeed, that the jump (in term of maximum 

transient displacement) between states the structure has to perform to worsen its structural conditions 

is dependent on the arrival point (transient drift threshold) but also on the starting point (residual 

displacement before the event); see section 4.  

In this sense, the Markovian representation of the damage accumulation process would require 

the state of the structure identified by means of two parameters: the pair of maximum recorded 

transited displacement (which provides the limit to pass to worsen damage conditions) and the current 

residual displacement, which serves, in conjunction with the maximum displacement, to compute the 

increment of transient displacement needed to change the state; see Figure 3. A more rigorous 
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Markovian description of the damage accumulation process would lead to consider a transition matrix 

having much more states/rows than those considered in Table 1. Indeed, it should be necessary to 

consider states that account for any possible combination of transient and residual displacements. 

This gives the chance to discuss an important issue in the context of this study, that is, the effect 

of the number of states on the reliability assessment. In fact, once the domain of the damage measure, 

continuous in principle, is discretized in order to introduce in a simple and effective manner, the 

dependence of future increments of degradation level on the state of the structure, then an 

approximation in the stochastic analysis is introduced. In particular, the discrete-time discrete-state 

Markov model tend to less faithfully reproduce the paths of the process being approximated, while 

capturing them on average. Such an approximation, arguably, tends to increase as a smaller number 

of states is considered (similar to when a continuous random variable is approximated by a discrete 

one). On the other hand, a large number of states is detrimental with respect to the effort for model 

calibration (see section 5). Thus, in setting the number of states, this trade-off has to be considered.  

That being said, for what concerns the number of states selected herein, the choice made is to be 

consistent with the standard of damage conditions in PBEE (i.e., usually five). Moreover, as discussed 

in the following, the dependency of transition probabilities on the residual displacement will be only 

implicitly considered in the model calibration approaches employed in this study, consistently with 

the literature on the topic of state-dependent fragility curves. The main reason for this is that the 

complexity of the model that explicitly considers the dependence on the residual displacement makes 

its calibration hardly feasible in practice. 

5.2. Options to fill the transition matrices in one event and in one time unit 

The transition probabilities in one earthquake ( ),i jP  needed to fill the matrix in Equation (4), lying 

at the core of the model, can be computed following two (alternative) approaches. 

The first one is that of Equation (5), in which each 
,i jP  terms computed via state-dependent 

fragilities (i.e., transition probability from a state to a worse one, given a specific value of earthquake 

intensity) times the distribution of intensity in one earthquake. Equation (12) shows how to retrieve 

the vulnerability term of Equation (5) from state-dependent fragility curves (at the right hand side).  

( )1 ,

P j th state i th state IM z P j th state or worse i th state IM z

P j th state or worse i th state IM z j i

 − −  =  =  − −  =  +   

−  + − −  =   

 (12) 

It may be interesting to note that, using state-dependent fragility curves, Equation (7) may be 

rewritten as in Equation (13), a format common in PBEE, where ( )imd z  is the absolute value of 

the derivative of the hazard curve for the site of the construction [5]. 

( ), ,E i j im

im

P P j th state i th state IM z d z j i  =  − −  =      (13) 

To compute state-dependent fragility function the approach of [16] may be pursued, which is based 

on back-to-back incremental dynamic analysis of the damaged structure. This method is used for the 

EPP system in section 5.5. Therefore, while the interested reader is referred to [16] for details, a 

summary of the steps, as they are employed herein to compute the transition probabilities in one 

event, is given here: 

1. a set of ground motion records is chosen to simulate seismic structural behavior; 

2. each record is scaled in amplitude (by means of the chosen IM; assumed to be sufficient in the 

sense of [18]) until the structural response of the as new structure reaches a threshold 

corresponding to any of the damage states considered; 
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3. the distribution of the IM values from step 2 provides four empirical probability distribution 

functions, representing the transition probability from AN to any other DS in one event of 

given intensity (for convenience lognormal models, featuring the sample means and variances 

of the logs, is used to replace the empirical distributions); 

4. because each of the analyses of step 2 also provides a damaged structural model (including 

the residual displacement from the last shock), dynamic analyses of the damaged models are 

carried out sampling for each model a record from the set of step 1 – these analyses entail 

scaling the record until it is reached each of the damage states worse than that of the analyzed 

damaged models; 

5. step 3 is repeated for the IMs from step 4 grouped by means of the departure damage states; 

therefore, this step provides the remaining set of state-dependent fragility functions, in 

analogy to step 3, which provides damage fragility for the as-new model; 

6. the probability of transition from a DS to another (worse) DS are obtained by difference of 

the fragility curves just retrieved as per Equation (12);  

7. each of the fragility functions obtained in steps 1-5 is integrated with the hazard curve, as in 

Equation (13), to get the i j  terms of the transition matrix in Equation (8); 

8. finally,  the terms for i j=  are obtained as a complement to one of the sum of the others for 

the same i; see Equation (8).4 

An original alternative approach is also followed in this paper. It is based on Monte Carlo simulation, 

of structural response to sequences of seismic events, to directly compute the probabilities appearing 

in Equation (4) (i.e., the transition probabilities given the occurrence of one event), which are the core 

terms to get the unit-time transition matrix in Equation (8). The simulation procedure (the flowchart 

of which is given in Figure 6) deploys in the following steps: 

1. according to the distribution of intensity in one earthquake (obtained from the hazard curve 

for the site of the construction divided by E ), a realization of IM (assumed to be sufficient 

in the sense of [18]) is sampled; 

2. one record is randomly selected from a set of records chosen to analyze the structure; 

3. the selected record is scaled in amplitude in order to feature the IM value from step 1; 

4. time-history analysis of the structure to the scaled record is carried out; 

5. the resulting damage state of the structure is assessed and saved together with the state 

previous to the analysis;  

6. steps 1-5 are repeated with the structural model in initial conditions which are those final of 

the last time-history (including residual displacement, which becomes initial condition for the 

new analysis), until the structure gets the final (F) state; 

7. steps 1-6 are repeated (i.e., a new sequence is simulated), resetting at the beginning the 

structural state to AN conditions structural state (i.e., the first nonlinear dynamic analysis of 

the sequence is performed on as-new model), until a sufficiently large number of transitions 

between any pair of damage states is observed. 

 
4 It is to note that, the method in [16] implicitly relies on the assumption that the residual displacement for a structure in a state mainly 

depends on the threshold to enter the state and that (in particular) the earthquakes not causing transitions also provide negligible change 

in the distribution of the residual displacement of the structure. 
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Figure 6. Flow chart of the simulation procedure to get the transition probabilities given the occurrence of one 

event; i.e., Equation (8). 

Note that both approaches to calibrate the model, simulating the structural behavior considering the 

residual displacement observed in previous analyses, implicitly account for the dependency of the 

transition probabilities from the residual displacement. However, the one from [16] is significantly 

more efficient (i.e., less demanding in terms of structural analyses) than the simulation-based just 

illustrated. On the other hand, as a trade-off, it may be demonstrated that it requires to assume that 

the distribution of the residual displacement given the structure is in a state, is independent of the path 

(history) that took the structure to that state. This latter hypothesis has to be verified case-by-case and 

therefore a full comparison of the two methods, which should lead in principle to the same results, 

cannot be fully addressed in the context of this paper.  

Also note that both approaches require the distribution of intensity in one earthquake, that is, the 

probability distribution of the ground motion intensity when one earthquake occurs at the site. It may 

be easily obtained from the annual hazard curves dividing by the rate of earthquakes on the seismic 

source. Thus, in the following subsection, this issue is addressed first; subsequently, the transition 

matrices in one earthquake are calibrated for the PIN and EPP systems, following Figure 6 for the 

former and the state-dependent fragility approach for the latter, to finally get unit-time transition 

matrix and preform the reliability assessment for both SDOFs. 

5.3.Seismic hazard and IM distribution 

The earthquake damage accumulation process requires the distribution of earthquake intensity given 

the occurrence of a seismic shock. This means to carry PSHA for the site of the construction. The 

chosen ground motion intensity measure is the spectral acceleration at the elastic period of the two 

systems, ( )0.5Sa T s= , which is the same for both (to follow). Both systems are supposed located in 

Sulmona (close to L’Aquila, in central Italy). PSHA for this site (Figure 7, left) was carried out via 
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the FORTRAN code also used in [19]. In the software, seismogenic source zones of Italy are those 

of [20], while seismic parameters of each zone are those from [21,22]. The adopted GMPE is that of 

[23]. It was assumed that the coordinates of the epicenter are uniformly distributed over each source 

zone. Because of distance applicability limits of the GMPE, contributions distant more than 200 km 

from the site were neglected in hazard computations. 

Figure 7 (left) shows the source zones considered, while Figure 7 (right) provides the resulting 

distribution of intensity at the site given the occurrence of an earthquake. Further details about PSHA 

for the site and a summary of the source zone parameters may be found in [19]. However, a relevant 

information for this study is that the rate of occurrence of earthquakes within the magnitude bounds 

of the considered seismic sources, and then at the site, is  1.95 /E events year = . This annual rate 

times the curve in Figure 7 (right) provides the annual rate of exceedance of IM at the site; i.e., the 

hazard curve; see Equation (6). 

 
Figure 7. Considered site in Italy (triangle), and seismic source zones considered according to the model of [19] 

(left); distribution of ground motion intensity given the occurrence of an earthquake at the site (right). 

5.4. Evolutionary (pinching) system 

The first example of model calibration refers to a PIN-SDOF system of the type in Figure 2 (right). 

Weight is 100 kN and the yielding force ( )1F  is equal to 12.25 kN, which corresponds to a strength 

reduction factor equal to 4 when the mass acceleration is equal to 0.49g; drift at the yielding is equal 

to 0.76%.  2 3 2 3, , ,F F x x  the parameters of Figure 2 are equal to 

 13.8 ,1.38 ,0.0175 ,0.1kNm kNm rad rad , respectively; the unloading/reloading rules are from [15]. 

The described Monte Carlo simulation approach was followed to get the 
,i jP  transition 

probabilities in one event. Indeed, an illustrative example (realization) of a complete simulated 

sequence of events, leading the structure to travel from AN conditions to F damage state, is shown in 

Figure 8. The sequence features about nine-hundreds sampled intensities and ground motions.5 

Transition to the IO state occurs during the fourth record while, due to the 749th, 840th and 868th 

extracted intensities and consequent ground shaking, the SDOF reaches LS, CP and F, damage states, 

respectively. Total hysteresis after each state transition, is also reported in the picture. 

In the case of the PIN systems, a total of sixty seismic sequences have been simulated. Given 

that the structure is in damage state i, the probability the structure moves to a damage state j, 

( )1i j n+   , in one event, 
,i jP , is estimated via the ratio of the number of transitions between the 

 
5 In fact, most of them is of small intensity, as expected from the hazard curve, creating no transition between damage states. For 

example, the first three of them are under the yielding threshold of the structure (and are not reported in the figure). 
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states and the number of sampled IM values when the structure was in state i. Then the 
,i jP  

probabilities are used in conjunction with the annual occurrence rate of events at the site to get the 

annual transition matrix of Equation (8), as per Table 2.  

Note that, in this case the annual rate of earthquakes is much larger than one, being 1.95 events 

per year (section 5.3). Therefore, in principle, Equation (8) should not be applied as the rate cannot 

be confused with the probability of occurrence of one earthquake. The problem can be easily solved 

obtaining, for example, the monthly earthquake rate dividing 1.95 by 12 and then considering the 

unit-time to be the month, while keeping the same  P  matrix. Indeed the latter, being transition 

matrix in one generic earthquake, is independent of the event rate. However, as a peculiar effect  of 

the combination of hazard and vulnerability in this specific application (not to generalize), it happens 

that  P  matrix is dominated by the principal diagonal, and the approximation in Equation (8) works, 

in this case, also if the rate is kept yearly, without the need to go to a smaller time unit.  

 
Figure 8. Realization of a seismic sequence from as-new conditions to collapse used to assess transition 

probabilities in the case of occurrence of one event. 

At this point, the reliability assessment can be performed. Indeed, Figure 9 shows curves, function of 

time, which represent the probability the structure gets any damage state given that it starts from any 

other damage state, as per Equation (9). It may be seen from the pictures that the probability of 

remaining in a damage state generally gets lower as time increases, while the probability of getting 

to failure increases with time units, and is non-monotonic for intermediate damage states, as expected. 

Finally, the mean times to failure according to Equation (11) may be computed for the PIN structure 

in AN conditions at time zero, it results  181fE k years  =  . 

Table 2. Transition probabilities from a state to another in a unit-time interval (i.e.,  EP ) for the PIN system. 

  AN IO LS CP F 

AN 9.66E-01 2.65E-02 3.88E-03 4.93E-04 3.40E-03 

IO 0 9.89E-01 5.27E-03 6.32E-04 4.64E-03 

LS 0 0 9.93E-01 9.11E-04 5.69E-03 

CP 0 0 0 9.67E-01 3.31E-02 

F 0 0 0 0 1 
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Figure 9. Damage state probabilities, from any initial state to any other damage state, as a function of time for 

the PIN system. 

5.5. Elastic-perfectly-plastic system  

In the case of EPP (having the same period, weight and yielding force of the PIN system), the 

approach of [8,16] has been used to fill the unit-time transition matrix of Equation (8). In fact, a 

different approach, with respect to the PIN system was chosen to report in this study both the options 

readily available to calibrate the reliability model.  

The records employed in the analysis summarized in the steps listed in section 5.2, are the same 

as those of the simulations for the PIN system. The resulting state-dependent (lognormal) fragility 

curves for the EPP system are given in Figure 10.  

After taking the differences of these, as per Equation (12), and the integration with the site-

specific hazard, as per Equation (13), the unit-time transition matrix of Equation (8) is obtained; see 

Table 3. Consequently, the time-variant probabilities of getting in any DS state for the structure 

starting in any other state, from Equation (9), are given in Figure 11. It may be observed that the EPP 

is, as expected, more reliable than the PIN system. Indeed, the mean time to failure from as-new 

conditions may be computed also for the EPP structure; it results  718fE k years  =  . The large 

average time to collapse of this system, in comparison with the PIN systems, confirms the 

comparatively lower vulnerability of this hysteretic loop. 

Table 3. Transition probabilities from a state to another in a unit-time interval (i.e.,  EP ) for the EPP system. 

  AN IO LS CP F 

AN 9.66E-01 2.55E-02 6.48E-03 1.26E-03 7.18E-04 

IO 0 9.85E-01 1.25E-02 1.47E-03 7.48E-04 

LS 0 0 9.96E-01 2.84E-03 1.01E-03 

CP 0 0 0 9.98E-01 1.71E-03 

F 0 0 0 0 1 
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Figure 10. State-dependent lognormal fragility curves for the EPP system derived via the method in [16]. 

 

Figure 11. Damage state probabilities, from any initial state to any other damage state, as a function of time for 

the EPP system. 
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6. CONCLUSIONS 

In the study, a reliability model for structures cumulating seismic damage was presented. The model 

is based on a Markovian representation of the degradation (i.e., seismic damage accumulation) 

process. The model is (pure) state-dependent, that is the evolution of the process after a certain time 

probabilistically depends only on the state of the structure at that time. Thus it relies on a stationary 

transition matrix, which completely characterizes the stochastic process, that is, a homogenous 

Markov chain. The transition matrix collects the probabilities that the structures passes from any 

damage state (which collectively define the ensemble of the possible conditions of the structure) to 

any another, in a unitary time interval. The matrix is obtained multiplying the rate of occurrence of 

events on the seismic source of interest by the probabilities of transition between different states 

during one earthquake.  

Transition probabilities given the occurrence of one event may be obtained by simulation of 

seismic sequences, or integrating state-dependent fragility curves with the distribution of ground 

motion intensity in one earthquake. Both approaches to case-specific model calibration were 

followed, for illustrative purposes, in the study. 

From the structural engineering point of view, it was shown that either the hysteretic behavior 

and/or the type of index used to measure damage, can lead to a state-dependent representation of the 

degradation phenomenon, which makes the Markov chain a viable and closed-form solution to the 

damage accumulation reliability problem. Indeed, it allows the reliability assessment in the life-cycle 

with a very low computational demand (simply taking powers of the annual transition matrix over 

the time interval of interest). Finally, it enables to remove the conventional hypotheses of a quite large 

deal of literature, which assumes independent, and often identically distributed, degradation 

increments. 

To discuss possible strategies to calibration of model’s parameters, two applications were set up. 

They both rely, for simplicity, to single-degree-of-freedom systems ideally located in central Italy, a 

region of relatively high seismic hazard in the country. For both systems the damage measure is strain-

based one, which implies that damage can increase in a shock only if the maximum displacement 

recorded in the seismic history is exceeded in that shock. The first system is a pinching systems with 

evolutionary hysteretic behavior. For this structure, the stochastic dependence of the damage 

increment on the state primarily arises from the hysteretic loop. The second is an elastic perfectly 

plastic single degree of freedom system. This system has a seismic response, which remains unaltered 

through seismic shocks; however, the use of a strain-based damage measure introduces a form of 

stochastic dependence of the damage increment on the seismic history of the structure, which lets the 

damage accumulation process be a state-dependent one as well.  

For both systems it was discussed how the state is defined by a number of parameters: the 

maximum/minimum recorded displacements and the residual displacement. For the two systems, 

transition probabilities were computed suppressing the stochastic dependence of the state on the 

residual displacement (so as to reduce the number of states and, consequently, the size of the transition 

matrix) and combined with hazard for the considered site, resulting in unit-time transition 

probabilities. Results of the reliability assessment for the illustrative applications allow appreciating 

the generality of the developed approach for life-cycle analysis of degrading earthquake-resistant 

structures. 

Finally, a discussion is given in the appendix about how the model may virtually account for: (i) 

non-stationary earthquake occurrence rates (e.g., during aftershock sequences); (ii) non-stationary 

fragility curves because of aging, via a time-variant transition matrix given (i.e., an age- and state-

dependent Markovian model); (iii) the combination of seismic damage accumulation and/or aging 

with other degradation phenomena such as fatigue or other non-seismic shocks.  
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APPENDIX: MODEL EXTENSIONS 

This section briefly discusses some issues the Markovian model developed may take into account 

with formally simple extensions. In particular, in the following subsections three cases are considered: 

(i) the rate of occurrence of earthquakes is time-variant, for example, as in the case of aftershock 

sequences, where the occurrence of aftershocks is represented by means of a non-homogeneous 

Poisson process; (ii) the seismic behavior of the structure changes in time because of, for example, 

aging of structural characteristics; (iii) other shocks different from earthquakes, as traffic load or 

fatigue, may let damage to accumulate and the structure to degrade in combination with seismic 

shocks. 

A.1. Time-variant earthquake occurrence rate 

There are cases of engineering interest in which the rate of occurrence of earthquakes is not time-

invariant such as in the classical probabilistic seismic hazard analysis. This is the case, for example, 

of aftershock sequences. According to [24], during aftershock sequences the rate of exceedance of 

IM at the site of the structure is given by Equation (14), which is equivalent to Equation (6), except 

that: (i) the rate of occurrence of aftershocks, ( )
EA m

t , conditional on the magnitude of the 

mainshock, changes (decreases) as the time since the mainshock increases, and that (ii) the 

distribution and magnitude and source to site distance of aftershocks, 
, ,A A E EM R m r

f , is conditional to the 

magnitude ( )EM  and distance ( )ER  of the mainshock (location, in fact). 

( ) ( ), ,
, ,

E A A E E
im A AA m M R m r

r m

t P IM im M x R y f x y dx dy =    = =        (14)

 

If one wants to model the damage accumulation during aftershock sequences, one may apply a 

Markovian model such as in Equation (8), where the unit-time transition matrix is that in Equation 

(15), where k is the number of time units from the mainshock. In the equation the 
,i jP  terms represent 

the transition probabilities between states i and j given the occurrence of an aftershock. Therefore, 

they may be obtained, for example, integrating the state-dependent fragility, as in Equation (13), just 

considering that the IM is that of aftershocks.  
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Clearly, the transition matrix changes with time leading to a non-homogeneous Markov chain, in this 

case the probabilistic prediction of the evolution of damage is given by Equation (16) where the 
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product of the transition matrices for various instants replace the powers of the stationary transition 

matrix in Equation (9). 

( ) ( )
1

, 1,
m

E

i

P k k m P k i k i
=

+ = + − +        (16)

 
A.2. Including the effect of aging on seismic vulnerability 

It may be the case that the transition probability between states is time-variant because the structural 

characteristics change with time. This is often referred to as aging, and it is usually due to degradation 

of material characteristics, corrosion and similar phenomena. This issue renders the unit-time 

transition matrix non-stationary, as in the previously examined case; however, the transition 

probabilities carry this variability rather than the earthquake occurrence rate, Equation (17). To 

calibrate this model, one must be able to probabilistically characterize the transition probabilities as 

a function of time. Once the transition matrix is defined for this model, which results being an age- 

and state-dependent one, Equation (16) applies again for probabilistic predictions over an arbitrary 

number of time intervals. 
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A.3. Including other sources of age -and state-dependent deterioration 

There are cases in which there are other sources of damage accumulation different from earthquakes, 

yet producing a similar effect. This may be the case of traffic loads, fatigue and other shocks, the 

occurrence of which, differently from earthquakes, cannot be directly observed. This degradation 

phenomenon, therefore, may be seen progressive with respect to that of seismic origin, which is 

sudden. The Markov chain is virtually able to include the effect of a secondary damage process. This 

requires the definition of a unit-time transition matrix, ( )' , 1P k k +  , for the progressive degradation. 

The matrix should feature the same set of states used to define damage in the seismic case. The matrix 

in Equation (18) reports the probabilities that the structure moves between states in the ( ), 1k k +  time 

interval due to progressive deterioration; note that, in general, this matrix is time-variant.  
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( ) ( ) ( )

( ) ( )
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=

=
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(18) 
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Consider now that the structure is subjected to both seismic and progressive degradation phenomena 

[25]. In a unitary time interval, two cases are possible: (i) no earthquakes occur, then degradation is 

due to the secondary cause only; (ii) an earthquake occurs, then the structure can travel to a worse DS 

because of both phenomena. Applying the total probability theorem with respect to the occurrence of 

earthquakes, the global transition matrix across the unitary interval, ( ), 1P k k +   , is given by 

Equation (19). Consequently, the transition probabilities in m intervals are given by Equation (20).  

( ) ( ) ( ) ( ) ( )' ', 1 , 1 , 1 1 , 1E E EP k k P k k P k k P k k      + =  +  + + −  +           (19) 

( )

( ) ( ) ( ) ( ) ' '

1

,

1, 1, 1 1,
m

E E E

i

P k k m

P k i k i P k i k i P k i k i 
=

+ =  

     =  + − +  + − + + −  + − +     
 

 

(20)

 

Equation (19) represents an age- and state-dependent reliability model. Obviously, if both 
EP    and 

'P    are stationary, then the unit-time transition matrix is time-invariant, then the more simple 

Equation (21) applies.  

( ) ( ) ' ', 1
m

E E EP k k m P P P      + =   + −         
  

(21) 


