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Abstract— A new approach to the power synthesis of fixed-
geometry reconfigurable planar arrays radiating sum and differ-
ence patterns is presented. The proposed design technique allows
to maximize the radiation performance (field slope, amplitude, or
even directivity) of both beam patterns over assigned directions
subject to completely arbitrary masks for sidelobe bounds. What-
ever the elements disposal and the array boundary, the overall
problem is solved through a convex (quadratic) programming
procedure. Moreover, if centrosymmetric antenna layouts are
adopted, the synthesis is reduced to an even more powerful linear
programming routine which preserves the solution uniqueness
and optimality guaranteed by quadratic programming codes
while dramatically decreasing their computational weight (and
hence enabling the design of much larger planar arrays). The
proposed approach also takes into account the need of reducing
the complexity of the beam forming network (BFN ), which is
fulfilled by sharing part of the excitation amplitudes between
the two radiation modalities. A set of numerical examples is
reported and discussed to show the versatility and effectiveness
of the proposed approach.

Index Terms— Reconfigurable Arrays, Sum and Difference
Patterns, Monopulse Antennas, Convex Programming Array
Design.

I. INTRODUCTION

Monopulse radars are systems used to track the position of 
moving targets [1][2]. In order to avoid problems related to the 
power fluctuations of the backscattered signal (i.e., echo) due 
to the finite amount of time in which the target is illuminated 
by the transmitted pulse, monopulse radars are based on the 
short-term observation of the target echo and on the 
comparison of two different signals, the so-called sum and 
difference signals [1]. Towards this aim, monopulse antennas 
are required to provide both sum and a difference patterns [3], 
the former having one main lobe along the target direction and 
the latter exhibiting a null in the same direction. In case of 
linear phased arrays, the antenna is split into two parts, 
symmetric with respect to the center. Whether the two halves 
are excited in phase, a sum pattern is obtained. On the contrary, 
a difference pattern is generated when the two parts are excited 
in phase reversal, namely with a phase shift of π [1]. However,
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linear arrays allow to track targets only on a plane. To enable
the three-dimensional tracking, planar arrays are needed. In
this case, the antenna has to generate one sum pattern and
two difference patterns respectively exploited for estimating
the azimuth and elevation coordinates identifying the target
direction. The sum and difference patterns are obtained by
subdividing the planar array into four symmetric quadrants:
the sum mode is generated when all quadrants are excited with
the same phase, while the two difference patterns are obtained
by adding a phase shift ofπ to the excitations of a couple of
quadrants. More precisely, the shift is added to the upper or
lower quadrants for the elevation angle estimation and to left
or right quadrants for the azimuthal angle estimation.

Notably, the excitation coefficients proving the two opti-
mal radiation patterns can be so different [3] to require the
adoption of two separate feeding networks. Unfortunately,
this fact unavoidably increases the antenna complexity and
costs. Hence, sub-optimal array solutions have been proposed
in order to design affordable monopulse antennas. Among
them, several approaches have been aimed at the design of
compromise arrays generating an optimal sum beam, through
independent excitations, and sub-optimal difference ones, by
aggregating the elements into clusters/sub-arrays where each
one is controlled by a single amplitude coefficients. In this
framework, the design of both linear arrays [4][5][6][7][8]
as well as planar arrays has been addressed [9][10] by using
stochastic global optimization algorithms, deterministic as well
as hybrid procedures. An interesting alternative solution for
simplifying the BFN complexity, firstly explored in [11],
regards the synthesis of sum and difference patterns while
sharing some excitation weights between the two array modes.
In particular, the synthesis of sum and difference patterns close
as much as possible (in the least-square sense) to optimal
Chebyshev (sum) [3] and Bayliss (difference) [3] patterns has
been addressed in [11]. However, it is worth pointing out that
the amplitudes of the central elements of optimal sum and
difference patterns considerably differ while the elements in
the periphery of the array (neglecting the phase shift needed
for the difference mode generation) are similar.

On the basis of this observation, two design methods based
on the Simulated Annealing [12] and the Genetic Algorithms
[13] have been proposed for the design of linear arrays
where the sum and difference modes have common amplitude
excitations in the array tails. Unfortunately, such techniques
turn out being relatively time consuming, especially when
dealing with the synthesis planar arrays composed by a large
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number of elements. Moreover, the achievement of the optimal
compromise solution is not guaranteed due to the stochastic
behavior of the resolution algorithms.

In the linear arrays case, these limitations have been over-
come by the design technique presented in [14], which takes
decisive advantage from the fundamental results of [15][16]
and [17]. These contributions have definitively solved the
optimal separate synthesis of fixed-geometry arrays radiating
sum [15][16] and difference [17] power patterns with arbitrary
sidelobe bounds by just exploiting convex programming (CP )
routines, and hence result more effective and fast than the
above-mentioned approaches. In particular, in [14] the array
structure and the excitation amplitudes of the two radiation
modalities are synthesized in such a way that a part of the
weights in the periphery of the layout is shared between the
two modes while the remaining elements have independent
excitations, activated through a set of radio-frequency switches
for generating either the sum or the difference beam. The
synthesis problem has been again tackled by means of a
procedure, with the inherent advantages in terms of solution
optimality and computational complexity.

Taking into account such circumstances, this paper presents
a new design approach providing four important contributions.
First, it represents the extension of the method proposed in
[14] to the case of two-dimensional reconfigurable monopulse
arrays with arbitrary boundary. Second, differently from usual
approaches dealing with reconfigurable fields, it provides to
the designer several options in terms of cost functional to be
optimized subject to arbitrary upper-bound constraints on the
sidelobes, i.e.:

• the maximum sidelobe level of the sum pattern for a given
beamwidth;

• the amplitude of the slope in the target direction of the
difference pattern;

• the directivity of the sum and/or the difference beams.

As a third contribution, by exploiting the theory developed in
[15][16][17] for the linear arrays case, this paper shows how
the synthesis of a two-dimensional reconfigurable arrays radi-
ating the sum and the two (azimuth and elevation) difference
beams can be jointly addressed in a single optimization step
and that the problem can be cast as a linear programming
one provided that the radiating elements are disposed in a
centrosymmetric fashion (whatever the layout boundary) with
respect to the array center. Such a strategy is particularly
suitable when dealing with the synthesis of planar arrays
composed by a very large number of elements, as requested
in challenging monopulse tracking applications. With respect
to this point, it must be noted that while the reduction toLP
already exists for the single objective problems, i.e., for the
separate synthesis of sum or difference beams, its extension
to reconfigurable sum and difference patterns is an innovation
introduced by this paper. Finally, as fourth contribution, this
work shows and discusses different techniques for the sim-
plification of the array architecture, where common excitation
amplitudes are considered on the external columns/rows of
the array layout or on a complete ring of elements in the
periphery of the antenna aperture. Moreover, it is proved
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Fig. 1. Sketch of the planar antenna array generating sum and difference
patterns with common and reconfigurable excitations.

that the proposed method can be naturally extended to the
synthesis of hybrid architectures with common sub-arrays
shared between the sum and difference modes.

The rest of the paper is organized as follows. The synthesis
problem is mathematically formulated in Sect. II where the
simplification of theCP problem to theLP one is also
described. A set of numerical results is reported and discussed
in Sect. III to show the potentialities and versatility of the
proposed approach. Eventually, some conclusions are drawn
in Sect. IV.

II. MATHEMATICAL FORMULATION

Let us consider a planar phased array made of2M × 2N
isotropic sources distributed on a regular lattice centered in
the x − y plane as shown in Fig. 1. The radiated far-field is
mathematically expressed through the array factor (AF ) as

AF (u, v) =

2M
∑

m=1

2N
∑

n=1

Imne
jβ[(m−M−

1

2 )dxu+(n−N−
1

2 )dyv]

(1)
being u = sin θ cosφ, v = sin θ sinφ, j =

√
−1, β = 2π

λ
(with λ the wavelength), anddx and dy are the element
spacings along thex andy direction, respectively. Moreover,
Inm = amne

jϕmn , m = 1, ..., 2M , n = 1, ..., 2N are the
excitation weights, beingamn and ϕmn the amplitude and
phase coefficients of themn-th element, respectively.

Supposing the phase shifters are only used
for beam scanning purposes and set toϕmn =
−β [(m− 1) dxu0 + (n− 1)dyv0], m = 1, ..., 2M ,
n = 1, ..., 2N , being (u0, v0) the direction where to
steer the antenna pattern, let us assume in the following
that the target direction is broadside:(u0, v0) = (0, 0).
The sum mode is generated by imposing a quadrantal
symmetry of the excitation amplitudes, namely
aΣmn = aΣ(2M+1−m)n = aΣm(2N+1−n) = aΣ(2M+1−m)(2N+1−n),
m = 1, ...,M , n = 1, ..., N . Accordingly, the array factor of



the sum (Σ) pattern turns out equal to [3]

AFΣ (u, v) = 4

M
∑

m=1

N
∑

n=1

aΣmn cos

[(

m−M − 1

2

)

dxu

]

× cos

[(

n−N − 1

2

)

dyv

]

(2)

where aΣmn is the excitation amplitude of themn-th ele-
ment. The difference (∆) mode is obtained by using a quad-
rantal anti-symmetric distribution of the amplitude weights.
More specifically, the conditiona∆mn = a∆(2M+1−m)n =

−a∆m(2N+1−n) = −a∆(2M+1−m)(2N+1−n) is considered to
obtain a difference pattern for the azimuth angle estimation
and the conditiona∆mn = −a∆(2M+1−m)n = a∆m(2N+1−n) =

−a∆(2M+1−m)(2N+1−n) to generate the difference pattern for
the elevation angle estimation [3]. The negative excitations are
obtained by adding a phase shift ofπ to the signal received
by corresponding quadrants. Hence, the two difference beams
are defined as

AF∆
az (u, v) = 4j

M
∑

m=1

N
∑

n=1

a∆mn sin

[(

m−M − 1

2

)

dxu

]

× cos

[(

n−N − 1

2

)

dyv

]

(3)

AF∆
el (u, v) = 4j

M
∑

m=1

N
∑

n=1

a∆mn cos

[(

m−M − 1

2

)

dxu

]

× sin

[(

n−N − 1

2

)

dyv

]

. (4)

for the azimuthal and elevation∆-mode, respectively.

A. Independent Synthesis of Sum and Difference Patterns

The set of coefficients generating optimal sum and dif-
ference patterns can be defined using for example analytical
synthesis procedures (e.g., Taylor [18] and Bayliss [19]). In
this work, the methods presented in [15][16] and [17] are
exploited and integrated in a single design procedure aimed
to jointly synthesize sum and difference patterns with shared
excitations. By exploiting the theory reported in [15] and in
[17], the optimal synthesis of the field (2) can be performed
by solving the followingCP problem:

min
a
Σ

{

−AFΣ (u0, v0)
}

(5)

subject to
∣

∣AFΣ (us, vs)
∣

∣

2 ≤ UBΣ (us, vs)
s = 1, ..., S

(6)

provided that the phase of the sum field in the
target direction is equal to zero, whereaΣ =
{

aΣmn; m = 1, ...,M ; n = 1, ..., N
}

and UBΣ (us, vs) is
a non-negative function identifying an arbitrary upper bound
on the sidelobes,(us, vs), s = 1, ..., S being the directions
spanning the sidelobe region. By following the same principle,

the optimal design of difference patterns has been obtained
by solving the followingCP problem [17]:

min
a
∆







[

−j
∂AF∆

az/el (u, v)

∂w

]
∣

∣

∣

∣

∣

u=u0;v=v0







(7)

subject to
AF∆

az/el (u0, v0) = 0 (8)

and
∣

∣

∣
AF∆

az/el (us, vs)
∣

∣

∣

2

≤ UB∆
az/el (us, vs)

s = 1, ..., S
(9)

provided that the phase of the imaginary part of the differ-
ence field derivative in the target direction is equal toπ, where
a
∆ =

{

a∆mn; m = 1, ...,M ; n = 1, ..., N
}

, w is eitheru or v
depending on the kind of difference pattern to be synthesized,
for azimuth (w = u) or elevation (w = v) angle estimation, the
subscript{az/el} refers to the consideration of the azimuth
and/or of the elevation patterns, andUB∆

az/el (us, vs) is the
non-negative mask function on the sidelobes.

Due to the fact that (2) and (3)-(4) are purely real or
imaginary functions, the quadratic constraints (6) and (9) can
be reduced to linear ones as

−
√

UBΣ (us, vs) ≤ AFΣ (us, vs) ≤
√

UBΣ (us, vs)
s = 1, ..., S

(10)
−
√

UB∆
az/el (us, vs) ≤ jAF∆

az/el (us, vs) ≤
√

UB∆
az/el (us, vs)

s = 1, ..., S
(11)

for the sum and difference mode, respectively. Therefore,
since the objective functions (5)(7) are linear with respect to
the unknowns (seeAppendix) each synthesis consists in the
minimization of a linear function in a linear set and can be
solved as aLP problem (see [16][17] for further details).

As a final comment (which must be also taken into account
in reading the following Section), it is worth noting that
looking just for the array excitation amplitudes (instead of
both the real and imaginary part of the weights) represents
neither a restrictive hypothesis nor a limitation which may
affect the convexity of the optimization problem above. In fact,
for both cases of continuous or discrete (i.e., array) sources,
independently from the aperture size and contour, it is well
known that the optimal source corresponding to a given sum
pattern is a real and positive distribution [18][15][16]. Except
for a π phase shift with respect to the aperture center, this
property is also valid for the optimal source radiating a given
difference pattern [19][17].

B. Joint Synthesis of Sum and Difference Patterns with Com-
mon Excitations

From a mathematical point of view, the fact of sharing
a subset of the excitations between the sum and difference
modes means that the condition

aΣmn = a∆mn , (m,n) ∈ Ψ (12)



is verified,Ψ being the set of integer couples identifying the
elements with common weights. It is important to point out
that (12) represents a linear constraint that can be added to the
separate synthesis of sum and difference patterns discussed
in the previous section. Regarding the solution procedure,
condition (12) means that the number of unknown is reduced
of a quantity equal to the cardinality ofΨ. Practically, a unique
amplifier/attenuator, common between theΣ and ∆ mode,
should be used for each element inΨ (Fig. 1). However, the
joint synthesis of the sum and difference patterns have to be
addressed. Accordingly, the method proposed in [14] is here
customized to the planar array case and redefined as aLP
resolution problem. More specifically, the monopulse array
design problem is formulated as the definition of the two sets
of coefficientsaΣ anda∆ such that

min
a
∆

{

[

−j
∂AF∆

az (u, v)

∂u

]∣

∣

∣

∣

u=u0;v=v0

}

(13)

subject to
AF∆

az (u0, v0) = 0 (14)

−AFΣ (u0, v0) ≤ −η (15)

−
√

UBΣ (us, vs) ≤ AFΣ (us, vs) ≤
√

UBΣ (us, vs)
s = 1, ..., S

(16)
−
√

UB∆
az (us, vs) ≤ jAF∆

az (us, vs) ≤
√

UB∆
az (us, vs)

s = 1, ..., S
(17)

aΣmn = a∆mn , (m,n) ∈ Ψ (18)

whereη is either a user-defined threshold or a parameter to be
optimized. This constant represents a crucial parameter of the
overall optimization, as it forces the amplitude value of the
far-field pattern in the sum modality to exceed a prescribed
level. In the test cases shown in Section III, theη value and
the sidelobe upper-bound function have been jointly set in such
a way to achieve a desired peak sidelobe level performance.

Since both the objective function (13) and all constraints
(15)(16)(17)(18) are linear, the problem can be solved by
using aLP solution procedure. Therefore, unless radiation
constraints result so strict to prevent the existence of a so-
lution, the globally optimal solution is unique and the fast
convergence of the proposed procedure to it is guaranteed. It
is worth noting that the joint problem is aimed to maximize
the derivative of the difference pattern (i.e., slope) through
(13) while the optimization of the sum beam is included as a
constraint (15). The inversion of (13) and (15), aiming at max-
imizing the pencil beam amplitude subject to a lower bound
constraint on the difference beam slope in the target direction,
is also feasible. Moreover, in case also the optimization of the
elevation∆-pattern is required, the two following constraints
have to be added

[

−j
∂AF∆

el (u, v)

∂v

]
∣

∣

∣

∣

u=u0;v=v0

≤ −κ (19)

AF∆
el (u0, v0) = 0 (20)

−
√

UB∆
el (us, vs) ≤ jAF∆

el (us, vs) ≤
√

UB∆
el (us, vs)

s = 1, ..., S
.

(21)
Notably, since theLP approach already exists just for the
separate synthesis of sum or difference patterns, the adop-
tion of LP to design planar arrays with reconfigurable sum
and difference patterns can be considered as an innovation.
Moreover, as the unique condition enabling the reduction to
LP is the centrosymmetry of the array elements locations,
this formulation is extremely powerful and can be adopted
in a huge number of synthesis scenarios. In fact, all the
properties of the approach hold true independently from the
array boundary and the excitation shapes, even allowing the
fast synthesis of aperiodic arrays. In the sum patterns case,
this property is due to the fact that if a field is solution
then its complex conjugate is a solution as well as long the
array is centrosymmetric (as a conjugation in the far field
domain corresponds to conjugation and specular reflection
in the other domain). As the set of solutions is convex, the
midpoint amongst the two field solutions, which is a real
field, is a solution as well. Reality of array excitations follow
[16]. Analogous reasonings hold true in the difference patterns
case, where one can easily prove with the same tools that the
array optimal excitations are purely imaginary (and hence a
simple phase shift achieves the result one needs) [17]. The
reduction of the overall synthesis to aLP problem allows one
to dramatically enhances the procedure performance even with
respect to the original quadratic programming (QP ) approach.
In fact, when comparing different convex programming rou-
tines, as the solutions optimality is anyway guaranteed, the
crucial parameter which measures the actual effectiveness of a
synthesis routine is its computational time [16][17]. The latter,
in the present case, is uniquely determined by the number of
array elements, and hence switching from quadratic to linear
programming becomes decisive in all the applications wherein
large planar arrays are required. These situations practically
include all the synthesis scenarios wherein narrow beams
and high resolutions are required, which is indeed the case
in several satellite, radio astronomy, radar, and biomedical
applications.

To further reduce the complexity of the antenna structure,
the use of shared sub-arrays can be also taken into account.
The synthesis of clusters of elements can be simply addressed
by means of the proposedLP -based approach, by including
as additional constraint

aΣmn = aΣpq
(m,n) , (p, q) ∈ Ψ, (m,n) 6= (p, q)

(22)

or in dual fashion on the difference mode excitations as

a∆mn = a∆pq
(m,n) , (p, q) ∈ Ψ, (m,n) 6= (p, q)

(23)

which forces the elements within a sub-array to have the same
excitation value.

In support of the usefulness of the overall synthesis ap-
proach, two final observations must be done. First, the whole
theory can be exploited in connection with the design proce-
dure proposed in [20] in order to devise an innovative and
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Fig. 2. Example 1 - Staircase Mask - (M = N = 5, dx = dy = λ
2

,
χ = [20, 40]%) - Behavior of the power mask(a) for the sum [UBΣ (u, v)]
and (b) the difference [UB∆ (u, v)] pattern.

(a) (b)

Fig. 3. Example 1 - Staircase Mask - (M = N = 5, dx = dy = λ
2

,

χ = 20%) - Power pattern for(a) the sum [
∣

∣AFΣ (u, v)
∣

∣

2] and (b) the
azimuthal difference [

∣

∣AF∆
az (u, v)

∣

∣

2] mode synthesized by means of the
proposedLP -based method withχ = 20% common elements.

effective approach to the synthesis of reconfigurable planar
arrays generating sum, difference, and shaped beams. Second,
if the number of the array elements is not very large, so that
the designer may renounce toLP formulation and adopt a
QP approach, the optimization of the antenna directivity can
be added to the optimization problem above. In this case, it
should be necessary to consider the radiated powers in the sum
modality

PΣ =

∫ 2π

0

∫ π

0

∣

∣AFΣ (θ, φ)
∣

∣

2
sinθdθdφ (24)

and in the difference modalities

P∆
el =

∫ 2π

0

∫ π

0

∣

∣AF∆
el (θ, φ)

∣

∣

2
sinθdθdφ (25)

P∆
az =

∫ 2π

0

∫ π

0

∣

∣AF∆
az (θ, φ)

∣

∣

2
sinθdθdφ (26)

and adding in the overall problem the convex constraints

PΣ ≤ ρ (27)

P∆
el ≤ σ (28)

P∆
az ≤ τ (29)

whereinρ, σ, and τ are user-defined real and positive con-
stants. Then, in order to enhance the directivity in the different
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Fig. 4. Example 1 - Staircase Mask - (M = N = 5, dx = dy = λ
2

,
χ = 20%) - Excitation amplitudes of(a) the sum [aΣ] and(b) the azimuthal
difference [a∆

az] mode synthesized by means of the proposedLP -based
method withχ = 20% common elements.
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Fig. 5. Example 1 - Staircase Mask - (M = N = 5, dx = dy = λ
2

,
χ = 40%) - Plot of (a) the power pattern for the azimuthal difference mode
[
∣

∣AF∆
az (u, v)

∣

∣

2] and (b) corresponding excitation amplitudes synthesized by
means of the proposedLP -based method withχ = 40% common elements.

modalities it should be necessary to solve the overall problem
by choosing very small values ofρ, σ, andτ . As an alternative,
the functional

P = PΣ + P∆
el + P∆

az (30)

should be minimized in place of (13), the latter being con-
verted into a constraint having the same form of (19).

III. NUMERICAL RESULTS

The effectiveness and versatility of the proposed synthesis
method are assessed in the following by considering a set
of synthesis problems where different constraints (i.e., on the
power masks and on the common weights) are imposed in the
array design. As far as the adopted minimization algorithm is
concerned, the MATLAB subroutinelinprog has been adopted.

In the first example (Example 1), a planar array with
2M × 2N = 10 × 10 elements has been taken into account
with an inter-element distance along thex andy axis equal to
dx = dy = 0.5. The power pattern masks for the sum and the



TABLE I

Example 1 - Staircase Mask - (M = N = 5, dx = dy = λ
2

,

χ = [20, 40]%) - FEATURES OF THE SUM AND DIFFERENCE POWER

PATTERNS SYNTHESIZED BY MEANS OF THE PROPOSEDLP -BASED

METHOD WITH χ = 20% AND χ = 40% COMMON ELEMENTS.

Σ−mode ∆−mode

χ = 20%
|F itness| 41.3 135.0
SLL [dB] −32.3 −22.8

HPBWu [rad] 0.28 0.22
HPBWv [rad] 0.28 0.28

χ = 40%
|F itness| 41.3 100.3
SLL [dB] −32.3 −20.3

HPBWu [rad] 0.28 0.24
HPBWv [rad] 0.28 0.28

azimuthal difference modes1, used as constraints in theLP -
based optimization stage, are shown in Fig. 2(a) and Fig. 2(b),
respectively, and have been discretized considering a number
of samples equal toS = 10 × (2N × 2M). The minimum
requested value for the sum pattern fitness has been set to
η = 40. Moreover, two columns of common elements have
been imposed, namelyaΣmn = a∆mn for m = 1, ...,M = 10
andn = 1 andn = N = 10, such thatχ = 20% amplitude
coefficients are shared between the sum and difference modes.
The power patterns synthesized by means of theLP approach
are given in Fig. 3. The corresponding amplitude excitations
are reported in Fig. 4, where the common excitations are
highlighted with a different color in Fig. 4(b). For the sake of
clarity, only one quadrant of the excitation weights is shown
in Fig. 4 by virtue of the quadrantal symmetry of the antenna.
As it can be seen in Fig. 3, the sum pattern has very low
sidelobes with a maximum sidelobe levelSLLΣ = −32.3 dB,
while the difference mode has reasonably low sidelobes (i.e.,
SLL∆

∣

∣

χ=20%
= −22.8 dB). The values of the half-power

beamwidth (HPWB) along theu and v coordinate for the
main lobe of the sum pattern and for one of the two main
lobes of the difference pattern are reported in Tab. I as well.
Moreover, the fitness values of the sum and difference patterns,
namely AFΣ (u0, v0) and

[

∂AF∆

az
(u,v)

∂u

]
∣

∣

∣

u=u0;v=v0
, for the

best solution achieved at the end of the optimization procedure
are also given in Tab. I. The simulation has been concluded
in 9.7 [sec] using a standard processing unit (i.e.,2.4GHz PC
with 2GB of RAM).

In order to investigate the possibility of further reducing the
antenna complexity, another synthesis has been performed by
fixing the sum pattern as in the previous case and optimizing
the difference pattern imposing four columns of common
elements (i.e.,aΣmn = a∆mn for m = 1, ...,M = 10 andn =

1The synthesis problems have taken into account azimuthal difference
patterns only. The inclusion of the elevation difference pattern in the synthesis
process is straightforward and does not affect neither the generality nor the ef-
fectiveness of the proposed approach. Due to the ’centrosymmetry’ constraints
enforced on the excitations, once the optimal excitations corresponding to the
azimuthal difference pattern have been identified, the unique operation to do
in order to generate the elevation difference pattern is to add a180 degrees
shift to the phase of the excitations belonging to two non-adjacent quadrants
of the array layout.
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,
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difference pattern [

[

∂AF∆
az
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]
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] for different reconfigurable

arrays synthesized by means of the proposedLP -based method by varying
design parameters (i.e., percentage of common elements and value ofη).
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Fig. 7. Example 2 - Linearly-decreasing Mask - (M = N = 5, dx = dy =
λ
2

, χ = 20%) - Behavior of the power mask(a) for the sum [UBΣ (u, v)]
and (b) the difference [UB∆ (u, v)] pattern.

{1, 2, 9, 10}) with χ = 40% of common elements. The best
solution achieved by means of theLP approach is given in
Fig. 5. Due to the reduction of the number of unknowns in the
optimization of the difference pattern, it is possible to observe
in Fig. 5(a) that the level of the secondary lobes is higher
with respect to the previous solution [Fig. 3(b)]. As a matter
of fact, it turns out thatSLL∆

∣

∣

χ=40%
= −20.3 dB (Tab. I),

2.5 dB above the case with onlyχ = 20% shared excitations.
Moreover, also lower performance on the difference pattern
fitness has been achieved (i.e.,

[

∂AF∆

az
(u,v)

∂u

]
∣

∣

∣

χ=40%
= 100.3

versus
[

∂AF∆

az
(u,v)

∂u

]
∣

∣

∣

χ=20%
= 135.0) and broader major lobes

with largerHPBW (Tab. I). On the other side, the number
of control points in the array architecture has been reduced of
one fifth. The simulation stopped after7.4 [sec], which proves
again the computational lightness of the approach.

Following analogous reasonings, different synthesis prob-
lems have been optimally solved increasing the number of
shared amplitude weights up toχ = 60%, χ = 80%, and also
considering the case with all common amplifiers (χ = 100%).
Successively, also the requested minimum performance on
the sum pattern has been changed by varying the value of
η. Figure 6 shows the values of the best fitness for the
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Fig. 8. Example 2 - Linearly-decreasing Mask - (M = N = 5, dx = dy =
λ
2

, χ = 20%) - Plot of (a)(c) the power pattern and(b)(d) the excitation

amplitudes for(a)(b) the sum [
∣

∣AFΣ (u, v)
∣

∣

2, aΣ] and (b) the azimuthal
difference [

∣

∣AF∆
az (u, v)

∣

∣

2, a∆
az] mode synthesized by means of the proposed

LP -based method withχ = 20% common elements.
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Fig. 9. Example 2 - Sidelobe Depression - (M = N = 5, dx = dy = λ
2

,
χ = 20%) - Behavior of the power mask(a) for the sum [UBΣ (u, v)] and
(b) the difference [UB∆ (u, v)] pattern.

Σ-mode and∆-mode for the final solutions synthesized by
means of the proposed approach. For a fixed sum pattern, it
is possible to notice that the performance of the difference
mode reduces as the percentage of the number of common
elements increases. However, the difference pattern behavior
can be ameliorated by imposing a less strict constraint on the
requested sum pattern fitness. Hence, one of the key advantage
of the proposedLP -based synthesis method is that of allowing
the array designer to choose among the several optimal trade-
off solutions according to the specific application at hand.

In the second example (Example 2), keeping the same
antenna geometry of the previous case, the potentiality of the
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Fig. 10. Example 2 - Sidelobe Depression - (M = N = 5, dx = dy = λ
2

,
χ = 20%) - Plot of (a)(c) the power pattern and(b)(d) the excitation
amplitudes for(a)(b) the sum [

∣

∣AFΣ (u, v)
∣

∣

2, aΣ] and (b) the azimuthal
difference [

∣

∣AF∆
az (u, v)

∣

∣

2, a∆
az] mode synthesized by means of the proposed

LP -based method withχ = 20% common elements.

proposed method has been investigated when varying the mask
constraints on the secondary lobes. In particular,UBΣ (u, v)
andUB∆ (u, v) have been set such to force a decreasing be-
havior of the sidelobes [Figs. 7 and 8] and to obtain a sidelobe
depression [Figs. 9 and 10] in a specific angular region. In
both cases, the number of common elements between the sum
and difference mode has been set toχ = 20%. The amplitude
weightsaΣ anda∆ for the optimal solution achieved at the end
of the LP -based minimization when considering the masks
of Fig. 7 are shown in Fig. 8(b) and 8(d), respectively. The
corresponding power patterns, shown in Figs. 8(a) and 8(c),
are characterized by the features summarized in Tab. II. As
expected, the amplitude of the secondary lobes decreases as
moving away from the main lobe peak direction. On the
contrary, the peak sidelobe for both the sum and the difference
mode (SLLΣ = −21.5 dB andSLL∆ = −16.5 dB) is higher
with respect to the previous case, where a uniform level
of the secondary lobes has been considered. In the second
case, a depression of20dB below the sidelobe level has been
imposed for the angular direction havingu ∈ [−0.2, 0.2] and
v ∈ [0.5, 0.8] (Fig. 9). The effectiveness of the approach
is evident from the results shown in Fig. 10. Although the
use ofχ = 20% shared excitations, the sidelobe depression
has been correctly synthesized in both the sum power pattern
[Fig. 10(a)] and the difference power pattern [Fig. 10(c)].
It is also important to notice that another depression has
been obtained for direction(u, v) having u ∈ [−0.2, 0.2]



TABLE II

Example 2 - Linearly-decreasing Mask and Sidelobe Depression -

(M = N = 5, dx = dy = λ
2

, χ = 20%) - FEATURES OF THE SUM AND

DIFFERENCE POWER PATTERNS SYNTHESIZED BY MEANS OF THE

PROPOSEDLP -BASED METHOD WITHχ = 20% WHEN CONSIDERING A

LINEARLY DECREASING MASK IN THE SIDELOBES AND A SIDELOBE

DEPRESSION.

Σ−mode ∆−mode

Linearly decreasing mask

|F itness| 48.1 36.0
SLL [dB] −21.5 −16.5

HPBWu [rad] 0.28 0.20
HPBWv [rad] 0.28 0.24

Sidelobe depression

|F itness| 68.4 84.0
SLL [dB] −17.9 −17.9

HPBWu [rad] 0.24 0.22
HPBWv [rad] 0.28 0.28

and v ∈ [−0.8, −0.5] because of the adopted quadrantal
excitation symmetry. In both cases, the final solution has been
synthesized in less than10 [sec].

The third example (Example 3) is aimed on the one hand
at demonstrating the validity of the proposed approach to
the design of reconfigurable sum and difference arrays with
circular boundaries (i.e., a non-rectangular shape) and on the
other hand at showing the results of a design of an array with
layout similar to that considered in [16] and [17]. Accordingly,
the circular aperture has been generated by imposing to zero
the excitations of the elements outside a circular contour of
radius2.25λ as shown in Figs. 11(b) and 11(d). By assuming
the same mask constraints ofExample 1 and imposing as
common elements those of the two outer columns on each
side of the array (i.e.,4 common elements amongst17 for
each quadrant such thatχ ≃ 24%), the power patterns of
the sum and difference beam synthesized by means of the
proposedLP -based approach are reported in Figs. 11(a) and
11(c), respectively, while the corresponding excitation weights
are given in Figs. 11(b) and 11(d). Although the levels of the
secondary lobes unavoidably increase (SLLΣ = −20.0 dB
andSLL∆ = −16.8 dB) as compared toExample 1 because
of the reduced number of elements, it is important to observe
that the method allows to keep both common weights between
the two pattern as well as the circular aperture shape thus
demonstrating the versatility of the approach to deal with
array having arbitrary boundaries. Regarding the comparison
with [16] and [17], although an array with the same layout is
not present in the two reference works as instead required for
the design of a reconfigurable sum-difference planar array, a
planar array with2M × 2N = 14 × 14 and dx = dy = 0.5
is used which has been considered in [17] and is also very
close to another array taken into account in [16]. The power
masks imposed on the sum and difference patterns are reported
in Fig. 12 and the results of the synthesis are shown in
Fig. 13 where it is possible to observe that four columns
of common elements have been imposed in the design (i.e.,
χ ≃ 35%). Outside the main lobe region identified by the
mask constraints, the following peak values of the secondary
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Fig. 11. Example 3 - Circular Array - (M = N = 5, dx = dy = λ
2

,
χ ≃ 24%) - Plot of (a)(c) the power pattern and(b)(d) the excitation
amplitudes for(a)(b) the sum [

∣

∣AFΣ (u, v)
∣

∣

2, aΣ] and (b) the azimuthal
difference [

∣

∣AF∆
az (u, v)

∣

∣

2, a∆
az] mode synthesized by means of the proposed

LP -based method withχ ≃ 24% of common elements.
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Fig. 12. Example 3 - Comparison - (M = N = 7, dx = dy = λ
2

,
χ ≃ 35%) - Behavior of the power mask(a) for the sum [UBΣ (u, v)] and
(b) the difference [UB∆ (u, v)] pattern.

lobes have been achieved:SLLΣ = −24.8 dB andSLL∆ =
−26.6 dB. Although the same patterns of [16] and [17] can
not be attained due to the use of common amplitude weights,
the proposed approach is able to achieve solutions with close
performance.

Finally and unlike the two previous examples, in the last
example (Example 4) the simplification of the array archi-
tecture is obtained by imposing a ring of common elements
and by using sub-arrays of four elements in the array tails.
In the former case (“ring of common elements”), the same
array of the previous examples is taken into account and the
power pattern masks are characterized by a linearly decreasing
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Fig. 13. Example 3 - Comparison - (M = N = 7, dx = dy = λ
2

,
χ ≃ 35%) - Plot of (a)(c) the power pattern and(b)(d) the excitation
amplitudes for(a)(b) the sum [

∣

∣AFΣ (u, v)
∣

∣

2, aΣ] and (b) the azimuthal
difference [

∣

∣AF∆
az (u, v)

∣

∣

2, a∆
az] mode synthesized by means of the proposed

LP -based method withχ ≃ 35% of common elements.

behavior. The two optimized sets of amplitude excitations,a
Σ

and a
∆
az , are shown in Figs. 14(b) and 14(d), respectively.

The corresponding power patterns for the sum
∣

∣AFΣ (u, v)
∣

∣

2

and the azimuthal difference
∣

∣AF∆
az (u, v)

∣

∣

2
mode are given

in Figs. 14(a) and 14(c). In the latter case (“common sub-
arrays”), a larger array having2M × 2N = 12× 12 elements
is considered and each quadrant is characterized by3 square
sub-arrays of four elements. As for the power pattern bounds,
staircase masks with equal amplitude constraints on the side-
lobe region are taken into account. The final solution is shown
in Fig. 15 where the optimized excitation weights for the sum
and the difference patterns are reported in Figs. 15(b) and
15(d), respectively. Whether on the one hand it is evident that
the sub-arrayed layout of the common amplitude coefficients
has been achieved with a consequent array simplification, on
the other hand the large number of common elements penalizes
the difference pattern performance with peak sidelobes at
SLL∆ = −15.4 dB unlike the sum pattern havingSLLΣ =
−23.0 dB (Tab. III).

IV. CONCLUSIONS

A new method for the synthesis of planar arrays generating
optimal sum and difference patterns with arbitrary sidelobe
bounds and sharing a sub-set of the excitation weights has
been presented. The problem has been formulated as a mask-
constrained power pattern synthesis and the use of common
excitations in the periphery of the array aperture, has allowed
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Fig. 14. Example 4 - Ring of Common Elements - (M = N = 5, dx =
dy = λ

2
, χ = 20%) - Plot of (a)(c) the power pattern and(b)(d) the

excitation amplitudes for(a)(b) the sum [
∣

∣AFΣ (u, v)
∣

∣

2, aΣ] and (b) the
azimuthal difference [

∣

∣AF∆
az (u, v)

∣

∣

2, a∆
az] mode synthesized by means of

the proposedLP -based method with the outer ring of common elements.

a reduction of the overall array complexity while still guar-
anteeing an optimal radiation performance. Notably, it has
been demonstrated that the problem of the joint design of
sum and difference power patterns can be addressed, under
symmetric array layout conditions, by means of a linear
programming procedure, much simpler with respect to the
convex programming strategy already proposed in the liter-
ature. The reported results have shown the effectiveness of
the proposed technique in achieving final results satisfying the
user defined constraints. The versatility of the design approach
has been pointed out by considering very heterogeneous power
pattern masks as well as different array architectures (also
having partial sub-arrayed layout). Thanks to the use of the
linear programming procedure, the synthesis of planar arrays
for monopulse radar applications has been addressed with
a computational burden similar to the one needed by the
CP approach for linear arrays having a number of element
one order of magnitude below. Furthermore, the effectiveness
of the proposed approach has been also assessed through
comparisons with benchmark procedures able to guarantee
the achievement of provably optimal solutions in the separate
synthesis of sum and difference patterns.

APPENDIX

The proof that the objective functions (5) and (7) are
linear with respect to the problem unknowns,a

Σ
mn anda

∆
mn

respectively, is here reported. As for theΣ-mode, the objective



1

2

3

4

5

6

1

2

3

4

5

6

0

0.5

1

0.67

0.58

0.60

0.72

0.52

0.89

0.55

0.65

X

0.93

0.46

0.82

1.00

0.38

0.60

0.86

0.30

0.77

0.94

0.27

0.43

0.81

0.27

0.60

0.88

0.27

0.44

0.64

0.27

0.44

0.72

0.44

0.61

0.44

0.61

Y

0.61

0.61

(a) (b)

1

2

3

4

5

6

1

2

3

4

5

6

0

0.5

1

0.33

0.17

0.33

0.09

0.41

0.16

0.07

0.90
0.16

X

0.33

0.49

0.33

0.90

0.71

0.45

0.95

0.68

0.29

0.27

0.05

0.46

0.27

0.39

0.46

0.27

0.44

0.04

0.27

0.44

0.21

0.44

0.61

0.44

0.61

Y

0.61

0.61

(c) (d)

Fig. 15. Example 4 - Common Sub-arrays - (M = N = 6, dx = dy = λ
2

,
χ = 33%) - Plot of (a)(c) the power pattern and(b)(d) the excitation
amplitudes for(a)(b) the sum [

∣

∣AFΣ (u, v)
∣

∣

2, aΣ] and (b) the azimuthal
difference [

∣

∣AF∆
az (u, v)

∣

∣

2, a∆
az] mode synthesized by means of the proposed

LP -based method with common sub-arrays.

function is equivalent to the array factor computed along the
boresight direction(u0, v0) with the sign inverted, namely

−AFΣ (u0, v0) = −4
∑M

m=1

∑N
n=1 a

Σ
mn

× cos
[(

m−M − 1
2

)

dxu0

]

cos
[(

n−N − 1
2

)

dyv0
]

(31)

that is linear with respect to the coefficientsaΣmn, m =
1, ...,M , n = 1, ..., N .

Regarding the∆-mode and considering the azimuthal pat-
tern (dual analysis holds true for the elevation pattern), the
objective function is given by (7)

[

∂AF∆
az (u, v)

∂u

]∣

∣

∣

∣

u=u0;v=v0

(32)

where the derivative ofAF∆
az (u, v) computed alongu and

evaluated in(u0, v0) is equal to
[

∂AF∆

az
(u,v)

∂u

]∣

∣

∣

u=u0;v=v0
= 4j

∑M
m=1

∑N
n=1 a

∆
mn

(

m−M − 1
2

)

×dx cos
[(

m−M − 1
2

)

dxu0

]

cos
[(

n−N − 1
2

)

dyv0
]

(33)

which is linear with respect toa∆mn, m = 1, ...,M , n =
1, ..., N .
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