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Abstract—A new approach to array antennas diagnostics by 
means of amplitude-only far-field measurements is proposed. The 
procedure takes advantage from the Compressive Sensing theory 
and is able to deal with linear, planar, and conformal fixed-
geometry arrays. In case of low faulty-elements percentages, the 
overall problem is reduced to a convex programming 
optimization. The minimum number of measurements allowing 
success of recovery of either real or complex excitations is 
identified through an extensive set of numerical results. 
Interesting outcomes concerning the impact of the noise on 
measured data, the criterion adopted to choose the measurement 
points, and the ‘trivial ambiguities’ inherent to the solution of 
phase retrieval problems are also provided.  
 

Index Terms—Antenna arrays, compressed sensing, fault 
diagnosis, phase retrieval.  
 

I. INTRODUCTION AND MOTIVATIONS 

Large efforts have been devoted in the literature to the 
problem of characterizing a radiating source by using 
measurement set-ups as simple as possible, and to reduce the 
measurement time (see for instance [1],[2] and references 
therein). In particular, one can individuate at least three 
different main areas of interesting research. 

First, a large body of work has been devoted to the problem 
of performing the diagnostics of an antenna (or near-field to 
far-field transformations) by using the least possible number of 
measurements. A relevant contribution on such a topic has 
been provided by Prof. Bucci and co-workers in [1]. Basing on 
such a cornerstone result, a number of possible configurations 
and solutions have been then proposed and developed by 
Gennarelli, Savarese and co-workers (see [2] and references 
therein). 

A second very interesting area of research has also arisen in 
the last three years as a consequence of the recently introduced 
Compressive Sensing (CS) theory [3]. In fact, this latter allows 
the on-off diagnostics of an array antenna by using a number of 
measurements (say M) much lower than the number of array 
elements (say N) [4]-[6]. Of course, because of the underlying 
CS theory, M is supposed to anyway be larger or even much 
larger than the number of ‘off’ (i.e., faulty) elements (say S). 
Contributions on such a topic consider both cases of near-field 
[4] and far-field [5],[6] amplitude and phase measurements. 

By following a different goal, phaseless measurements have 
also been the subject of intensive research (see for instance [7]-
[15]). In fact, measuring a complex far-field pattern requires a 
stable phase reference and accurate positioning of the probe in 
each measurement point, so that measurements may become 
problematic [11],[12].  

As a matter of fact, phaseless measurements have been 
proposed as an effective alternative to amplitude and phase 
measurements in applications ranging from NF-FF 
transformations and antenna metrology [7]-[10] to array 
excitations retrieval [12] and on-site diagnostics of reflectors 
for radio astronomy [15]. Very recent contributions on the 
topic, witnessing its growing interest in submillimeter and 
terahertz bands, also include [16]-[18]. Finally, the possibility 
to perform measurements ‘on site’ by means of properly-
equipped Unmanned Aerial Vehicles (UAV) [19] also adds 
interest to phaseless measurements, which require less 
accuracy in the probes positioning.  

The specific problem of identifying faulty elements in an 
array by far-field phaseless measurements has also been 
considered [13],[14]. In particular, the readers are deferred to 
[13] as far as the problem of the uniqueness of a solution (and 
the avoidance of ‘false solutions’) is concerned. Notably, all 
possible independent intensity measurements are used in [13], 
while the exploitation of a number of measurements less or 
much less than the number of array elements was first 
suggested and explored in [14], which dates to prior of the 
diffusion of the CS paradigm. The latter possibility is 
particularly interesting. In fact, besides the obvious savings in 
terms of measurement time and of cost and complexity of the 
set-up, one has the possibility to perform measurements on site 
(and eventually during normal operations).  

For all the above, in view of the expected advantages in 
terms of performances and understanding, possible exploitation 
of CS for phaseless antenna diagnostics is of interest. On the 
other side, CS theory and procedures have been developed and 
well assessed for the case of linear problems, which is not the 
case at hand.  

By using simple arguments, we are able to show in the 
following that array antenna diagnostics by using a small 
number of far-field phaseless measurements can be effectively 
performed by means of CS-inspired techniques. As a 
consequence, we also introduce a solution procedure which 
reduces the overall problem to a Convex Programming (CP) 
one in case of low faulty-elements percentages. The procedure 
is able to deal with linear, planar, and conformal fixed-
geometry arrays. It is worth to note that, excluding a small set 
of cases wherein the nominal excitations distribution exhibits 
particular properties (see below), the approach is insensitive to 
the ‘trivial ambiguities’ [20] inherent to the solution of phase 
retrieval problems. In both cases of real and complex array 
excitations, the minimum number of measurements allowing a 
successful diagnostics is identified for different levels of noise 
on the data. Criteria for choosing measurement points are also 
provided.  

The paper is organized as follows. Section II is devoted to 
introduce the rationale of the proposed approach and to show 
how the non-linear problem at hand can still be solved by using 
the same simple CS tools which are used in case of linear 
problems. Then, in Section III, the performance of the 
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proposed technique is analyzed and discussed in the case of 
linear equispaced arrays. Conclusions follow. 
 

II. THE PROPOSED APPROACH 

Let us suppose to know the ‘nominal’ far field expected to 
be radiated by an Array Under Test (AUT) of sources when all 
elements are correctly working. In particular, let us suppose 
amplitude and phase of the nominal array factor are known. By 
the sake of simplicity, let us also consider the case where the 
array is linear and all elements are identical, equally oriented, 
and uniformly spaced (with a constant distance equal to d), so 
that the problem can be conveniently analyzed in terms of an 
array factor1. Also, let us denote by N and θ the overall number 
of array elements and the observation angles with respect to the 
array axis, respectively. Then, the array factor associated to the 
‘nominal’ or ‘expected’ field is formally given by 
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where E
N

E aa ,...,1  are the known ‘nominal’ or ‘expected’ 
complex excitations and u=βdcosθ (denoting by β=2π/λ the 
wavenumber).  

In case some element is not correctly working, the actual 
array factor will be given by  
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where A
N

A aa ,...,1  are the ‘actual’ excitations. As a consequence, 
the signal given by the difference between the ‘nominal’ and 
the ‘actual’ array factors, say ΔF, will be given by 
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with A
n

E
nn aaa   for n=1,…,N.  

If the number of faulty elements, i.e., the number of 
elements whose excitation is different from the nominal one, 
say S, is small with respect to N, ΔF is intrinsically S-sparse 
[6] when represented in terms of Δa1,…,ΔaN. Such a 
circumstance has been already considered and exploited in a 
number of papers recently appeared in these Transactions 
performing the array diagnostics by means of amplitude and 
phase measurements [5],[6]. While reducing the complexity 
and cost of measurements, these techniques still require an 
accurate phase measurement and hence a stable phase reference 
and an accuracy in positioning the probes in the order of a 
small fraction of the wavelength. Hence, in order to provide a 
further simplification, it makes sense to consider the case 
where only phaseless measurements (which are less sensitive 
to positioning errors, and do not require a phase reference) are 
available. Then, let us denote by PE and PA the ‘nominal’ and 
‘actual’ power patterns, i.e., the square amplitudes of FE and 
of FA, respectively. By straightforward algebra, in a generic 
measurement point um one achieves: 
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wherein * denotes complex conjugation. 
 
1 As it will be easily understood, the overall approach can be easily applied to 
any kind of linear, planar or even conformal arrays. 

As ΔF is sparse, by using M different sampling points 
u1,…,uM, the CS theory and results can be of interest. On the 
other side, (4) is a non-linear relation, so that standard CS 
theory and procedures cannot be applied in a straightforward 
fashion. In fact, while the first term at the right-hand member is 
linear with respect to ΔF, the second one is indeed quadratic.  

However, a useful circumstance comes into help. In fact, as 
long as one has a low number of faulty elements (which is 
anyway needed for applying CS) the energy of the signal ΔF is 
small with respect to the energy of FE, so that, in the average, 
the second term at the right-hand member of (4) will be small 
with respect to the first one. Moreover, one could have a 
further lowering of the weight of the quadratic term in (4) by 
performing the M measurements in those points where the 
signal FE (which is known) has a large intensity. By so doing, 
equation (4), particularized in a proper series of measurement 
points, can be considered to be ‘almost linear’ in terms of the 
unknown signal ΔF, so that the procedures suggested by CS 
literature for linear problems are indeed of interest.  

By taking advantage from all the above, the diagnostics 
problem from phaseless measurements can be formulated as: 
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being Δa=[Δa1 … ΔaN] and Δx=[Δx1 … ΔxM], with 
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wherein the subscripts 1 and 2 respectively stand for ℓ1 and ℓ2 
norms. As discussed in a number of papers (see for instance 
[5],[6]), minimization of functional (5) is meant to enforce 
sparsity, while condition (6) ensures fulfillment of the 
(normalized) data equation (4) within a given tolerance ε, and 
the reason of the adopted normalization by |FE(um)| is given in 
below and in Appendix I. As well known, an accurate recovery 
is granted for the corresponding linear problems provided a 
number of conditions on M, S, N (as well as on the location of 
measurement points are fulfilled).  

Success of the proposed procedure is related to the 
properties of the matrix underlying the linear term of (4). In 
particular, some conditions guaranteeing the so called 
Restricted Isometry Property (RIP) [3] or a low mutual 
coherence between the sensing and representation basis [21] 
should be verified. It is interesting to note (see Appendix I) that 
in case of pencil beams (where the nominal field is real [22]) 
the matrix underlying the linear term of (4) has exactly the 
same components as in the Discrete Cosine Transform (DCT) 
and the Discrete Sine Transform (DST), so that a small mutual 
coherence is indeed guaranteed [21]. Hence, the proposed 
framework is expected to work fine in case of pencil beams or 
real-field patterns. As the additional factors which come into 
play do not seem to modify the coherence properties in a 
significant fashion, the approach is however expected to 
succeed even in case of complex field patterns, which is 
confirmed in Section III by a large number of numerical 
examples. 



 

As far as the requirements on the ratio M/S are concerned, it 
is well known [5] that at least M=2S complex measurements are 
required to identify S faulty elements. As one complex 
measurement is equivalent to two real measurements, it is 
expected that at least M=4S phaseless measurements are 
required to perform the exact recovery of an S-sparse signal. As 
discussed in [23], this is indeed the case. At the same time, the 
location of measurement points should obey a number of rules. 
First, one should avoid to deal with very close measurement 
points, as very close samples would carry the same 
information, i.e., would give rise to equations almost linearly 
dependent each from the other [1]. Second, according to CS 
theory, measurements should be taken in some random fashion 
(in order to ensure some kind of RIP) [5]. Third, as already 
discussed above, measurements should correspond to points 
wherein PE is large, in such a way that (4) is nearly linear in 
terms of the unknowns. Under such hypothesis, constraint (6) 
practically results quadratic (and convex) in terms of the 
unknowns and hence, being the cost functional (5) convex, the 
overall problem is a CP one. Although the second and third 
requirements may seem conflicting, in choosing the 
measurement points one can still perform random choices 
amongst all those locations where |FE| exceeds a given 
threshold, so that both requirements can be preserved.  

As long as we want to deal with an ‘on-off’ diagnostics 
problem, which is the case considered in the remainder of the 
paper, an even more powerful formulation can be given. In 
fact, the unknown ‘actual’ excitation of each element can be 
written as the multiplication of the ‘nominal’ excitation by an 
unknown real coefficient, which will be equal to 0 or 1 in case 
of a fully defective or a fully working element, respectively. In 
such a way, one can take advantage from the expected range of 
values of these real coefficients. Then, by adopting as unknown 
of the problem the vector containing these real coefficients (say 
τ=[τ1,…,τN]) instead of Δa, one can give a second formulation 
of the problem as follows (wherein I is a vector of N ones): 
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In fact, by virtue of (10) it will result  n
E
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n=1,…,N, and hence if Δa is sparse then (I-τ) is sparse as well, 
so that CS can still be profitably applied. Moreover, constraints 
(11) will speed up the overall procedure and improve 
robustness by restricting the search space to the set wherein the 
optimal (admissible) solutions are certainly located. Notably, 
constraints (10),(11) are linear in terms of the unknowns, so 
that their consideration does not affect the effectiveness of the 
solution procedure. Last, but not least, formulation (8)-(11) 
allows to deal with half the number of unknowns with respect 
to problem (5)-(7) (wherein one looks for N complex 
unknowns, which are equivalent to 2N real quantities). This 
leads to an at-least-halved computational burden (since CP 

optimizations can be performed in polynomial time) as well as 
to better performances.  

As discussed in the Appendix 2, the approach is also 
insensitive to the ‘trivial ambiguities’ [20] usually involved in 
the solution of phase retrieval problems (but for very peculiar 
cases, wherein the procedure is anyway able to identify a 
binary alternative for the solution). 

 

III. NUMERICAL ASSESSMENT 
Very many numerical simulations have been performed in 

order to identify, in different scenarios of actual interest, the 
minimum number of phaseless measurements required for the 
successful identification of faulty elements. In particular, three 
different sets of hypotheses concerning the measurement set-
up have been considered. By the sake of clarity, in the 
following a separate Subsection is devoted to each of them.  

For each AUT, we tested the performance of the approach 
by repeatedly varying M and S and evaluating (as in [5]) the 
Mean Squared Error (MSE) defined by :  
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(where R
na  is the estimated value of the n-th excitation). In 

particular, for each pair (M, S), we solved problem (8)-(11) 
100 times and considered ‘successful’ only those simulations 
achieving a MSE lower than a given threshold MSEMAX. 
Moreover, for each value of S, we also analyzed the Rate of 
Success of Excitations Recovery (RSER) [5], i.e., the number 
of successful diagnostics experiments over the overall number 
of simulations, as a function of the ratio M/S. The S failures 
have been represented by zero-amplitude excitations randomly 
selected with uniform distribution among the N coefficients. 
All results concern linear equispaced arrays with a λ/2 inter-
element spacing. Each simulated retrieval required in the 
average 2.0 seconds to be performed by a calculator having an 
Intel Core i7-3537U 2.50 GHz CPU and a 10 GB RAM.  

Each simulation has been performed by separately 
adopting formulation (5)-(7) and formulation (8)-(11). By the 
sake of brevity, in the following we report just the outcomes 
achieved through the second of these two alternatives, which 
has led to slightly better performances both in terms of RSER 
and computational time.  
 
III.1 Randomly-selected measurement points in the absence of 
noise on the data 

In this Subsection we analyze performances in case of 
noiseless data when selecting the measurement points by 
means of a random (uniformly-distributed) sampling of u 
variable2 and choosing MSEMAX=-30dB. In a first class of 
numerical experiments, we used an AUT composed by N=20 
elements and chose the nominal excitations as the Chebyshev 
coefficients providing a -20 dB equiripple far-field pattern3. In 
 
2 According to the reasonings made in Section II about linearization of relation 
(4), only those u values corresponding to a nominal power pattern’s 
normalized value larger than -25 dB have been randomly sampled. 
3 For each simulation involving Chebyshev nominal excitations, we calculated 
the MSE as the minimum value achieved by substituting into (12) the 
excitations corresponding to the retrieved field and to its complex conjugate, 
respectively. This has been necessary to counteract the potential occurrence of 
the only possible trivial ambiguity (see Appendix 2). 



 

a second class of simulations, in order to validate the approach 
also in case of complex reference excitations, we considered 
an AUT composed by N=16 elements and used as nominal 
excitations the coefficients reported at page 1131 of [24] 
(given by Elliott to generate a cosecant power pattern). 

Results pertaining to the two groups of simulations are 
summarized in Fig. 1. As it can be seen, for a percentage of 
faulty elements S/N roughly between 5% and 25%, the 
minimum number of measurements allowing an ‘almost sure’ 
successful reconstruction (i.e., RSER>90%) is M=6S in both 
cases of real and complex nominal excitations. In any case, 
M=8S phaseless measurements have been sufficient to 
guarantee a RSER close to 100%.  

 

 
(a) 

 

 
(b) 

Fig. 1. Results achieved in case of noiseless data by selecting the 
measurement points as a random sampling of the u variable and using 
Chebyshev (a) and Elliott (b) nominal excitations. Intersections amongst 
curves are due to the fact that an increase of S induces, for a fixed M/S value, 
a growth of both M (which has a positive effect on the RSER) and ||ΔF||2 
(which has a negative effect on the RSER). 

 

It is also worth noting that, whatever the number of 
failures, the RSER (expected) growth for increasing values of 
M is very steep until M approaches 4S, and then grows 
smoother. Such a circumstance agrees with the theoretical 
results in [23], and it is very similar to the one shown in [5].  

As expected, all curves are monotonic in terms of M/S, 
Also, for large values of M/S, performances become worse for 
increasing S. Such a circumstance can be attributed to the fact 
that increasing S means increasing the non-linear term of (4), 
thus departing from the optimal conditions for use of CS tools. 

III.2 Randomly-selected measurement points in the presence 
of noise on the data 

We repeated the simulations carried out in the previous 
Subsection (just for the Chebyshev excitations set) by 
corrupting with different levels of noise the ‘measured’ value 
of PA(um), for m=1,…M. In particular, we enforced a Signal to 
Noise Ratio (SNR) respectively equal to 30 dB, 25 dB, and 20 
dB. A MSEMAX value equal to -30 dB, -25 dB, and -20 dB has 
been respectively considered in these three cases. Fig. 2 
reports the results achieved by simulating S=1, 2, 3 failures. 
As it can be seen, in all three cases the RSER exhibits a 
behavior similar to the one shown in Fig. 1. The figure shows 
that the approach has a good tolerance to noise, being able to 
guarantee RSER≈95% in many instances (see curves with 
M=8S, SNR=30dB, and S equal to 2 or 3).  
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(c) 

Fig. 2. Chebyshev nominal excitations and random sampling of the u variable: 
results achieved in case of measured data corrupted by different levels of 
noise for S=1 (a), S=2 (b), and S=3 (c).  
 
 
III.3 An assessment of performance in a realistic scenario 

We repeated the simulations carried out in Subsection III.1 
(just for the Chebyshev excitations set and S=1, 2) by a-priori 
excluding the whole main-beam region (i.e., |u|≤0.35) from the 
domain which is randomly sampled in order to determine the 
measurement points. The aim of these experiments is to test 
the proposed approach for a ‘on site’ diagnostics while the 
array is anyway performing its job. Such a case is of interest in 
very many cases, including radar arrays [25]. This new 
measurement strategy obviously makes harder the overall 
diagnosis problem, as it does not include high-amplitude field 
samples able to lower the weight of the quadratic term in (4) 
and hence to raise the applicability of the CS theory.  

The achieved results are summarized in Fig. 4. As it can be 
seen, despite the harder working conditions, for S=1 the 
approach guarantees performances identical to the ones shown 
in Subsection III.1. The diagnostics technique keeps 
performing very well also for S=2, guaranteeing a RSER≥90% 
for M/S≥5.  

 

 
Fig. 4. Comparison of the RSER values achieved by including (continuous 
lines) and excluding (dashed lines) the main-beam region from the domain 
which is randomly sampled in order to determine the measurement points. 

IV. CONCLUSIONS 
A new approach to the on-off diagnostics of linear, planar, 

and conformal fixed-geometry array antennas by means of a 
small number of phaseless far-field measurements has been 
presented. Despite dealing with a non-linear problem, the 
central engine of the proposed technique has been devised in 
such a way to exploit at best the Compressive Sensing theory, 
with consequent advantages in terms of both accuracy and 
computational burden. In fact, under reasonable conditions the 
overall problem still reduces to a Convex Programming one. 

The approach has shown good reconstruction capabilities 
even in the presence of noise on far-field data, and the 
performed tests suggest that on site diagnostics while the array 
is performing its usual job is also possible.  

APPENDIX I 
The aim of this Appendix is to show that the matrix 

relating the unknown Δa to the first term at the right-hand 
member of (4) is in the form of a DCT minus a DST as long as 
the nominal field is real. To this end, let us first note that: 
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Then, by decomposing the n-th unknown in term of its real 
and imaginary parts, i.e., Δan=Δrn+jΔin, for n=1,…,N, and 
substituting (3) into (13), one achieves:  
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Therefore, since 
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wherein αm is the phase of FE(um), (14) entails that: 
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with φm,n=num-αm. By virtue of (16), the relation between the 
unknowns and the linear term in (7) can be written as: 
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Therefore, as long as the nominal field is real, i.e., αm is either 
equal to 0 or π, so that matrices in (18) respectively are a DCT 
and a DST matrix [26] (but for signs, which do not modify 
coherence properties), Q.E.D. 
 

APPENDIX II 
By the sake of simplicity, let us refer to the case of linear 

or planar sources. By leaving aside the obvious ambiguity 
deriving from a phase constant, retrieving a component of the 
far field of a source having a limited extension by knowing 
just its squared amplitude distribution is known to be subject 
to ‘trivial ambiguities’ [20] as follows: 

i. two different fields being the complex conjugate each of 
the other have identical square amplitude distributions. In 
the case at hand, such an ambiguity corresponds to 
sources which are reversed (with respect to their axes) 
and complex conjugate each of the other;  

ii. two different fields differing by a linear phase term have 
identical squared amplitude distributions. In the case at 
hand, such an ambiguity corresponds to sources which 
are shifted with respect to the actual ones; 

iii. any combination of the two ambiguities above may 
occur. 

Because of the fact that the proposed approach looks for 
‘maximally-sparse’ [6] solutions, it can be easily shown that 
trivial ambiguities cannot occur (but for very particular cases) 
for the present diagnostics technique. In fact, as far as the first 
possible ambiguity is concerned, let us consider an AUT 
whose actual far field is FA1(u), which yields: 

     uFuFuF AEA 11   (19) 

and where ΔFA1 is a sparse signal. The possible ambiguous 
field solution, i.e., FA2=(FA1)*, would give rise to a 
perturbation ΔFA2 given by: 

     uFuFuF AEA *12   (20) 

Then, by straightforward manipulation: 

      uFjuFuF EAA Im2*12   (21) 

As a consequence, unless the second term at the right-hand 
member of (21) is null, ΔFA2 is not a sparse signal, so that the 
proposed CS technique, which looks for maximally-sparse 
solutions, will allow to avoid such a kind of ambiguity. 
Unfortunately, this trivial ambiguity can still occur as long as 
the nominal field is real, i.e., in case of hermitian excitations. 
However, in case the ambiguity occurs the technique is still 
able to identify a binary alternative for the solution (see 
Subsection III.1), so that it keeps useful in any case.  

As far as the second ambiguity is concerned, the 
requirement for sparsity comes again into play. In fact, such a 
kind of ambiguity corresponds to a shift of the source. As a 
consequence, unless the ‘nominal’ excitations distribution is 
constant and the AUT has a single faulty element either in the 
first or last location on its axis, a translation of the source will 

induce a different amount of sparsity on the final solution. 
Therefore, the adopted CS framework will be able to 
distinguish the actual solution of the problem from the one 
associated to the ambiguity. 

Obviously, the same kind of arguments also apply to the 
(composite) third possible kind of trivial ambiguity.  
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