On a class of critical (p, q)-Laplacian problems*

Pasquale Candito
Università degli Studi di Reggio Calabria
89100 Reggio Calabria, Italy
pasquale.candito@unirc.it
Salvatore A. Marano
Università degli Studi di Catania
95125 Catania, Italy
marano@dmi.unict.it
Kanishka Perera ${ }^{\dagger}$
Florida Institute of Technology
Melbourne, FL 32901, USA
kperera@fit.edu

Abstract

We obtain nontrivial solutions of a critical (p, q)-Laplacian problem in a bounded domain. In addition to the usual difficulty of the loss of compactness associated with problems involving critical Sobolev exponents, this problem lacks a direct sum decomposition suitable for applying the classical linking theorem. We show that every Palais-Smale sequence at a level below a certain energy threshold admits a subsequence that converges weakly to a nontrivial critical point of the variational functional. Then we prove an abstract critical point theorem based on a cohomological index and use it to construct a minimax level below this threshold.

1 Introduction and main results

The (p, q)-Laplacian operator

$$
\Delta_{p} u+\Delta_{q} u=\operatorname{div}\left[\left(|\nabla u|^{p-2}+|\nabla u|^{q-2}\right) \nabla u\right]
$$

[^0]appears in a wide range of applications that include biophysics [12], plasma physics [25], reaction-diffusion equations [1, 5, and models of elementary particles [9, 4, 2]. Consequently, quasilinear elliptic boundary value problems involving this operator have been widely studied in the literature (see, e.g., [3, 17, 24, 16] and the references therein). In particular, the critical (p, q)-Laplacian problem
\[

\left\{$$
\begin{aligned}
-\Delta_{p} u-\Delta_{q} u & =\mu|u|^{r-2} u+|u|^{p^{*}-2} u & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega,
\end{aligned}
$$\right.
\]

where Ω is a bounded domain in $\mathbb{R}^{N}, N>p>q>1, \mu>0$, and $p^{*}=N p /(N-p)$ is the critical Sobolev exponent, has been studied by Li and Zhang [14] in the case $1<r<q$ and by Yin and Yang [26] in the case $p<r<p^{*}$. In the present paper we consider the question of existence of nontrivial solutions in the borderline case

$$
\left\{\begin{align*}
-\Delta_{p} u-\Delta_{q} u & =\mu|u|^{q-2} u+\lambda|u|^{p-2} u+|u|^{p^{*}-2} u & & \text { in } \Omega \tag{1.1}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

with $\mu \in \mathbb{R}$ and $\lambda>0$. In addition to the usual difficulty of the lack of compactness associated with problems involving critical exponents, this problem is further complicated by the absence of a direct sum decomposition suitable for applying the linking theorem when μ is above the second eigenvalue of the eigenvalue problem

$$
\left\{\begin{align*}
-\Delta_{q} u & =\mu|u|^{q-2} u & & \text { in } \Omega \tag{1.2}\\
u & =0 & & \text { on } \partial \Omega .
\end{align*}\right.
$$

To overcome this difficulty, we will first prove an abstract critical point theorem based on a cohomological index that generalizes the classical linking theorem of Rabinowitz [23].

Weak solutions of problem (1.1) coincide with critical points of the C^{1}-functional

$$
\begin{equation*}
\Phi(u)=\int_{\Omega}\left(\frac{1}{p}|\nabla u|^{p}+\frac{1}{q}|\nabla u|^{q}-\frac{\mu}{q}|u|^{q}-\frac{\lambda}{p}|u|^{p}-\frac{1}{p^{*}}|u|^{p^{*}}\right) d x, \quad u \in W_{0}^{1, p}(\Omega), \tag{1.3}
\end{equation*}
$$

where $W_{0}^{1, p}(\Omega)$ is the usual Sobolev space with the norm $\|u\|=\|\nabla u\|_{p}$ and $\|\cdot\|_{p}$ denotes the norm in $L^{p}(\Omega)$. Recall that Φ satisfies the Palais-Smale compactness condition at the level $c \in \mathbb{R}$, or $(\mathrm{PS})_{c}$ for short, if every sequence $\left(u_{j}\right) \subset W_{0}^{1, p}(\Omega)$ such that $\Phi\left(u_{j}\right) \rightarrow c$ and $\Phi^{\prime}\left(u_{j}\right) \rightarrow 0$, called a $(\mathrm{PS})_{c}$ sequence, has a convergent subsequence. Let

$$
\begin{equation*}
S=\inf _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\|\nabla u\|_{p}^{p}}{\|u\|_{p^{*}}^{p}}>0 \tag{1.4}
\end{equation*}
$$

be the best constant for the Sobolev imbedding $W_{0}^{1, p}(\Omega) \hookrightarrow L^{p^{*}}(\Omega)$. Our existence results will be based on the following proposition.

Proposition 1.1. If $c<S^{N / p} / N$ and $c \neq 0$, then every $(\mathrm{PS})_{c}$ sequence has a subsequence that converges weakly to a nontrivial critical point of Φ.

Let

$$
\begin{equation*}
\mu_{1}=\inf _{u \in W_{0}^{1, q}(\Omega) \backslash\{0\}} \frac{\|\nabla u\|_{q}^{q}}{\|u\|_{q}^{q}}>0 \tag{1.5}
\end{equation*}
$$

be the first eigenvalue of the eigenvalue problem (1.2). First we seek a nonnegative nontrivial solution of problem (1.1) when $\mu \leq \mu_{1}$. Let

$$
\begin{equation*}
\lambda_{1}=\inf _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\|\nabla u\|_{p}^{p}}{\|u\|_{p}^{p}}>0 \tag{1.6}
\end{equation*}
$$

be the first eigenvalue of the eigenvalue problem

$$
\left\{\begin{aligned}
-\Delta_{p} u & =\lambda|u|^{p-2} u & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Our first main result is the following theorem.
Theorem 1.2. Assume that $1<q<p$ and $p^{2}<N$. If $0<\lambda<\lambda_{1}$ and $\mu \leq \mu_{1}$, then problem (1.1) has a nonnegative nontrivial solution in each of the following cases:
(i) $N(p-1) /(N-p) \leq q<(N-p) p / N$,
(ii) $N(p-1) /(N-1)<q<\min \{N(p-1) /(N-p),(N-p) p / N\}$,
(iii) $(1-1 / N) p^{2}+p<N$ and $q=N(p-1) /(N-1)$,
(iv) $(p-1) p^{2} /(N-p)<q<N(p-1) /(N-1)$.

Now we assume that $p<q^{*}$, where $q^{*}=N q /(N-q)$ is the critical exponent for the imbedding $W_{0}^{1, q}(\Omega) \hookrightarrow L^{p}(\Omega)$. Then we have the following theorem.
Theorem 1.3. Assume that $1<q<p<\min \left\{N, q^{*}\right\}$. If $\mu<\mu_{1}$, then there exists $\lambda^{*}(\mu)>0$ such that problem (1.1) has a nonnegative nontrivial solution for all $\lambda \geq \lambda^{*}(\mu)$.

Let $u^{ \pm}(x)=\max \{ \pm u(x), 0\}$ be the positive and negative parts of u, respectively, and set

$$
\Phi^{+}(u)=\int_{\Omega}\left(\frac{1}{p}|\nabla u|^{p}+\frac{1}{q}|\nabla u|^{q}-\frac{\mu}{q}\left(u^{+}\right)^{q}-\frac{\lambda}{p}\left(u^{+}\right)^{p}-\frac{1}{p^{*}}\left(u^{+}\right)^{p^{*}}\right) d x, \quad u \in W_{0}^{1, p}(\Omega) .
$$

If u is a critical point of Φ^{+}, then

$$
\Phi^{+^{\prime}}(u) u^{-}=\int_{\Omega}\left(\left|\nabla u^{-}\right|^{p}+\left|\nabla u^{-}\right|^{q}\right) d x=0
$$

and hence $u^{-}=0$, so $u=u^{+}$is a critical point of Φ and therefore a nonnegative solution of problem (1.1). Moreover, if $\mu \geq 0$ then $u>0$ in Ω. Indeed, due to the critical growth of the nonlinearity, we can guarantee that u is bounded by Cianchi [6, Theorem 2], hence we apply Lieberman [15, Theorem 1.7], and Pucci and Serrin [22, Theorem 1.1.1] to get $u>0$. Proofs of Theorems 1.2 and 1.3 will be based on constructing minimax levels of mountain pass type for Φ^{+}below the threshold level given in Proposition 1.1.

Next we seek a (possibly nodal) nontrivial solution of problem 1.1) when $\mu \geq \mu_{1}$. We have the following theorem.

Theorem 1.4. Assume that $1<q<p<\min \left\{N, q^{*}\right\}$. If $\mu \geq \mu_{1}$, then there exists $\lambda^{*}(\mu)>0$ such that problem (1.1) has a nontrivial solution for all $\lambda \geq \lambda^{*}(\mu)$.

This extension of Theorem 1.3 is nontrivial. Indeed, the functional Φ does not have the mountain pass geometry when $\mu \geq \mu_{1}$ since the origin is no longer a local minimizer, and a linking type argument is needed. However, the classical linking theorem cannot be used since the nonlinear operator $-\Delta_{q}$ does not have linear eigenspaces. We will use a more general construction based on sublevel sets as in Perera and Szulkin [21] (see also Perera et al. [20, Proposition 3.23]). Moreover, the standard sequence of eigenvalues of $-\Delta_{q}$ based on the genus does not give enough information about the structure of the sublevel sets to carry out this linking construction. Therefore we will use a different sequence of eigenvalues introduced in Perera [19] that is based on a cohomological index.

The \mathbb{Z}_{2}-cohomological index of Fadell and Rabinowitz [11] is defined as follows. Let W be a Banach space and let \mathcal{A} denote the class of symmetric subsets of $W \backslash\{0\}$. For $A \in \mathcal{A}$, let $\bar{A}=A / \mathbb{Z}_{2}$ be the quotient space of A with each u and $-u$ identified, let $f: \bar{A} \rightarrow \mathbb{R} \mathrm{P}^{\infty}$ be the classifying map of \bar{A}, and let $f^{*}: H^{*}\left(\mathbb{R} P^{\infty}\right) \rightarrow H^{*}(\bar{A})$ be the induced homomorphism of the Alexander-Spanier cohomology rings. The cohomological index of A is defined by

$$
i(A)= \begin{cases}\sup \left\{m \geq 1: f^{*}\left(\omega^{m-1}\right) \neq 0\right\}, & A \neq \emptyset \\ 0, & A=\emptyset\end{cases}
$$

where $\omega \in H^{1}\left(\mathbb{R} P^{\infty}\right)$ is the generator of the polynomial ring $H^{*}\left(\mathbb{R} P^{\infty}\right)=\mathbb{Z}_{2}[\omega]$. For example, the classifying map of the unit sphere S^{m-1} in $\mathbb{R}^{m}, m \geq 1$ is the inclusion $\mathbb{R} \mathrm{P}^{m-1} \subset \mathbb{R} \mathrm{P}^{\infty}$, which induces isomorphisms on H^{q} for $q \leq m-1$, so $i\left(S^{m-1}\right)=m$. The following proposition summarizes the basic properties of this index.

Proposition 1.5 (Fadell-Rabinowitz [11]). The index $i: \mathcal{A} \rightarrow \mathbb{N} \cup\{0, \infty\}$ has the following properties:
(i_{1}) Definiteness: $i(A)=0$ if and only if $A=\emptyset$;
(i_{2}) Monotonicity: If there is an odd continuous map from A to B (in particular, if $A \subset$ $B)$, then $i(A) \leq i(B)$. Thus, equality holds when the map is an odd homeomorphism;
(i_{3}) Dimension: $i(A) \leq \operatorname{dim} W$;
(i_{4}) Continuity: If A is closed, then there is a closed neighborhood $N \in \mathcal{A}$ of A such that $i(N)=i(A)$. When A is compact, N may be chosen to be a δ-neighborhood $N_{\delta}(A)=\{u \in W: \operatorname{dist}(u, A) \leq \delta\} ;$
(i_{5}) Subadditivity: If A and B are closed, then $i(A \cup B) \leq i(A)+i(B)$;
(i_{6}) Stability: If $S A$ is the suspension of $A \neq \emptyset$, obtained as the quotient space of $A \times$ $[-1,1]$ with $A \times\{1\}$ and $A \times\{-1\}$ collapsed to different points, then $i(S A)=i(A)+1$;
(i_{7}) Piercing property: If A, A_{0} and A_{1} are closed, and $\varphi: A \times[0,1] \rightarrow A_{0} \cup A_{1}$ is a continuous map such that $\varphi(-u, t)=-\varphi(u, t)$ for all $(u, t) \in A \times[0,1], \varphi(A \times[0,1])$ is closed, $\varphi(A \times\{0\}) \subset A_{0}$ and $\varphi(A \times\{1\}) \subset A_{1}$, then $i\left(\varphi(A \times[0,1]) \cap A_{0} \cap A_{1}\right) \geq i(A)$;
(i8) Neighborhood of zero: If U is a bounded closed symmetric neighborhood of 0 , then $i(\partial U)=\operatorname{dim} W$.

The Dirichlet spectrum of $-\Delta_{q}$ in Ω consists of those $\mu \in \mathbb{R}$ for which problem (1.2) has a nontrivial solution. Although a complete description of the spectrum is not yet known when $N \geq 2$, we can define an increasing and unbounded sequence of eigenvalues via a suitable minimax scheme. The standard scheme based on the genus does not give the index information necessary to prove Theorem 1.4 , so we will use the following scheme based on the cohomological index as in Perera [19]. Let

$$
\Psi(u)=\frac{1}{\int_{\Omega}|u|^{q} d x}, \quad u \in S_{q}=\left\{u \in W_{0}^{1, q}(\Omega): \int_{\Omega}|\nabla u|^{q} d x=1\right\} .
$$

Then eigenvalues of problem (1.2) on S_{q} coincide with critical values of Ψ. We use the standard notation

$$
\Psi^{a}=\left\{u \in S_{q}: \Psi(u) \leq a\right\}, \quad \Psi_{a}=\left\{u \in S_{q}: \Psi(u) \geq a\right\}, \quad a \in \mathbb{R}
$$

for the sublevel sets and superlevel sets, respectively. Let \mathcal{F} denote the class of symmetric subsets of S_{q} and set

$$
\mu_{k}:=\inf _{M \in \mathcal{F}, i(M) \geq k} \sup _{u \in M} \Psi(u), \quad k \in \mathbb{N} .
$$

Then $0<\mu_{1}<\mu_{2} \leq \mu_{3} \leq \cdots \rightarrow+\infty$ is a sequence of eigenvalues of problem (1.2) and

$$
\begin{equation*}
\mu_{k}<\mu_{k+1} \Longrightarrow i\left(\Psi^{\mu_{k}}\right)=i\left(S_{q} \backslash \Psi_{\mu_{k+1}}\right)=k \tag{1.7}
\end{equation*}
$$

(see Perera et al. [20, Propositions 3.52 and 3.53]).

Proof of Theorem 1.4 will make essential use of (1.7) and will be based on the following abstract critical point theorem, which is of independent interest. Let W be a Banach space, let

$$
S=\{u \in W:\|u\|=1\}
$$

be the unit sphere in W, and let

$$
\pi: W \backslash\{0\} \rightarrow S, \quad u \mapsto \frac{u}{\|u\|}
$$

be the radial projection onto S.
Theorem 1.6. Let Φ be a C^{1}-functional on W and let A_{0}, B_{0} be disjoint nonempty closed symmetric subsets of S such that

$$
\begin{equation*}
i\left(A_{0}\right)=i\left(S \backslash B_{0}\right)<\infty \tag{1.8}
\end{equation*}
$$

Assume that there exist $R>r>0$ and $v \in S \backslash A_{0}$ such that

$$
\sup \Phi(A) \leq \inf \Phi(B), \quad \sup \Phi(X)<\infty,
$$

where

$$
\begin{aligned}
& A=\left\{t u: u \in A_{0}, 0 \leq t \leq R\right\} \cup\left\{R \pi((1-t) u+t v): u \in A_{0}, 0 \leq t \leq 1\right\}, \\
& B=\left\{r u: u \in B_{0}\right\}, \\
& X=\{t u: u \in A,\|u\|=R, 0 \leq t \leq 1\} . \\
& \text { Let } \Gamma=\left\{\gamma \in C(X, W): \gamma(X) \text { is closed and }\left.\gamma\right|_{A}=i d_{A}\right\} \text { and set } \\
& c:=\inf _{\gamma \in \Gamma} \sup _{u \in \gamma(X)} \Phi(u) .
\end{aligned}
$$

Then

$$
\inf \Phi(B) \leq c \leq \sup \Phi(X)
$$

and Φ has a $(\mathrm{PS})_{c}$ sequence.
Remark 1.7. Theorem 1.6 , which does not require a direct sum decomposition, generalizes the linking theorem of Rabinowitz [23].

2 Preliminaries

In this preliminary section we prove Proposition 1.1 and Theorem 1.6 .
Proof of Proposition 1.1. Let $\left(u_{j}\right)$ be a $(\mathrm{PS})_{c}$ sequence. Then

$$
\begin{equation*}
\Phi\left(u_{j}\right)=\int_{\Omega}\left(\frac{1}{p}\left|\nabla u_{j}\right|^{p}+\frac{1}{q}\left|\nabla u_{j}\right|^{q}-\frac{\mu}{q}\left|u_{j}\right|^{q}-\frac{\lambda}{p}\left|u_{j}\right|^{p}-\frac{1}{p^{*}}\left|u_{j}\right|^{p^{*}}\right) d x=c+\mathrm{o}(1) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{\prime}\left(u_{j}\right) u_{j}=\int_{\Omega}\left(\left|\nabla u_{j}\right|^{p}+\left|\nabla u_{j}\right|^{q}-\mu\left|u_{j}\right|^{q}-\lambda\left|u_{j}\right|^{p}-\left|u_{j}\right|^{p^{*}}\right) d x=\mathrm{o}(1)\left\|u_{j}\right\| . \tag{2.2}
\end{equation*}
$$

So

$$
\int_{\Omega}\left[\left(\frac{1}{q}-\frac{1}{p}\right)\left(\left|\nabla u_{j}\right|^{q}-\mu\left|u_{j}\right|^{q}\right)+\left(\frac{1}{p}-\frac{1}{p^{*}}\right)\left|u_{j}\right|^{p^{*}}\right] d x=\mathrm{o}(1)\left\|u_{j}\right\|+\mathrm{O}(1)
$$

and since $q<p<p^{*}$, this and the Hölder and Young inequalities yield

$$
\int_{\Omega}\left|u_{j}\right|^{p^{*}} d x \leq \mathrm{o}(1)\left\|u_{j}\right\|+\mathrm{O}(1)
$$

Since $p>1$, it follows from this and (2.1) that $\left(u_{j}\right)$ is bounded in $W_{0}^{1, p}(\Omega)$. So a renamed subsequence converges to some u weakly in $W_{0}^{1, p}(\Omega)$, strongly in $L^{s}(\Omega)$ for all $1 \leq s<p^{*}$, and a.e. in Ω. Then u is a critical point of Φ by the weak continuity of Φ^{\prime}.

Suppose $u=0$. Since $\left(u_{j}\right)$ is bounded in $W_{0}^{1, p}(\Omega)$ and converges to 0 in $L^{p}(\Omega),(2.2)$ gives

$$
\mathrm{o}(1)=\int_{\Omega}\left(\left|\nabla u_{j}\right|^{p}+\left|\nabla u_{j}\right|^{q}-\left|u_{j}\right|^{p^{*}}\right) d x \geq\left\|u_{j}\right\|^{p}\left(1-\frac{\left\|u_{j}\right\|^{p^{*}-p}}{S^{p^{*} / p}}\right)
$$

by (1.4). If $\left\|u_{j}\right\| \rightarrow 0$, then $\Phi\left(u_{j}\right) \rightarrow 0$, contradicting $c \neq 0$, so this implies

$$
\left\|u_{j}\right\|^{p} \geq S^{N / p}+\mathrm{o}(1)
$$

for a renamed subsequence. Then (2.1) and (2.2) yield

$$
c=\int_{\Omega}\left[\left(\frac{1}{p}-\frac{1}{p^{*}}\right)\left|\nabla u_{j}\right|^{p}+\left(\frac{1}{q}-\frac{1}{p^{*}}\right)\left|\nabla u_{j}\right|^{q}\right] d x+\mathrm{o}(1) \geq \frac{S^{N / p}}{N}+\mathrm{o}(1),
$$

contradicting $c<S^{N / p} / N$.

Proof of Theorem 1.6. First we show that A (homotopically) links B with respect to X in the sense that

$$
\begin{equation*}
\gamma(X) \cap B \neq \emptyset \quad \forall \gamma \in \Gamma . \tag{2.3}
\end{equation*}
$$

If (2.3) does not hold, then there is a map $\gamma \in C(X, W \backslash B)$ such that $\gamma(X)$ is closed and $\left.\gamma\right|_{A}=i d_{A}$. Let

$$
\widetilde{A}=\left\{R \pi((1-|t|) u+t v): u \in A_{0},-1 \leq t \leq 1\right\}
$$

and note that \widetilde{A} is closed since A_{0} is closed (here $(1-|t|) u+t v \neq 0$ since v is not in the symmetric set A_{0}). Since

$$
S A_{0} \rightarrow \widetilde{A}, \quad(u, t) \mapsto R \pi((1-|t|) u+t v)
$$

is an odd continuous map,

$$
\begin{equation*}
i(\widetilde{A}) \geq i\left(S A_{0}\right)=i\left(A_{0}\right)+1 \tag{2.4}
\end{equation*}
$$

by (i_{2}) and (i_{6}) of Proposition 1.5. Consider the map

$$
\varphi: \widetilde{A} \times[0,1] \rightarrow W \backslash B, \quad \varphi(u, t)= \begin{cases}\gamma(t u), & u \in \widetilde{A} \cap A \\ -\gamma(-t u), & u \in \widetilde{A} \backslash A\end{cases}
$$

which is continuous since γ is the identity on the symmetric set $\left\{t u: u \in A_{0}, 0 \leq t \leq R\right\}$. We have $\varphi(-u, t)=-\varphi(u, t)$ for all $(u, t) \in \widetilde{A} \times[0,1], \varphi(\widetilde{A} \times[0,1])=\gamma(X) \cup(-\gamma(X))$ is closed, and $\varphi(\widetilde{A} \times\{0\})=\{0\}$ and $\varphi(\widetilde{A} \times\{1\})=\widetilde{A}$ since $\left.\gamma\right|_{A}=i d_{A}$. Applying (i $\left.i_{7}\right)$ with $\widetilde{A}_{0}=\{u \in W:\|u\| \leq r\}$ and $\widetilde{A}_{1}=\{u \in W:\|u\| \geq r\}$ gives

$$
\begin{equation*}
i(\widetilde{A}) \leq i\left(\varphi(\widetilde{A} \times[0,1]) \cap \widetilde{A}_{0} \cap \widetilde{A}_{1}\right) \leq i\left((W \backslash B) \cap S_{r}\right)=i\left(S_{r} \backslash B\right)=i\left(S \backslash B_{0}\right), \tag{2.5}
\end{equation*}
$$

where $S_{r}=\{u \in W:\|u\|=r\}$. By (2.4) and (2.5), $i\left(A_{0}\right)<i\left(S \backslash B_{0}\right)$, contradicting (1.8). Hence (2.3) holds.

It follows from (2.3) that $c \geq \inf \Phi(B)$, and $c \leq \sup \Phi(X)$ since $i d_{X} \in \Gamma$. By a standard argument, Φ has a $(\mathrm{PS})_{c}$ sequence (see, e.g., Ghoussoub [13]).

Remark 2.1. The linking construction in the above proof was used in Perera and Szulkin [21] to obtain nontrivial solutions of p-Laplacian problems with nonlinearities that interact with the spectrum. A similar construction based on the notion of cohomological linking was given in Degiovanni and Lancelotti [7]. See also Perera et al. [20, Proposition 3.23].

3 Proofs of Theorems 1.2 and 1.3

Fix $u_{0}>0$ in $W_{0}^{1, p}(\Omega)$ such that $\left\|u_{0}\right\|_{p^{*}}=1$. Since $q<p<p^{*}$,

$$
\Phi^{+}\left(t u_{0}\right)=\int_{\Omega}\left(\frac{t^{p}}{p}\left|\nabla u_{0}\right|^{p}+\frac{t^{q}}{q}\left|\nabla u_{0}\right|^{q}-\frac{\mu t^{q}}{q} u_{0}^{q}-\frac{\lambda t^{p}}{p} u_{0}^{p}\right) d x-\frac{t^{p^{*}}}{p^{*}} \rightarrow-\infty
$$

as $t \rightarrow+\infty$. Take $t_{0}>0$ so large that $\Phi^{+}\left(t_{0} u_{0}\right) \leq 0$, let

$$
\Gamma=\left\{\gamma \in C\left([0,1], W_{0}^{1, p}(\Omega)\right): \gamma(0)=0, \gamma(1)=t_{0} u_{0}\right\}
$$

be the class of paths joining 0 and $t_{0} u_{0}$, and set

$$
c:=\inf _{\gamma \in \Gamma} \max _{u \in \gamma([0,1])} \Phi^{+}(u) .
$$

Lemma 3.1. If $0<c<S^{N / p} / N$, then problem (1.1) has a nonnegative nontrivial solution.
Proof. By the mountain pass theorem, Φ^{+}has a $(\mathrm{PS})_{c}$ sequence $\left(u_{j}\right)$. An argument similar to that in the proof of Proposition 1.1 shows that a subsequence of $\left(u_{j}\right)$ converges weakly to a nontrivial critical point u of Φ^{+}.

We have the following upper bounds for c.
Lemma 3.2. Let $\widetilde{\lambda}=\lambda / 2$.
(i) If $\int_{\Omega}\left|\nabla u_{0}\right|^{p} d x>\tilde{\lambda} \int_{\Omega} u_{0}^{p} d x$, then

$$
c \leq \frac{1}{N}\left[\int_{\Omega}\left(\left|\nabla u_{0}\right|^{p}-\widetilde{\lambda} u_{0}^{p}\right) d x\right]^{N / p}+\left(\frac{1}{q}-\frac{1}{p}\right) \frac{\left[\int_{\Omega}\left(\left|\nabla u_{0}\right|^{q}-\mu u_{0}^{q}\right) d x\right]^{p /(p-q)}}{\left(\widetilde{\lambda} \int_{\Omega} u_{0}^{p} d x\right)^{q /(p-q)}} .
$$

(ii) If $\int_{\Omega}\left|\nabla u_{0}\right|^{p} d x \leq \tilde{\lambda} \int_{\Omega} u_{0}^{p} d x$, then

$$
c \leq\left(\frac{1}{q}-\frac{1}{p}\right) \frac{\left[\int_{\Omega}\left(\left|\nabla u_{0}\right|^{q}-\mu u_{0}^{q}\right) d x\right]^{p /(p-q)}}{\left(\widetilde{\lambda} \int_{\Omega} u_{0}^{p} d x\right)^{q /(p-q)}} .
$$

Proof. Since $\gamma(s)=s t_{0} u_{0}$ is a path in Γ,

$$
\begin{array}{r}
c \leq \max _{s \in[0,1]} \Phi^{+}\left(s t_{0} u_{0}\right) \leq \max _{t \geq 0} \Phi^{+}\left(t u_{0}\right) \leq \max _{t \geq 0}\left[\frac{t^{p}}{p} \int_{\Omega}\left(\left|\nabla u_{0}\right|^{p}-\widetilde{\lambda} u_{0}^{p}\right) d x-\frac{t^{p^{*}}}{p^{*}}\right] \\
+\max _{t \geq 0}\left[\frac{t^{q}}{q} \int_{\Omega}\left(\left|\nabla u_{0}\right|^{q}-\mu u_{0}^{q}\right) d x-\frac{\widetilde{\lambda} t^{p}}{p} \int_{\Omega} u_{0}^{p} d x\right] .
\end{array}
$$

Proof of Theorem 1.2. Without loss of generality we may assume that $0 \in \Omega$. Let $r>0$ be so small that $B_{2 r}(0) \subset \Omega$, take a function $\psi \in C_{0}^{\infty}\left(B_{2 r}(0),[0,1]\right)$ such that $\psi=1$ on $B_{r}(0)$, and set

$$
u_{\varepsilon}(x)=\frac{\psi(x)}{\left(\varepsilon+|x|^{p /(p-1)}\right)^{(N-p) / p}}, \quad v_{\varepsilon}(x)=\frac{u_{\varepsilon}(x)}{\left\|u_{\varepsilon}\right\|_{p^{*}}}
$$

for $\varepsilon>0$. Then $\left\|v_{\varepsilon}\right\|_{p^{*}}=1$ and

$$
\begin{align*}
& \int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{p} d x=S+\mathrm{O}\left(\varepsilon^{(N-p) / p}\right), \tag{3.1}\\
& \int_{\Omega} v_{\varepsilon}^{p} d x= \begin{cases}K \varepsilon^{p-1}+\mathrm{O}\left(\varepsilon^{(N-p) / p}\right), & p^{2}<N \\
K \varepsilon^{p-1}|\log \varepsilon|+\mathrm{O}\left(\varepsilon^{p-1}\right), & p^{2}=N \\
\mathrm{O}\left(\varepsilon^{(N-p) / p}\right), & p^{2}>N\end{cases} \tag{3.2}
\end{align*}
$$

for some constant $K>0$,

$$
\int_{\Omega}\left|\nabla v_{\varepsilon}\right|^{q} d x= \begin{cases}\mathrm{O}\left(\varepsilon^{N(p-1)(p-q) / p^{2}}\right), & q>\frac{N(p-1)}{N-1} \tag{3.3}\\ \mathrm{O}\left(\varepsilon^{N(N-p)(p-1) /(N-1) p^{2}}|\log \varepsilon|\right), & q=\frac{N(p-1)}{N-1} \\ \mathrm{O}\left(\varepsilon^{\left.(N-p) q / p^{2}\right),}\right. & q<\frac{N(p-1)}{N-1},\end{cases}
$$

and

$$
\int_{\Omega} v_{\varepsilon}^{q} d x= \begin{cases}\mathrm{O}\left(\varepsilon^{(p-1)[N p-(N-p) q] / p^{2}}\right), & q>\frac{N(p-1)}{N-p} \tag{3.4}\\ \mathrm{O}\left(\varepsilon^{N(p-1) / p^{2}}|\log \varepsilon|\right), & q=\frac{N(p-1)}{N-p} \\ \mathrm{O}\left(\varepsilon^{(N-p) q / p^{2}}\right), & q<\frac{N(p-1)}{N-p}\end{cases}
$$

as $\varepsilon \rightarrow 0$ (see, e.g., Drábek and Huang [10]). Fixed $u_{0}=v_{\varepsilon}$, we consider the correspondent critical level c, as described at the bottom of page 8. Our aim is to apply Lemma 3.1. Since $\mu \leq \mu_{1}$ and by (1.5), 1.6), and (1.4),

$$
\Phi^{+}(u) \geq \frac{1}{p}\left(1-\frac{\lambda}{\lambda_{1}}\right)\|u\|^{p}-\frac{1}{p^{*}} S^{-p^{*} / p}\|u\|^{p^{*}} \quad \forall u \in W_{0}^{1, p}(\Omega) .
$$

Since $\lambda<\lambda_{1}$ and $p^{*}>p$, it follows from this that 0 is a strict local minimizer of Φ^{+}, so $c>0$. We will verify that in each case $c<S^{N / p} / N$ for $\varepsilon>0$ sufficiently small by using Lemma 3.2 (i) with $u_{0}=v_{\varepsilon}$ and (3.1)-(3.4).
(i) Since $p^{2}<N$ and $q \geq N(p-1) /(N-p)>N(p-1) /(N-1)$, we have

$$
\begin{equation*}
c \leq \frac{1}{N}\left[S-K \widetilde{\lambda} \varepsilon^{p-1}+\mathrm{O}\left(\varepsilon^{(N-p) / p}\right)\right]^{N / p}+\mathrm{O}\left(\varepsilon^{(p-1)[N / p-q /(p-q)]}\right) . \tag{3.5}
\end{equation*}
$$

$(N-p) / p>p-1$ since $p^{2}<N$, and $(p-1)[N / p-q /(p-q)]>p-1$ since $q<(N-p) p / N$, so the desired conclusion follows.
(ii) Since $N(p-1) /(N-1)<q<N(p-1) /(N-p)$, (3.5) still holds, and $(p-1)[N / p-$ $q /(p-q)]>p-1$ since $q<(N-p) p / N$.
(iii) Since $q=N(p-1) /(N-1)<N(p-1) /(N-p)$, we have

$$
c \leq \frac{1}{N}\left[S-K \widetilde{\lambda} \varepsilon^{p-1}+\mathrm{O}\left(\varepsilon^{(N-p) / p}\right)\right]^{N / p}+\mathrm{O}\left(\varepsilon^{N\left(N-p^{2}\right)(p-1) /(N-p) p}|\log \varepsilon|^{(N-1) p /(N-p)}\right)
$$

and $N\left(N-p^{2}\right)(p-1) /(N-p) p>p-1$ since $(1-1 / N) p^{2}+p<N$.
(iv) Since $q<N(p-1) /(N-1)<N(p-1) /(N-p)$, we have

$$
c \leq \frac{1}{N}\left[S-K \widetilde{\lambda} \varepsilon^{p-1}+\mathrm{O}\left(\varepsilon^{(N-p) / p}\right)\right]^{N / p}+\mathrm{O}\left(\varepsilon^{\left(N-p^{2}\right) q / p(p-q)}\right)
$$

and $\left(N-p^{2}\right) q / p(p-q)>p-1$ since $q>(p-1) p^{2} /(N-p)$.
Proof of Theorem 1.3. We apply Lemma 3.1. Since $q<p<q^{*}, W_{0}^{1, p}(\Omega) \hookrightarrow W_{0}^{1, q}(\Omega) \hookrightarrow$ $L^{p}(\Omega)$ by the Hölder inequality and the Sobolev imbedding, so

$$
\begin{equation*}
T=\inf _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\|\nabla u\|_{q}^{q}}{\|u\|_{p}^{q}} \geq \inf _{u \in W_{0}^{1, q}(\Omega) \backslash\{0\}} \frac{\|\nabla u\|_{q}^{q}}{\|u\|_{p}^{q}}>0 . \tag{3.6}
\end{equation*}
$$

By (1.4), (1.5), and (3.6),

$$
\Phi^{+}(u) \geq \frac{1}{p}\|u\|^{p}-\frac{1}{p^{*}} S^{-p^{*} / p}\|u\|^{p^{*}}+\frac{1}{q}\left(1-\frac{\mu^{+}}{\mu_{1}}\right)\|\nabla u\|_{q}^{q}-\frac{\lambda}{p} T^{-p / q}\|\nabla u\|_{q}^{p} \quad \forall u \in W_{0}^{1, p}(\Omega),
$$

where $\mu^{+}=\max \{\mu, 0\}$. Since $\mu^{+}<\mu_{1}$ and $p^{*}>p>q$, it follows from this that 0 is a strict local minimizer of Φ^{+}, so $c>0$. It is clear from Lemma 3.2 (ii) that $c<S^{N / p} / N$ for $\lambda>0$ sufficiently large.

4 Proof of Theorem 1.4

Proof of Theorem 1.4. Since $q<p, W_{0}^{1, p}(\Omega) \hookrightarrow W_{0}^{1, q}(\Omega)$ by the Hölder inequality. Let S_{p} denote the unit sphere of $W_{0}^{1, p}(\Omega)$ and let

$$
\pi_{p}(u)=\frac{u}{\|\nabla u\|_{p}}, \quad u \in W_{0}^{1, p}(\Omega) \backslash\{0\}, \quad \pi_{q}(u)=\frac{u}{\|\nabla u\|_{q}}, \quad u \in W_{0}^{1, q}(\Omega) \backslash\{0\}
$$

be the radial projections onto S_{p} and S_{q}, respectively. Since $\mu \geq \mu_{1}, \mu_{k} \leq \mu<\mu_{k+1}$ for some $k \geq 1$. Then

$$
\begin{equation*}
i\left(\pi_{q}^{-1}\left(\Psi^{\mu_{k}}\right)\right)=i\left(\pi_{q}^{-1}\left(S_{q} \backslash \Psi_{\mu_{k+1}}\right)\right)=k \tag{4.1}
\end{equation*}
$$

by (1.7). Set $M=\left\{u \in W_{0}^{1, q}(\Omega):\|u\|_{q}=1\right\}$. By Degiovanni and Lancelotti [8, Theorem 2.3], the set $\pi_{q}^{-1}\left(\Psi^{\mu_{k}}\right) \cup\{0\}$ contains a symmetric cone C such that $C \cap M$ is compact in $C^{1}(\Omega)$ and

$$
\begin{equation*}
i(C \backslash\{0\})=k \tag{4.2}
\end{equation*}
$$

Since $W_{0}^{1, p}(\Omega)$ is a dense linear subspace of $W_{0}^{1, q}(\Omega)$, the inclusion $\pi_{q}^{-1}\left(S_{q} \backslash \Psi_{\mu_{k+1}}\right) \cap$ $W_{0}^{1, p}(\Omega) \subset \pi_{q}^{-1}\left(S_{q} \backslash \Psi_{\mu_{k+1}}\right)$ is a homotopy equivalence by Palais [18, Theorem 17], so

$$
\begin{equation*}
i\left(\pi_{q}^{-1}\left(S_{q} \backslash \Psi_{\mu_{k+1}}\right) \cap W_{0}^{1, p}(\Omega)\right)=k \tag{4.3}
\end{equation*}
$$

by (4.1). We apply Theorem 1.6 to our functional Φ defined in (1.3) with

$$
A_{0}=\pi_{p}(C \backslash\{0\})=\pi_{p}(C \cap M), \quad B_{0}=S_{p} \backslash\left(\pi_{q}^{-1}\left(S_{q} \backslash \Psi_{\mu_{k+1}}\right) \cap W_{0}^{1, p}(\Omega)\right),
$$

noting that A_{0} is compact since $C \cap M$ is compact and π_{p} is continuous. We have

$$
i\left(A_{0}\right)=i(C \backslash\{0\})=k
$$

by 4.2), and

$$
i\left(S_{p} \backslash B_{0}\right)=i\left(\pi_{q}^{-1}\left(S_{q} \backslash \Psi_{\mu_{k+1}}\right) \cap W_{0}^{1, p}(\Omega)\right)=k
$$

by (4.3), so (1.8) holds.
For $u \in S_{p}$ and $t \geq 0$,

$$
\begin{equation*}
\Phi(t u) \leq \frac{t^{q}}{q} \int_{\Omega}\left(|\nabla u|^{q}-\mu|u|^{q}\right) d x-\frac{\widetilde{\lambda} t^{p}}{p} \int_{\Omega}|u|^{p} d x-\frac{t^{p}}{p}\left(\widetilde{\lambda} \int_{\Omega}|u|^{p} d x-1\right), \tag{4.4}
\end{equation*}
$$

where $\tilde{\lambda}=\lambda / 2$. Pick any $v \in S_{p} \backslash A_{0}$. Since A_{0} is compact, so is the set

$$
X_{0}=\left\{\pi_{p}((1-t) u+t v): u \in A_{0}, 0 \leq t \leq 1\right\}
$$

and hence

$$
\alpha=\inf _{u \in X_{0}} \int_{\Omega}|u|^{p} d x>0, \quad \beta=\sup _{u \in X_{0}} \int_{\Omega}\left(|\nabla u|^{q}-\mu|u|^{q}\right) d x<\infty .
$$

Let $\lambda \geq 2 / \alpha$, so that $\widetilde{\lambda} \alpha \geq 1$. Then for $u \in A_{0} \subset X_{0}$ and $t \geq 0$, (4.4) gives

$$
\begin{equation*}
\Phi(t u) \leq-\left(\mu-\mu_{k}\right) \frac{t^{q}}{q} \int_{\Omega}|u|^{q} d x \leq 0 \tag{4.5}
\end{equation*}
$$

since $\mu \geq \mu_{k}$. For $u \in X_{0}$ and $t \geq 0$, (4.4) gives

$$
\begin{equation*}
\Phi(t u) \leq \frac{\beta t^{q}}{q}-\frac{\widetilde{\lambda} \alpha t^{p}}{p} \leq\left(\frac{1}{q}-\frac{1}{p}\right) \frac{\left(\beta^{+}\right)^{p /(p-q)}}{(\widetilde{\lambda} \alpha)^{q /(p-q)}}, \tag{4.6}
\end{equation*}
$$

where $\beta^{+}=\underset{\sim}{\operatorname{m}} \underset{\sim}{\max }\{\beta, 0\}$. Fix λ so large that the last expression is $<S^{N / p} / N$, take positive $R \geq\left(p \beta^{+} / q \widetilde{\lambda} \alpha\right)^{1 /(p-q)}$, and let A and X be as in Theorem 1.6. Then it follows from 4.5) and (4.6) that

$$
\sup \Phi(A) \leq 0, \quad \sup \Phi(X)<\frac{S^{N / p}}{N}
$$

Since $p<q^{*}, W_{0}^{1, q}(\Omega) \hookrightarrow L^{p}(\Omega)$ by the Sobolev imbedding, so

$$
\begin{equation*}
T=\inf _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\|\nabla u\|_{q}^{q}}{\|u\|_{p}^{q}} \geq \inf _{u \in W_{0}^{1, q}(\Omega) \backslash\{0\}} \frac{\|\nabla u\|_{q}^{q}}{\|u\|_{p}^{q}}>0 . \tag{4.7}
\end{equation*}
$$

By (1.4) and (4.7),

$$
\Phi(u) \geq \frac{1}{p}\|u\|^{p}-\frac{1}{p^{*}} S^{-p^{*} / p}\|u\|^{p^{*}}+\frac{1}{q}\left(1-\frac{\mu}{\mu_{k+1}}\right)\|\nabla u\|_{q}^{q}-\frac{\lambda}{p} T^{-p / q}\|\nabla u\|_{q}^{p} \quad \forall u \in \pi_{p}^{-1}\left(B_{0}\right) .
$$

Since $\mu<\mu_{k+1}$ and $p^{*}>p>q$, it follows from this that if $0<r<R$ is sufficiently small and B is as in Theorem 1.6, then

$$
\inf \Phi(B)>0 .
$$

Then $0<c<S^{N / p} / N$ and Φ has a $(\mathrm{PS})_{c}$ sequence by Theorem 1.6, a subsequence of which converges weakly to a nontrivial critical point of Φ by Proposition 1.1 .

Acknowledgement

The authors have been partially supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

References

[1] Rutherford Aris. Mathematical modelling techniques, volume 24 of Research Notes in Mathematics. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.
[2] V. Benci, P. D'Avenia, D. Fortunato, and L. Pisani. Solitons in several space dimensions: Derrick's problem and infinitely many solutions. Arch. Ration. Mech. Anal., 154(4):297-324, 2000.
[3] V. Benci, A. M. Micheletti, and D. Visetti. An eigenvalue problem for a quasilinear elliptic field equation. J. Differential Equations, 184(2):299-320, 2002.
[4] Vieri Benci, Donato Fortunato, and Lorenzo Pisani. Soliton like solutions of a Lorentz invariant equation in dimension 3. Rev. Math. Phys., 10(3):315-344, 1998.
[5] L. Cherfils and Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p \& q$-Laplacian. Commun. Pure Appl. Anal., 4(1):9-22, 2005.
[6] Andrea Cianchi. Boundedness of solutions to variational problems under general growth conditions. Comm. Partial Differential Equations, 22(9-10):1629-1646, 1997.
[7] Marco Degiovanni and Sergio Lancelotti. Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(6):907-919, 2007.
[8] Marco Degiovanni and Sergio Lancelotti. Linking solutions for p-Laplace equations with nonlinearity at critical growth. J. Funct. Anal., 256(11):3643-3659, 2009.
[9] G. H. Derrick. Comments on nonlinear wave equations as models for elementary particles. J. Mathematical Phys., 5:1252-1254, 1964.
[10] Pavel Drábek and Yin Xi Huang. Multiplicity of positive solutions for some quasilinear elliptic equation in \mathbf{R}^{N} with critical Sobolev exponent. J. Differential Equations, 140(1):106-132, 1997.
[11] Edward R. Fadell and Paul H. Rabinowitz. Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math., 45(2):139-174, 1978.
[12] Paul C. Fife. Mathematical aspects of reacting and diffusing systems, volume 28 of Lecture Notes in Biomathematics. Springer-Verlag, Berlin-New York, 1979.
[13] Nassif Ghoussoub. Duality and perturbation methods in critical point theory, volume 107 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993. With appendices by David Robinson.
[14] Gongbao Li and Guo Zhang. Multiple solutions for the $p \& q$-Laplacian problem with critical exponent. Acta Math. Sci. Ser. B Engl. Ed., 29(4):903-918, 2009.
[15] Gary M. Lieberman. The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Comm. Partial Differential Equations, 16(2-3):311-361, 1991.
[16] Salvatore A. Marano and Nikolaos S. Papageorgiou. Constant-sign and nodal solutions of coercive (p, q)-Laplacian problems. Nonlinear Anal., 77:118-129, 2013.
[17] Everaldo Medeiros and Kanishka Perera. Multiplicity of solutions for a quasilinear elliptic problem via the cohomological index. Nonlinear Anal., 71(9):3654-3660, 2009.
[18] Richard S. Palais. Homotopy theory of infinite dimensional manifolds. Topology, 5:1-16, 1966.
[19] Kanishka Perera. Nontrivial critical groups in p-Laplacian problems via the Yang index. Topol. Methods Nonlinear Anal., 21(2):301-309, 2003.
[20] Kanishka Perera, Ravi P. Agarwal, and Donal O'Regan. Morse theoretic aspects of p-Laplacian type operators, volume 161 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010.
[21] Kanishka Perera and Andrzej Szulkin. p-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete Contin. Dyn. Syst., 13(3):743-753, 2005.
[22] Patrizia Pucci and James Serrin. The maximum principle. Progress in Nonlinear Differential Equations and their Applications, 73. Birkhäuser Verlag, Basel, 2007.
[23] Paul H. Rabinowitz. Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5(1):215223, 1978.
[24] Mingzheng Sun. Multiplicity of solutions for a class of the quasilinear elliptic equations at resonance. J. Math. Anal. Appl., 386(2):661-668, 2012.
[25] H. Wilhelmsson. Explosive instabilities of reaction-diffusion equations. Phys. Rev. A (3), 36(2):965-966, 1987.
[26] Honghui Yin and Zuodong Yang. Multiplicity of positive solutions to a $p-q$-Laplacian equation involving critical nonlinearity. Nonlinear Anal., 75(6):3021-3035, 2012.

[^0]: *MSC2010: Primary 35J92, 35B33, Secondary 58E05
 Key Words and Phrases: (p, q)-Laplacian problems, critical Sobolev exponent, nontrivial solutions, critical point theory, cohomological index
 ${ }^{\dagger}$ This work was completed while the third-named author was visiting Università di Reggio Calabria, and he is grateful for the kind hospitality of the host university.

