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Design of Artificial-Materials-based Antennas  
Using Inverse Scattering Techniques 

 
Abstract— A new approach to the design of Graded Artificial 

Material (GAM)-based devices is proposed by exploiting the 
inverse scattering framework as a synthesis tool. The introduced 
general methodology can be applied to arbitrary far-field 
specifications, thus allowing the design of non-canonical devices. 
In particular, two different strategies are developed for GAMs 
based on either graded refractive index (GAMR) or graded filling 
factor (GAMF). In both strategies, the inverse scattering problem 
is solved by a proper reformulation of the Contrast Source 
Inversion method, wherein a proper rescaling of the amplitude of 
the primary sources is also used. In particular, in the first 
strategy, the GAMF is obtained by exploiting homogenization 
theories. In the second strategy, the GAMR is synthesized by 
exploiting a suitable representation basis for the unknown 
contrast function, and, then, simple analytical formulas are used 
to determine the corresponding GAMF. The proposed approach is 
assessed through the synthesis of an antenna generating a Σ/∆ 
reconfigurable pattern. 
 

Index Terms—Antenna synthesis, flat antennas, gradient 
index lens, homogenization, inverse scattering, reconfigurable 
patterns. 

I. INTRODUCTION 
RADED Refractive INdex (GRIN) media enable the 
control of the electromagnetic field paths. Classical 
GRIN devices are the Luneburg lens [1],[2] and the 

Maxwell fish-eye lens [3] (with their variants [4]–[8]). These 
elegant analytical solutions of the Maxwell equations allow 
for the design and building of useful antennas and devices; 
however, they just represent a very restricted set of the 
different electromagnetic field behaviors that one can pursue 
using a GRIN-based antenna. 

To enforce a different given behavior of the electromagnetic 
field, some general framework and suitable techniques are 
required.  

As one possibility, Transformation Optics (TO) theory [9] 
provides a general methodology for controlling the 
electromagnetic waves propagation by tailoring the spatial 
constitutive profile of a material [4]-[7],[10],[11]. 
Unfortunately, the bi-anisotropic materials generally obtained 
by TO are so complicated that they cannot be easily realized. 
Thus, to more easily manufacture electromagnetic devices, 

 
 

one can relax the exact required parameters of the material at 
the cost of an unavoidable deterioration of the performances. 

A suitable and more flexible alternative method, 
introduced in [12] and recently re-proposed by the present 
research group [13]-[15], is based on inverse scattering theory, 
which provides an interesting framework for the synthesis of 
dielectric profile antennas and other devices. In fact, this 
method represents a general methodology that allows control 
of the electromagnetic waves path to obtain arbitrary field 
specifications. 

Inverse scattering techniques [16],[17] are currently widely 
exploited for non-invasive microwave imaging and 
diagnostics. Indeed, in an inverse scattering problem (ISP), the 
aim is to retrieve the location, shape and electromagnetic 
properties of an unknown object starting from the knowledge 
of the incident field and the measurements of the arising 
scattered or total field. Such diagnosis problem can be 
transformed into a synthesis problem by considering a specific 
behavior of the total field as available data of the problem 
(rather than the measured total field). In this case, the new aim 
of the problem is to determine the dielectric profile of an 
object such that the interaction with an impinging wave will 
give rise to the specified total field. 

Notably, the solution of an ISP represents a very difficult 
task as it is non-linear and can give rise to the so-called “false 
solutions” [18], which could be completely different from the 
actual ground truth. However, in the adoption of inverse 
scattering techniques as a design tool, the non-linearity of the 
ISP is not equally problematic. In fact, any dielectric profile is 
admissible as long as a good matching with the expected field 
characteristics is achieved. 

From a practical perspective, the realization of a GRIN lens 
with a generic gradient index profile poses difficult fabrication 
challenges. Hence, investigations have been performed on 
stepped-index lenses [19]–[21], in which the desired 
continuous variation of the refraction index with radius is 
approximated by a number of constant-index spherical shells. 
As it can be expected, such a strategy results in a tradeoff 
between the number of shells and the achieved performances. 

Recently, more effective fabrication techniques have been 
developed based on the use of Graded Artificial Materials 
(GAMs) [22]–[26], through which the guiding of the 
electromagnetic waves is performed using a well-designed 
spatially dependent dispersion, i.e., by engineering the filling 
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factor, the lattice period, and/or the material index of the 
device. Such structures are widely used in the literature, and 
good results have been obtained for the realization of 
canonical lenses [8], [27]–[31]. The design of the above-
described GAMs-based canonical lenses is essentially based 
on the homogenization theory, with the Maxwell-Garnett 
effective medium [32] being the most frequently used 
technique. To the best of our knowledge, there is no general 
approach in the literature to synthesize Artificial Materials 
(AM) based devices for the case of (non-canonical) lenses 
realizing an arbitrarily given electromagnetic field behavior. 

In this paper, we introduce a general methodology that can 
be applied to arbitrary field specifications and allows the 
design of two-dimensional GAMs by exploiting the inverse 
scattering framework. It is important to underline that, 
different from approaches [12]-[15], in the proposed approach 
multi-purpose devices are dealt with and the practical 
realization issue is addressed by taking advantage from AM. 
In particular, the design of an AM-based lens antenna is 
pursued. Besides being a step toward the realization of 3D 
antennas, consideration of 2D AM-based devices has an 
interest by per se. In fact, a practical implementation can be 
considered by using parallel plate waveguides [33]–[34], such 
that a proper ‘arraying’ along the residual direction can allow 
actual 3D design solutions. Moreover, the 2D problem herein 
considered shows an interesting relationship with the synthesis 
of flat antennas, whose interest is recently growing [35]–[38]. 
In fact, in both cases, one must realize a proper arrangement of 
the field paths along a plane. 

The overall procedure consists of two steps. In the first step, 
a far-field pattern obeying some mask constraints is 
synthesized. In the second step, the ISP is solved to synthesize 
a device able to radiate the far-field pattern resulting from the 
previous step. Because the final goal of the approach is to 
design a GAMs device with a gradient of the filling factor, we 
propose and compare two different strategies to accomplish 
such a goal. In particular, a first and more intuitive possibility 
concerns the use of the effective medium theory on the 
obtained continuous GRIN profile. As a second and more 
original possibility, we propose an approach based on the use 
of a convenient basis expansion of the unknown contrast 
function and simple analytical arguments. 

The paper is structured as follows. In Section II, the basics 
of the ISP and the Contrast Source Inversion (CSI) [39]–[41] 
method are reviewed. In Section III, a novel reformulation of 
the CSI is given, allowing for tuning of the amplitude of the 
primary sources. The two GAMs synthesis procedures are 
explained in Section IV. Finally, in Section V, the proposed 
approach is assessed through the design of an antenna for 
radar applications. The conclusions are presented last. 

II. THE INVERSE SCATTERING PROBLEM AND THE CONTRAST 
SOURCE INVERSION METHOD 

Let us consider a region of interest Ω in which the 
background medium is air (ߝ௕ = ௕ߪ ,1 = 0 being the relative 
permittivity and conductivity, respectively), and let Γ௧ and Γ௢ 
be the illumination and the observation surface, respectively. 

For a 2D TM scalar problem (and by omitting the implicit 
time harmonic factor exp(݆߱ݐ)), a rather usual formulation of 
the ISP [16],[17] reads: 

 
,࢕࢘)௦ܧ ࢚࢘) = ࣛ௘[ܹ(࢘, ࢚࢘)] 

(1) = −
଴ଶߚ݆

4 නܪ଴
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ஐ

,			࢘ ∈ Ω 

(2) 
where ܧ௜ and ܧ௦ are the incident and scattered field, 
respectively, ܹ =  ௧ is the so-called contrast source, andܧ߯
௧ܧ = ௜ܧ + ଴ܪ ௦ is the total field. The kernelܧ

(ଶ)(ߚ଴࢘) of the 
integral operator is the Hankel function of zero order and 
second kind, ߚ଴ is the wavenumber in the background 
medium, ࢚࢘ = ௧ݎ) ࢕࢘ ௧) andߠ, =  are the illumination (௢ߠ,௢ݎ)
and the observation positions, respectively, while ࣛ௘ and ࣛ௜ 
are a short notation for the integral radiation operators. 

ISP aims at retrieving the contrast function ߯ starting from 
the knowledge of the scattered field ܧ௦ on Γ௢. The contrast 
function ߯(࢘) = −(࢘)௥̃ߝ) (௕ߝ ⁄௕ߝ  encodes the electromagnetic 
properties of the region Ω; in particular, ߝ௥̃(࢘) = −(࢘)௥ߝ
 ଴ is the complex relative permittivity, ߱ being theߝ߱/(࢘)௥ߪ݆
angular frequency and ߝ଴ the permittivity of the vacuum. 

As it is well known, ISP is non-linear since both the 
contrast function ߯ and the contrast source ܹ are unknowns 
[16],[17]. In order to face such a difficulty, several efforts 
have been carried out in the literature to develop effective 
solution methods [18],[39]–[43]. The CSI method [39],[40] is 
one of the most popular and effective inversion schemes. As a 
matter of fact, it allows to face ISP in its full non-linearity, 
while dealing with a mathematical problem involving just 
linear and quadratic equations.  

In particular, it simultaneously looks for both the contrast ߯ 
and the contrast source ܹ, and the solution is iteratively built 
by minimizing the cost functional (3), which takes into 
account the data-to-unknown relationship and the physical 
model [18],[39]–[41]: 

߶(ܹ,߯) = ෍
ฮࣛ௘ൣܹ(௩)൧ − ௦ܧ
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where the dependence on ࢘ and ࢘࢕ has been omitted for the 
sake of brevity, while the dependence from ࢚࢘ is identified by 
the superscript ݒ. ‖∙‖ଶ is the ℓଶ-norm and ܶ is the number of 
different incident fields corresponding to different positions 
࢚࢘. 

As proposed in [41], the minimization of (3) can be 
pursued by means of a conjugate gradient algorithm in which, 
at each step, the values of ߯ and ܹ(௩) are updated by a line 



 

 

 

 

minimization procedure. Obviously, other minimization 
schemes (including off the shelf numerical routines) can be 
used. In fact, this will not affect the final results, the only 
resulting difference being the computational time. 

III. A MODIFIED CSI AS A DESIGN TOOL 
When a synthesis problem is considered instead of a 

diagnostic one, the aim becomes determining ߯(࢘) starting 
from the knowledge of the incident field and obeying given 
specifications of the total field. Let us note explicitly that 
design constraints are given in terms of the total fields; this 
approach is slightly different from the typical ISP, where 
equations are usually written in terms of the scattered field. 
Obviously, one can easily go from one formulation to another 
by simply subtracting or adding the incident fields.  

Note that for a given total field on the observation domain 
Γ௢, different amplitudes of the incident fields give rise to 
different requirements on the scattered fields (and hence to 
different profiles). For this reason, differently from approaches 
[12]-[15], it proves convenient to modify the standard CSI 
algorithm by considering one more set of complex unknowns 
߬(௩) modulating the amplitudes of the primary sources. In fact, 
exploitation of these additional degrees of freedom will allow 
for a better matching of the desired fields and/or to simpler 
contrast profiles. Thus, it is convenient to distinguish among a 
‘basic’ incident field ܧ෠௜

(௩)(corresponding to unitary excitation) 
and an ‘actual’ incident field ܧ௜ (corresponding to the 
synthesized excitations of the primary sources times of the 
relevant ܧ෠௜

(௩)).  
Accordingly, the CSI functional is recast as follows: 
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where the scattered field is split as ܧ௦ = ௧ܧ −  .෠௜ܧ߬

As it can be seen, the normalization herein considered for 
the first addendum is not the same as that of equation (3); in 
fact, the total field is considered instead of the scattered field 
because it represents the actual data of the problem. 

The solution of the designing ISP problem can still be 
solved by minimizing the cost function (4) and by adopting 
the procedure developed in [41]. 

A simple modification of the proposed synthesis tool (see 
below) concerns the possible addition of penalty terms to the 
cost function to enforce some desired behaviors on the profile. 
In fact, besides the total field specifications, one could require 
some desired properties on the contrast function. Notably, the 
additive penalty terms enforce the desired behavior on ߯, and 
the original term ߶(ܹ,߯, ߬) penalizes the violation of the data 
and physical model mismatch [41],[43],[44]. In summary, the 
final optimization problem reads: 

 

min
ௐ,ఞ,ఛ

߶′ = min
ௐ,ఞ,ఛ

൫߶ + ݇௣߶௣൯ (5) 
 

where ݇௣ is a positive weighting coefficient of the occurring 
penalty term at hand. If ݇௣ is sufficiently large, then the 
minimization is enforced to evolve inside or close to the set 
implicitly defined from the relevant constraint. More details 
on the choice of ݇௣ are given in the numerical section.  

A first possible requirement on ߯ (which is of interest in 
the following) could be enforcing a circular symmetry. In this 
case, the additive penalty term can be expressed as: 

߶௣ = ߶௦ = ฯ
߲߯
ߠ߲
ฯ
ଶ

ଶ

 (6) 

because the minimization of ߶௦ prevents angular variations of 
the contrast function around the center of the coordinate 
system. 
Similarly, the penalty term: 

߶௣ = ߶௥ = ฯ
߲߯
ݎ߲
ฯ
ଶ

ଶ

 (7) 

prevents large radial variations of ߯ and hence provides a 
radially smooth contrast function. 

A third useful requirement could be enforcing lossless and 
physical feasibility properties of the contrast function to 
possibly avoid the use of metamaterials. Clearly, this 
requirement is not strictly needed, but such a restriction can 
allow an easier manufacturing of the device. To this aim, the 
pertaining additional term can be formulated as follows: 

߶௣ = ߶௙ = ‖߯ − ݂(߯)‖ଶଶ (8) 

where ݂(߯) is the projection of ߯ into the set of admissible 
functions (for example, the set of real and positive functions). 

Finally, in the case of circularly symmetric profiles, an 
interesting chance to simplified manufacturing occurs in 
presence of a reduced number of materials when moving along 
the radial coordinate. Such a property is strictly related to the 
‘sparsity’ concept underlying the Compressive Sensing (CS) 
framework [45] (see reference [45] for more details on the CS 
theory and references [13],[44],[46]–[49] for sparsity 
promoting techniques that are of interest herein). One can 
prove that the minimization of the ℓଵ-norm of the radial 
derivative of ߯ both enforces a piecewise constant behavior on 
the contrast profile and promotes the minimal number of hops 
in the synthesized lens. In such a case, the arising penalty term 
reads [13],[44]: 

߶௣ = ߶௦௣ = ฯ
߲߯
ݎ߲
ฯ
ଵ
 (9) 

where ‖∙‖ଵ denotes the ℓଵ-norm. 
Note that the reformulation of the cost function (4) (as well 

as the addition of penalty terms) leads to modification of both 
the gradient of the functional and of the coefficients in the line 
minimization step. For the sake of brevity, we do not provide 
the new expressions because they can be easily calculated 
following the procedure in [41] for the functional and 
[43],[44] for the penalty terms. 



 

 

 

 

IV. GRADED ARTIFICIAL MATERIALS (GAMS) DESIGN TOOLS 
The practical realization of GRIN structures is not a trivial 

task because of the need to realize arbitrary refractive index 
gradients in a controlled manner. To overcome this drawback, 
an approach toward a manufacture simplification could be an 
a-posteriori discretization of the GRIN profile by means of 
several shells [13]. In this case, some optimization procedures 
can be developed to reduce the foreseen degradation of the 
performances [19]–[21]. 

In the last decades, a great amount of effort has been 
devoted to realizing GRIN devices by means of structures 
made by properly arranged cylindrical dielectric or metallic 
rods [23]–[26], because such structures allow control of the 
electromagnetic waves propagation.  

In the following, 2D GAMs comprised of dielectric rods 
are considered, and their design by means of a gradient of the 
filling factor (GAMF) is proposed. Two different approaches 
are introduced that take advantage of the introduced inverse 
scattering methodologies and pursue the synthesis of a GAMF: 
one is a quite straightforward strategy that amounts to 
exploitation of homogenization procedures on the solution of 
the ISP via equation (5) (see Section IV.A); the other is a more 
sophisticated strategy based on an original representation of 
the contrast function, followed by the use of analytically based 
equivalences among different small scatterers (see Section 
IV.B). Note that this second proposed approach leads to the 
intermediate design of GAMs featuring a gradient of the 
refractive index (GAMR), which can be intrinsically relevant. 

To introduce and validate the proposed tools in a simple yet 
significant case, we consider in the following a circularly 
symmetric profile. Notably, such a choice allows steering the 
beam (without incurring into any performance deterioration) 
by accordingly moving the primary sources.  

As far as the arrangement of the rods in the GAMs 
structure is concerned, by taking inspiration from [27] a six-
fold rotational symmetry is considered (see Fig. 1). 
Accordingly, the rods positions on the ݕݔ plane (except for the 
central one) are given by:  

௞,௛ݔ = ݏ݋ܿ	݇݀ ൬
2ℎߨ
6݇

൰ ݕ௞,௛ = ݊݅ݏ	݇݀ ൬
2ℎߨ
6݇

൰ (10) 

wherein ݇ = 1. . ܭ, − 1 is the radial index scanning the rings, 
ℎ = 1, … ,  ௞ are the totalܪ and ܭ ,௞ is the angular indexܪ6
number of the rings for the arrangement of the rods and the 

number of inclusions along the ݇-th ring, respectively, and 
݀ = (ܴ − ܽ) ⁄ܭ  is the periodicity of the adopted triangular 
unit cell reported in Fig. 1, with ܴ being the radius of the 
structure and ܽ the radius of the rods. 

A. Case 1: a Maxwell-Garnett driven procedure 
The Maxwell-Garnett (MG) effective medium theory [32] 

is widely used to define the effective permittivity of AM-
based structures with rods embedded in a host medium. 
Therefore, if the arrangement of the rods is known and a 
polarization for the field is chosen, by applying the MG 
mixing formulas [50] to a GRIN profile, the local permittivity 
value is realized by means of a proper choice of the radii of 
the different rods, to obtain a GAMF structure comprised of 
rods of the same material.  

The strategy proposed in this subsection applies the above-
described homogenization theory to the continuous GRIN 
profile obtained by solving the ISP by minimizing the 
functional (5) (wherein a symmetric behavior has been 
enforced by means of the penalty term ߶௦ in (6)). Note that, to 
the best of our knowledge, to date, the mixing formulas have 
only been applied to realize canonical lenses whose refractive 
index function can be determined analytically [8],[27]–[31]. 
Herein, the mixing formulas are instead exploited for the 
(generic) GRIN distribution arising from the minimization of 
(5).  

In more detail, the mixing formulas are exploited as 
summarized in the following: 
 resample the GRIN profile ߝ௥(࢙࢘)	synthesized by means 

of the modified CSI over a grid of ܰ௣ pixels (ݏ =
1, … ,ܰ௣) in a very dense grid, thus obtaining a new 
GRIN profile ߝ௥(࢘ ෤࢙), with ̃ݏ = 1, … , ෩ܰ௣ and ෩ܰ௣ ≫ ௣ܰ; 

 set ܭ and ܪ௞ in equation (10); 

 ∀	݇-th ring, estimate the pertaining radius for each ℎ-th 
rod by means of the following formula [27]: 

ܽ௞௛ = ඨ
ܵ
ܰߨ

൫ߝ௕ − ௕ߝ)௥ೖ೓൯ߝ + (ிߝ
൫ߝ௕ + ௕ߝ)௥ೖ೓൯ߝ − (ிߝ

 (11) 

wherein ߝி is the permittivity value of the dielectric 
material chosen for the rods making up the GAMF, ܵ is 
the area of the adopted unit cell of the GAMs structure 
and ܰ is the number of rods in the unit cell. Finally, 

         
                                   
                (a)                                                                 (b) 

Fig. 1. (a) AM-based structure with a six-fold rotational symmetry. The triangular unit cell is marked with solid blue lines. (b) Detail of the structure. 



 

 

 

 

௥ೖ೓ߝ =  is the permittivity value of the (ࢎ࢑࢘)௥ߝ
synthesized continuous GRIN profile evaluated in the 
position ࢘ࢎ࢑, i.e., the center of the ℎ-th rod belonging to 
the ݇-th ring (see Fig. 1). 

 
Note that, because the GRIN profiles considered herein are 
circularly symmetric, the radius will be the same for all the 
rods belonging to the ݇-th ring, i.e., ܽ௞௛ ≡ ܽ௞. 

B. Case 2: direct synthesis of GAMs 
As an alternative to the GRIN-to-GAMs transition by 

means of homogenization procedures, in this subsection a 
completely different approach is introduced and discussed. In 
this approach, one first seeks a GAMR structure as follows.  

The unknown contrast function is expanded by means of a 
proper basis function that projects it into the ‘space of rods’, 
i.e.: 

߯(࢘) = ෍߯௞

௄

௞ୀଵ

෍Π
ுೖ

௛ୀଵ

൬
࢘ − ࢎ࢑࢘
ܽ௞

൰ (12) 

where ߯௞ is the contrast value associated with the ݇-th ring of 
rods, and each Πቀ࢘ି࢘ࢎ࢑

௔ೖ
ቁ function (which is associated with a 

single rod) is a circular window of radius ܽ௞ centered in ࢘ࢎ࢑. 
As a consequence, the internal summation defines a composite 
window that is equal to one in each rod belonging to the ݇-th 
ring and is zero elsewhere. 

By using representation (12) for the minimization of 
functional (5), the ultimate unknowns of the problem become 
the coefficients ߯௞, which represent the contrast values of the 
rods belonging to the ݇-th ring. 

Although this result is of intrinsic interest, a more 
interesting design solution is to determine GAMF devices, in 
which the radii (in each ring) are instead the actual degrees of 
freedom of the problem. However, the direct search for the 
radii is a very difficult task because of the indirect manner the 
unknowns ܽ௞ enter into the ISP, thus increasing the non-
linearity of the problem. A potential solution could be the joint 
exploitation of inverse scattering procedures and topology 
optimization techniques [51]. 

Very interestingly, by using classical analytical tools, one 
can exploit the (partial) result obtained by using (12) in the 
minimization of (5), i.e., the GAMR structure, to synthesize in 
a simple fashion a GAMF device. To be specific, smart 
determination of the radii can be pursued by taking advantage 
of the fact that the scattering behavior of each inclusion can be 
conveniently analyzed in terms of a so-called scattering matrix 
[52]. By adopting a cylindrical coordinate system placed in the 
center of each dielectric rod of radius ܽ in the GAMR structure, 
we can write an expansion in cylindrical harmonics for the 
incident (ܧ෨௜), total (ܧ෨௧) and scattered (ܧ෨௦) field pertaining to 
each single inclusion [53]: 

(ߠ,ݎ)෨௜ܧ = ෍ ܽ௡ܬ௡(ߚ଴ݎ)݁௝௡ఏ
ାஶ

௡ୀିஶ

 (13) 

(ߠ,ݎ)෨௧ܧ = ෍ ܾ௡ܬ௡(ݎߚ)݁௝௡ఏ
ାஶ

௡ୀିஶ

 (14) 

,ݎ)෨௦ܧ (ߠ = ෍ ܿ௡ܪ௡
(ଶ)(ߚ଴ݎ)݁௝௡ఏ

ାஶ

௡ୀିஶ

 (15) 

where ܽ௡, ܾ௡ and ܿ௡ are the expansion’s coefficients, ܬ௡ and 
௡ܪ

(ଶ) are the ݊-th order Bessel function and Hankel function of 
second kind, respectively, and ߚ is the wave number of the 
dielectric medium filling the cylinder. 

According to the above cylindrical expansion, the 
“response” of each homogeneous cylindrical inclusion can be 
conveniently analyzed in terms of the scattering coefficients 
 ௡=ܿ௡/ܽ௡. By enforcing the continuity conditions for theݏ
tangential components of the fields and by applying the 
recurrence formulas for the derivatives of the Bessel functions, 
one can finally obtain a compact expression for ݏ௡, which 
reads as [54]: 
 

௡ݏ =
(଴ܽߚ)௡ܬ(ܽߚ)௡ିଵܬ(ܽߚ) − (଴ܽߚ)௡ିଵܬ(ܽߚ)௡ܬ(଴ܽߚ)

௡ିଵܪ(ܽߚ)௡ܬ(଴ܽߚ)
(ଶ) (଴ܽߚ) − ௡ܪ(ܽߚ)௡ିଵܬ(ܽߚ)

(ଶ)(ߚ଴ܽ)
 

(16) 
Note that, besides the dependence on the radius ܽ, ݏ௡ 
intrinsically depends on the contrast function ߯ through ߚ଴ and 
 .ߚ

As long as the dielectric cylinder is sufficiently small with 
respect to the wavelength, one can easily verify by numerical 
or analytical tools that the term ݏ଴ is much larger than all the 
others and the scattering phenomenon can be essentially 

determined only from the ݊ = 0 term. Thus, one can keep 
unaltered the behavior of ݏ଴ (and, in a first instance, of the 
overall scattering phenomena) by performing an interchange 
between the local contrast value ߯௞ of the ݇-th rod and the 
radius ܽ௞ (see Fig. 2 for a conceptual sketch).  

The guidelines of such an interchange are summarized in 
the following: 
i. solve the inverse scattering problem by minimizing 

functional (5) using the representation (12) for the contrast 
(with ܽ௞ equal to a fixed value of ܽ); 

ii. for each ݇-th ring, namely, for each ߯௞, evaluate ݏ଴(߯௞ ,ܽ) 
from equation (16) and denote it as ݏ଴೟ೌೝ೒೐೟

௞ ; 
iii. for the selected material meant to realize the GAMF (i.e., 

for the given value of ߯), seek the radius most closely 
realizing the same scattering parameter, i.e.:   

 
Fig. 2. Conceptual flow of the interchanging tool. 



 

 

 

 

min
௔ೖ 	

ቚݏ଴(߯,ܽ௞)− ଴೟ೌೝ೒೐೟ݏ
௞ ቚ

ଶ
 (17) 

 
Note that the same type of derivation and procedure arguments 
can be eventually used in the case of metallic inclusions. 

V. SYNTHESIS OF LENS ANTENNAS GENERATING A Σ/∆ 
RECONFIGURABLE (AND STEERABLE) PATTERN 

The proposed inverse scattering-based design approach is 
quite general and hence applicable for different types of 
devices. In this paper, we assess the proposed technique with 
respect to the design of a lens antenna with radius ܴ =  ߣ3.1
generating a Σ/∆ reconfigurable pattern [55], which is of 
interest for monopulse radar applications. Note that this is just 
one of the many possibilities that could be pursued using the 
proposed general approach. 

In the literature, many methods are available for the 
synthesis of monopulse antennas; these methods typically rely 
on either arrays or reflectors [55]–[57]. With respect to 
common architectures, an interesting alternative could be 
represented by properly designed circularly symmetric 
dielectric lenses because they overcome beam degradation 
while avoiding a mechanical scanning of the entire structure.  

The synthesis of the lens antenna is herein pursued by 
adopting the following three design steps: 
i. Definition of the far-field design constraints: by exploiting 

the approach in [56] and considering the available degrees 
of freedom [58], two convenient ‘optimal’ far-field 
patterns (Σ and ∆) are synthesized that obey given mask 
constraints and goals. 

ii. Determination of the corresponding near-field to be 
pursued: to avoid possible numerical drawbacks that could 
arise when considering far-fields, the observation domain 
 ௢, which is supposed to be a circle (or a part of it), is߁
positioned in the near-field region and a backpropagation 
(from the synthesized far-fields) is used to evaluate the 
target fields ܧ௧ on ߁௢. A rule of thumb is that of positioning 
 ௢ at least a wavelength from the overall radiating system߁
(constituted by the primary sources and lens). Note that, in 
the case of directive patterns, the observation domain ߁௢ 
does not need to completely enclose the lens, provided the 
field is sufficiently small in the neglected part. 

iii. Solution of the inverse scattering problem and design of 
the GAMs: once the total field ܧ௧ on ߁௢ is defined, the 
optimization problem involved in the modified CSI 
method is solved. Then, as the final goal of the approach is 
the design of a GAMF device, the two alternative strategies 
described in Section IV can be applied. 
 

 Note step (i) leads to ‘optimal’ patterns that can be radiated 
by a continuous source with given dimensions. Starting from 
these patterns, the ISP should provide the dielectric 
distribution able to radiate the ‘optimal’ fields. However, there 
is no guarantee that a (physically feasible, non-active) 
permittivity profile such to realize those fields actually exist, 
so that some deteriorations from expectations are expected. 
Accordingly, it may be useful to adopt in step (i) design 
constraints more severe than the ones actually needed. 

For the specific problem at hand, the outcome of point (i) 
is shown in Fig. 3. In particular, the ‘optimal’ Σ/∆ far-field 
patterns obeying the assigned mask constraints (dot-dashed 
lines), which are more severe than the ones finally required, 

are depicted. Starting from these synthesized fields, a back-
propagation from the far-field coordinate ݎ௢ಷಷ =  to the ߣ78
near-field coordinate ݎ௢ =  was performed to determine the ߣ8
target fields ܧ௧ on ߁௢.  
More details about points (i) and (ii) are given in the 
Appendix. 
To solve the ISP, we considered ܧ෠௜

(௩)(ݎ) = ଴ܪ
(ଶ)(ߚ଴ݎ)ܿݏ݋ସߴ 

as the primary source and ݎ =  as the coordinate of the (ߴ,ݎ)
generic point belonging to a reference system centered on the 
phase center of the feed. In particular, the design constraints 
imply that ܶ = 2 primary incident fields must be used. By 
referring to Fig. 4, if the feed placed at ߠ௧ = 0 is active, the Σ-
pattern is provided (magenta line in Fig. 3), and when the two 
feeds located at ߠ௧ are simultaneously active and excited with 
an opposite phase, the corresponding total field will provide 
the ∆-pattern (green line in Fig. 3). The value of ߠ௧ is set since 
from the step (i) as the first null of the Σ-pattern (see 
Appendix for details).  

In all examples, numerical codes based on the method of the 
moments were exploited [59], and the region of interest Ω was 
discretized into ௖ܰ × ௖ܰ square cells. Note that, in the 
procedures described in Section IV, a very dense discretization 
was considered to correctly model the small circular windows 
involved in representation (12) as well as in the mixing 
formulas and the interchanging tool. To represent the 
reference field in a non-redundant fashion and to enforce an 
accurate fitting of the “measurements” data in equation (1), a 
number of sampling points as suggested in [58] was adopted. 
The fitting surface corresponds to the angular region of ߁௢  
ahead of the plane where the primary sources are located; thus, 
the complementary part was neglected because of the 
negligible impact on the far-field. Such a choice also allowed 
avoiding numerical issues related to the presence of the 
singularity in the source position.  

 
Fig. 3. Synthesized ‘optimal’ Σ (continuous magenta line) and ∆ 
(continuous green line) patterns and relative mask constraints (dot-
dashed lines). 
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In Table I, some other useful parameters involved in the 

numerical simulations are reported (see also Fig. 4).  
For each example, the results were appraised in terms of 

beam-width (ܹܤ) and levels of the sidelobes (ܵܮܮ) [60], and 
compared to the required specifications, that are ܤ ஊܹ = 23° 
and ܤ ୼ܹ = ஊܮܮܵ ,ܤ20݀−@ 46° = ୼ܮܮܵ =  ,ܤ20݀−
respectively. 

 
 

TABLE I 
KEY PARAMETERS OF THE NUMERICAL EXPERIMENT 

 

Parameter Description Value 
 ߣSide of the region Ω 6.3 ܮ

௧ݎ  
Distance of the primary source from the 

origin of the reference system 3.4ߣ 

௧ߠ  Elevation angle of the primary sources ~10° 

௢ݎ  Radius of Γ௢  ߣ8 

௢ߠ  Angular extension of the fitting surface [-118.8°,118.8°] 

 

A. Lens design via Maxwell-Garnett driven procedure 
By following the strategy of Section IV-A, we first 

achieved the continuous GRIN lens shown in Fig. 5(a). In 
using the modified CSI method, we added the penalty terms 
߶௦ and ߶௙  to the cost functional (4), to enforce circularly 
symmetric permittivity profiles and permittivity values real 
and larger than 1. Moreover, we enforced conductivity values 
(࢘)௥ߪ = 0 to avoid power losses due to the propagation of the 
field inside the lens. Regarding the choice of the weighting 
parameters, we fixed ݇௦ to be equal to the area of the pixel and 
݇௙ to be equal to the inverse of the area of the lens normalized 
to the square amplitude of the considered wavelength. Note 
that because we are dealing with a synthesis problem, the 
choice of the weighting parameters is not related to an a-priori 
rule. As such, the choice was supported by an extensively 

numerical analysis and the final ݇௣ values were selected equal 
to the ones leading to the best radiative performances of the 
synthesized antenna. 

To check the obtained performances, we evaluated the 
total field radiated by the synthesized continuous profile (Fig. 
5(a)) when the designed GRIN lens is illuminated by primary 
sources with amplitude corresponding to the synthesized value 
of ߬ (see Table II). The resulting far field patterns are reported 
in Fig. 5 with the continuous blue lines. The total field 
radiated by the synthesized GRIN lens is found to be in good 
agreement with the far-field mask constraints (dot-dashed 
black lines).  

Next, starting from the GRIN lens, we adopted the MG 
theory and the procedure described in Section IV-A by 
considering first ܭ = 11 rings of rods comprised of SiO2 
material (ߝ௥ ≡ ிߝ = 4.5). Fig. 5(b) shows the obtained GAMF, 
and the corresponding far-field patterns are reported in Fig. 
5(d) and 5(f) with dashed red lines. As it can be seen, the total 
field radiated by the overall radiating system deviates from the 
initial field and the performances are deteriorated. On the 
other hand, when we increased the number of rings to ܭ = 14, 
the GAMF profile of Fig. 5(c) was obtained and better 
performances was achieved, see Fig. 5(e) and 5(g), and Table 
II for a quantitative comparison. Such a result is due to the 
limited capability of the homogenization procedure to deal 
with structures which are not dense in terms of rods and 
gradually variable in terms of permittivity profile of the 
synthesized continuous GRIN lens. Notably, by considering 
ிߝ = 8.9, the MG-based approach completely failed (not 
shown for the sake of brevity). 

To show the flexibility of the approach and the possibility 
to achieve better performances in case of gradually variable 
GRIN profile, we solved again the ISP by also considering the 
penalty term ߶௥  (meant to achieve a ‘smooth’ profile). In this 
case, the weighting parameter ݇௥ was defined as a 
normalization factor with respect to the total number of 
discretizing cells and illuminating directions, and to the area 
of the single cell normalized to the wavelength. The thus 
obtained permittivity profile is depicted in Fig.6(a), while the 
pertaining radiated far-fields are shown with continuous blue 
lines in Fig. 6. Conversely, the dashed red lines in figures 6(d) 
and 6(f) are relative to the equivalent GAMF lens reported in 
Fig.6(b), derived by the MG driven procedure for ܭ = 11 and 
ிߝ = 4.5. As it can be seen, also in this case the patterns are 
deteriorated. However, if a denser GAMF lens is synthesized 
(see Fig. 6(c)) better performances are given as compared with 
the previous GAMF solutions (see the dashed red lines in 
figures 6(e) and 6(g)). The synthetic parameters for the above 
example are summarized in Table III. 

The achieved results allow to state that the proposed 
synthesis approach based on MG theory is capable in handling 
the same radiation patterns by also considering different 
permittivity distributions; however, the MG-based approach 
exhibits good performances as long as the GAMF structure is 
filled by enough rods and the continuous GRIN profile 
exhibits smooth radial variations. 

It is worth to stress that the requirements on the dielectric 
properties of the lens we are enforcing by means of penalty 

 
 

Fig. 4. The reference scenario for the numerical assessment. Two sets 
of excitations are depicted: if the “black triangle” antenna is active, 
then the Σ pattern is radiated; if the “white triangle” antennas are 
active and excited with an opposite phase, then the ∆ pattern is 
radiated. The continuous red line is the plane of the Σ-feed, the green 
angular sector of Γ୭ (dashed black line) represents the fitting surface.  



 

 

 

 

terms in the cost function (especially the physical feasibility 
constraints (7)), in conjunction with the requirement of having 
a multi-purpose antenna, make the solution of the ISP very 
hard, so that unavoidable deteriorations of the performances 
are expected for increasing number of constraints.  

 
 
 
 

 

B. Lens design via the “direct” procedure 
To test the strategy introduced in Section IV-B, we first 

solved the modified CSI by considering in the expansion (12) 
ܭ = 11 and ܽ = ߣ 8⁄  as well as the same arrangement of rods 
of the previous example. Moreover, in this case, the penalty 
term ߶௙  was added to the functional to consider simple 
materials. Fig. 7(a) shows the permittivity profile of the thus 
obtained GAMR-based lens. By using the synthesized value of 
߬ (see Table IV), the corresponding Σ and Δ far field patterns 
depicted in Figs. 7(c) and 7(d) (continuous blue lines) were 
achieved. As it can be seen, the new strategy that allows to 
directly synthesize the GAMR structure works well, since the 
far-field patterns are in good agreements with the mask 
constraints. 

Finally, we applied the analytic interchange procedure 
summarized in Fig. 2, by still considering a dielectric material 

with ߝி = 4.5 for the inclusions. The thus obtained GAMF 
profile is shown in Fig. 7(b), and the corresponding fields in 
Figs. 7(c) and 7(d) (dashed red lines). As it can be observed, 
the resulting gradient of the filling factor allows to control the 
electromagnetic field path and to reach a good agreement with 
the initial specifications; see Table IV for a quantitative 
comparison. 

 Comparable performances were obtained for the 
synthesized lens with ܭ = 14 and ܽ = ߣ 10⁄ , whose 

pertaining profiles and far-fields are shown in Fig. 8, while the 
corresponding synthetic parameters are summarized in Table 
V. For this last case, we also tested the robustness of the 
proposed approach and the interchanging procedure by means 
of (17) in case of lossy inclusions; in particular, we considered 
ߜ݊ܽݐ = 0.001 for SiO2 at microwaves [61]. The 
corresponding patterns are depicted with dotted green lines in 
Fig. 8(c) and 8(d), from which it is possible to note that the 
performances keep almost unchanged with respect to the 
lossless case (see also Table V). 

As expected, the larger the radius of the single inclusion 
(i.e., ܽ = ߣ 8⁄ ), the larger the mismatch between the radiated 
patterns from the GAMR and the corresponding GAMF 
antenna, due to higher approximation error in considering just 
the term ݊ = 0 in (16). To corroborate all the above, we ran 
the design procedure with ܭ = 21 and ܽ = ߣ 15⁄ ; by 
comparing the continuous blue line and the dashed red line in 

TABLE II 
SYNTHETIC PARAMETERS FOR THE EXAMPLE IN FIG. 5 

 

Profile  Synthesized ࣎(૚) Synthesized ࣎(૛) ࢃ࡮઱ ࡸࡸࡿ઱	(࡮ࢊ) ࢃ࡮ઢ  (࡮ࢊ)	ઢࡸࡸࡿ 
GRIN lens 

3.5752 − ݆10.3729 −2.9171 + ݆9.4718 
25.5° −22.3 44° −18.95 

MG GAMF (K=11) 46° −22.41 54° −16.8 
MG GAMF (K=14) 30° −19.52 55.5° −18.46 

 
TABLE III 

SYNTHETIC PARAMETERS FOR THE EXAMPLE IN FIG. 6 
 

Profile  Synthesized ࣎(૚) Synthesized ࣎(૛) ࢃ࡮઱ ࡸࡸࡿ઱	(࡮ࢊ) ࢃ࡮ઢ  (࡮ࢊ)	ઢࡸࡸࡿ 
GRIN lens 

2.2673 − ݆10.7002 −1.8118 + ݆9.6339 
25.5° −22 44° −18.53 

MG GAMF (K=11) 46° −22 55.5° −16.9 
MG GAMF (K=14) 32° −19.18 56° −18.28 

 
TABLE IV 

SYNTHETIC PARAMETERS FOR THE EXAMPLE IN FIG. 7 
 

Profile  Synthesized ࣎(૚) Synthesized ࣎(૛) ࢃ࡮઱ ࡸࡸࡿ઱ ઢࢃ࡮ (࡮ࢊ)	  (࡮ࢊ)	ઢࡸࡸࡿ 
GAMR lens −10.8198 + ݆2.6794 9.2811 + ݆2.9552 22.6° −25.67 46° −18.9 

GAMF  24° −21.84 48° −16.75 
 

TABLE V 
SYNTHETIC PARAMETERS FOR THE EXAMPLE IN FIG. 8 

 

Profile  Synthesized ࣎(૚) Synthesized ࣎(૛) ࢃ࡮઱ ࡸࡸࡿ઱ ઢࢃ࡮ (࡮ࢊ)	  (࡮ࢊ)	ઢࡸࡸࡿ 
GAMR lens 

−9.0933 − ݆4.6368 7.8344 + ݆4.4374 
23° −25.38 42° −18.71 

GAMF  24.6° −23.24 48° −17.7 
GAMF + losses 24.6° −23.2 48° −17.6 

 
TABLE VI 

SYNTHETIC PARAMETERS FOR THE EXAMPLE IN FIG. 9 
 

Profile  Synthesized ࣎(૚) Synthesized ࣎(૛) ࢃ࡮઱ ࡸࡸࡿ઱ ઢࢃ࡮ (࡮ࢊ)	  (࡮ࢊ)	ઢࡸࡸࡿ 
GAMR lens −8.8183 − ݆5.3797 7.5927 + ݆5.0445 23° −26.9 45° −17.9 

GAMF  23° −26.2 46° −18.22 
 



 

 

 

 

Fig. 9(c) and 9(d), and also the corresponding synthetic 
parameters in Table VI, it is possible to note that the far-field 
patterns for GAMR and GAMF fit very well. 

Therefore, in the interchanging procedure a key role is 
played by the dimension of the rods. As a rule of thumb, one 

can define the radius of each rod at most equal to ܽ = ߣ 10⁄ , 
the period ݀ in (10) about ߣ 7⁄  and then derive the needed 
number of rings ܭ.  

Finally, other examples (not shown herein) have 
demonstrated that, differently from the homogenization based 

 
(a)                                                                  (b)                                                         (c) 

 

 
                                                            (d)                                                                                    (e) 
 

 
                                                            (f)                                                                                    (g) 
 

Fig. 5. Real part of the permittivity profile of the (a) GRIN lens as ISP solution when penalty terms ߶௦ and ߶௙ are exploited (݇௦ = 0.004, ௙݇ = 0.0342, 
௖ܰ = 99); equivalent GAMF lens by MG (ߝி = 4.5, ௖ܰ = 1814) for (b) ܭ = 11 and (c) ܭ = 14. The black markers represent the location of the primary 

sources. Far field (d) Σ and (f) Δ power patterns radiated by profile-(a) (continuous blue lines) and profile-(b) (dashed red lines). (e)-(g) the same as (d)-(f) but 
relative to profile-(a) (continuous blue lines) and profile-(c) (dashed red lines). The dot-dashed black lines represent the expected mask constraints. 
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approach, the filling factor of the GAMF structure does not 
substantially affect the performances.  

VI. CONCLUSIONS 
A new innovative tool was proposed for the design of two-

dimensional Graded index Artificial Materials (GAMs) 
devices, starting from the solution of an inverse scattering 
problem.  



 

 

 

 

To this end, we first recast the Contrast Source Inversion 
method to: 1) provide a convenient setting of the amplitudes 
of the primary sources and 2) promote a desired behavior of 
the contrast function. Then, a first strategy to design GAMs 
with graded filling factor (GAMF) was introduced by 
exploiting the widely used homogenization theories.  

As a second opportunity, a novel expansion for the contrast 
function was proposed that allows for direct design of GAMs 
exploiting spatial variations of the refractive index among the 
different inclusions (GAMR). These structures have two 
interesting aspects: 1) the refractive index of each inclusion 
can be eventually tuned (giving rise to very flexible devices) 

    
(a)                                                                  (b)                                                          (c) 

 

 
      (d)                                                                                    (e) 

 

 
      (f)                                                                                    (g) 

 

Fig.6. Real part of the permittivity profile of the (a) GRIN lens as ISP solution when penalty terms ߶௦, ߶௙ and  ߶௥ are exploited (݇௦ = 0.004, ௙݇ = 0.0342, 
݇௥ = 10ି଺, ௖ܰ = 99); equivalent GAMF lens by MG (ߝி = 4.5, ௖ܰ = 1814) for (b) ܭ = 11 and (c) ܭ = 14. The black markers represent the location of the 
primary sources.  Far field (d) Σ and (f) Δ power patterns radiated by profile-(a) (continuous blue lines) and profile-(b) (dashed red lines). (e)-(g) the same as 
(d)-(f) but relative to profile-(a) (continuous blue lines) and profile-(c) (dashed red lines). The dot-dashed black lines represent the expected mask constraints. 
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by using electro-optic or thermo-optic effects [62],[63] (or 
even the liquid crystal technology [38]) and 2) a simple 
analytical “interchanging” procedure applied on GAMR 
structures allows to obtain an effective GAMF solution.   

The different tools were assessed through the synthesis of 
a monopulse antenna radiating a ߑ/∆ reconfigurable pattern. 
Both proposed techniques are able to reach a good agreement 
with the desired specifications, although the second, and more 
original one, appeared to exhibit better performances. Note 
that, there is no guarantee that a (physically feasible, non-
active) permittivity profile such to realize the ‘optimal’ 
patterns representing the design constraints exists, so that 
some deteriorations from expectations can be expected.  

In all the presented examples, the overall synthesis 
procedure was found to take about 30 minutes on a computer 
equipped with an Intel Xeon E5-2687 W 3.10 GHz CPU and 
256 GB RAM.  

We stress that the proposed approaches and tools are not 
restricted to the realization of ‘canonical’ fields and that they 
can be applied to generic (physically feasible, see [58]) field 
specifications as well as using other unit cells for the 
definition of the GAMs structure.  

According to the above encouraging results, which are also 
confirmed by preliminary 3D full-wave analysis of parallel 
plane based structures, future works will be devoted to the 
extension to 3-D geometries and other kinds of devices.  
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APPENDIX  
SYNTHESIS OF THE Σ/∆ PATTERNS 

The aim of the field synthesis procedure is the 
determination of the target fields ܧ௧ on the observation points 
࢕ܚ ∈ Γ௢ in the near-field region that fulfill the given mask 
constraints and specifications on the corresponding far-fields. 
To this end, let us consider an expansion of the Σ-field in 
circular harmonics for a 2D TM polarization: 

,ߠஊ൫ܧ ௢ಷಷ൯ݎ = ෍ ො௡݁௝௡ఏߛ
⌈ఉబோ⌉

௡ୀି⌈ఉబோ⌉

 (A.1) 

where ߠ denotes the angular variable, ܴ is the radius of the 
lens, ݎ௢ಷಷ  is the radius of a far-field observation circle, and: 

                    
                                                         (a)                                                                                      (b) 
 

 
      (c)                                                                                    (d) 

 

Fig.7. Real part of the permittivity profile of the (a) GAMR lens (ܭ = 11 and ܽ = ߣ 8⁄ ) as ISP solution when penalty term ߶௙ is exploited ( ௙݇ = 0.001, 
௖ܰ = 626) and (b) equivalent GAMF lens by fitting procedure (17) (ߝி = 4.5, ௖ܰ = 1822). The black markers represent the location of the primary sources. 

Far field (c) Σ and (d) Δ power patterns radiated by profile-(a) (continuous blue lines) and profile-(b) (dashed red lines). The dot-dashed black lines represent 
the expected mask constraints. 
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ො௡ߛ = ௡ܪ௡ߛ
(ଶ)൫ߚ଴ݎ௢ಷಷ൯ (A.2) 

are the expansion’s coefficients. In (A.1), the summation is 
limited to −⌈ߚ଴ܴ⌉, ⌈ߚ଴ܴ⌉ in accordance with the finite number 
of degrees of freedom associated with a source enclosed in a 
circle of radius ܴ [58]. 
Thus, the ∆-field can be expressed as a linear combination of 
two Σ-fields shifted by ߠ௧ and excited with an opposite phase: 

,ߠ൫∆ܧ ௢ಷಷ൯ݎ = ߠஊ൫ܧ − ௧ߠ , ௢ಷಷ൯ݎ − ߠஊ൫ܧ + ,௧ߠ  ௢ಷಷ൯ݎ

= ෍ ො௡ൣ݁௝௡(ఏିఏ೟)ߛ − ݁௝௡(ఏାఏ೟)൧
⌈ఉబோ⌉

௡ୀି⌈ఉబோ⌉

 

= ෍ ො௡ൣ݁ି௝௡ఏ೟ߛ − ݁௝௡ఏ೟ ൧݁௝௡ఏ
⌈ఉబோ⌉

௡ୀି⌈ఉబோ⌉

= ෍ መ௡݁௝௡ఏߜ
⌈ఉబோ⌉

௡ୀି⌈ఉబோ⌉

 

(A.3) 
where ߜመ௡ = −2݆sin(݊ߠ௧)ߛො௡. By so doing, only one of the ߛො௡ 
and ߜመ௡ sets of coefficients must be evaluated to perform the 
synthesis (the other one being related to it by a simple linear 
relationship). 
Next, by noticing that expressions (A.1) and (A.3) resemble 

the expression of uniformly spaced array factors, one can 
follow the approaches respectively developed in the optimal 
“separate” synthesis of pencil [64] and difference [65] beams, 
as well as recent extensions to reconfigurable fields [56],[57]. 
By exploiting these results, the unknown coefficients can be 
finally determined by solving the following Convex 
Programming problem: 

min
ఊෝ೙

൜−ܴ݁ ൤
(ߠ)∆ܧ݀
ߠ݀

ฬ
ఏୀ଴

൨ൠ (A.4) 

subject to: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ܴ݁ ൤

(ߠ)∆ܧ݀
ߠ݀

ฬ
ఏୀ଴

൨ ≥ 0

ߠ)∆ܧ = 0) = 0										
ଶ|(ߠ)∆ܧ| ≤ (ߠ)∆ܤܷ
ߠ)ஊܧ]ܴ݁ = 0)] = 1
ߠ)ஊܧ]݉ܫ = 0)] = 0
ଶ|(ߠ)ஊܧ| ≤ (ߠ)ஊܤܷ

 

(A.5a) 
 

(A.5b) 
(A.5c) 
(A.5d) 
(A.5e) 
(A.5f) 

where the objective function (A.4) and constraint (A.5a) allow 
for maximization of the amplitude of the (real) derivative of 
 ୼ in the target direction, constraints (A.5b), (A.5d) andܧ

                    
                                                         (a)                                                                                      (b) 
 

 
      (c)                                                                                    (d) 

 

Fig.8. Real part of the permittivity profile of the (a) GAMR lens (ܭ = 14 and ܽ = ߣ 10⁄ ) as ISP solution when penalty term ߶௙ is exploited (݇௙ = 0.001, 
௖ܰ = 626) and (b) equivalent GAMF lens by fitting procedure (17) (ߝி = 4.5, ௖ܰ = 1822). The black markers represent the location of the primary sources. 

Far field (c) Σ and (d) Δ power patterns radiated by profile-(a) (continuous blue lines) and profile-(b) (dashed red lines). The dotted green lines are relative to 
profile-(c) in case of loss (ߜ݊ܽݐ = 0.001). The dot-dashed black lines represent the expected mask constraints. 
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(A.5e) define the amplitude of the two fields in the target 
direction, and constraints (A.5c) and (A.5f) control the levels 
of the sidelobes of the two power patterns (ܷܤ୼ and ܷܤஊ 
being suitable user-defined upper-bound masks). 

It can be argued that an optimal choice of ߠ௧ is the first 
null of the Σ-pattern. In fact, this choice allows a physical 
optimization of the ∆-pattern slope. After solving problem 
(A.4)-(A.5), the final expression of the two patterns on ࢘࢕ ∈  ௢߁
located in the near-field can be identified by a field 
backpropagation, i.e.: 

(௢ݎ,ߠ)ஊܧ = ෍ ௡ܪ௡ߛ
(ଶ)(ߚ଴ݎ௢)݁௝௡ఏ

⌈ఉబோ⌉

௡ୀି⌈ఉబோ⌉

 (A.6) 

,ߠ)∆ܧ (௢ݎ = ߠ)ஊܧ − ௧ߠ , (௢ݎ + ߠ)ஊܧ + ,௧ߠ  ௢) (A.7)ݎ
 
wherein, by virtue of (A.2), it is ߛ௡ = ௡ܪ/ො௡ߛ

(ଶ)൫ߚ଴ݎ௢ಷಷ൯. 
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