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Abstract 
We propose a new approach to solve the problem of optimal power synthesis of array antennas, so that maximum 

possible bandwidth can be granted to fixed sidelobe-level performances. The proposed approach can be applied to 

any kind of fixed-geometry array that radiates pencil beams and to linear equispaced arrays that generate shaped 

patterns. The designing problem is cast as a sequence of Convex Programming optimizations. Numerous numerical 

experiments, including full-wave synthesis of realistic antennas, were carried out and their results discussed here to 

assess the array antennas’ capability of achieving ultra-wideband performances. 
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I. Introduction 

In designing array antennas, two of the most important performance indicators are the bandwidth 

and the sidelobe level (SLL) [1]. 

The bandwidth is defined as the continuous range of frequencies over which the antenna can 

correctly operate, and it is usually described in terms of fractional bandwidth (FBW) [2]-[4]. It varies 

between 0 and 2 and, for a system which operates between the minimum frequency fmin and the maximum 

frequency fmax, it is given by: 

minmax

minmaxminmax 2
ff
ff

f
ffFBW

c 
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


  (1) 

wherein fc=(fmin+fmax)/2 denotes the center frequency.  

An antenna is considered ‘wideband’, as long as 0.2<FBW<0.5 and ‘ultra-wideband’ (UWB) as 

long as FBW≥0.5 [4]. Wideband systems offer several advantages over narrowband devices, including 

high precision in ranging, shortness in broadcast time, low electromagnetic radiation (safe for human body 

even at a short distance), and low energy consumption in processing [2].  

UWB antennas applications include medical imaging, tracking and real-time locating systems, 

personal area networks, see-through-wall imaging, and time-of-arrival-based localization approaches [3]. 

Procedures for effective array pattern synthesis can be found in [4]-[9]. 

The SLL is defined as the sidelobes’ maximum value (relative to the maximum value of the 

pattern) [1]. For example, in the case of 1-D sources, it is expressed as: 

 
 

2
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max

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 F
FSLL


  (2) 

wherein F denotes the radiated field, θ is the angle between the antenna axis and the observation 

direction, θ0 is the target direction, and Ω represents the sidelobes region (which is fixed by taking into 

account the expected beamwidth of the system as well as the radiation requirements pertaining to the 

application scenario at hand [10]). 

Systems granting a low SLL are essential in a number of applications, including radar and satellite 

communications, wireless power transmission, hyperthermia treatments, and synthesis of high-beam-

efficiency antennas [10]-[14]. Effective synthesis techniques have been given in cases of both single [12]-

[17] and reconfigurable [18]-[22] beam arrays. 

Unfortunately, almost all the techniques that pursue SLL minimization have an important 

limitation, i.e., using either a single-frequency or a narrow-band assumption [4]. Obviously, while 

simplifying the consequent synthesis algorithm, this limitation strongly reduces the applicability range of 
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the achieved solutions. Therefore, it makes sense to introduce a new synthesis approach that allows for 

the simultaneous optimization of both SLL and FBW performances. It was with this spirit that the authors 

of [4] proposed a Particle Swarm Global Optimization algorithm aimed at jointly determining the array-

element locations and excitations such to minimize the SLL for a given fixed FBW performance.  

By taking into account the results shown in [4], and exploiting the fundamental approaches 

available for the single-frequency optimal synthesis, a new and effective approach is proposed here for 

designing array antennas in such a way that, once the minimum guaranteed SLL performance has been 

fixed, maximization of FBW follows. Also, a new method is introduced to identify the maximum possible 

FBW over which an array of given size and geometry can achieve a fixed SLL performance.  

The proposed tools facilitate the rapid synthesis of pencil beams through any kind of fixed-

geometry arrays, i.e., arrays having whatever layout and element patterns (also, in the presence of mutual 

coupling, as well as sparseness and mounting-platform effects). The general methodology introduced here 

can be used for the mask-constrained power synthesis of shaped patterns also, provided the field can be 

expressed in terms of the array factor. In all the cases, the overall synthesis problem is cast as a sequence 

of fast Convex Programming (CP) optimizations, with decisive advantages in terms of computational 

burden and solutions’ optimality. 

The remainder of this paper is organized as follows: Section II briefly recalls some fundamental 

results available for the optimal synthesis of single-frequency pencil beams with minimum SLL; Section III 

describes the proposed approach; Section IV establishes, through several numerical experiments 

[including Computer Simulation Technology™ (CST) full-wave simulations] the capability of the 

proposed approach to design realistic UWB systems; Section V presents the conclusions drawn from this 

study.  

II. Review of Fundamentals 

In the case of fixed-geometry arrays (wherein the excitation weights are the only unknown 

parameters of the design problem), the approach in [17] was the first to address the optimal1 synthesis of 

single-frequency pencil beams as a CP optimization. In particular, in [17] the array excitations are found 

in such a way that: 

 
1 Pencil beams’ synthesis is referred to as ‘optimal’ as long as it provides, for fixed antenna resources and a given 
null-to-null beamwidth, the best possible SLL performance. Once the array geometry, Ω, and θ0 are fixed, such a 
goal can be pursued by minimizing (2).  
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wherein A denotes the maximum permitted power-pattern value inside the sidelobes region. In fact, the 

constraints (3.b) and (3.c) ensures that maximizing the function (3.a) is equivalent to maximizing the 

square amplitude of the field in the target direction. Therefore, the maximization of the power pattern is 

pursued as the maximization of a linear functional of the unknowns, with relevant advantages in terms of 

computational times and optimality of the results. 

As a straightforward consequence, if the goal is not to minimize the SLL but to simply guarantee 

that it does not exceed a given value, say A, the problem can be solved by finding an intersection amongst 

the following convex constraints: 
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(4.b) 

An important advantage of formulation (4) is that it allows, for a fixed guaranteed SLL 

performance, the insertion of an objective function aimed at maximizing an additional antenna parameter, 

e.g., gain or directivity [15]. 

It is well known that formulations (3) and (4) can also be applied by using, instead of the constant 

A, an arbitrary upper-bound function, say UB(θ) [17]. Moreover, if one can address the designing 

problem by dealing just with the array factor, and as long as the array layout is centrosymmetric, the 

synthesis can even be cast as a Linear Programming (LP) problem. In fact, under these hypotheses, the 

optimal field satisfying (3) and (4) is real [15] and hence the quadratic constraints (3.d) and (4.b) can be 

linearized as follows: 

  .  AFA  (5) 

The proposed design procedure, presented below, takes advantage of the results recalled above. 

III. The Proposed Approach 

The goal is to identify the array elements’ complex excitations in such a way as to maximize FBW 

and simultaneously guarantee fixed SLL performance over the whole operating frequency range.  

Notably, the general method that is presented here includes the cases where: 

(i)  UB is not a constant function, 

(ii)  the fields radiated by the array’s single elements are frequency-dependent, 
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(iii)  mutual coupling and mounting-platform effects are present, 

(iv)  any combination of the above. 

To introduce the synthesis approach, a one-dimensional fixed-geometry array is considered, which is 

disposed along the z-axis and composed of N elements, having arbitrary locations z1,…,zN and complex 

excitation weights w1,…,wN. 

By referring to scalar fields and denoting the operating frequency and the speed of light in vacuum 

with, respectively, f and c, the far field radiated by such an antenna can be expressed as: 

   





N

n

z
c

fj

nn

r
c

fj
nefgw

r
efrF
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,,,





  (6) 

wherein r and gn respectively denote the distance from the origin and the n-th Active Element Pattern 

(AEP) [23], i.e., the array’s radiation pattern when only the n-th element is excited (with wn=1) 2. 

Let us now suppose fixing fmax (see Appendix) and introduce a discrete set of frequencies f1,…,fK 

such that f1=fmax and fk=fmax-(k-1)Δf, k=2,…,K, Δf denoting the difference between two consecutive 

frequencies. Let us also temporarily neglect the field’s dependence on r and suppose that the signal to be 

transmitted does not exhibit a fast oscillating behavior over the frequency domain [f1, fK]. 

Under such hypotheses, the problem of maximizing the array’s FBW for a given SLL performance 

can be solved as shown below:  

:
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(8.a) 

(8.b) 

In fact, finding an intersection amongst convex constraints (8) is equivalent to satisfying the constraints 

(4) over the whole frequency range [f1, fK], while the objective function in (7) allows maximizing the size 

of this range. In particular, as fmin=fK, by virtue of (1) the synthesized array will provide the following 

bandwidth performance: 

  2
1

1

1
1 




fK
fFBW  

(9) 

wherein it is guaranteed that f1/[(K-1)Δf]≥1 (since fK≥0). Moreover, the antenna can transmit the input 

signal in the target direction with no distortion. In fact, constraint (8.a) and the exponential functions in 

 
2

 Note that, in (6), all AEPs are supposed to be ‘phase-adjusted’, i.e., computed by placing the coordinate origin at 
each element center (and then identifying the corresponding location-related phase term) [23],[28]. 
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(6) entail, respectively, a uniform magnitude and a linearly-varying phase of the frequency response in 

the whole operating range [f1, fK], and hence the input signal will be delayed by precisely the same amount 

of time at all frequencies. 

Interestingly, problem (7)-(8) can even be cast in a simpler fashion, subject to two more 

assumptions: 

1. if the target direction is set as the antenna boresight, i.e., θ0=π/2, then the location-related phase 

term in (6) disappears; 

2. if the elements’ locations and AEPs are centrosymmetric, i.e., zn=-zN+1-n and gn=g*N+1-n (* denoting 

complex conjugation) for either n=1,..,N/2 (as long as N is even) or n=1,..,(N-1)/2 (as long as N is 

odd, with z0=0), then the optimal field is a real function [15], and hence the constraints (8.b) can 

be rewritten as linear inequalities. 

Under these two hypotheses, problem (7)-(8) can be rewritten as: 

K
Nww ,...,1

max  (10) 
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(11.b) 

Notably, condition (11.a) [as well as (8.a)] implies that each element is by itself a wideband (which is a 

reasonable assumption for the kind of arrays being designed)3. 

Going back to formulation (7)-(8), a solution can be found by exploiting the fact that, by virtue of 

band-limitedness of F [24], constraints (8.a) and (8.b) can be substituted with sufficiently-fine 

discretization and hence can be seen as a system of linear equalities and quadratic inequalities in the 

unknowns. Therefore, finding an intersection between these constraints is a CP problem, implying that it 

can be solved in a fast and effective manner. Hence, the optimal solution of the problem (7)-(8) can be 

quickly obtained by applying the following iterative strategy: 
 

For a given set of array element locations and a fixed value of fmax, UB, Δf, and Ω, solve the convex 

problem (8) repeatedly for increasing values of K, until constraints become so strict that no solution 

exists anymore. 
 

 
3 The approach would also work in case of compensation effects from different elements of the array (so that, if one 
element exhibits some variation from f, the latter is compensated by an opposite variation of another element). 
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The proposed synthesis procedure can be considerably simplified, provided that none of the conditions (i)-

(iii) holds true and the radiation pattern simply exhibits a kind of ‘shrinking’ (in angle) with increasing 

frequency. In fact, in such a case, the radiation behavior at fmin and at fmax completely determines the 

pattern in the whole frequency range [fmin, fmax] and hence it is not necessary to enforce constraints (8) at 

all the intermediate frequencies. In particular, as the pattern shrinks with increasing frequency, the 

constraints at the lowest frequency will ensure the correct main-beam shape at all frequencies, while the 

ones at the highest frequency will provide the correct sidelobes behavior at all frequencies. 

While noting that a-priori choice of some input parameters (such as fmax) can be made according to 

the criteria reported in Appendix, a number of interesting and useful features of the overall approach are 

reported in the following paragraphs. 

As a first comment, it is to be noted that, if there exists more than one intersection with (8), an 

objective function that leads to the identification of the ‘most convenient’ one can be added. For instance 

(see numerical examples under Section IV), for a given fmax, the problem can be solved by adding the 

minimization of the following convex objective function: 

   



K

k
kN dfFww

1 0

2
1 sin,,...,



  (12) 

which allows maximizing the average antenna directivity over the whole frequency range [f1, fK]. 

Second, a number of straightforward extensions are possible. In fact, by applying the theory in 

[15], the approach can be easily extended to any kind of planar or conformal fixed-geometry array 

radiating pencil beams granting the maximum possible FBW. Moreover, in case the adopted array layout 

is a 1-D sufficiently-dense [11] equispaced one, the achieved solutions can be further processed by 

exploiting the theory in [25]-[28] to design circular sources as well as reconfigurable and sparse arrays.  

Third, if the synthesis can be tackled in terms of array factor, and the array layout is linear and 

equispaced, the proposed approach can be used also for the optimal synthesis of wideband shaped beams. 

In fact, under such hypotheses, the square-amplitude far-field distribution can be rewritten as: 
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wherein P(f, θ)≥0 ∀(f, θ), D-p=Dp*, and d denotes the inter-element spacing. Then, the problem of 

synthesizing a shaped beam granting the maximum possible FBW while being confined between the 

lower-bound function L and the upper-bound function U can be solved as follows: 
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wherein possible distortion effects can be controlled by enforcing a small ripple in the shaped-beam 

region. 

It is also worth noting that, subject to adopting a sufficiently fine [24] discretization, the 

constraints (15) can be seen as a system of ordinary linear inequalities in the unknowns. Therefore, 

finding an intersection among them is an LP problem, and the FBW maximization can be pursued through 

the same iterative approach presented above with reference to pencil beams. Then, the actual array 

excitations will be identified by executing the spectral-factorization procedure described in [25], i.e.: 
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Interestingly, the solution to the problem (14)-(16) can provide multiple equivalent excitation sets (in 

addition to phase ambiguities [30]) and guarantee that, at a given observation direction in the shaped 

zone, the signal is adequately flat in its amplitude over the entire considered frequency band. On the other 

hand, it is worth noting that, unless the factors in (16) are real, the overall phase behavior with frequency 

is not linear (so that phase-compensation techniques have to be used, or frequency-division multiplexing 

schemes have to be considered).  

 

IV. Assessment of Performances 

Many numerical experiments have been performed to ascertain the effectiveness of the proposed 

approach.  

All simulations (except for the ones involving a non-broadside target direction) have been carried 

out by setting fmax=2.5 GHz, Ω={θ| 0°≤θ≤75° ∪ 105°≤θ≤180°}, θ0≤90°, and utilizing a centrosymmetric 

linear array layout composed of N=20 elements with a constant inter-element spacing4 equal to d=15 cm. 

 
4 The layout’s symmetry and constant spacing led in all the performed synthesis experiments (but for the ones 
pertaining to a non-broadside target direction) to purely real excitations. This finding agrees with the theory 
developed in [15] and updated in [29], and it does not affect the actual maximum radiation performances of the 
synthesized systems. 
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The θ domain has been discretized into 2000 samples and all numerical simulations have been run in such 

a way to achieve UWB performances.  

For each frequency, 14 experiments have been carried out by enforcing, both in the absence as 

well as in the presence of the objective function (12), the constraints SLL≤{-20; -25; -30; -35; -40; -45; -

50} dB, with a total of more than 80 involved radiation patterns. 

The complete synthesis of each array, using a calculator having a 2.5 GHz CPU and a 10 GB 

RAM, required less than 1 minute, on the average. Each single CP optimization lasted no more than a 

couple of seconds. Such a short time enabled the easy identification of the Δf value such to maximize the 

FBW for a fixed value of K. All this has been done by following the rules reported in Appendix and in 

such a way as to achieve the maximum FBW for K=6.  

Four different synthesis scenarios (depending on the adopted power-pattern mask, objective 

function, and radiating elements) were considered and the scenario-wise results are discussed below. 

 

IV.1 Assessment by exploiting a constant SLL mask and realistic radiating elements 

In the first set of simulations, the upper-bound mask in (8.b) was chosen as a constant function 

and the practical reliability of the results validated by considering an array of realistic radiating elements. 

Since the fields generated by these elements actually decay in the sidelobes region, exhibit wideband 

performances in the broadside direction, and guarantee (also in view of the adopted inter-element spacing) 

the absence of relevant mutual coupling effects, we solved the synthesis problem by applying the 

‘simplified’ procedure described in Section III. Therefore, we enforced the constraints only at the two 

frequencies fmin and fmax. The achieved results are discussed in detail below. 

First, the proposed procedure was executed by using isotropic elements and without adding any 

objective function. In all the cases, the design constraints were satisfied. For example, Table I reports the 

radiation performances (in terms of SLL, directivity, and half-power beamwidth) achieved when the 

constraint SLL≤-30dB was enforced. The achieved FBW is shown in Fig. 1 as a function of the enforced 

SLL values. As can be seen from this figure, a price must be paid in terms of SLL performance (and vice 

versa) to increase FBW. In particular, decreasing the SLL from -20 to -50 dB entailed the decreasing of 

FBW from 1.22 to 0.68. Notably, even the lowest achieved FBW value, i.e., 0.68, guarantees ultra-

wideband performances.  
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Figure 1. Graph showing that the FBW achieved is a function of enforced SLL. The results were obtained by 

setting UB as a constant, with Ω={θ| 0°≤θ≤75° ∪ 105°≤θ≤180°}. For fmax=2.5 GHz, decreasing the maximum 

SLL from -20 to -50 dB entailed the decreasing of FBW from 1.22 (fmin=0.61 GHz) to 0.68 (fmin=1.23 GHz), 

guaranteeing, in any case, UWB performances. 

 

 

 
                                  (a)                                                                                       (b) 

Figure 2. (a) Real and positive excitations and (b) UWB power pattern achieved by maximizing the directivity and 

enforcing SLL≤-30dB for Ω={θ| 0°≤θ≤75° ∪ 105°≤θ≤180°}. 
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 Directivity [dB] HPBW [deg] SLL[dB] 

 
Not pursuing 

Max Directivity 

Pursuing 

Max Directivity 

Not pursuing 

Max Directivity 

Pursuing 

Max Directivity 

Not pursuing 

Max Directivity 

Pursuing 

Max Directivity 

f1=fmax 14.46 14.60 3.93 3.79 -30.2 -30.0 
f2 13.12 13.36 5.24 5.05 -30.2 -30.0 
f3 12.25 12.40 6.56 6.31 -30.2 -30.0 
f4 10.80 10.94 9.38 9.02 -30.2 -30.0 
f5 10.21 10.37 10.65 10.25 -30.2 -30.0 

f6=fmin 9.70 9.86 11.94 11.49 -30.2 -30.0 
 

Table I. Performances pertaining to the synthesis scenario of Subsection IV.1 (for SLL≤-30 dB). 

 

 

Acronym Meaning Value 

Sl Substrate length 70 mm 

Sw Substrate width 50 mm 

St Substrate thickness 1.6 mm 

Pl Patch length 38.4 mm 

Pw Patch width 30 mm 

Cr Cutting radius 19.2 mm 

Wl Feeding line length 22 mm 

Wf Feeding line width 3 mm 

Gl Ground plane length 22 mm 

Gw Ground plane width 50 mm 

Mt Metal thickness 0.035 mm 

εr Relative permittivity 4.3 F/m 

μr Relative permeability 1 H/m 

tanδ Dielectric loss tangent 0.025 
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d Inter-element spacing 15x10-2 m 

 

Table II. Geometrical and electrical parameters of the microstrip antenna shown in Fig. 3. 

 

 

 

 

 

 

 
Directivity [dB] HPBW [deg] SLL[dB] 

Not pursuing 

Max Directivity 

Pursuing 

Max Directivity 

Not pursuing 

Max Directivity 

Pursuing 

Max Directivity 

Not pursuing 

Max Directivity 

Pursuing 

Max Directivity 

f1=fmax 13.42 13.54 4.85 4.78 -50.1 -50.0 
f2 12.17 12.28 6.47 6.37 -50.1 -50.0 
f3 11.66 11.77 7.36 7.20 -50.1 -50.0 
f4 11.19 11.32 8.10 7.97 -50.1 -50.0 
f5 10.78 10.90 9.00 8.86 -50.1 -50.0 

f6=fmin 10.59 10.70 9.34 9.22 -50.1 -50.0 
 

Table III. Performances pertaining to the synthesis scenario of Subsection IV.3 (for SLL≤-50dB). 

 

 
 

As regards the applications that require the joint optimization of bandwidth and gain 

performances (see for instance [31]), all the above experiments were repeated in such a way as to 

maximize the antenna’s average directivity over the whole frequency operating range. To this end, the 

objective function (12) was minimized subject to the usual constraints (8). The results achieved for the 

case in which SLL≤-30dB was enforced are summarized in Table I (in terms of radiation parameters) and 

in Fig. 2 (in terms of array excitations and power pattern). As can be seen, solving this problem led to, 

besides a directivity increase, a slight increase in sidelobes’ amplitude and a slight decrease in HPBW. 

The ‘SLL vs. FBW’ trade-off curve remained unchanged, compared to that of Fig. 1, and hence it is not 

presented here. 

The reliability of the proposed synthesis strategy was validated using an array of realistic radiating 

elements and feeding them with the excitations shown in Fig. 2. For this purpose, the microstrip patch 
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array shown in Fig. 3 was designed and characterized by the parameters listed in Table II. The K=6 

radiated power patterns were computed through a CST™ full-wave simulation and the same are shown in 

Fig. 4. As can be noticed, the behavior of the power patterns turns out to be very similar to that of the 

ideal one shown in Fig. 2. In particular, for SLL≤-30dB, the antenna guarantees the same UWB 

performance as that of the one shown in Fig. 2, i.e., FBW=1.03 and fmin=0.8 GHz. 

 

 

 
(a) 

 
(b) 

Figure 3. Microstrip array simulated using the CST full-wave software: (a) single element; (b) overall view. 
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Figure 4. UWB power pattern, computed through CST™ full-wave simulations, generated by the microstrip array 

depicted in Fig. 3 when fed by the excitations shown in Fig. 2. The antenna guarantees SLL≤-30 dB as well as 

UWB performances (i.e., fmin=0.8 GHz, fmax=2.5 GHz, FBW=1.03). 

 

 

IV.2 Full-wave synthesis of a microstrip patch array 

In the second set of numerical experiments, the full-wave synthesis of a UWB realistic microstrip 

patch array was carried out. In particular, starting from the antenna structure and specifications 

described under Section IV.1 (i.e., SLL≤-30 dB, K=6, fmin=0.8 GHz, fmax=2.5 GHz, and the array 

described by Fig. 3 and Tab. II), the overall radiating system was made to be closer to a practical 

implementation by extending the substrate layer below different elements, as well as between each 

element and the neighbouring ones. The new array structure is shown in Fig. 5. Then, the array 

excitations were determined by taking into account the actual element patterns (including mutual 

coupling and mounting-platform effects) right from the scratch (i.e., during the numerical optimization of 

the unknowns). In particular, for each frequency, 20 different AEPs were computed the by performing 

20 distinct CST full-wave simulations (for a total of 120 experiments), and then the optimization 

problem (7)-(8) was solved by following the guidelines given under Section III. For example, the AEP of 

the 10-th array element, computed through a full-wave simulation at 1.1 GHz, is shown in Fig. 6.  
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Figure 5. Radiating system exploited for the full-wave synthesis experiment, performed as described in Section 

IV.2. The substrate layer (described in Table II) was extended below different elements and between each element 

and the neighboring ones. 

 

The final outcome of the optimization is depicted in terms of excitations and power patterns in figures 7 

and 8, respectively. It can be seen that all the radiation constraints were fulfilled and UWB performances 

(i.e., FBW=1.03) achieved. Differently from the previous test cases, the excitations plotted in Fig. 7 

exhibit a slightly asymmetrical behavior. This is due to the fact that the synthesis of the UWB microstrip 

patch array has been performed by considering the actual AEPs, that are also non-symmetric. Therefore, 

since the symmetry has not been forced, but only the satisfaction of the upper power bound and the 

maximization of the FBW, also asymmetrical power patterns (as the ones shown in Fig. 8 and generated 

by the excitations of Fig. 7) are suitable solutions of the problem at hand. 

 

              
 

                                              (a)                                                                               (b) 
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  (c) 

 

Figure 6. AEP of the 10-th element of the realistic array shown in Fig. 5, computed through a CST full-wave 

simulation at 1.1 GHz (θ and ϕ denoting the usual elevation and azimuth angles with respect to the aperture 

antenna plane): (a) 3-D spatial view; (b) spectral behavior; (c) main cuts through polar coordinates.  

 

 

 
Figure 7. Real and positive excitations corresponding to the full-wave synthesis of the UWB patterns as per Fig. 8. 
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Figure 8. Superposition of the K=6 power patterns generated by the microstrip patch array shown in Fig. 5 under 

the excitations depicted in Fig. 7. The antenna guarantees SLL≤-30 dB as well as UWB performance (i.e., fmin=0.8 

GHz, fmax=2.5 GHz, FBW=1.03). 

 

IV.3 Assessment in the presence of notches on the power pattern 

The third set of numerical experiments was performed by exploiting isotropic elements and adding, 

to the radiation constraints mentioned in Subsection IV.1, two 10 dB-deep notches (relative to the 

maximum permitted amplitude of the sidelobes) in the region Ψ={θ| 30°≤θ≤50° ∪ 130°≤θ≤150°}. This 

kind of mask would be of interest in many practical applications, including monopulse radar and 

telecommunications [10]. 

As in the previous Subsection, for each frequency and sidelobes mask, 14 numerical experiments 

were performed, first by solving the problem (8) without adding any objective function and then by adding 

the directivity maximization.  

Owing to the sidelobes’ mask non-uniformity, this time, the problem was solved by enforcing the 

radiation constraints not only at fmin and fmax but also at all intermediate frequencies (for a total of more 

than 80 involved radiation patterns). The FBW achieved for these particular technical requirements is 

shown in Fig. 9 as a function of the enforced SLL value. As can be seen, decreasing SLL from -20 to -50 

dB induced FBW to decrease from 1.18 to 0.63. Therefore, from the results reported under Subsection 

IV.1 it follows that the notches’ requirement induced decrease in the maximum and minimum FBW values 
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from 1.22 to 1.18 and from 0.68 to 0.63, respectively. Despite this, ultra-wideband performance is still 

guaranteed even for SLL≤-50 dB. 

For example, the results achieved when the constraint SLL≤-50dB was enforced and maximum 

directivity was pursued are summarized in Table III (in terms of SLL, directivity, and half-power 

beamwidth) and in Fig. 10 (in terms of array excitations and power pattern). 

 

 
 

Figure 9. FBW of the particular array described in Section IV.3 as a function of the enforced SLL plus notches 

constraints. For fmax=2.5 GHz, decreasing the required maximum SLL from -20 to -50 dB entailed decreasing the 

FBW from 1.18 (fmin=0.64 GHz) to 0.63 (fmin=1.30 GHz), guaranteeing in any case UWB performances. 

 

 
          (a) 
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       (b) 

Figure 10. (a) Real and positive excitations and (b) UWB power patterns achieved by enforcing SLL≤-50 dB and 

notches in the region Ψ={θ| 30°≤θ≤50° ∪ 130°≤θ≤150°}. 

 

IV.4 Non-broadside radiation 

The fourth and final set of numerical examples has been carried out in order to assess the 

effectiveness of the presented synthesis technique in providing high-FBW performances even in case of 

non-broadside radiation. To this end, we set θ0=60°, fmax=10 GHz, Δf=365 MHz, and challenged the 

proposed approach to identify the optimal excitations guaranteeing SLL≤-25 dB for Ω={θ| 0°≤θ≤40° ∪ 

80°≤θ≤180°} and K=6, i.e., wideband performances (with FBW=0.201).  

An array composed of N=25 isotropic elements with a constant inter-element spacing d=0.5c/fmin 

(such to comply with all rules reported in the Appendix) has been adopted as radiating system. 

The achieved complex excitation weights and the K=6 corresponding power patterns are shown in 

figures 11 and 12, respectively.  
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                                                        (a)                                                                             (b) 

Figure 11. Complex excitations [amplitude (a) and phase (b) distributions] providing a non-broadside radiation as 

per constraints listed in Section IV.4. 

 

 
Figure 12. Wideband power pattern corresponding to the excitations depicted in Fig. 10. The resulting directivity 

values are between 7.9 dB (for f=fmin) and 8.8 dB (for f=fmax). FBW=0.201. 

As can be seen, the proposed approach led to the fulfillment of all technical requirements. 

Moreover, since the approach is aimed at finding a unique excitation set common to all frequencies, a 

slight (unavoidable) misalignment of the beams has been experienced. On the other side, the adoption of a 

frequency-independent excitation set allows reducing as much as possible the beam forming network’s 
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cost and complexity as well as maximizing the easiness of the system reconfiguration amongst the 

different frequencies.  

 

V. Conclusions 

An innovative and effective approach to the optimal synthesis of fixed-geometry arrays, 

guaranteeing the maximum possible bandwidth performance for a fixed SLL power mask, has been 

proposed.  

The capability of designing ultra-wideband arrays, granting extremely low SLL values and high-

directivity performances, has been assessed through a large set of numerical experiments. The optimality 

of the achieved results, as also of the corresponding execution times, has been ensured by casting the 

problem as a sequence of convex optimizations.  

The solutions obtained can be a key enabling technology for a number of recent applications, 

including radar and remote sensing as well as next-generation small satellites and 5G communications 

[32]-[36]. 

 

Appendix 

The aim of this Appendix is to derive some criteria that enable the optimal choice of the input 

parameters required for the solution of problem (7)-(8). In fact, by referring to 1-D arrays and denoting 

the average and minimum spacings between adjacent elements as dav and dmin, a number of simple rules, 

related to mutual coupling effects as well as to FBW and SLL performances, can be framed as follows. 

As a first rule, to counteract the presence of ‘pseudo-grating’ [35] lobes in the visible region, 

which may entail compromise in fulfillment of constraints (8.b), dav should be lower than the minimum 

operating wavelength. This condition, in turn, is equivalent to require that: 

avd
cf max

 (17.a) 

Moreover, to keep mutual coupling effects under control, dmin should be larger than the maximum 

operating wavelength multiplied by the factor 0.4 [4]. This entails that: 

min
min 4.0

d
cf   (17.b) 

By exploiting the relationship between fmin and fmax, i.e., fmin=fmax-(K-1)Δf, conditions (17.a) and (17.b) can 

be unified into the following rule: 
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avd
cffK

d
c
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






 max

min

)1(4.0  (18) 

which, for an equispaced array with dav=dmin=d, can in turn be written as: 

  cdffdKc  max)1(4.0  (19) 

As a second useful rule, it is worth noting that, by virtue of equation (1), achieving FBW≥τ requires that: 








2
2

minmax ff  (20) 

which implies that the following conditions must be satisfied to realize wideband and ultra-wideband 

systems, respectively: 

arraywidebandfff  minmaxmin 67.122.1
 

arrayandultrawidebff  minmax 67.1  
(21.a) 

(21.b) 

Notably, by exploiting again the relationship between fmin and fmax, the results of constraints (21.a) and 

(21.b) are equivalent to, respectively: 

  arraywideband
fK

f



 5.5

1
5.2 max

 

  arrayandultrawideb
fK

f



5.2

1
max  

 

(22.a) 
 

(22.b) 

Setting the input parameters in such a way that they accommodate (19) and (22) the same time, and that 

fmax is not so high as to allow sidelobes enter the main-beam region θϵ[0,180°]\Ω, will enable the proposed 

synthesis strategy work in optimal conditions.  
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