# NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS WITH CONVECTION 

Pasquale Candito, Leszek Gasiński* and Nikolaos S. Papageorgiou

University of Reggio Calabria, Department DICEAM<br>Via Graziella (Feo Di Vito), 89122 Reggio Calabria, Italy; pasquale.candito@unirc.it<br>Pedagogical University of Cracow, Department of Mathematics Podchorazych 2, 30-084 Cracow, Poland; leszek.gasinski@up.krakow.pl<br>National Technical University, Department of Mathematics Zografou Campus, Athens 15780, Greece; email: npapg@math.ntua.gr


#### Abstract

We consider a Robin problem driven by a nonlinear, nonhomogeneous differential operator with a drift term (convection) and a Carathéodory perturbation. Assuming that the drift coefficient is positive and using a topological approach based on the Leray-Schauder alternative principle, we show that the problem has a positive smooth solution.


## 1. Introduction

Let $\Omega \subseteq \mathbf{R}$ be a bounded domain with a $C^{2}$-boundary $\partial \Omega$. In this paper we study the following nonlinear nonhomogeneous Robin problem with gradient dependence (convection):

$$
\begin{cases}-\operatorname{div} a(D u(z))+\xi(z) u(z)^{p-1}=f(z, u(z))+r(z)|D u(z)|^{p-1} & \text { in } \Omega,  \tag{1.1}\\ \frac{\partial u}{\partial n_{a}}+\beta(z) u^{p-1}=0 & \text { on } \partial \Omega, u>0\end{cases}
$$

In this problem $a: \mathbf{R}^{N} \longrightarrow \mathbf{R}^{N}$ is continuous and strictly monotone and satisfies certain regularity and growth properties listed in hypotheses $H(a)$ below. These hypotheses are general enough to incorporate in our framework many differential operators of interest. The potential function $\xi \in L^{\infty}(\Omega)$ and $\xi(z) \geqslant 0$ for a.a. $z \in \Omega$. The drift coefficient $r \in L^{\infty}(\Omega)$ is nonnegative and the perturbation term $f(z, x)$ is a Carathéodory function (that is, for all $x \in \mathbf{R}, z \longmapsto f(z, x)$ is measurable and for a.a. $z \in \Omega, x \longmapsto f(z, x)$ is continuous) which exhibits ( $p-1$ )-linear growth near $+\infty$. In the boundary condition $\frac{\partial u}{\partial n_{a}}$ denotes the conormal derivative defined by extension of the map

$$
C^{1}(\bar{\Omega}) \ni u \longmapsto(a(D u), n)_{\mathbf{R}^{N}},
$$

with $n$ being the outward unit normal on $\partial \Omega$.
The existence of positive solutions for elliptic problems with convection was studied by de Figueiredo-Girardi-Matzeu [4], Girardi-Matzeu [11] (semilinear problems driven by the Dirichlet Laplacian) and by Faraci-Motreanu-Puglisi [2], Faria-Miyagaki-Motreanu [3], Papageorgiou-Vetro-Vetro [19], Tanaka [21] (nonlinear Dirichlet problems). For Neumann problems, we have the recent works of GasińskiPapageorgiou [8] and Papageorgiou-Rădulescu-Repovs̆ [18] (semilinear problems).

[^0]For Robin problems, there are the works of Bai-Gasinski-Papageorgiou [1] and Papageorgiou-Rădulescu-Repovs̆ [17]. In these two works the gradient term is not decoupled from the perturbation. This leads to different hypotheses which do not cover the present setting (see hypotheses $H(f)$ (ii) and (iii) in [1] and $H(f)$ (iii) in [17]). Moreover, in [17] the differential operator is the $p$-Laplacian. Finally for Robin problems but without convection term we have the works of Gasiński-O'ReganPapageorgiou [6] and Gasiński-Papageorgiou [9].

The presence of the drift term $u \longmapsto r(z)|D u|^{p-1}$ makes problem (1.1) nonvariational. So, our approach is topological based on the Leray-Schauder alternative principle (fixed point theory).

## 2. Mathematical background - hypotheses

Let $X$ and $Y$ be Banach spaces and let $K: X \longrightarrow Y$ be a map. We say that $K$ is "completely continuous", if $x_{n} \xrightarrow{w} x$ in $X$, implies that $K\left(x_{n}\right) \longrightarrow K(x)$ in $Y$. We say that $K$ is "compact", if it is continuous and maps bounded set in $X$ to relatively compact sets in $Y$.

The Leray-Schauder Alternative Principle says the following:
Theorem 2.1. If $V$ is a Banach space, $L: V \longrightarrow V$ is a compact map and

$$
S=\{v \in V: v=\lambda L(v) \text { for some } 0<\lambda<1\},
$$

then exactly one of the following holds:
(a) $S$ is unbounded; or
(b) $L$ has a fixed point.

The following spaces will be used in the analysis of problem (1.1): the Sobolev space $W^{1, p}(\Omega)$, the Banach space $C^{1}(\bar{\Omega})$ and the boundary Lebesgue space $L^{p}(\partial \Omega)$. By $\|\cdot\|$ we denote the norm of $W^{1, p}(\Omega)$ defined by

$$
\|u\|=\left(\|u\|_{p}^{p}+\|D u\|_{p}^{p}\right)^{\frac{1}{p}} \quad \text { for all } u \in W^{1, p}(\Omega) .
$$

The Banach space $C^{1}(\bar{\Omega})$ is an ordered Banach space with positive (order) cone

$$
C_{+}=\left\{u \in C^{1}(\bar{\Omega}): u(z) \geqslant 0 \text { for all } z \in \bar{\Omega}\right\} .
$$

This cone has a nonempty interior given by

$$
\operatorname{int} C_{+}=\left\{u \in C_{+}: u(z)>0 \text { for all } z \in \Omega,\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega \cap u^{-1}(0)}<0\right\}
$$

In fact $D_{+}$is also the interior of $C_{+}$when $C^{1}(\bar{\Omega})$ is endowed with the $C(\bar{\Omega})$-norm topology.

On $\partial \Omega$ we define the $(N-1)$-dimensional Hausdorff (surface) measure $\sigma$. Using this measure we can define in the usual way the "boundary" Lebesgue space $L^{r}(\partial \Omega)(1 \leqslant r \leqslant+\infty)$. We know that there exists a unique continuous, linear map $\gamma_{0}: W^{1, p}(\Omega) \longrightarrow L^{p}(\partial \Omega)$, known as the "trace map", such that

$$
\gamma_{0}(u)=\left.u\right|_{\partial \Omega} \quad \text { for all } u \in W^{1, p}(\Omega) \cap C(\bar{\Omega}) .
$$

Hence the trace map extends the notion of "boundary values" to all Sobolev functions. The map $\gamma_{0}$ is compact into $L^{r}(\partial \Omega)$ for all $r \in\left[1, \frac{(N-1) p}{N-p}\right)$ if $p<N$ and into $L^{r}(\partial \Omega)$ for all $1 \leqslant r<+\infty$ if $p \geqslant N$. In addition we have

$$
\operatorname{im} \gamma_{0}=W^{\frac{1}{p^{\prime}, p}}(\partial \Omega) \quad \text { and } \quad \operatorname{ker} \gamma_{0}=W_{0}^{1, p}(\Omega)
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=1$ (that is, $\gamma_{0}$ is not a surjection).

In the sequel, for the sake of simplicity we drop the use of the trace map $\gamma_{0}$. All restrictions of Sobolev functions on $\partial \Omega$ are understood in the sense of traces.

Let $k \in C^{1}(0,+\infty)$ and assume that it satisfies the following growth condition

$$
\begin{equation*}
0<\widehat{c} \leqslant \frac{t k^{\prime}(t)}{k(t)} \leqslant c_{0} \quad \text { and } \quad c_{1} t^{p-1} \leqslant k(t) \leqslant c_{2}\left(t^{\tau-1}+t^{p-1}\right) \quad \forall t>0 \tag{2.1}
\end{equation*}
$$

with $c_{1}, c_{2}>0$ and $1 \leqslant \tau<p$.
We introduce the conditions on the map $a$.
$H(a): a(y)=a_{0}(|y|) y$ for all $y \in \mathbf{R}^{N}$ with $a_{0}(t)>0$ for all $t>0$ and
(i) $a_{0} \in C^{1}(0,+\infty), t \longmapsto a_{0}(t) t$ is strictly increasing on $(0,+\infty), a_{0}(t) t \longrightarrow$ $0^{+}$as $t \rightarrow 0^{+}$and

$$
\lim _{t \rightarrow 0^{+}} \frac{a_{0}^{\prime}(t) t}{a_{0}(t)}>-1
$$

(ii) there exists $c_{3}>0$ such that $|\nabla a(y)| \leqslant c_{3} \frac{k(|y|)}{|y|}$ for all $y \in \mathbf{R}^{N} \backslash\{0\}$;
(iii) $\frac{k(|y|)}{|y|}|\xi|^{2} \leqslant(\nabla a(y) \xi, \xi)_{\mathbf{R}^{N}}$ for all $y \in \mathbf{R}^{N} \backslash\{0\}$, all $\xi \in \mathbf{R}^{N}$;
(iv) if $G_{0}(t)=\int_{0}^{t} a_{0}(s) s d s$, then there exists $1<q \leqslant p$ such that

$$
t \longmapsto G_{0}\left(t^{\frac{1}{9}}\right) \text { is convex on }(0,+\infty)
$$

and

$$
\limsup _{t \rightarrow 0^{+}} \frac{q G_{0}(t)}{t^{q}} \leqslant \widetilde{c}
$$

Remark 2.2. Hypotheses $H(a)(\mathrm{i})-(i i i)$ are dictated by the nonlinear regularity theory of Lieberman [12] and the nonlinear maximum principle of Pucci-Serrin [20]. Hypothesis $H(a)(i v)$ addresses the particular needs of our problem. However, it is a mild requirement and it is satisfied in all cases of interest. Similar conditions were also used in Bai-Gasinski-Papageorgiou [1].

Note that $G_{0}$ is strictly increasing and strictly convex. If we set

$$
G(y)=G_{0}(|y|) \quad \forall y \in \mathbf{R}^{N},
$$

then $G$ is convex, $G(0)=0$ and

$$
\nabla G(y)=G_{0}^{\prime}(|y|) \frac{y}{|y|}=a_{0}(|y|) y=a(y) \quad \forall y \in \mathbf{R}^{N} \backslash\{0\}, \quad \nabla G(0)=0
$$

So, $G$ is the primitive of $a$ and on account of the convexity of $G$ we have

$$
\begin{equation*}
G(y) \leqslant(a(y), y)_{\mathbf{R}^{N}} \quad \forall y \in \mathbf{R}^{N} . \tag{2.2}
\end{equation*}
$$

The next lemma summarizes the main properties of the map $a$. It follows from hypotheses $H(a)$.

Lemma 2.3. If hypotheses $H(a)(i)$, (ii) and (iii) hold, then
(a) $y \longmapsto a(y)$ is continuous, monotone (hence maximal monotone too);
(b) there exists $c_{4}>0$, such that $|a(y)| \leqslant c_{4}\left(|y|^{\tau-1}+|y|^{p-1}\right)$ for all $y \in \mathbf{R}^{N}$;
(c) $(a(y), y)_{\mathbf{R}^{N}} \geqslant \frac{c_{1}}{p-1}|y|^{p}$ for all $y \in \mathbf{R}^{N}$.

From this lemma and (2.1), (2.2), we have the following growth estimates for the primitive $G$.

Corollary 2.4. If hypotheses $H(a)$ (i), (ii) and (iii) hold, there exists $c_{5}>0$ such that

$$
\frac{c_{1}}{p(p-1)}|y|^{p} \leqslant G(y) \leqslant c_{5}\left(1+|y|^{p}\right) \quad \forall y \in \mathbf{R}^{N} .
$$

The $p$-Laplacian

$$
\Delta_{p} u=\operatorname{div}\left(|D u|^{p-2} D u\right) \quad \forall u \in W^{1, p}(\Omega),
$$

with $1<p<+\infty$ and the $(p, q)$-Laplacian

$$
\Delta_{p} u+\Delta_{q} u \quad \forall u \in W^{1, p}(\Omega),
$$

with $1<r<p<+\infty$ are within the framework corresponding to hypotheses $H(a)$. More about this set of conditions can be found in Papageorgiou-Rădulescu [16].

The hypotheses on the potential $\xi$ and the boundary coefficient $\beta$ are the following:
$H(\xi): \xi \in L^{\infty}(\Omega)$ and $\xi(z) \geqslant 0$ for a.a. $z \in \Omega$.
$H(\beta): \beta \in C^{0, \alpha}(\partial \Omega)$ for some $\alpha \in(0,1)$ and $\beta(z) \geqslant 0$ for all $z \in \partial \Omega$.
$H_{0}: \xi \not \equiv 0$ or $\beta \not \equiv 0$.
Remark 2.5. If $\beta \equiv 0$, then we recover the Neumann problem for the operator $-\operatorname{div} a(D u)+\xi(z)|u|^{p}$.

From Gasiński-Papageorgiou [10], for any $r \in(1,+\infty)$, we have the following result.

Proposition 2.6. (a) If $\xi \in L^{\infty}(\Omega), \xi(z) \geqslant 0$ for a.a. $z \in \Omega$ and $\xi \not \equiv 0$, then

$$
\|D u\|_{r}^{r}+\int_{\Omega} \xi(z)|u|^{r} d z \geqslant c_{6}\|u\|^{r} \quad \forall u \in W^{1, r}(\Omega)
$$

for some $c_{6}>0$;
(b) If $\beta \in C^{0, \alpha}(\partial \Omega), \beta(z) \geqslant 0$ for all $z \in \partial \Omega$ and $\beta \not \equiv 0$, then

$$
\|D u\|_{r}^{r}+\int_{\partial \Omega} \beta(z)|u|^{r} d \sigma \geqslant c_{7}\|u\|^{r} \quad \forall u \in W^{1, r}(\Omega)
$$

for some $c_{7}>0$.
Remark 2.7. If $\gamma_{r}(u)=\|D u\|_{r}^{r}+\int_{\Omega} \xi(z)|u|^{r}+\int_{\partial \Omega} \beta(z)|u|^{r} d \sigma$ for all $u \in W^{1, p}(\Omega)$, then Proposition 2.6 implies that

$$
\gamma_{r}(u) \geqslant \widehat{c}_{0}\|u\|^{r} \quad \forall u \in W^{1, r}(\Omega)
$$

for some $\widehat{c}_{0}>0$.
Let $r \in(1,+\infty)$ and consider the following nonlinear eigenvalue problem:

$$
\begin{cases}-\Delta_{r} u(z)+\xi(z)|u(z)|^{r-2} u(z)=\widehat{\lambda}|u(z)|^{r-2} u(z) & \text { in } \Omega,  \tag{2.3}\\ \frac{\partial u}{\partial n_{r}}+\beta(z)|u|^{r-2} u=0 & \text { on } \partial \Omega .\end{cases}
$$

Here $\frac{\partial u}{\partial n_{r}}=|D u|^{r-2}(D u, n)_{\mathbf{R}^{N}}$. We say that $\hat{\lambda}$ is an "eigenvalue", if problem (2.3) admits a nontrivial solution $\widehat{u} \in W^{1, r}(\Omega)$, known as an "eigenfunction" corresponding to $\hat{\lambda}$. Nonlinear regularity theory (see Lieberman [12]), implies that $\widehat{u} \in C^{1}(\bar{\Omega})$. There is a smallest eigenvalue $\widehat{\lambda}_{1}(r, \xi, \beta)$ which has the following properties:

- $\widehat{\lambda}_{1}(r, \xi, \beta)>0$ (see Proposition 2.6);
- $\widehat{\lambda}_{1}(r, \xi, \beta)$ is isolated in the spectrum $\widehat{\sigma}(r)$ of (2.3) (that is, there exists $\varepsilon>0$ such that $\left.\left(\widehat{\lambda}_{1}(r, \xi, \beta), \widehat{\lambda}_{1}(r, \xi, \beta)+\varepsilon\right) \cap \widehat{\sigma}(r)=\emptyset\right)$;
- $\widehat{\lambda}_{1}(r, \xi, \beta)$ is simple (that is, if $\widehat{u}, \widehat{v} \in C^{1}(\bar{\Omega})$ are eigenfunctions corresponding to $\widehat{\lambda}_{1}(r, \xi, \beta)$, then $\widehat{u}=\eta \widehat{v}$ for some $\left.\eta \in \mathbf{R} \backslash\{0\}\right)$;
- if $\gamma_{r}(u)=\|D u\|_{r}^{r}+\int_{\Omega} \xi(z)|u|^{r} d z+\int_{\partial \Omega} \beta(z)|u|^{r} d \sigma$ for all $u \in W^{1, r}(\Omega)$, then

$$
\begin{equation*}
\widehat{\lambda}_{1}(r, \xi, \beta)=\inf _{u \in W^{1, r}(\Omega) \backslash\{0\}} \frac{\gamma_{r}(u)}{\|u\|_{r}^{r}} . \tag{2.4}
\end{equation*}
$$

The above properties imply that the elements of the one-dimensional eigenspace corresponding to $\widehat{\lambda}_{1}(r, \xi, \beta)>0$, do not change sign. By $\widehat{u}_{1}(r, \xi, \beta)$ we denote the positive, $L^{r}$-normalized (that is $\left.\left\|\widehat{u}_{1}(r, \xi, \beta)\right\|_{r}=1\right)$ eigenfunction corresponding to $\widehat{\lambda}_{1}(r, \xi, \beta)>0$. We have $\widehat{u}_{1}(r, \xi, \beta) \in D_{+}$(see Gasiński-Papageorgiou [7, p. 739]). More about the eigenvalue problem (2.3) can be found in Fragnelli-MugnaiPapageorgiou [5] and Papageorgiou-Rădulescu [14].

Using above properties, we can easily prove the following lemma (see MugnaiPapageorgiou [13, Lemma 4.11]).

Lemma 2.8. If $\vartheta \in L^{\infty}(\Omega)$ and $\vartheta(z) \leqslant \widehat{\lambda}_{1}(r, \xi, \beta)$ for a.a. $z \in \Omega$ with strict inequality on a set of positive measure, then there exists $c_{8}>0$ such that

$$
c_{8}\|u\|^{r} \leqslant \gamma_{r}(u)-\int_{\Omega} \vartheta(z)|u|^{r}, d z \quad \forall u \in W^{1, r}(\Omega) .
$$

In what follows, we set

$$
\xi_{*}=\frac{p-1}{c_{1}} \xi \quad \text { and } \quad \beta_{*}=\frac{p-1}{c_{1}} \beta, \quad \xi_{0}=\frac{1}{\widetilde{c}} \xi \quad \text { and } \quad \beta_{0}=\frac{1}{\widetilde{c}} \beta .
$$

Both pairs satisfy hypotheses $H(\xi), H(\beta)$ and $H_{0}$.
The hypotheses on the drift coefficient $r$ are the following. $H(r): r \in L^{\infty}(\Omega), r(z) \geqslant 0$ for a.a. $z \in \Omega$ and $\tau_{0}=\frac{c_{1}}{p-1}-\frac{\|r\|_{\infty}}{\lambda_{1}\left(p, \xi_{*}, \beta_{*}\right)}>0$.

Remark 2.9. The last part of the above hypothesis impose a bound on the drift coefficient $r$.

Finally we introduce the hypotheses on the perturbation $f(z, x)$.
$H(f): f: \Omega \times \mathbf{R} \longrightarrow \mathbf{R}$ is a Carathéodory function, $f(z, 0)=0$ for a.a. $z \in \Omega$ and
(i) $|f(z, x)| \leqslant a_{0}(z)\left(1+x^{r-1}\right)$ for a.a. $z \in \Omega$, all $x \geqslant 0$, with $a_{0} \in L^{\infty}(\Omega)_{+}$, $p<r<p^{*}$;
(ii) there exists a function $\vartheta \in L^{\infty}(\Omega)_{+}$such that

$$
\begin{aligned}
& \vartheta(z) \leqslant \tau_{0} \widehat{\lambda}_{1}\left(p, \xi_{*}, \beta_{*}\right) \quad \text { a.e. in } \Omega, \quad \vartheta \not \equiv \tau_{0} \widehat{\lambda}_{1}\left(p, \xi_{*}, \beta_{*}\right) \\
& \limsup _{x \rightarrow+\infty} \frac{f(z, x)}{x^{p-1}} \leqslant \vartheta(z) \quad \text { uniformly for a.a. } z \in \Omega
\end{aligned}
$$

(iii) there exists a function $\eta \in L^{\infty}(\Omega)$ such that

$$
\begin{aligned}
& \eta(z) \geqslant \widehat{\lambda}_{1}\left(q, \xi_{0}, \beta_{0}\right) \quad \text { for a.a. } z \in \Omega, \quad \eta \not \equiv \widehat{\lambda}_{1}\left(q, \xi_{0}, \beta_{0}\right), \\
& \liminf _{x \rightarrow 0^{+}} \frac{f(z, x)}{x^{q-1}} \geqslant \eta(z) \quad \text { uniformly for a.a. } z \in \Omega
\end{aligned}
$$

(here $1<q \leqslant p$ is as in hypothesis $H(a)(\mathrm{iv})$ ).
Remark 2.10. Since our aim is to find positive solutions and the above hypotheses concern the positive semiaxis $\mathbf{R}_{+}=[0,+\infty)$, without any loss of generality, we may assume that

$$
\begin{equation*}
f(z, x)=0 \quad \text { for a.a. } z \in \Omega, \text { all } x \leqslant 0 \tag{2.5}
\end{equation*}
$$

In what follows $A: W^{1, p}(\Omega) \longrightarrow W^{1, p}(\Omega)^{*}$ is the nonlinear map defined by

$$
\langle A(u), h\rangle=\int_{\Omega}(a(D u), D h)_{\mathbf{R}^{N}} d z \quad \forall u, h \in W^{1, p}(\Omega)
$$

This map is monotone, continuous, hence maximal monotone. Also, if $x \in \mathbf{R}$, we set $x^{ \pm}=\max \{ \pm x, 0\}$. Then for $u \in W^{1, p}(\Omega)$ we define $u^{ \pm}(\cdot)=u(\cdot)^{ \pm}$. We know that, if $u \in W^{1, p}(\Omega)$, then

$$
u^{ \pm} \in W^{1, p}(\Omega), \quad u=u^{+}-u^{-}, \quad|u|=u^{+}+u^{-} .
$$

## 3. Positive solution

On account of hypotheses $H(f)$, given $\varepsilon>0$, we can find $c_{9}=c_{9}(\varepsilon)>0$ such that

$$
\begin{equation*}
f(z, x) \geqslant(\widehat{\eta}(z)-\varepsilon) x^{q-1}-c_{9} x^{r-1} \quad \text { for a.a. } z \in \Omega \text {, all } x \geqslant 0 \tag{3.1}
\end{equation*}
$$

We consider the following auxiliary Robin problem:

$$
\begin{cases}-\operatorname{div} a(D u(z))+\xi(z) u(z)^{p-1}=(\widehat{\eta}(z)-\varepsilon) u(z)^{q-1}-c_{9} u(z)^{r-1} & \text { in } \Omega  \tag{3.2}\\ \frac{\partial u}{\partial n_{a}}+\beta(z) u^{p-1}=0 & \text { on } \partial \Omega, u>0 .\end{cases}
$$

Proposition 3.1. If hypotheses $H(a), H(\xi), H(\beta)$ and $H_{0}$ hold, then for all $\varepsilon>0$ small, problem (3.2) admits a unique solution $u_{*} \in D_{+}$.

Proof. We consider the $C^{1}$-functional $\psi_{\varepsilon}: W^{1, p}(\Omega) \longrightarrow \mathbf{R}, \varepsilon>0$, defined by

$$
\begin{aligned}
\psi_{\varepsilon}(u)= & \int_{\Omega} G(D u) d z+\frac{1}{p} \int_{\Omega} \xi(z)|u|^{p} d z+\frac{1}{p} \int_{\partial \Omega} \beta(z)|u|^{p} d \sigma \\
& -\frac{1}{q} \int_{\Omega}(\eta(z)-\varepsilon)\left(u^{+}\right)^{q} d z+\frac{c_{9}}{r}\left\|u^{+}\right\|_{r}^{r} .
\end{aligned}
$$

Using hypothesis $H_{0}$, Proposition 2.6 and recalling that $q \leqslant p<r$, we have

$$
\begin{aligned}
\psi_{\varepsilon}(u) & \geqslant c_{10}\|u\|^{p}+\frac{c_{9}}{r}\left\|u^{+}\right\|_{r}^{r}-c_{11}\left\|u^{+}\right\|_{q}^{q} \\
& \geqslant c_{10}\|u\|^{p}+c_{12}\left\|u^{+}\right\|_{p}^{r}-c_{13}\left\|u^{+}\right\|_{p}^{q} \\
& =c_{10}\|u\|^{p}+\left(c_{12}\left\|u^{+}\right\|_{p}^{r-q}-c_{13}\right)\left\|u^{+}\right\|_{p}^{q} \quad \forall u \in W^{1, p}(\Omega),
\end{aligned}
$$

for some $c_{10}, c_{11}, c_{12}, c_{13}>0$, so, $\psi_{\varepsilon}$ is coercive.
Also using the Sobolev embedding theorem and the compactness of the trace map, we infer that $\psi_{\varepsilon}$ is sequentially weakly lower semicontinuous. So, by the WeierstrassTonelli theorem, we can find $u_{*} \in W^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\psi_{\varepsilon}\left(u_{*}\right)=\inf _{u \in W^{1, p}(\Omega)} \psi_{\varepsilon}(u) \tag{3.3}
\end{equation*}
$$

On account of hypothesis $H(a)($ iv $)$, given $\varepsilon>0$, we can find $\delta=\delta(\varepsilon) \in(0,1)$ such that

$$
\begin{equation*}
G(y) \leqslant \frac{1}{q}(\widetilde{c}+\varepsilon)|y|^{q} \quad \forall|y| \leqslant \delta . \tag{3.4}
\end{equation*}
$$

Let $t \in(0,1)$ be small such that

$$
\begin{equation*}
0<t \widehat{u}_{1}\left(q, \xi_{0}, \beta_{0}\right)(z) \leqslant \delta \quad \forall z \in \bar{\Omega} \tag{3.5}
\end{equation*}
$$

(recall that $\left.\widehat{u}_{1}\left(q, \xi_{0}, \beta_{0}\right) \in D_{+}\right)$. To simplify the notation, let $\widehat{u}_{1}(q)=\widehat{u}_{1}\left(q, \xi_{0}, \beta_{0}\right)$ and $\widehat{\lambda}_{1}(q)=\widehat{\lambda}_{1}\left(q, \xi_{0}, \beta_{0}\right)$. Since $\delta \in(0,1)$ and $q \leqslant p$, we have

$$
\begin{align*}
\psi_{\varepsilon}\left(t \widehat{u}_{1}(q)\right) \leqslant & \frac{\widetilde{c}+\varepsilon}{q} t^{q}\left\|D \widehat{u}_{1}(q)\right\|_{q}^{q}+\frac{\widetilde{c}}{q} \int_{\Omega} \xi_{0}\left(t \widehat{u}_{1}(q)\right)^{q} d z+\frac{\widetilde{c}}{q} \int_{\partial \Omega} \beta_{0}\left(t \widehat{u}_{1}(q)\right)^{q} d \sigma \\
& -\frac{1}{q} \int_{\Omega} \eta(z)\left(t \widehat{u}_{1}(q)\right)^{q} d z+\frac{\varepsilon t^{q}}{q}+\frac{c_{6} t^{r}}{r}\left\|\widehat{u}_{1}(q)\right\|_{r}^{r} \\
= & \frac{\widetilde{c t}^{q}}{q} \int_{\Omega}\left(\widehat{\lambda}_{1}(q)-\eta(z)\right) \widehat{u}_{1}(q)^{q} d z+\frac{\varepsilon t^{q}}{q}\left(\widehat{\lambda}_{1}(q)+1\right)+c_{14} t^{r}, \tag{3.6}
\end{align*}
$$

for some $c_{14}>0$ (see (3.4), (3.5) and recall that $\left.\left\|\widehat{u}_{1}(q)\right\|_{q}=1\right)$.
Note that

$$
\int_{\Omega}\left(\widehat{\lambda}_{1}(q)-\eta(z)\right) \widehat{u}_{1}(q)^{q} d z<0
$$

(see hypothesis $H(f)($ iii $)$ ). Therefore choosing $\varepsilon>0$ small and since $t \in(0,1), q<r$, from (3.6) we infer that

$$
\psi_{\varepsilon}\left(t \widehat{u}_{1}(q)\right)<0 \quad \forall \varepsilon>0 \text { small, }
$$

so

$$
\psi_{\varepsilon}\left(u_{*}\right)<0=\psi_{\varepsilon}(0)
$$

(see (3.3)) and thus $u_{*} \neq 0$. From (3.3) we have

$$
\psi_{\varepsilon}^{\prime}\left(u_{*}\right)=0
$$

so

$$
\begin{align*}
& \left\langle A\left(u_{*}\right), h\right\rangle+\int_{\Omega} \xi(z)\left|u_{*}\right|^{p-2} u_{*} h d z+\int_{\partial \Omega} \beta(z)\left|u_{*}\right|^{p-2} u_{*} h d \sigma \\
& =\int_{\Omega}(\eta(z)-\varepsilon)\left(u_{*}^{+}\right)^{q-1} h d z-c_{9} \int_{\Omega}\left(u_{*}^{+}\right)^{r-1} h d z \quad \forall h \in W^{1, p}(\Omega) . \tag{3.7}
\end{align*}
$$

In (3.7) we choose $h=-u_{*}^{-} \in W^{1, p}(\Omega)$. Then

$$
\frac{c_{1}}{p-1}\left\|D u_{*}^{-}\right\|_{p}^{p}+\int_{\Omega} \xi(z)\left(u_{*}^{-}\right)^{p} d z+\int_{\partial \Omega} \beta(z)\left(u_{*}^{-}\right)^{p} d \sigma \leqslant 0
$$

so

$$
c_{15}\left\|u_{*}^{-}\right\|^{p} \leqslant 0
$$

for some $c_{15}>0$ (see Proposition 2.6), thus

$$
\begin{equation*}
u_{*} \geqslant 0, \quad u_{*} \neq 0 \tag{3.8}
\end{equation*}
$$

From (3.7) and (3.8), we have

$$
\begin{cases}-\operatorname{div} a\left(D u_{*}(z)\right)+\xi(z) u_{*}(z)^{p-1}=(\eta(z)-\varepsilon) u_{*}(z)^{q-1}+c_{9} u_{*}(z)^{r-1} & \text { in } \Omega  \tag{3.9}\\ \frac{\partial u_{*}}{\partial n_{a}}+\beta(z) u_{*}^{p-1}=0 & \text { on } \partial \Omega\end{cases}
$$

(see Papageorgiou-Rădulescu [14]).
From (3.9) and Proposition 2.10 of Papageorgiou-Rădulescu [15], we have

$$
u_{*} \in L^{\infty}(\Omega)
$$

Then from the nonlinear regularity theory of Lieberman [12], we have that

$$
u_{*} \in C_{+} \backslash\{0\} .
$$

From (3.9) we obtain

$$
\operatorname{div} a\left(D u_{*}(z)\right) \leqslant\left(c_{9}\left\|u_{*}\right\|_{\infty}^{r-p}+\|\xi\|_{\infty}\right) u_{*}(z)^{p-1} \quad \text { for a.a. } z \in \Omega
$$

so $u_{*} \in D_{+}$(see Pucci-Serrin [20, pp. 111, 120]).
In fact this positive solution of (3.2) is unique. To show this, we introduce the integral functional $j: L^{1}(\Omega) \longrightarrow \overline{\mathbf{R}}=\mathbf{R} \cup\{+\infty\}$ defined by

$$
j(u)= \begin{cases}\int_{\Omega} G\left(D u^{\frac{1}{q}}\right) d z+\frac{1}{p} \int_{\Omega} \xi(z) u^{\frac{p}{q}} d z, & \\ +\infty & +\frac{1}{p} \int_{\partial \Omega} \beta(z) u^{\frac{p}{q}} d \sigma \\ \text { if } u \geqslant 0, u^{\frac{1}{q}} \in W^{1, p}(\Omega) \\ & \text { otherwise. }\end{cases}
$$

As in Papageorgiou-Rădulescu [16, proof of Proposition 3.5], we show that

$$
\begin{equation*}
j \text { is convex } \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
j^{\prime}\left(u_{*}^{q}\right)(h)=\frac{1}{q} \int_{\Omega} \frac{-\operatorname{div} a\left(D u_{*}\right)+\xi(z) u_{*}^{p-1}}{u_{*}^{q-1}} h d z \quad \forall h \in C^{1}(\bar{\Omega}) . \tag{3.11}
\end{equation*}
$$

Here we use the fact that given $h \in C^{1}(\bar{\Omega})$, for $|t|<1$ small we have $u_{*}^{q}+t h \in \operatorname{dom} j$.
Suppose that $v_{*}$ is another positive solution of (3.2). Similarly we have

$$
v_{*} \in D_{+}
$$

and

$$
j^{\prime}\left(v_{*}^{q}\right)(h)=\frac{1}{q} \int_{\Omega} \frac{-\operatorname{div} a\left(D v_{*}\right)+\xi(z) v_{*}^{p-1}}{v_{*}^{q-1}} h d z \quad \forall h \in C^{1}(\bar{\Omega}) .
$$

From (3.10), it follows that $j^{\prime}$ is monotone. Therefore

$$
\begin{aligned}
0 & \leqslant \int_{\Omega}\left(\frac{-\operatorname{div} a\left(D u_{*}\right)+\xi(z) u_{*}^{p-1}}{u_{*}^{q-1}} h d z-\frac{-\operatorname{div} a\left(D v_{*}\right)+\xi(z) v_{*}^{p-1}}{v_{*}^{q-1}} h d z\right)\left(u_{*}^{q}-v_{*}^{q}\right) d z \\
& =c_{9} \int_{\Omega}\left(v_{*}^{r-1}-u_{*}^{r-1}\right)\left(u_{*}^{q}-v_{*}^{q}\right) d z \leqslant 0,
\end{aligned}
$$

so $u_{*}=v_{*}$. This proves the uniqueness of the positive solution of (3.2).
For $h \in L^{\infty}(\Omega)$, we consider the following auxiliary Robin problem:

$$
\begin{cases}-\operatorname{div} a(D u(z))+\xi(z)|u(z)|^{p-2} u(z)=h(z) & \text { in } \Omega  \tag{3.12}\\ \frac{\partial u}{\partial n_{a}}+\beta(z)|u|^{p-2} u=0 & \text { on } \partial \Omega\end{cases}
$$

Proposition 3.2. If hypotheses $H(a), H(\xi), H(\beta)$ and $H_{0}$ hold, then problem (3.12) admits a unique solution $K(h) \in C^{1}(\bar{\Omega})$.

Proof. Consider the $C^{1}$-functional $\mu: W^{1, p}(\Omega) \longrightarrow \mathbf{R}$ defined by

$$
\begin{aligned}
\mu(u)= & \int_{\Omega} G(D u) d z+\frac{1}{p} \int_{\Omega} \xi(z)|u|^{p} d z+\frac{1}{p} \int_{\partial \Omega} \beta(z)|u|^{p} d \sigma \\
& -\int_{\Omega} h u d z \quad \forall u \in W^{1, p}(\Omega)
\end{aligned}
$$

Using Corollary 2.4 and Proposition 2.6, we see that $\mu$ is coercive. Also, it is sequentially lower semicontinuous. So, by the Weierstrass-Tonelli theorem, we can find $K(h)=\widehat{u} \in W^{1, p}(\Omega)$ such that

$$
\mu(\widehat{u})=\inf _{u \in W^{1, p}(\Omega)} \mu(u)
$$

so $\mu^{\prime}(\widehat{u})=0$ and thus

$$
\begin{equation*}
\langle A(\widehat{u}), v\rangle+\int_{\Omega} \xi(z)|\widehat{u}|^{p-2} \widehat{u} v d z+\int_{\partial \Omega} \beta(z)|\widehat{u}|^{p-2} \widehat{u} v d \sigma=\int_{\Omega} h v d z \tag{3.13}
\end{equation*}
$$

for all $u \in W^{1, p}(\Omega)$, so $K(h)=\widehat{u}$ is a solution of (3.12). The nonlinear regularity theory implies that

$$
K(h)=\widehat{u} \in C^{1}(\bar{\Omega}) .
$$

The uniqueness of this positive solution follows as in the proof of Proposition 3.1.
Remark 3.3. If $h \in L^{\infty}(\Omega)$ satisfies $h(z) \geqslant 0$ for a.a. $z \in \Omega, h \not \equiv 0$, then $K(h) \in D_{+}$. To see this, in (3.13) we choose $v=-\widehat{u}^{-} \in W^{1, p}(\Omega)$ and obtain

$$
c_{16}\left\|\widehat{u}^{-}\right\|^{p} \leqslant 0
$$

for some $c_{16}>0$ (see Lemma 2.3 and Proposition 2.6), so

$$
\widehat{u} \geqslant 0, \quad \widehat{u} \neq 0
$$

(since $h \not \equiv 0$ ).
So, we have $\widehat{u}=K(h) \in C_{+}$and

$$
\operatorname{div} a(D \widehat{u}(z)) \leqslant\|\xi\|_{\infty} \widehat{u}(z)^{p-1} \quad \text { for a.a. } z \in \Omega
$$

(since $h \geqslant 0$ ), thus

$$
\widehat{u}=K(h) \in D_{+}
$$

(see Pucci-Serrin [20, p. 111, 120]).
We consider the solution map $K: L^{\infty}(\Omega) \longrightarrow C^{1}(\bar{\Omega})$.
Proposition 3.4. If hypotheses $H(a), H(\xi), H(\beta)$ and $H_{0}$ hold, then the map $K$ is sequentially continuous from $L^{\infty}(\Omega)$ with the $w^{*}$-topology into $C^{1}(\bar{\Omega})$ with the norm topology.

Proof. Let $h_{n} \xrightarrow{w^{*}} h$ in $L^{\infty}(\Omega)$ and let $\widehat{u}_{n}=K\left(h_{n}\right)$ for all $n \in \mathbf{N}$. We have

$$
\begin{align*}
& \left\langle A\left(\widehat{u}_{n}\right), v\right)+\int_{\Omega} \xi(z)\left|\widehat{u}_{n}\right|^{p-2} \widehat{u}_{n} v d z+\int_{\partial \Omega} \beta(z)\left|\widehat{u}_{n}\right|^{p-2} \widehat{u}_{n} v d \sigma \\
& =\int_{\Omega} h_{n} v d z \quad \forall v \in W^{1, p}(\Omega), n \in \mathbf{N} . \tag{3.14}
\end{align*}
$$

In (3.14) we choose $v=\widehat{u}_{n} \in W^{1, p}(\Omega)$. Then

$$
\frac{c_{1}}{p-1}\left\|D \widehat{u}_{n}\right\|_{p}^{p}+\int_{\Omega} \xi(z)\left|\widehat{u}_{n}\right|^{p} d z+\int_{\partial \Omega} \beta(z)\left|\widehat{u}_{n}\right|^{p} d \sigma \leqslant c_{17}\left\|\widehat{u}_{n}\right\| \quad \forall n \in \mathbf{N}
$$

for some $c_{17}>0$ (see Lemma 2.3), so

$$
c_{18}\left\|\widehat{u}_{n}\right\|^{p} \leqslant c_{17}\left\|\widehat{u}_{n}\right\| \quad \forall n \in \mathbf{N},
$$

for some $c_{18}>0$ (see Proposition 2.6) and thus the sequence $\left\{u_{n}\right\}_{n \geqslant 1} \subseteq W^{1, p}(\Omega)$ is bounded.

Then from Proposition 2.10 of Papageorgiou-Rădulescu [15], we know that we can find $c_{19}>0$ such that

$$
\left\|\widehat{u}_{n}\right\|_{\infty} \leqslant c_{19} \quad \forall n \in \mathbf{N} .
$$

The nonlinear regularity theory of Lieberman [12] implies that

$$
\begin{equation*}
\widehat{u}_{n} \in C^{1, \alpha}(\bar{\Omega}), \quad\left\|\widehat{u}_{n}\right\|_{C^{1, \alpha}(\bar{\Omega})} \leqslant c_{20} \quad \forall n \in \mathbf{N}, \tag{3.15}
\end{equation*}
$$

for some $\alpha \in(0,1)$ and some $c_{20}>0$. Exploiting the compactness of the embedding $C^{1, \alpha}(\bar{\Omega}) \subseteq C^{1}(\bar{\Omega})$, from (3.15) we see that, at least for a subsequence, we have

$$
\widehat{u}_{n} \longrightarrow \widehat{u} \quad \text { in } C^{1}(\bar{\Omega}) .
$$

Passing to the limit as $n \rightarrow+\infty$ in (3.14), we obtain

$$
\widehat{u}=K(h) .
$$

So, for the origin sequence, we have

$$
\widehat{u}_{n}=K\left(h_{n}\right) \longrightarrow K(h)=\widehat{u} \quad \text { in } C^{1}(\bar{\Omega}),
$$

so $K: L^{\infty}(\Omega) \longrightarrow C^{1}(\bar{\Omega})$ is sequentially $\left(w^{*}, s\right)$-continuous.
Let $u_{*} \in D_{+}$be the unique positive solution of problem (3.2) produced in Proposition 3.1. We introduce the following truncation of $f(z, \cdot)$ :

$$
\widehat{f}(z, x)= \begin{cases}f\left(z, u_{*}(z)\right) & \text { if } x \leqslant u_{*}(z)  \tag{3.16}\\ f(z, x) & \text { if } u_{*}(z)<x\end{cases}
$$

This is a Carathéodory function. Let $N_{\widehat{f}}$ be the Nemytski (superposition) map corresponding to $\widehat{f}$, that is,

$$
N_{\widehat{f}}(u)(\cdot)=\widehat{f}(\cdot, u(\cdot)) \quad \forall u \in W^{1, p}(\Omega) .
$$

We consider the map $N: C^{1}(\bar{\Omega}) \longrightarrow L^{p}(\Omega)$ defined by

$$
N(u)=N_{\hat{f}}(u)+r(z)\left|D u^{+}\right|^{p-1} \quad \forall u \in C^{1}(\bar{\Omega}) .
$$

We know that $u \longmapsto u^{+}$is continuous from $W^{1, p}(\Omega)$ into itself. Moreover, note that $N$ has values in $L^{\infty}$ (see hypotheses $H(f)(i)$ and $H(r)$ ). In fact, $N$ maps bounded sets in $C^{1}(\bar{\Omega})$ to bounded sets in $L^{\infty}(\Omega)$. So, by Krasnoselskii's theorem (see GasińskiPapageorgiou [7, Theorem 3.4.4, p. 407]), the Nemytskii map $N$ is continuous.

Now, consider the map $L=K \circ N: C^{1}(\bar{\Omega}) \longrightarrow C^{1}(\bar{\Omega})$. We see that $L$ is continuous. Also, if $D \subseteq C^{1}(\bar{\Omega})$ is bounded, then $N(D) \subseteq L^{\infty}(\Omega)$ is bounded and so it is relatively sequentially $w^{*}$-compact (since $L^{\infty}(\Omega)=L^{1}(\Omega)^{*}$ and the space $L^{1}(\Omega)$ is separable). Therefore, using Proposition 3.4, we obtain that $L(D) \subseteq C^{1}(\bar{\Omega})$ is relatively compact. We conclude that the map $u \longmapsto L(u)=(K \circ N)(u)$ is compact.

Consider the set

$$
S=\left\{u \in C^{1}(\bar{\Omega}): u=\lambda L(u), 0<\lambda<1\right\} .
$$

Proposition 3.5. If hypotheses $H(a), H(\xi), H(\beta), H(r)$ and $H(f)$ hold, then the set $S \subseteq C^{1}(\bar{\Omega})$ is bounded.

Proof. Let $u \in S$. Then

$$
\frac{1}{\lambda} u=L(u)=(K \circ N)(u)=K(N(u)),
$$

so

$$
\begin{cases}-\operatorname{div} a\left(\frac{1}{\lambda} D u(z)\right)+\frac{1}{\lambda^{p-1}} \xi(z)|u(z)|^{p-2} u(z) &  \tag{3.17}\\ =\widehat{f}(z, u(z))+r(z)\left|D u^{+}(z)\right|^{p-1} & \text { in } \Omega \\ \frac{\partial\left(\frac{1}{\lambda} u\right)}{\partial n_{a}}+\frac{1}{\lambda^{p-1}} \beta(z)\left|u^{p-2}\right| u=0 & \text { on } \partial \Omega\end{cases}
$$

On (3.17) we act with $u$ and obtain

$$
\begin{aligned}
& \frac{c_{1}}{\lambda^{p-1}(p-1)}\|D u\|_{p}^{p}+\frac{1}{\lambda^{p-1}} \int_{\Omega} \xi(z)|u|^{p} d z+\frac{1}{\lambda} \int_{\partial \Omega} \beta(z)|u|^{p} d \sigma \\
& \leqslant \int_{\Omega} \widehat{f}(z, u) u d z+\int_{\Omega} r(z)\left|D u^{+}\right| u^{+} d z
\end{aligned}
$$

(see Lemma 2.3 and recall that $D u^{+}=(D u) \chi_{\{u>0\}}$ ), so

$$
\begin{align*}
& \frac{c_{1}}{p-1}\left(\|D u\|_{p}^{p}+\int_{\Omega} \xi_{*}(z)|u|^{p} d z+\int_{\partial \Omega} \beta_{*}(z)|u|^{p} d \sigma\right) \\
& \leqslant \int_{\Omega} \widehat{f}(z, u) u d z+\int_{\Omega} r(z)\left|D u^{+}\right| u^{+} d z \tag{3.18}
\end{align*}
$$

(since $0<\lambda<1$ ). From (3.16) and hypotheses $H(f)$ (i) and (ii) we see that given $\varepsilon>0$, we can find $c_{21}=c_{21}(\varepsilon)>0$ such that

$$
\widehat{f}(z, x) x \leqslant(\vartheta(z)+\varepsilon)|x|^{p}+c_{21} \quad \text { for a.a. } z \in \Omega, \text { all } x \in \mathbf{R},
$$

so

$$
\begin{equation*}
\int_{\Omega} \widehat{f}(z, u) u d z \leqslant \int_{\Omega}(\vartheta(z)+\varepsilon)|u|^{p} d z+c_{22} \tag{3.19}
\end{equation*}
$$

for some $c_{22}>0$. Also, if

$$
\gamma_{p}(u)=\|D v\|_{p}^{p}+\int_{\Omega} \xi_{*}(z)|v|^{p} d z+\int_{\partial \Omega} \beta_{*}(z)|v|^{p} d \sigma \quad \forall v \in W^{1, p}(\Omega)
$$

and $\widehat{\lambda}_{1}(p)=\widehat{\lambda}_{1}\left(p, \xi_{*}, \beta_{*}\right)>0$, then

$$
\begin{align*}
& \int_{\Omega} r(z)\left|D u^{+}\right|^{p-1} u^{+} d z \leqslant\|r\|_{\infty}\left\|D u^{+}\right\|_{p}^{p-1}\left\|u^{+}\right\|_{p} \\
& \leqslant\|r\|_{\infty} \gamma_{p}(u)\|u\|_{p} \leqslant \frac{\|r\|_{\infty}}{\widehat{\lambda}_{1}(p)^{\frac{1}{p}}} \gamma_{p}(u) \tag{3.20}
\end{align*}
$$

(by Hölder's inequality and by hypotheses $H(\xi), H(\beta)$ ). We return to (3.18) and use (3.19) and (3.20). Then

$$
\left(\frac{c_{1}}{p-1}-\frac{\|r\|_{\infty}}{\widehat{\lambda}_{1}(p)^{\frac{1}{p}}}\right) \gamma_{p}(u)-\int_{\Omega} \vartheta(z)|u|^{p} d z-\varepsilon\|u\|^{p} \leqslant c_{22}
$$

so

$$
\tau_{0} \gamma_{p}(u)-\int_{\Omega} \vartheta(z)|u|^{p} d z-\varepsilon\|u\|^{p} \leqslant c_{22}
$$

thus

$$
\left(c_{23}-\varepsilon\right)\|u\|^{p} \leqslant c_{22},
$$

for some $c_{23}>0$ (see Lemma 2.8 and hypothesis $H(f)(i i)$ ).
Choosing $\varepsilon \in\left(0, c_{23}\right)$, we conclude that the set $S \subseteq W^{1, p}(\Omega)$ is bounded. Then from (3.17) and Proposition 7 of Papageorgiou-Rădulescu [15], we infer that

$$
\left\|\frac{1}{\lambda} u\right\|_{\infty} \leqslant c_{24} \quad \forall \lambda \in(0,1), u \in S
$$

for some $c_{24}>0$. Therefore from Lieberman [12], we have that

$$
\begin{equation*}
\frac{1}{\lambda} u \in C^{1, \alpha}(\bar{\Omega}) \quad \text { and } \quad\left\|\frac{1}{\lambda} u\right\|_{C^{1 . \alpha}(\bar{\Omega})} \leqslant c_{25} \quad \text { with } \lambda \in(0,1), u \in S \tag{3.21}
\end{equation*}
$$

for some $\alpha \in(0,1)$ and $c_{25}>0$.
Since $\lambda c_{25} \leqslant c_{25}(\lambda \in(0,1))$ and $C^{1, \alpha}(\bar{\Omega}) \subseteq C^{1}(\bar{\Omega})$, from (3.21), we conclude that the set $S \subseteq C^{1}(\bar{\Omega})$ is bounded.

Now, we are ready to prove the existence of a positive solution for problem (1.1).
Theorem 3.6. If hypotheses $H(a), H(\xi), H(\beta), H_{0}$ and $H(f)$ hold, then problem (1.1) has a solution $u_{0} \in D_{+}$.

Proof. Proposition 3.5 permit the use of Theorem 2.1 (the Leray-Schauder alternative principle). So, we can find $u_{0} \in C^{1}(\bar{\Omega})$ such that

$$
u_{0}=L\left(u_{0}\right)=K\left(N\left(u_{0}\right)\right),
$$

so

$$
\begin{align*}
& \left\langle A\left(u_{0}\right), h\right\rangle+\int_{\Omega} \xi(z)\left|u_{0}\right|^{p-2} u_{0} h d z+\int_{\partial \Omega} \beta(z)\left|u_{0}\right|^{p-2} u_{0} h d \sigma \\
& =\int_{\Omega}\left(\widehat{f}\left(z, u_{0}\right)+r(z)\left|D u_{0}^{+}\right|^{p-1}\right) h d z \quad \forall h \in W^{1, p}(\Omega) . \tag{3.22}
\end{align*}
$$

In (3.22) we choose $h=\left(u_{*}-u_{0}\right)^{+} \in W^{1, p}(\Omega)$. Then

$$
\begin{aligned}
& \left\langle A\left(u_{0}\right),\left(u_{*}-u_{0}\right)^{+}\right\rangle+\int_{\Omega} \xi(z)\left|u_{0}\right|^{p-2} u_{0}\left(u_{*}-u_{0}\right)^{+} d z+\int_{\partial \Omega} \beta(z)\left|u_{0}\right|^{p-2} u_{0}\left(u_{*}-u_{0}\right)^{+} d \sigma \\
& =\int_{\Omega}\left(f\left(z, u_{*}\right)+r(z)\left|D u_{0}^{+}\right|^{p-1}\right)\left(u_{*}-u_{0}\right)^{+} d z \geqslant \int_{\Omega} f\left(z, u_{*}\right)\left(u_{*}-u_{0}\right)^{+} d z \\
& \geqslant \int_{\Omega}\left((\eta(z)-\varepsilon) u_{*}^{q-1}-c_{9} u_{*}^{r-1}\right)\left(u_{*}-u_{0}\right)^{+} d z \\
& =\left\langle A\left(u_{*}\right),\left(u_{*}-u_{0}\right)^{+}\right\rangle+\int_{\Omega} \xi(z) u_{*}^{p-1}\left(u_{*}-u_{0}\right)^{+} d z+\int_{\partial \Omega} \beta(z) u_{*}^{p-1}\left(u_{*}-u_{0}\right)^{+} d \sigma
\end{aligned}
$$

(see (3.16), hypothesis $H(r),(3.1)$ and use the fact that $r \geqslant 0$ ), so

$$
u_{0} \geqslant u_{*},
$$

thus $u_{0} \in D_{+}$and $u_{0}$ solves problem (1.1) (see (3.16) and (3.22)).
Remark 3.7. A similar existence theorem can be proved for the Dirichlet problem. In fact on account of the Poincaré inequality, the estimations in the proofs are easier and we can also have $\xi \equiv 0$. Suppose that the differential operator is the Dirichlet $p$-Laplacian (that is, $a(y)=|y|^{p-2} y$ for all $y \in \mathbf{R}^{N}, 1<p<+\infty$ ), $r(z) \equiv r_{0}>0$ and $\vartheta(z) \equiv \vartheta_{0}>0$. In this case $c_{1}=p-1$ and the condition in hypothesis $H(r)$ becomes

$$
\widehat{\lambda}_{1}>r_{0}+\vartheta_{1} \widehat{\lambda}_{1}^{\frac{1}{p}}
$$

for some $\vartheta_{1} \in\left(\vartheta_{0}, \widehat{\lambda}_{1}\right)$. This is exactly the growth hypothesis in Faraci-MotreanuPuglisi [2].

It would be interesting to have Theorem 3.6 without the hypothesis that $r \geqslant 0$.
Acknowledgement. The authors wish to thank a knowledgeable referee for his/her corrections and useful remarks.

## References

[1] Bai, Y., L. Gasiński, and N. S. Papageorgiou: Nonlinear nonhomogeneous Robin problems with dependence on the gradient. - Bound. Value Probl. 2018:17, 2018, 1-24.
[2] Faraci, F., D. Motreanu, and D. Puglisi: Positive solutions of quasi-linear elliptic equations with dependence on the gradient. - Calc. Var. Partial Differential Equations 54:1, 2015, 525-538.
[3] Faria, L. F., O. H. Miyagaki, and D. Motreanu: Comparison and positive solutions for problems with the ( $p, q$ )-Laplacian and a convection term. - Proc. Edinb. Math. Soc. (2) 57:3, 2014, 687-698.
[4] De Figueiredo, D., M. Girardi, and M. Matzeu: Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques. - Differential Integral Equations 17:1-2, 2004, 119-126.
[5] Fragnelli, G., D. Mugnai, and N. S. Papageorgiou: The Brezis-Oswald result for quasilinear Robin problems. - Adv. Nonlinear Stud. 16:3, 2016, 603-622.
[6] Gasiński, L., D. O’Regan, and N. S. Papageorgiou: Positive solutions for nonlinear nonhomogeneous Robin problems. - Z. Anal. Anwend. 34:4, 2015, 435-458.
[7] Gasiński, L., and N. S. Papageorgiou: Nonlinear analysis. - Chapman \& Hall/CRC, Boca Raton, FL, 2006.
[8] Gasiński, L., and N. S. Papageorgiou: Positive solutions for nonlinear elliptic problems with dependence on the gradient, - J. Differential Equations 263:2, 2017, 1451-1476.
[9] Gasiński, L., and N. S. Papageorgiou: Resonant Robin problems with indefinite and unbounded potential. - Math. Nachr. 291:5-6, 2018, 848-878.
[10] Gasiński, L., and N. S. Papageorgiou: Positive solutions for the Robin $p$-Laplacian problem with competing nonlinearities. - Adv. Calc. Var., doi: 10.1515/acv-2016-0039.
[11] Girardi, M., and M. Matzeu: Positive and negative solutions of a quasi-linear elliptic equation by a mountain pass method and truncature techniques. - Nonlinear Anal. 59:1-2, 2004, 199-210.
[12] Lieberman, G. M.: The natural generalization of the natural conditions of Ladyzhenskaya and Uralt́seva for elliptic equations. - Comm. Partial Differential Equations 16:2-3, 1991, 311-361.
[13] Mugnai, D., and N. S. Papageorgiou: Resonant nonlinear Neumann problems with indefinite weight. - Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11:4, 2012, 729-788.
[14] Papageorgiou, N. S., and V. D. Rădulescu: Multiple solutions with precise sign for nonlinear parametric Robin problems. - J. Differential Equations 256:7, 2014, 2449-2479.
[15] Papageorgiou, N. S., and V. D. Rădulescu: Nonlinear nonhomogeneous Robin problems with superlinear reaction term. - Adv. Nonlinear Stud. 16:4, 2016, 737-764.
[16] Papageorgiou, N. S., and V. D. Rădulescu: Coercive and noncoercive nonlinear Neumann problems with indefinite potential. - Forum Math. 28:3, 2016, 545-571.
[17] Papageorgiou, N. S., V. D. Rădulescu, and D. Repovs̆: Positive solutions for nonvariational Robin problems. - Asympt. Anal., doi: 10.3233/ASY-181464.
[18] Papageorgiou, N. S., V.D. Rădulescu, and D. Repovs̆: Nonlinear elliptic inclusions with unilateral constraint and dependence on the gradient. - Appl. Math. Optim., doi: 10.1007/s00245-016-9392-у.
[19] Papageorgiou, N. S., C. Vetro, and F. Vetro: Existence of positive solutions for nonlinear Dirichlet problems with gradient dependence and arbitrary growth. - Electr. Jour. Qual. Theory Diff. Equ. 2018:18, 2018, 1-9.
[20] Pucci, P., and J. Serrin: The maximum principle. - Birkhäuser Verlag, Basel, 2007.
[21] Tanaka, M.: Existence of a positive solution for quasilinear elliptic equations with nonlinearity including the gradient. - Bound. Value Probl. 2013:173, 2013, 1-11.

Received 6 October 2018 • Accepted 29 November 2018


[^0]:    https://doi.org/10.5186/aasfm.2019.4438
    2010 Mathematics Subject Classification: Primary 35J60, 35J92.
    Key words: Leray-Schauder alternative principle, nonlinear regularity, compact map, nonlinear maximum principle.
    *The research was supported by the National Science Center of Poland under Project No. 2015/19/B/ST1/01169 and the H2020-MSCA-RISE-2018 Research and Innovation Staff Exchange Scheme Fellowship within the Project no. 823731CONMECH.

