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 
Abstract–With reference to the mask-constrained power 

synthesis of shaped beams, we extend the Spectral Factorization 
method to both uniformly and non-uniformly spaced linear 
arrays wherein mutual-coupling and mounting-platform effects 
are present. The overall design procedure does not make any 
restriction on either the nature or the shape of the synthesized 
fields, and it is cast as a couple of convex optimizations plus a 
polynomial factorization. Moreover, it allows identifying very 
many different array-excitation solutions all corresponding to the 
sought radiation pattern. The given theory is supported by a full-
wave numerical assessment carried out through the Ansys High 
Frequency Structure Simulator™ software. 

 
Index Terms–Array antennas, mutual coupling, power 

synthesis, shaped beams, spectral factorization.  

I. INTRODUCTION 
OST of benchmark [1]-[11] as well as recent [12]-[23] 
array synthesis methods have been developed for the 

case of identical element patterns. This assumption results 
particularly useful as it allows casting the design problem in 
terms of the array factor, thus considerably simplifying the 
corresponding solution procedure.  

In the synthesis of shaped beams through linear equispaced 
or planar factorable arrays, dealing with identical element 
patterns is of the utmost importance as it enables the 
applicability of the ‘Spectral Factorization’ Fejér-Riesz 
Theorem [24],[25] on the sought power pattern. This has been 
done for the first time in [4]-[6], wherein authors proved that 
adoption of Spectral Factorization can grant important 
advantages, i.e.: 
(i) performing a mask-constrained power synthesis, thus 

recovering all the degrees of freedom which are lost by 
nominal-field synthesis approaches; 

(ii) ascertaining a-priori, i.e., before finding the final solution 
of the problem, whether or not a given non-superdirective 
array can fulfill a fixed power-pattern mask;  
 

 
 

(iii) finding all the different array-excitation solutions 
corresponding to the desired power pattern; 

(iv) casting the overall problem as a Linear Programming 
(LP) one plus a polynomial factorization, with relevant 
advantages in terms of computational burden and global 
optimality of solutions. 

By taking advantage of the results in [6], in subsequent years 
Spectral Factorization has been also applied to the synthesis of 
equispaced reconfigurable arrays [26], continuous aperture 
sources [27] (in turn allowing the design of 1-D [22] as well as 
circular-ring [23] isophoric arrays), and 1-D arrays having 
either even excitations [16], or a maximally-sparse layout [14], 
or a high beam efficiency [28]. 

Unfortunately, in real instances, i.e., when mutual coupling 
and/or mounting platform effects come into play, all the array 
elements actually generate different patterns, compromising the 
adoption of Spectral Factorization and of all techniques 
deriving from it. An effective strategy to deal with this issue is 
that of using the so-called Active Element Patterns (AEPs) 
[29]. In fact, by so doing, it is possible solving in a 
straightforward fashion any problem where pencil and 
difference beams are looked for [30].  

Recently, AEPs have also been used for the synthesis of 
shaped beams. In this case, they cannot be exploited in a 
straightforward fashion but must be expanded into a Fourier 
series, leading to the so-called Virtual AEP Expansion 
(VAEPE) method [31]-[33]. Interestingly, VAEPE approaches 
allow dealing with mutual coupling and platform effects 
without resorting to global optimization (as in [34]) or 
restrictions such as looking for real fields (as in [35]) or 
exploiting ‘semidefinite’ relaxations of the kind introduced in 
[21]. On the other side, none of the currently-available 
VAEPE approaches is able to provide at the same time all the 
advantages (i)-(iv) listed above. More specifically, a shaped-
beam synthesis approach providing at the same time all 
Spectral Factorization advantages as well as the capability of 
dealing with mutual coupling and mounting platform effects is 
lacking. 

In order to fill this gap, in the following we extend the 
Spectral Factorization approach to 1-D arrays with whatever 
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layout and elements radiation pattern where mutual coupling 
and mounting platform effects are present. The extension is 
performed by unifying the Spectral Factorization and the 
VAEPE techniques, leading to a new hybrid power-pattern 
polynomial expansion. The latter allows Spectral Factorization 
and VAEPE improving each other’s performance, and leads to 
a new array synthesis procedure granting all advantages of 
both of them. 

In the following, the proposed synthesis approach will be 
presented in Section II and assessed in Section III. 
Conclusions follow. 

II. EXTENDING SPECTRAL FACTORIZATION TO ANY TYPE OF 
LINEAR ARRAY 

In the following, the proposed synthesis approach is 
presented by referring to the mask-constrained power 
synthesis problem of shaped beams through linear arrays 
having whatever kind of element patterns and layout. The 
(arbitrary) elements locations are fixed, while the excitations 
represent the unknowns of the design problem. The goal is to 
identify them in such a way that: 

(ݑ)ܤܮ ≤ ଶ|(ݑ)݂| ≤  (1) ݑ∀				(ݑ)ܤܷ
where f(u) denotes the array’s far field distribution (u being 
the usual spectral variable – see below) while UB(u) and 
LB(u) respectively are the (real and non-negative) upper and 
lower bound functions exploited to shape the power pattern as 
desired. 

The proposed synthesis procedure consists of three 
consecutive steps, i.e.: 
(a) through VAEPE, the radiated field is expressed as the one 

generated by an auxiliary ‘Virtual’ Equispaced Array 
(VEA); 

(b) by exploiting Spectral Factorization, the design problem is 
optimally solved with respect to VEA; 

(c) starting from the solutions achieved for the VEA, the final 
solution for the Actual Radiating Array (ARA) is 
determined. 

Details concerning the three steps are given in the following. 
In particular, for the sake of clarity, each step is discussed in a 
separate Subsection. 
 
II.A  Step(a): VEA definition 

In this Subsection, we describe step (a) of the proposed 
synthesis procedure. To this end, let us denote with N the 
ARA’s number of elements, with u=sinθ the usual spectral 
variable (θ being the observation angle with respect to 
boresight) and β=2π/λ the wavenumber (λ=c/f being the 
wavelength, c and f respectively denoting the speed of light in 
vacuum and the working frequency). Moreover, let us denote 
with ܫ௡ and gn(u) the excitation and the AEP of the n-th ARA 

element, respectively, and keep the usual assumptions [31] 
concerning AEPs, i.e.: 
 gn(u) is defined as the ARA’s radiation pattern when only 

the n-th element is excited (with ܫ௡=1) and all the others are 
connected to matching loads; 

 all AEPs are supposed ‘phase-adjusted’, i.e., computed by 
placing the coordinate origin at each element center (and 
then identifying the corresponding location-related phase 
term). 

In the following, we first consider the case where the ARA has 
a uniform inter-element spacing and then generalize the given 
theory to the case of non-uniform array layouts. 

As long as the ARA elements are equally spaced, by 
denoting with d the inter-element spacing the radiated field 
can be written as:  

(ݑ)݂ = ෍ܫ௡݃௡(ݑ)݁௝ఉ௡ௗ௨
ேିଵ

௡ୀ଴

 (2) 

In turn, the AEPs can be expanded as (see also [31]): 

݃௡(ݑ) = ݃௦(ݑ) ෍ ܿ௡,௤݁௝ఉ௤ௗ௨				∀݊
ொ/ଶ

௤ୀିொ/ଶ

 (3.a) 

being Q an even positive integer and  

݃௦(ݑ) = ෍݃௡(ݑ)
ேିଵ

௡ୀ଴

/ܰ (3.b) 

The physical interpretation of (3) is to conceive the n-th AEP 
as the field generated by a subarray surrounding the n-th 
radiating element (see Fig. 1, wherein three subarrays, 
respectively colored red, green, and cyan, are considered). In 
particular, (3.a) entails that each subarray is composed of Q+1 
elements and has an inter-element spacing equal to d. 
Moreover, ܿ௡,௤  denotes the q-th excitation of the n-th subarray 
and represents, in the ARA, the coupling effect of the (n+q)-th 
element on the n-th one [32]1.  

 
Fig. 1 VAEPE sketch: definition of the VEA and comparison of its layout 
(composed of N+Q elements) with that of the ARA (composed of N elements). 

 
1 The adopted AEPs expansion is equivalent to assume that, in the ARA, the n-

th element pattern is affected by the n-th antenna and its Q neighboring 
elements. Therefore, the larger are the mutual-coupling and mounting-
platform effects the larger will be the Q value required to satisfy (3). 
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Once a suitable value of Q is chosen (see also below), 
coefficients cn,q can be computed by solving the following 
problem:   

݉݅݊ (௡ࢉ)ߖ = ฯ
௡ࢍ − ௡ࢉ௡ࢆ

௡ࢍ
ฯ
ଶ

ଶ

 (4) 

with:  
௡ࢉ = [ܿ௡,ିொ ଶ⁄ ,ܿ௡,ିொ ଶ⁄ ାଵ, … , ܿ௡,ொ ଶ⁄ ]் 

 
௡ࢍ = [݃௡(ݑଵ),݃௡(ݑଶ), … ,݃௡(ݑ௅)]் 

 

௡ࢆ = ቎
݃௦(ݑଵ)݁௝ఉௗ௨భ(ିொ ଶ⁄ ) ⋯ ݃௦(ݑଵ)݁௝ఉௗ௨భ(ொ ଶ⁄ )

⋮ ⋱ ⋮
݃௦(ݑ௅)݁௝ఉௗ௨ಽ(ିொ ଶ⁄ ) ⋯ ݃௦(ݑ௅)݁௝ఉௗ௨ಽ(ொ ଶ⁄ )

቏ 

 

(5.a) 
 

(5.b) 
 
 

 
(5.c) 

(•)T denoting transpose matrix and u1,..,uL being a suitable 
discretization [31]of the u domain2.  

Once coefficients ࢉ଴, … ,  ேିଵ have been determined, (3)ࢉ
can be substituted into (2) to get: 

(ݑ)݂ = ݃௦(ݑ)݁ି௝ఉௗ௨ொ/ଶ ෍ ܽ௟݁௝ఉ௟ௗ௨
ேାொିଵ

௟ୀ଴

 (6.a) 

which corresponds to the multiplication of the average 
element pattern by the VEA’s array factor, i.e.: 

(ݑ)݂ = ݃௦(ݑ) ෍ ܽ௟ାொ/ଶ݁௝ఉ௟ௗ௨
ேିଵାொ/ଶ

௟ୀିொ/ଶ

 (6.b) 

with: 

ܽ௟ = ෍ ௡ܿ௡,௤ܫ
଴ஸ௡ஸேିଵ

ିொ/ଶஸ௤ஸொ/ଶ
௟ୀ௡ା௤ାொ/ଶ

 
(7) 

Notably, (6) is known as VAEPE [31], and the coefficients 
a0,…,aN+Q-1 can be seen as the excitations of the VEA shown 
in Fig. 1 and composed of N+Q elements, i.e., of the 
superposition of the N subarrays described above). 

The main advantage provided by VAEPE is that, by 
referring to (6), one can apply all tools available for equispaced 
arrays with identical element patterns. In particular, the 
synthesis can be performed by first determining the auxiliary 
unknowns a0,…,aN+Q-1 [see step (b) below] and then inverting 
(7) to achieve the ‘actual’ array excitations I0,..,IN-1 [see step 
(c) below]. 

 
2 Optimization (4) is a Convex Programming (CP) problem and hence the fast 

achievement of its unique and optimal (for the selected Q value) solution is 
guaranteed. Therefore, an effective way to find the minimally-redundant 
VEA is that of starting with Q=2 and then repeatedly solving problem (4) 
for increasing Q values until the fitting entailed by (3) becomes satisfactory. 

Interestingly, all these reasonings remain valid even if the 
ARA has a non-uniform inter-element spacing. In fact, in this 
latter case the radiated field will be given by: 

(ݑ)݂ = ෍ܫ௡݃௡(ݑ)݁௝ఉ௫೙௨
ேିଵ

௡ୀ଴

 (8) 

x0,..,xN-1 denoting the elements’ locations (ranked in ascending 
order and shifted in such a way that x0=0). Then, starting from 
(8), VAEPE can be derived by calculating the average inter-
element spacing, say dAV=(xN-1-x0)/(N-1), and then expressing 
each element’s location as an integer multiple of it plus a shift, 
i.e., xn=ndAV+Δxn. In particular, by replacing (2) and (3.a), 
respectively, with (8) and the following expansion: 

݃௡(ݑ) = ݁ି௝ఉ୼୶೙௨݃௦(ݑ) ෍ ܿ௡,௤݁௝ఉ௤ௗಲೇ௨				∀݊
ொ/ଶ

௤ୀିொ/ଶ

 (9) 

with Δxn=xn-ndAV, one will achieve: 

(ݑ)݂ = ݃௦(ݑ)݁ି௝ఉொௗಲೇ௨/ଶ ෍ ܽ௟݁௝ఉ௟ௗಲೇ௨
ேାொିଵ

௟ୀ଴

 (10) 

which is identical to (6) but for presence of dAV instead of d. 
In the following Subsection, an optimal method to 

determine the auxiliary unknowns a0,…,aN+Q-1 will be 
presented. Then, an effective strategy to minimize the 
difficulty of retrieving from them the ARA excitations will 
also be proposed. 
 
II.B  Step(b): VEA synthesis 

The second step of the proposed synthesis procedure is 
aimed at determining the optimal solution of problem (1) with 
respect to the VEA coming out from step (a). More precisely, 
the goal is the identification of the excitations a0,…,aN+Q-1 
allowing the optimal fulfillment of the radiation requirements. 
Due to the equivalence between (6) and (10), in the following 
the required operations will be discussed by referring just to 
(6). 

Amongst the synthesis techniques usable when (6) is valid, 
the proposed approach exploits a modified version of the 
Spectral Factorization method developed in [6]. In fact, as 
recalled above, Spectral Factorization has the usual drawback 
of being not usable in those cases wherein an array factor 
cannot be defined, but expression (6) allows indeed exploiting 
it for the synthesis of the VEA. By so doing, it will be possible 
to optimally identify a0,…,aN+Q-1 without giving up on any of 
the advantages (i)-(iv) listed in Section I and, at the same time, 
to facilitate execution of step (c).  

Coming to details, step (b) is performed as follows. 
By exploiting the theory in [6], the square amplitude of the 

far field distribution in (6) is rewritten as: 
ଶ|(ݑ)݂| = 	 |݃௦(ݑ)|ଶܲ(ݑ) (11.a) 
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with: 

(ݑ)ܲ = ෍ ௣e୨௣ఉௗ௨ܦ
୑ିଵ

୮ୀି୑ାଵ

= ቮ ෍ ܽ௟݁௝ఉ௟ௗ௨
ேାொିଵ

௟ୀ଴

ቮ

ଶ

 (11.b) 

and M=N+Q.  
Notably, (11) represents a new ‘hybrid’ power-pattern 

polynomial expansion able to grant (as it will be shown in the 
remainder of the paper) all the advantages of both VAEPE and 
Spectral Factorization approaches. Through it, the square-
amplitude radiated field results expressed as a linear function 
of 2M-1 auxiliary coefficients D-M+1,…,DM-1. The latter, since 
P(u) must be a real and non-negative function, must also obey 
the following rules: 

௣ܦ = ∗௣ିܦ ݌					 = 1, … −ܯ, 1 (12) 
(* meaning complex conjugation) and 

෍ ௣e୨௣ఉௗ௨ܦ
୑ିଵ

୮ୀି୑ାଵ

≥ 0				∀u (13) 

By exploiting the new power-pattern series, a fast and 
effective feasibility criterion for problem (1) can be devised. 
In fact, the existence of a VEA able to generate a shaped 
power pattern lying in the prescribed mask can be ascertained 
by verifying that the following system: 

⎩
⎪
⎨

⎪
⎧0 ≤

LB(u)
|݃௦(ݑ)|ଶ ≤ ෍ ௣e୨௣ఉௗ௨ܦ

୑ିଵ

୮ୀି୑ାଵ

≤
UB(u)

|݃௦(ݑ)|ଶ

௣ܦ = ∗௣ିܦ ݌							 = 1, … ܯ, − 1

 

 

(14.a) 

 
(14.b) 

admits a solution in terms of D-M+1,…,DM-1.  
Notably, once a suitable discretization [36] of the u domain 

is performed, problem (14) becomes an LP one, and hence the 
fast achievement of its globally-optimal solution (if any) will 
be guaranteed. Therefore, besides granting all advantages (i)-
(iv) listed in Section I, solution of problem (14) will provide 
optimal P(u) and [through (11.a)] |f(u)|2 distributions fulfilling 
(1). 

Once P(u) is determined, the introduced expansion (11) 
also allows finding the VEA excitations leading to it. In fact, 
since P(u) is a one-dimensional real and non-negative 
trigonometric polynomial, the theory in [24],[25] can be 
applied in order to factorize it as: 

(ݑ)ܲ = ℎ(ݑ)ℎ(ݑ)* (15.a) 
wherein, by virtue of (11.b), it will be: 

ℎ(ݑ) = ෍ ܽ௟݁௝ఉ௟ௗ௨
ேାொିଵ

௟ୀ଴

 (15.b) 

which will in turn provide, through (6), the sought f(u) 
distribution (and the corresponding the excitations a0,…,aN+Q-

1). 

Summarizing, step (b) of the proposed synthesis procedure 
is performed as follows: 

1. determine D-M+1,…,DM-1 by solving problem (14)3; 
2. compute P(u) through (11.b); 
3. determine h(u) by exploiting (15.a); 
4. identify a0,…,aN+Q-1 by inverting (15.b).  

As a final (but of utmost importance) circumstance, it is worth 
noting that factorization (15.a) is not unique. In fact, the 
proposed approach also allows applying the ‘zero flipping’ 
procedure introduced in [6] to find not one but R=2K/2 different 
h(u) distributions fulfilling (15.a), K being the number of roots 
of P(u) not lying on the unit circle in the Schelkunoff (z=ejβdu) 
plane. As it will be shown in the following Subsection, such a 
multiplicity of solutions can be exploited in order to facilitate 
execution of step (c) of the proposed procedure. 

 
II.C  Step(c): Determining the actual array excitations 

Once the VEA excitations a0,…,aN+Q-1 have been identified, 
the third and final step of the procedure consists in exploiting 
them in order to determine the ARA excitations I0,..,IN-1. This 
can be done by inverting system (7) which, however, involves 
N+Q equations and N unknowns and hence is overdetermined 
∀Q>0.  

As well known, overdetermined linear systems do not 
always admit a solution4 and hence the method of ordinary 
least squares is often used to ‘approximately’ solve them [38]. 
For system (7), this would consist in solving the following CP 
problem: 

݉݅݊ (ࡵ)ߗ = ෍
ተ

ተ
ܽ௟ − ෍ ௡ܿ௡,௤ܫ

଴ஸ௡ஸேିଵ
ିொ/ଶஸ௤ஸொ/ଶ
௟ୀ௡ା௤ାொ/ଶ

ተ

ተ

ଶ

ேାொିଵ

௟ୀ଴

 (16) 

where ࡵ = ,଴ܫ] … ,  ேିଵ] denotes the vector containing theܫ
ARA’s excitations.  

Interestingly, determining the final excitations by directly 
finding the least-square solution to (7) is what the available 
VAEPE approaches do [31]. However, even by adopting (16) 
one cannot be sure that the resulting excitations are such to 
ensure a satisfactory fitting between the virtual (6) and actual 
(2) fields. In order to tackle this issue, before inverting system 
(7) we perform a further processing of the outcomes of step 

 
3 In case d<0.5λ, problem (14) should be complemented by the linear 

constraint 0≤P(u’)≤σ ∀u’: βd≤|βdu’|≤π (with σ a suitable constant) in order 
to avoid superdirective solutions [37] as well as to ensure positivity of P 
over its whole periodicity range [27]. 

4 Since, in (7), the difference between the number of equations and the number 
unknowns is equal to Q [which, in turn, must be chosen in such a way to 
fulfill (3)], the difficulty of inverting (7) increases with increasing mutual-
coupling, mounting-platform, and sparseness effects. 
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(b), i.e., we identify the VEA solution which maximally 
facilitates minimization (16). These operations, which are 
enabled by the adoption in step (b) of Spectral Factorization 
(and hence are not available with usual AEP-based synthesis 
approaches), are detailed in Appendix I. 

Should execution of operations discussed in Appendix I do 
not result sufficient to achieve a satisfactory fitting between 
actual (2) and virtual (6) fields, the accuracy losses induced by 
(16) are then recovered by the post-processing strategy 
described in Appendix II. 

As a distinguishing feature, it is worth noting that, 
regardless of final radiation and accuracy performances, the 
multiplicity of VEA solutions will always translate, at the end 
of the overall synthesis procedure, into a multiplicity of ARA 
solutions. Therefore, one will be able to identify very many 
different ARA excitations sets all corresponding to the same 
(desired) radiation pattern. This feature, which is not available 
when using current VAEPE synthesis methods, is very useful 
as it allows one to pick, amongst all supplied ones, the ‘most 
convenient’ excitation set. For instance, one could select the 
excitations minimizing the beam forming network complexity, 
or the ones having a low dynamic range ratio, or the ones 
lowering the input power (in such a way to increase the gain) 
or leading to a phase-only pattern reconfiguration [26].  

III. NUMERICAL EXPERIMENTS 
The proposed approach has been assessed by ascertaining 

its capability to both: 
 fulfill strict power masks through arrays having a non-

redundant electrical length; 
 identify, for a given power-pattern mask, a multiplicity of 

different excitation solutions.  
The radiating element exploited in all experiments is a 
rectangular microstrip antenna (whose edge is fed by means of 
a quarter-wavelength adapter) equal to the one introduced in 
[31],[32]. Its geometric parameters are reported in Tab. I. 

As far as the ARAs’ geometry is concerned, as a proof of 
generality of the proposed approach we considered both cases 
of equispaced and sparse (aperiodic) elements layouts. The 
two resulting arrays, which have been printed on Arlon 
AD450™ substrate (with height h=1.57 mm, relative 
permittivity ɛr=4.5, and loss tangent tanδ=0.0035), are 
respectively shown in figures 2 and 3. For the sake of clarity, 
the synthesis experiments pertaining to the two ARAs are 
separately described in the two following Subsections.  

The AEPs have been computed through the Ansys High 
Frequency Structure Simulator (HFSS) full-wave software 
[39], by setting f=2.42 GHz and discretizing the u variable into 
L=361 points. Moreover, to ensure maximum reliability, in 
each example the VEA’s radiation pattern has been compared 
with the ARA’s one (which has been computed via HFSS as 
well).  

In case d<0.5λ or dAV<0.5λ, to make sure the VEA is not 
superdirective we added to optimization the constraint 
P(u)≤[P(0)-10dB] for u belonging to the invisible part of the 
spectrum. It is worth noting that enforcing this kind of 
constraints, which is crucial in order to ascertain the actual 
feasibility of the radiating system [27], is not possible when 
using current VAEPE-based procedures. 

As far as CP optimizations and polynomial factorizations 
are concerned, they have been performed by the Matlab™ 
algorithms ‘fmincon’, ‘roots’, and ’poly’. By exploiting a 
calculator having an Intel Core i7-3537U 2.50 GHz CPU and a 
10 GB RAM, the overall time required to execute these 
operations did not exceed 300 seconds per test case. 

 
 

TABLE I 
SINGLE-ELEMENT DESIGN PARAMETERS (REFERRING TO FIG. 2 AND FIG. 3). 

 

 
 

 
TABLE II 

UNIFORMLY-SPACED ARRAY DESIGN PARAMETERS (REFERRING TO FIG. 2). 

 
 

TABLE III 
APERIODIC ARRAY’S ELEMENT LOCATIONS (REFERRING TO FIG. 3). 
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(a) 

 
 

 
 

(b) 
 
 

Fig. 2. Two-dimensional (a) and three-dimensional HFSS (b) views of the 
equispaced array mounted on a trapezoidal ground plane which has been 
designed and exploited in Subsection III.A. 

. 

 
 

(a) 
 

 
 

(b) 
 
Fig. 3. Two-dimensional (a) and three-dimensional HFSS (b) views of the 
unequally-spaced array designed and exploited in Subsection III.B (with 
Sx=978.91 mm and Sy=92.9 mm). The patches’ locations are reported in Table 
III (see also Tab. II of [18]). 

 
III.A  Uniformly-spaced array 

As first test of performances, we exploited the proposed 
procedure to synthesize an equispaced array conceived as a 
modified version of the antenna in [32]. In particular, we 
designed and simulated a microstrip array composed of N=16 
elements mounted on a trapezoid metal plate as shown in Fig. 
2. 

The chosen working frequency led to d=0.395λ and to an 
electrical length of the ARA equal to 5.92λ. The geometrical 
parameters of the ARA are reported in Tab. II. 

 As far as the radiation mask is concerned, we set it as a 
stricter version of the benchmark one adopted in 
[8],[14],[18],[31], which was aimed at generating a flat-top 
power pattern having a ripple lower than ±0.5 dB for |u|≤0.2 
and a peak sidelobe level equal to -40 dB for 0.32≤|u|≤0.42 and 
to -20 dB for |u|>0.42. In particular, we modified this mask by 
lowering from -20 dB to -30 dB the maximum sidelobe level 
permitted for |u|>0.42. A comparison between the original and 
updated versions of the mask is shown in Fig. 4.  

To perform the synthesis, we used in step (a) Q=6, which 
led to 1.3=ܮܰ/ߖx10-5 and to R=262144 equivalent VEA 
solutions. The achieved cn,q coefficients are shown in Fig. 5, 
while the corresponding AEPs are compared to the reference 
ones (for n=8) in Fig. 6. 

The power-pattern roots identified in step (b) as well as the 
ARA’s excitations and square-amplitude far-field distributions 
synthesized in step (c) are shown in Fig. 7. In particular, two 
different excitation solutions [each corresponding to a 
different roots selection performed in step (c)] are depicted. 

This  is  the post-print  of the  following  article: A.  F.  Morabito,  A.  Di  Carlo,  L.  Di  Donato,  T.  Isernia,  and  G.  Sorbello,  “Extending  Spectral

https://ieeexplore.ieee.org/document/8669825.


                                                             7 

 

 

Factorization to Array Pattern Synthesis Including Sparseness, Mutual Coupling, and Mounting-Platform Effects,” IEEE Transactions on Antennas and 
Propagation, vol. 67, n. 7, pp. 4548-4559, 2019. Article has been published in final form at: https://ieeexplore.ieee.org/document/8669825. DOI: 
10.1109/TAP.2019.2905977. 

0018-926X © [2018] IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or 
lists, or reuse of any copyrighted component of this work in other works.” 
 

As it can be seen, despite being significantly different from 
each other, these excitation sets do indeed lead to equivalent 
radiation performances. Finally, it is worth noting an optimal 
superposition between the VEA’s and ARA’s power patterns, 
which both fulfill the enforced mask. 

Interestingly, by exploiting the most recent VAEPE-based 
synthesis approach, in [31] fulfillment of the original mask 
required an ARA composed of 12 elements and having 
d=0.71λ and an electrical length equal to 7.84λ. Therefore, by 
fulfilling the new version of the mask, the proposed approach 
granted 10 dB-lower sidelobes over more than half the visible 
spectral domain (see Fig. 4) while saving 24.5% of the ARA 
electrical length and dealing (due to the presence of the 
trapezoidal mounting platform) with a more complex ARA’s 
structure. 

 
 

 
 

Fig. 4. Original (green color) and updated (red color) flat-top power masks 
concerning the numerical example in Section III.A. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

                          (a)                                                               (b) 
 

Fig. 5. Amplitude (a) and phase (b) con the cn,q coefficients computed through 
(4), with N=16 and Q=6, for the equispaced microstrip array mounted on a 
trapezoidal platform. 
 
 
 

   
       

                                    (a)                                                         (b) 
 

Fig. 6. Comparison between actual (green color) and approximated via 
VAEPE (red color) the AEP of the 8-th ARA element: amplitude (a) and 
phase (b). 
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                                  (a)                                                              (b)                                                               (c)                                                               (d) 

 
                                  (e)                                                               (f)                                                               (g)                                                               (h) 
Fig. 7. Synthesis of a flat-top power pattern by means of a N=16 equispaced microstrip array mounted on a trapezoidal platform. First [subplots (a)-(d)] and second 
[subplots (e)-(h)] solutions in terms of (from the left): VEA’s power-pattern roots [wherein the zeroes selected in step (c) are marked in red]; amplitude of the 
synthesized ARA’s excitations; phase of the synthesized ARA’s excitations; mask and power patterns [superposition between the VEA’s pattern (6) and the ARA’s 
pattern (2) computed by HFSS]. 
 
 
 
III.B  Non-uniformly-spaced array 

As second numerical experiment, we tested the proposed 
approach in the synthesis of a non-uniformly spaced array 
with N=13. In particular, we designed and exploited the array 
shown in Fig. 3 and having the single-element coordinates 
reported in Tab. III. These locations are equal to the ones 
reported in Tab. II of [18], wherein the radiating system was 
aimed at fulfilling the ‘popular’ square-cosecant mask 
depicted in Fig. 8 and exploited also in 
[1],[8],[11],[14],[20],[31]. 

Interestingly, in [14] it was shown that, in the absence of 
mutual-coupling and mounting-platform effects, 12 is the 
minimum number of ‘ideal’ (i.e., equal and isotropic) elements 
required to fulfill this mask, while the most recent VAEPE-
based synthesis method allowed in [31] fulfilling it by using 
the realistic radiating element shown in Fig. 3 and the same N 
value and ARA electrical length as in [18]. 

Notably, while using the same N value, single radiating 
element, and ARA electrical length as in [31] (while adopting 
slightly different locations for ARA’s inner elements), we 
updated this mask by enforcing a constant peak sidelobe level 
of -26 dB for u<0 (instead of -20 dB for u<0.38 and of -30 dB 
for 0.38≤u<0). A comparison between the original and 
updated versions of the mask is shown in Fig. 8. 

To perform the synthesis, we used in step (a) Q=10, which 
led to 0.234=ܮܰ/ߖ and to R=128 equivalent VEA solutions. 
The achieved cn,q coefficients are shown in Fig. 9, while the 
corresponding AEPs are compared to the reference ones (for 
n=8) in Fig. 10. 

 
The synthesized ARA excitations and the corresponding 

radiation performance are shown in Fig. 11. In particular, as in 
the previous test case, two different excitation solutions [along 
with the corresponding choice of roots performed in step (c)] 
are depicted. As it can be seen, a satisfactory superposition 
between the VEA’s and ARA’s power patterns is again 
achieved, while all enforced radiation constraints are fulfilled. 
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Fig. 8. Original (green color) and updated (red color) square-cosecant masks 
concerning the numerical example in Section III.B. 
 

 
 

                           (a)                                                             (b) 
 

Fig. 9. Amplitude (a) and phase (b) con the cn,q coefficients computed through 
(4), with N=13 and Q=10, for of the aperiodic microstrip array. 
 
 
 

 
 

                                   (a)                                                           (b) 
 

Fig. 10. Comparison between actual (green color) and approximated via 
VAEPE (red color) the AEP for the 8-th ARA element: amplitude (a) and 
phase (b). 
 
 

IV. CONCLUSIONS 
An innovative approach has been developed for the power 

synthesis of shaped beams through 1-D fixed-geometry arrays 
composed of different elements having whatever location and 
radiation behavior. Pursuing such a goal has been possible by 
extending the well-known Spectral Factorization technique 
(which was applicable, up to today, just to equispaced arrays 
with isotropic elements). 

The good performances of the approach have been assessed 
in the presence of mutual-coupling and mounting-platform 
effects through full-wave HFSS numerical experiments, 
including comparisons with the state-of-art techniques based 
on active element patterns. 

The proposed approach lends itself to all extensions 
performed by the Authors on the original Spectral Factorization 
technique with respect to reconfigurable and maximally-sparse 
arrays for satellite and radar applications.  
 
 

APPENDIX I 
The aim of this Appendix is to present an effective 

procedure to facilitate minimization (16), i.e., the retrieval of 
ARA excitations starting from the VEA solutions identified in 
step (b).  

The devised strategy takes decisive advantage of the nature 
of the VEA and ARA layouts. In particular, as it can be 
readily understood from Fig. 1, the virtual and actual arrays’ 
layouts result equivalent to each other when the outer VEA 
elements have negligible excitation amplitudes. Therefore, the 
‘transition’ from virtual to actual excitations required by (16) 
results much more easy in those cases where the first Q/2 and 
the last Q/2 VEA elements have a low excitation amplitude. 
Such a feature can be effectively induced during the 
factorization (15.a) as detailed in the following.  

Let us suppose having computed all equivalent solutions of 
(15.a) and denoting with ࢇ௥ = [ܽ௥,଴, … ,ܽ௥,ேାொିଵ], r=1,…,R, 
the r-th equivalent solution in terms of VEA excitations (ܽ௥,௞ 
being the k-th excitation belonging to the r-th equivalent set). 
Then, step (c) is performed by solving (16) after having 
substituted ܽ௟ = ܽ௦,௟ inside it, ࢇ௦ = [ܽ௦,଴, … , ܽ௦,ேାொିଵ] 
denoting the VEA excitation vector picked up amongst all the 
equivalent solutions in such a way that the following 
functional is minimized: 

(ݏ)ߔ = ෍(หܽ௦,௟ିଵห
ଶ

+ หܽ௦,ேାொି௟ห
ଶ

)
ொ/ଶ

௟ୀଵ

 (17) 

In fact, minimization of (17) allows identifying, amongst all 
the available ones, the VEA solution having on the first Q/2 
and the last Q/2 elements the lowest excitation average 
amplitude. 
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APPENDIX II 
If minimizing (17) before solving (16) is still not sufficient 

to achieve a satisfactory fitting between actual (2) and virtual 
(6) fields, then a final optimization is performed in the 
unknowns I0,…,IN-1 as follows: 

݉݅݊ (ࡵ)߆ = න อ(ݑ)ݕ −෍ ௝ఉ௡ௗ௨݁(ݑ)௡݃௡ܫ
ேିଵ

௡ୀ଴

อ

ଶ

∀௨ఢࢣ

 (a.18) ݑ݀

subject to: 

อ෍ ௝ఉ௡ௗ௨݁(ݑ)௡݃௡ܫ
ேିଵ

௡ୀ଴

อ

ଶ

≤
UB(u)

|݃௦(ݑ)|ଶ  (b.18) ࢫ߳ݑ∀					

wherein: 

(ݑ)ݕ = ෍ ܽ௦,௟݁௝ఉ௟ௗ௨
ேାொିଵ

௟ୀ଴

 (19) 

In fact, optimization (18) is a CP problem which guarantees 
compensation for possible mismatches with respect to initial 
requirements. In particular, (18.a) allows achieving, in the 
shaped-beam region ࢣ, the best possible fitting between the 
final solution and the optimal one coming out from step (b) 
[i.e., (19)], while (18.b) allows fulfilling, in the sidelobes 
region ࢫ, the upper-bound constraints as required by (1). 
Moreover, by pursuing a field fitting just in the main-beam 
zone (while upper bounds are used in the sidelobes region), 
solving (18) allows recovering a significant number of degrees 
of freedom with respect to the cases wherein a field fitting is 
pursued over the whole spectral domain. 
 
 

 
                                  (a)                                                               (b)                                                              (c)                                                               (d) 

 
                                   (e)                                                              (f)                                                                (g)                                                              (h) 
Fig. 11. Synthesis of a square-cosecant power pattern by means of a N=13 aperiodic microstrip array. First [subplots (a)-(d)] and second [subplots (e)-(h)] solutions 
in terms of (from the left): VEA’s power-pattern roots [wherein the zeroes selected in step (c) are marked in red]; amplitude of the synthesized ARA’s excitations; 
phase of the synthesized ARA’s excitations; mask and power patterns [superposition between the VEA’s pattern (10) and ARA’s pattern (8) computed by HFSS]. 
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