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Abstract

The recovery of the membrane profile of an electrostatic micro-electro-mechanical system (MEMS) device is an important
issue because, when applying an external voltage, the membrane deforms with the consequent risk of touching the upper
plate of the device (a condition that should be avoided). Then, during the deformation of the membrane, it is useful to
know if this movement admits stable equilibrium configurations. In such a context, our present work analyze the behavior
of an electrostatic 1D membrane MEMS device when an external electric voltage is applied. In particular, starting from
a well-known second-order elliptical semi-linear differential model, obtained considering the electrostatic field inside the
device proportional to the curvature of the membrane, the only possible equilibrium position is obtained, and its stability is
analyzed. Moreover, considering that the membrane has an inertia in moving and taking into account that it must not touch
the upper plate of the device, the range of possible values of the applied external voltage is obtained, which accounted for
these two particular operating conditions. Finally, some calculations about the variation of potential energy have identified
optimal control conditions.
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1. Introduction to the Problem

In the last decade, the evolution of engineering applications had a strong increase towards embedded
technologies, in which the small size of the devices used played a fundamental role, representing the link
between the physical nature of the problem and the logic of the machine language [1]. In this context,
the interest regarding micro-electro-mechanical system (MEMS) devices has matured, as they are devices
that effectively support the interface between man and electronics [1]. Historically, the birth of MEMS
dates back to 1964 with the production of the first batch device [2]. MEMS technology has since been
further developed, starting from engineering fields up to multi-physics-mathematical disciplines due to
advanced theoretical models that allow the explicit obtaining of solutions [3,4]. Alternatively, if such
solutions were not explicitly obtainable, it is desirable to obtain conditions that guarantee the existence,
uniqueness, and regularity of the solutions [5,6]. Furthermore, if the explicit solution is not obtainable,
it is possible to obtain solutions by means of numerical techniques, where, if they satisfy the analytical
conditions of existence, uniqueness, and regularity, the absence of ghost solutions is ensured [7–10].

The scientific community, in the MEMS field, is busy on two main fronts. The first one, theoretically
oriented, is devoted to the analysis and synthesis of physical-mathematical models [11] of problems,
such as coupled thermal-elastic systems [9,11,12], electrostatic-elastic systems [11,13,14], magnetically
actuated systems, and microfluidics [11,15–18]; the second front is actively engaged in technology transfer
in various application areas, such as the production of MEMS for biomedical applications (miniaturized
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bio-sensors, tissue engineering, and so on) [14,19]. Clearly, there is no lack of lines of research that combine
the theoretical approach with technology transfer [1,11].

This is the case of highly specialized research fields, such as the modeling of magneto-static-thermo-
elastic devices, where the analytical models also allow the study of wave propagation in micro-domains
with fixed or free boundaries [20–23]; or, obtaining the conditions of existence and uniqueness of solutions
to inverse problems with moving boundaries, and many other interesting applications [5,24,25]. Due to
the reduced maintenance required and the simple construction technology, membrane MEMS devices
represent excellent candidates in many engineering applications [11,22,26–28]. Many of them admit a
simple 1D representation; thus, our interest is focused on them.

With these premises, considering a closed region Ω, a 1D membrane MEMS device can be represented
by two parallel plates with a mutual distance d. A membrane with the same dimensions of the plate is
clumped on the edge of the lower plate and free to deform towards the upper plate when an external
electric voltage V is applied between the plates [5,7]. For more details, see Section 3 and Fig. 1a.
As known, the dimensionless mathematical model for this device is:

(1)

{
d2u(x)
dx2 = − λ2

(1−u(x))2 in Ω

u(x) = 0 on ∂Ω,

in which λ2is a parameter proportional to the external V . However, in (1), the quantity λ2

(1−u(x))2 is

proportional to |E|2, where E is the electrostatic field inside the device. Thus, the following relationship
makes sense [5,7,25]:

(2)
d2u(x)

dx2
= −θ|E|2 θ ∈ R+.

Moreover, as explicated in [5], E on the membrane can be locally considered orthogonal to the straight
line tangent to the membrane, so that |E| can be computated as proportional to the curvature of the
membrane

(3) K(x, u(x)) =
∣∣∣d2u(x)

dx2

∣∣∣(√(1 +
(du(x)

dx

)2)3
)−1

,

obtaining, after some mathematical steps, the following 1D second-order semi-linear elliptic model:

(4)

d2u(x)
dx2 = − 1

θλ2

(
1 +

(
du(x)
dx

)2)3
(1− u(x)− d∗)2 in Ω

u = 0 on ∂Ω; 0 ≤ u(x) ≤ 1− d∗,

in which d∗ is the critical security distance ensuring that the membrane does not touch the upper plate of
the device. Model (4) was studied extensively in [5], where the authors obtained a condition ensuring both
the existence and uniqueness of the solution. Once this condition is achieved, two types of problems arise:
the first type relates to problems inherent in stability, while the second relates to problems relating to the
electrical voltage V applied. There is no doubt that the most dangerous configuration of the membrane
is when the center point u(0) = u0, reaches the maximum allowable height, that is 1− d∗.

In this work, we asked: is the configuration of the membrane, for which u0 reaches the value 1− d∗,
an equilibrium position for the membrane, and, if so, is this equilibrium position of the membrane also
stable? At the same time, we considered that the external voltage, V , provides the electrostatic pressure,
pel, which determines the mechanical pressure, p, that is necessary for the movement of the membrane;
we also sought what will be the minimum value of V necessary to overcome the inertia of the membrane
and, moreover, which will be the maximum admissible value of V necessary to reach the configuration
of the membrane in which u0 assumes the maximum allowable height, 1 − d∗ that cannot be exceeded.
Finally we also asked if it were possible to obtain conditions starting from energy computations that
ensure optimal control of the device.
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The paper is structured as follows. After a brief overview of the scientific literature related to the
problem under study (Section 2), the 1D membrane MEMS devices is described in detail in Section
3. In Section 4, we explain how the equilibrium position was achieved. In particular, starting from
the transformation of the second-order differential model in a suitable first-order differential system
(Subsection 4.1) the equilibrium configuration was obtained using an established technique (Subsection
4.2). Then, the stability of the equilibrium configuration was studied in Section 5, exploiting an approach
based on the linearization of the first-order differential system around the equilibrium configuration
(Subsection 5.1) for tracing the orbits to exploit Lyapunov’s theory.

Once the stability of the single point of equilibrium was studied, Section 6 is entirely dedicated to
the study of the admissible values for V to ensure proper device operation. In particular, Subsection 6.2
deals with the study of the values of V necessary to overcome the inertia of the membrane in the start-up
phase while the following Subsection 6.3 evaluates the value of V necessary to reach the maximum allowed
height of the membrane. Finally, some conclusions with ideas for future works are reported in Section 8.

2. 1D Electrostatic Membrane MEMS: a Brief Scientific Literature Review

As known, the starting point of the 1D electrostatic MEMS device is the following model

(5)


α∆2u(x) =

(
%
∫

Ω |∇u(x)|2dx+ γ
)

∆u(x) + λ1f1(x)

(1−u(x))σ
(

1+χ
∫
Ω

dx
(1−u)σ−1

)
u(x) = ∆u(x)− duν = 0, x ∈ ∂Ω, d ≥ 0; 0 ≤ u(x) < 1, x ∈ Ω,

studied in [29]. This model exploits the Steklov boundary condition to obtain Dirchlet and Navier bound-
ary conditions, related to a MEMS device constituted by means of two plates. The upper plate is unde-
formable while the lower one (also called the ground plate) is deformable when an external V is applied.
As in (5), f1 is a bounded function taking into account the dielectric properties of the material consti-
tuting the deformable plate; λ1 is the external applied voltage; α, %, γ, χ are positive parameters related
to the electric and mechanic properties of the material constituting the deformable plate; σ ≥ 2 takes
into account the more general Coulomb’s exponents. Model (5) is the generalization of the following
dimensionless model

(6)

{
∆2u(x) = λ1f1(x)

[1−u(x)]2

0 ≤ u(x) < 1 in Ω, u = ∆u− duν , on ∂Ω, d ≥ 0,

studied in [30], where the thickness of the ground plate is zero so that the inertial effects can be neglected
as well as the non-local effects (σ = 2, α = 1, % = γ = χ = 0). Moreover, model (6) has been exploited
in [5] in the following dimensionless form where λ2 = λ1f1(x):

(7)

{
d2u(x)
dx2 = − λ2

(1−u(x))2 in Ω

u(−L) = u(L) = 0,

where L is the semi-length of the dimensionless 1D device, to propose a variant in which λ2 is related to
V by the following expression [11]:

(8) λ2 =
ε0V

2(2L)2

2d3T
,

in which ε0 is the permittivity of the free space, d is the distance between the two parallel plates of the
device, and T is the mechanical tension of the membrane. From a physical point of view, λ2 represents
the ratio of a reference electrostatic force to a reference elastic force [5,11].

Remark 2.1. λ2 is also linked to |E|. In fact, considering both (1) and (2), we can write:

(9) θ|E|2 =
λ2

(1− u(x))2
=

ε0V
2(2L)2

2d3T (1− u(x))2
.
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Multiplying (9) by λ2 and taking into account (8), the following equality holds:

(10) θλ2 =
ε20L

4

d6T 2

V 4

(1− u(x))2|E|2
.

Remark 2.2. We observe that from (10), if |E| increases, θλ2 decreases so that, by the equation of the

model (4),
∣∣∣d2u(x)
dx2

∣∣∣ also increases, and thus the concavity of the membrane increases as well.

As E on the membrane is physically locally orthogonal to the tangent straight line of the membrane,
in [5] |E| was considered as proportional to the curvature K(x, u(x)) of the membrane obtaining the
following model

(11)

{
−d2u(x)

dx2 = θµ2(x, u(x), λ)K2(x, u(x)) = θλ2 K2(x,u(x))
(1−u(x)−d∗)2 in Ω = (−L,L)

u(−L) = u(L) = 0; 0 ≤ u(x) ≤ 1− d∗

where µ(x, u(x), λ) = λ
1−u(x)−d∗ , in which d∗ = λ

εt
[11], where εt is the dielectric strength of the material

constituting the membrane. Then, taking into account Equation (3), model (11), as described in [24],
became the model (4), in which the singularity 1 − u(x) is not explicit. Model (4) has been studied in
depth and a result of the existence of one solution has been achieved exploiting Green’s functions and
the Schauder–Tychonoff fixed point theory as well.

Remark 2.3. Concerning the uniqueness of the solution for (4), even though in [24] it was always
ensured independently of the electromechanical properties of the material constituting the membrane,
in [7] a new condition ensuring the uniqueness of the solution was achieved, depending on those properties.
Then, in [7], a new condition ensuring both the existence and uniqueness of the solution for (4), depending
on the electromechanical properties of the material constituting the membrane of the device was achieved.
Finally, in [7], both the existence and uniqueness of the solution for (4) were exploited to numerically
recover the profile of the membrane in the presence/absence of ghost solutions.

3. A Brief Description of the 1D Electrostatic Membrane MEMS Device

The device studied in this work consisted of two parallel metallic plates where the distance between
them was d. If the lower plate is located on the x axes of a system of Cartesian axes Oxy, if V = 0, the
membrane is not deformed and lies on the lower plate so that its profile, u(x) = 0; when V > 0 is applied,
the membrane deforms and its profile u(x) > 0 while u(x) = 0 at x = −L and x = +L; in fact on the
lower plate, there was a membrane free to move but anchored to the edge of this plate, i.e., at x = −L
and x = +L. The upper plate and the membrane were assumed to be perfect conductors. We assumed
that the length of the plates, L, was much larger than the distance d, that is L� d. Dimensionally, d is
of the order of 10−9 while L is of the order of 10−6. In such conditions, since L� d, it follows to consider
the device in 1D geometry. Then, the device can be schematized as in Fig. 1a.

When an external V was applied, the membrane moves towards the upper plate. In particular, to
overcome the mechanical inertia of the membrane, it was necessary to apply a minimum V , below which
the membrane did not move. However, to move the membrane, the applied voltage V , in addition to
being greater than the minimum value of V to overcome the mechanical inertia, must assume a value
limited by a maximum value so that the membrane does not touch the upper plate, making the device
unusable. The operating conditions whereby the membrane assumes the maximum possible deformation
(i.e., very close to the upper plate) requires particular attention. In particular, we ask ourselves if this
position of the membrane inside the device represents an equilibrium configuration and, moreover, if this
equilibrium is stable.

4. Search of Equilibrium Configurations

To obtain the equilibrium configurations for the membrane whose profile is u(x), we must transform
model (4) into a corresponding system of two first-order differential equations in normal form, i.e., in the
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Figure 1. (a) The 1D membrane MEMS device. (b) Orbits for the system (26).

form:

(12)

{
du1(x)
dx = f(u1(x), u2(x))

du2(x)
dx = g(u1(x), u2(x)).

Afterward,it is sufficient to simply to vanish f(u1(x), u2(x)) and g(u1(x), u2(x)) [31].

4.1. A Suitable Version of the 1D second-order semi-linear elliptic Model: an Equivalent Non-Linear
first-order Differential Equation System

To write model (4) as a system of first-order differential equations, we considered two auxiliary
functions, u1(x) and u2(x) such that:

(13)

{
u1(x) = u(x);

u2(x) = du(x)
dx .

This position was sufficient to carry out the above mentioned transformation.

Remark 4.1. Equalities (13), besides having a mathematical meaning, are worth investigating from the
physical point of view. u1(x) and u2(x) represent, ∀x ∈ [−L,L], the profile of the membrane and its
slope, respectively. In other words, the equalities (13) allow us to rewrite (4) into a system of equations
where the unknown functions are the position of the membrane and the rate of change of the position of
the membrane along the device, respectively. This allows us to open an important scenario for the study
of equilibrium positions and to investigate their stability.

Taking into account the position (13), after simple mathematical steps, model (4) became:

(14)


du1(x)
dx = u2(x);

du2(x)
dx = − 1

θλ2 (1 + (u2(x))2)3(1− u1(x)− d∗)2

u1(−L) = u1(L) = 0

in [−L,L] which, as above specified, represents a system of first-order differential equations in normal
form with u1(x) and u2(x) as unknown functions.

4.2. Equilibrium Configurations

As already specified, to obtain the equilibrium configuration for (14) (and therefore for model (4)),

it is enough to impose du1(x)
dx = 0 and du2(x)

dx = 0 [31]. Then, we can write:

(15)

{
du1(x)
dx = u2(x) = 0;

du2(x)
dx = − 1

θλ2 (1 + (u2(x))2)3(1− u1(x)− d∗)2 = 0
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in [−L,L], with θλ2 6= 0. We achieve the following equilibrium point (u0
1, u

0
2) = (1 − d∗, 0). Then, we

have tested if the only equilibrium point obtained, (u0
1, u

0
2), deemed critical, is also stable. To obtain

this information, since system (14) is non-linear, we applied the consolidated linearization technique of
a first-order differential system around the equilibrium position (technique know as the first Lyapunov
criterion).

Remark 4.2. The first Lyapunov criterion is based on the linearization of the non-linear system (14) in
the neighborhood of the equilibrium state whose stability is to be studied. A theory of analysis system
typical of linear systems can be applied to the linear system thus obtained. The information obtained in
this way allows to draw conclusions on the behavior of the starting non-linear system in a neighborhood
of the considered equilibrium state.

5. On the Stability of the Equilibrium Configuration

5.1. Linearization of the Non-Linear First-Order Differential Equations System Around the Equilibrium
Configuration

We first note that the system (14) can be written in the general form (12) where, in our case,

(16) f(u1(x), u2(x)) = u2(x); g(u1(x), u2(x)) = − 1

θλ2
(1 + (u2(x))2)3(1− u1(x)− d∗)2.

Remark 5.1. The general model (12) can be written in matrix notation. With this goal, placing

(17) u(x) =

(
u1(x)
u2(x)

)
, u̇(x) =

(
du1(x)
dx

du2(x)
dx

)
f(x, u(x)) =

(
f(u1(x), u2(x))
g(u1(x), u2(x))

)
,

system (12) can be written as follows:

(18) u̇(x) = f(x, u(x)),

which represents the algebraic formulation of the problem (4) in normal form.

5.1.1. A Suitable Change of Variables

In order to linearize the system, we used the following change of variable:

(19) u1(x) = u0
1 + εξ(x); u2(x) = u0

2 + εη(x)

with a small enough ε.

5.1.2. Taylor Series Development up to the First-Order

From system (12), taking into account (19) and considering that u0
1 e u0

2 do not depend on x, we can
write:

(20)

{
du1(x)
dx = εdξ(x)

dx = f(u1(x), u2(x))
du2(x)
dx = εdη(x)

dx = g(u1(x), u2(x)).

Then developing in Taylor series f(u1(x), u2(x)), g(u1(x), u2(x)) and neglecting the terms of order higher
than the first, we can write:

(21)

{
εdξ(x)
dx = f(u0

1 + εξ(x), u0
2 + εη(x)) ≈ f(u0

1, u
0
2) + ε

∂f(u0
1,u

0
2)

∂u1
ξ(x) + ε

∂f(u0
1,u

0
2)

∂u2
η(x) + o(τ)

εdη(x)
dx = g(u0

1 + εξ(x), u0
2 + εη(x)) ≈ g(u0

1, u
0
2) + ε

∂g(u0
1,u

0
2)

∂u1
ξ(x) + ε

∂g(u0
1,u

0
2)

∂u2
η(x) + o(τ)
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where τ = ε
√
ξ2 + η2. Taking into account that f(u0

1, u
0
2) = g(u0

1, u
0
2) = 0, and neglecting the infinitesimal

terms of order higher than τ , we achieve:

(22)

{
dξ(x)
dx =

∂f(u0
1,u

0
2)

∂u1
ξ(x) +

∂f(u0
1,u

0
2)

∂u2
η(x)

dη(x)
dx =

∂g(u0
1,u

0
2)

∂u1
ξ(x) +

∂g(u0
1,u

0
2)

∂u2
η(x)

,

which represents a system of first-order ordinary differential equations.

Remark 5.2. Even system (22), as for system (12), admits a matrix representation. In particular, by
placing:

(23) z =

(
ξ(x)
η(x)

)
, ż =

(
dξ(x)
dx

dη(x)
dx

)
, A =

(
∂f(u0

1,u
0
2)

∂u1

∂f(u0
1,u

0
2)

∂u2
∂g(u0

1,u
0
2)

∂u1

∂g(u0
1,u

0
2)

∂u2

)
the system (22) takes the following matrix form:

(24) ż = Az.

Finally, it seems useful to underline the fact that system (24) is the linearized form of the non-linear
system around the equilibrium position (18).

In our case, taking into account (16), the elements of A are detailed as follows:

(25)

{
∂f(u0

1,u
0
2)

∂u1
= 0;

∂f(u0
1,u

0
2)

∂u2
= 1

∂g(u0
1,u

0
2)

∂u1
= 2

θλ2 (1− d∗ − 1 + d∗) = 0;
∂g(u0

1,u
0
2)

∂u2
= −6u2

θλ2 (1− d∗ − 1 + d∗)2 = 0.

Thus, system (22) (that is, also the system (24)) becomes:

(26)

{
dξ(x)
dx = η
dη(x)
dx = 0

,

which represents the system (14) linearized. System (26), solved, provides ξ(x) = k1 + kx nd η(x) = k
with k1 and k integration constant.

Remark 5.3. Equations (21) make sense because u1 e u2, as proved in [5], are analytical functions

allowing the linearization through the writing of
∂f(u0

1,u
0
2)

∂u1
,
∂f(u0

1,u
0
2)

∂u2
,
∂g(u0

1,u
0
2)

∂u1
and

∂g(u0
1,u

0
2)

∂u2
.

5.2. Study of the Stability of the Equilibrium Configuration

5.2.1. Calculation of the Eigenvalues of the Coefficient Matrix and Computation of the Algebraic Multi-
plicity

Taking into account (25), A =

(
0 1
0 0

)
and its eigenvalues are ζ1 = ζ2 = 0. Therefore, A has a single

non-simple eigenvalue because its algebraic multiplicity is equal to 2.

5.2.2. Orbits

From the theory of linear systems of differential equations, the accepted solutions are of the form [31]:

(27)

{
ξ(x) = axeλx

η(x) = bxeλx.

Form the system (27), we obtain ξ(x) = a
b η(x) which represents, with a and b variable, a proper bundle

of straight lines with center (0, 0) (see Fig. 1b). The physical-mathematical meaning of the orbits is of
interest. Indicating by ueq = (u0

1, u
0
2) the equilibrium position, it is stable according to Lyapunov’s theory

if, for each neighborhood U of ueq, there exists a neighborhood B ⊂ U such that the orbits starting from
the internal point of B remain inside U . The five following definitions are explicit the above concept.
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Definition 5.1 (Stable Equilibrium Point). ∀ε > 0, there exists δ = δ(ε) > 0 such that, if ‖u(0) −
ueq‖ < δ, then ∀x ≥ 0, it follows that ‖u(x)− ueq‖ < ε.

Definition 5.2 (Attractive Equilibrium Point). ueq is said to be attractive if there exists a neighbor-
hood U of ueq such that for each orbit u(x) starting from an internal point of U , the limit limt→+∞ u(x) =
ueq yields

Definition 5.3 (Asymptotically Stable Equilibrium Point). ueq is said to be asymptotically stable
if it is stable and attractive as well. In other words, there exists δ > 0 such that if ‖u(0)− ueq‖ < δ then
limt→+∞ ‖u(x)− ueq‖ = 0.

Definition 5.4 (Exponentially Stable Equilibrium Point). ueq is said to be an exponentially stable
equilibrium point if it is asymptotically stable and, moreover, there exists α, β, δ > 0 such that, if
‖u(0)− ueq‖ < δ, we have ‖u(x)− ueq ≤ α‖u(0)− ueq‖e−βx.

Definition 5.5 (Unstable Equilibrium Point). An equilibrium point is said to be unstable if there
exists a neighborhood U of ueq such that, however one chooses a neighborhood B of xeq contained in U ,
one can always find an initial position x ∈ B whose orbit moves away from xeq enough to exit from U .

Examining Fig. 1b it is clear that, by Definition 5.5, ueq = (u0
1, u

0
2) is an unstable equilibrium point

because there does not exist a neighborhood U of ueq such that, however B ∈ U is chosen, the orbits are
not contained in U .

5.2.3. Evaluation of the stability of the only point of equilibrium

To study the stability of the linearized system around the equilibrium position we use the following
result known in the literature.

Lemma 5.1. In a system of first-order linear differential equations writable in the form (24), if there is
at least one eigenvalue with a positive real part or a not simple eigenvalue with zero real part, then the
system is unstable. Graphically, this occurrence means that the orbits diverge from the origin (see Fig.
1b) [31].

Proposition 5.1. System (26) is not stable.

Proof. In this case, and with simple calculations, we obtain ζ1 = ζ2 = ζ = 0. Thus, we deduce that the
only eigenvalue is not simple as its algebraic multiplicity is equal to 2. Then, by Lemma 5.1, the system
(26) is not stable.

The following result holds.

Lemma 5.2. If an equilibrium point of a linearized system ż = Az is unstable, then the equilibrium point
(u0

1, u
0
2) of the starting non-linear system u̇(x) = f(x) is also unstable [31].

Proposition 5.2. Let us consider system (14) whose only equilibrium position turns out to be (u0
1, u

0
2) =

(1− d∗, 0). Then, this solution is unstable.

Proof. It follows from Lemma 5.2.

Remark 5.4. From the present study, we determined that the membrane, under the effect of V applied
externally, deforms reaching a distance equal in u(0) equal to 1− d∗. However, this configuration of the
membrane is of unstable equilibrium.

Remark 5.5. The transition between stability and instability of an equilibrium in a membrane MEMS
device can have multiple causes. For example, instability phenomena can occur when the non-equilibrium
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state is related to the restriction failure mode occurring in the operation of MEMS devices. Electrostati-
cally, the instability of the membrane can be affected by small disturbances of the pel distribution in the
device influencing: (a) the equilibrium path; (b) the number and location of unstable positions; and (c)
the post-instability behavior. In addition, pel depends on the V applied. Specifically, [24]:

(28) pel =
fel
A

=
1

2

ε0AV
2

(d− u(x))2︸ ︷︷ ︸
electrostatic force

1

A
=

1

2

ε0V
2

(d− u(x))2
,

in which fel is the electrostatic force inside the device and A is the measure of the curve representing the
membrane. Moreover, snapping behavior can occur if the system is repeatedly charged and discharged
electrically [32]. Finally, marked phenomena of instability can occur due to the Casimir effect regardless
of the V applied. [?].

By Remark 5.4, one needs to know the sup{V } to ensure that the membrane does not go beyond the
deflection equal to 1− d∗, ensuring the achievement, at most, of the equilibrium position. On the other
hand, the membrane has a certain inertia in moving under the action of external V , so it is also worth
asking which will be the minimum value of V to allow the deflection of the membrane. Moreover, as
highlighted in Remark 5.5, the knowledge of the range of possible value of V for a device allows us to
understand, by (28), whether the pel achieved leads to instability phenomena.

Finally, to know the range of possible values of V has repercussions for knowing the range of possible
values of λ2 (proportional to the square of V , as specified in (8)), which serve, on one hand, as a tuning
parameter for the device [11] and, on the other hand, to ensure the convergence of the numerical procedure
to recover the profile of the membrane [7,8].

6. On the Admissible Values of the Applied Voltage

Before analyzing the problem, let us introduce the definition of the pull-in voltage λ∗ [11].

Definition 6.1. Let us consider the problem (27). The pull-in voltage, λ∗, is defined as [11]:

(29) λ∗ = sup
{
λ2 3′ problem (1) admits at least one solution

}
.

In our case, as, we are studying the problem (4), we define a special pull-in voltage as follows.

Definition 6.2. We define the special pull-in voltage, (λ∗)special, the quantity:

(λ∗)special = sup
{
λ2 3′ problem (4) admits at least one solution

}
.(30)

Remark 6.1. In (8), in the case of a 1D electrostatic membrane MEMS, T can be considered as a
constant [11]. Thus, with the same V , the stiffer the membrane is, the greater T will be, so that λ2

decreases.

As λ2 is involved in the definition of the pull-in voltage, we wonder what the maximum value of V will be
for which the problem (4) admits at least one solution. In other words, we ask what will be the maximum
value of V that is able to move the membrane up to the safety distance. Clearly, considering the sup{V },
we automatically have to consider sup{λ2}. Furthermore, the direct proportionality between V 2 and λ2

suggests that there is a value of V linked to (λ∗)special.

Proposition 6.1. Let us consider the problem (4). Let (8) be the link between (λ∗)special and V 2. Then,

with C = ε0L2

2d3T
, the following condition holds:

(31) (λ∗)special < C sup{V 2},
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Proof. By λ2 = ε0L2V 2

d3T
[11], and considering the (30), the (31) follows.

Remark 6.2. We immediately notice from Proposition 6.1 that, in our case, sup{V 2} is more salient
than (λ∗)special. In fact, V is a global parameter which, on the one hand, is directly measurable by means
of a voltmeter and, on the other, is uniquely selectable by means of an electric voltage generator.

6.1. Condition of existence of at least one solution for the problem (4)

To derive the range of admissible values of V we must first ensure the condition of existence of at
least one solution for the problem (4). In [5,7,8] this condition of existence was achieved. In particular,
indicating with λ2 the min{λ2} to overcome the membrane mechanical inertia, this condition assumes
the following known form:

(32) 1 +H6 <
Hθλ

2

4(1− d∗)L

where H = sup[−L,L]

{∣∣∣du(x)
dx

∣∣∣}.

Remark 6.3. In [5], by means of a numerical technique based on the Newton–Raphson procedure, to

guarantee the existence of the solution of the problem (4), it is sufficient thatH = sup[−L,L]

{∣∣∣du(x)
dx

∣∣∣} = 99

corresponding, in the dimensionless condition, to 88.92◦.

6.2. The Minimum Values of V to Overcome the Mechanical Inertia of the Membrane

Proposition 6.2. Let us consider the 1D membrane MEMS device whose analytical model is represented
by the system of first-order differential equations (14). If the condition of existence and uniqueness (32)
for its solution holds, then the minimum V needed to overcome the membrane mechanical inertia holds

(33) (Vmin)inertia >

√
2Td3(1− d∗)

ε0Lθ

√
1 +H6

H
.

Proof. In fact, taking into account that λ2 < λ2, from (32) it follows that:

(34) λ2 >
4L(1− d∗)(1 +H6)

Hθ
.

Substituting (34) in (8), we achieve:

(35) V >

√
2Td3(1− d∗)(1 +H6)√

ε0LHθ
=

√
2Td3(1− d∗)

ε0Lθ

√
1 +H6

H
.

√
2Td3(1−d∗)

ε0Lθ

√
1+H6

H in inequality (35) is less than the V necessary to achieve the mechanical inertia of

the membrane. Then, it makes sense to write:

(36) (Vmin)inertia >

√
2Td3(1− d∗)

ε0Lθ

√
1 +H6

H
.
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6.3. The Maximum allowed V value so that the Membrane does not Touch the Upper Plate

We propose the following three propositions.

Proposition 6.3. For the MEMS device, indicating with u0 the deflection in the center of the membrane,
the following inequality holds:

(37) u0 ≤
kε0V

2

2d∗
.

Proof. The link between V and u(x) can be specified as follows [11,24]:

(38) u(x) ≤ kε0V
2

2d∗

{
1−

(x
L

)2}
.

Taking into account that 1
d−u(x) <

1
d∗ , we obtain the (37)

Proposition 6.4. For the MEMS device under study,
√
k assumes the following expression:

(39)
√
k =

√
p

2
√
pel
.

Proof. u(x) can be written as follows [11] u(x) = −p
4(x2 − 1) from which u0 = u(0) = p

4 , so that

(40)
√
u0 =

√
p

2
.

As explicated in [24], u0 = kpel, thus

(41)
√
k =

√
u0√
pel
.

Combining (40) and (41), we find equality (39).

Proposition 6.5. For the MEMS device under study, the following inequality holds:

(42)
kε0V

2

2d∗
< 1− d∗.

Proof. It is known that (see [11]) k = p
4pel

and pel is computed by (28). Then, taking into account both
(37) and (28), we can write:

(43) u0 ≤
kε0V

2

2d∗
=

p

8pel

ε0V
2

d∗
=
pε0V

2

8d∗
2(d− u(x))2

ε0V 2
=

p

4d∗
(d− u(x))2

However, from a mechanical point of view, we can write [11] u(x) = −p
4(x2 − 1) from which p = 4u(x)

(1−x2)
.

Then:

(44) u0 ≤
u(x)(d− u(x))2

(1− x2)d∗
.

We easily observe that 1
1−x2 = 1

2

{
1

1−x + 1
1+x

}
so that inequality (44) becomes:

(45) u0 ≤
u(x)(d− u(x))2

(1− x2)d∗
=
u(x)(d− u(x))2

2d∗

{ 1

1− x
+

1

1 + x

}
.
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Moreover, −L ≤ x ≤ L [24], with L� 1, so that 1− L ≤ 1 + x ≤ 1 + L. Then

(46)
1

1 + x
≤ 1

1− L
.

Analogously, 1− L ≤ 1− x ≤ 1 + L from which

(47)
1

1− x
≤ 1

1− L
.

Finally, taking into account both inequalities (46) and (47), inequality (45) becomes:

(48) u0 ≤
u(x)(d− u(x))2

(1− x2)d∗
=
u(x)(d− u(x))2

2d∗

{ 1

1− x
+

1

1 + x

}
≤ u(x)(d− u(x))2

d∗(1− L)
.

Finally, taking into account both (43) and (48), let us consider the following chain of inequalities:

(49) u0 ≤
kε0V

2

2d∗
≤ u(x)

d∗(1− L)
(d− u(x))2.

If we prove that

(50)
u(x)

d∗(1− L)
(d− u(x))2 < 1− d∗,

then we prove inequality (42), because it would occur, considering both (49) and (50), that

(51) u0 ≤
kε0V

2

2d∗
≤ u(x)

d∗(1− L)
(d− u(x))2 < 1− d∗.

Let us suppose, absurdly, that

(52)
u(x)

d∗(1− L)
(d− u(x))2 ≥ 1− d∗

from which we can write:

(53) u(x)(d− u(x))2 ≥ d∗(1− L)(1− d∗).

Three cases can occur.

Case 1. If the membrane is at rest, u(x) = 0 and, from (53), it follows that 0 ≥ d∗(1 − L)(1 − d∗)
which represents an incorrect condition because d∗(1 − L)(1 − d∗) is a positive quantity. Then, in this
case, inequality (50) is verified, so that also the (42) is verified.

Case 2. If we consider the maximum allowed deformation, u(x) = d − d∗, from (53), we can write:

(54) d− d∗ ≥ (1− L)(1− d∗)
d∗

.

However, from a constructive point of view, typically d∗ = d
10 , thus, (54) becomes

(55)
9

10
d ≥

10(1− L)
(

1− d
10

)
d

from which

(56) 9d2 + 10d(1− L)− 100(1− L) ≥ 0

46



Curvature Dependent Electrostatic Field in the Deformable MEMS Device: Stability and Optimal Control

so that

(57) d ≥
−5(1− L) + 5

√
(1− L)(37− L)

9

which represents a physically false condition (d ≈ 10−9). Then, also in this case, inequality (52) is false
so that inequality (50) is true and (42) is verified.

Case 3. For any other u(x) value, (50) is also verified. In fact, if, absurdly, the inequality (52) holds,
and taking into account that d∗ = d

10 , we can write:

(58)
10u(x)

d(1− L)
(d− u(x))2 > 1− d

10
.

However, we easily observe that d > u(x) from which 10 > 10u(x)
d and again, accounting for (58), it follows

that

(59) u(x) < d−
√

(1− L)(10− d)

100
.

If, absurdly,

(60) d >

√
(1− L)(10− d)

100

it is satisfied if, with the usual values for L and d and not considering the negative root as it has no
physical meaning, d � 10−9. As this range of d, from the constructive point of view, is not valid, it
follows that the inequality (60) is absurd, so that it follows:

(61) d ≤
√

(1− L)(10− d)

100
.

Then, in (59), u(x) results in a lower than negative quantity (physically impossible). From which we
deduce that inequality (42) is, also in this case, verified. Then, also the (42) is verified. This result
concludes the proof.

Propositions 6.3, 6.4, and 6.5 have been presented and proven, and we are able to easily evaluate the
(Vmax)permissible.

Proposition 6.6. Let the membrane MEMS device whose analytical model is represented by the system of
differential equation of the first-order (14). Then, the maximum permissible (Vmax)permissible is increased
as follows so that the membrane does not touch the upper plate:

(62) (Vmax)permissible <

√
2(1− d∗)d∗

kε0
.

Proof. Trivially follows from (42).

We propose the following.

Proposition 6.7. For the MEMS device under study, the following expression yields:

(63)
√
Lθ =

L

d

√
ε0L

2dT
.
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Proof. Considering both (8) and (10), we obtain:

θ =
θλ2

λ2
=
ε20L

4

d6T 2

V 4

(1− u(x))2|E|2
2d3T

ε0V 24L2
=

ε0L
2V 2

2d3T |E|2(1− u(x))2
.(64)

However, electrostatically

(65) |E|2 =
V 2

(1− u(x))2
.

Then, substituting (65) into (64), we achieve the (63).

Then, we are ready to present the following result.

Proposition 6.8. For the MEMS device under study, the following inequality holds:

(66)

√
2Td3(1− d∗)

ε0Lθ

√
1 +H6

H
<

√
2(1− d∗)d∗

kε0
.

Proof. Let us suppose, absurdly, that

(67)

√
2Td3(1− d∗)

ε0Lθ

√
1 +H6

H
>

√
2(1− d∗)d∗

kε0
.

from which, taking into account equality (63), we obtain:

(68)
2d3T

L
√
ε0L

√
1 +H6

H
>

√
d∗√
k
.

From (39), observing that u0 ≤ d− d∗ and therefore 1√
u0
≥ 1√

d−d∗ , we can write:

(69)
1√
k
≥
√
pel√

d− d∗
.

Then, inequality (68), taking into account (69) and considering that d∗ = d
10 , can be written as follows:

(70)

√
pel

T
≤ 6d3

L
√
ε0L

√
1 +H6

H
.

Considering that H ≈ 99 [5], it follows that
√

1+H6

H ≈ 97 ·104. As L = 10−6 (the device is a micro-device,

and therefore its length is ≈ 10−6) and ε0 = 8.85 ·10−12, while, as known, d ≈ 10−9 (usually the height of

the device is 10−3 of the width). Thus, the inequality (70) assumes the form
√
pel
T ≤ 0.95 · 10−6. In other

words, the mechanical tension T of the membrane would be a very large value as if the membrane were
extremely rigid. This condition is physically not compatible with the usual membranes used in MEMS
devices. Then, inequality (67) is false; therefore, inequality (66) yields.

Proposition 6.9. Consider the membrane MEMS device whose analytical model is represented by the
system of first-order differential equations (14). Then, the range of admissible values for V so that, on
the one hand, the mechanical inertia of the membrane overcomes and, on the other, the membrane does
not touch the upper plate, is as follows:

(71)

√
2Td3(1− d∗)

ε0Lθ

√
1 +H6

H
< V <

√
2(1− d∗)d∗

kε0
.

Proof. (71) immediately follows from Propositions 6.2 to 6.6.
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6.4. The Relationship between (Vmin)inertia and (Vmax)permissible

Proposition 6.10. The relationship between (Vmin)inertia and (Vmax)permissible is the following:

(72) (Vmin)inertia > (Vmax)permissible
k2d
√
d

2L
√
ε0L

√
1 +H6

H
T.

Proof. From (62) we can write:

(73) (Vmax)permissible <

√
2(1− d∗)

ε0

√
d∗

k
=

√
2(1− d∗)

ε0

√
d

10k

from which:

(74)

√
2(1− d∗)

ε0
> (Vmax)permissible

√
10k

d
.

In addition, from (33), and taking into account (73), it makes sense to write:

(Vmin)inertia > (Vmax)permissible
d
√

10k√
Lθ

√
1 +H6

H

√
T .(75)

Taking into account Proposition 6.4, from [24], p = k1pel, with k1 = 4k and k2 = 2
√
k, (75) becomes:

(76) (Vmin)inertia > (Vmax)permissible
k2

2

d
√

10√
Lθ

√
1 +H6

H

√
T .

In addition, taking into account Proposition 6.7, (76) can be written as follows:

(Vmin)inertia > (Vmax)permissible
k2d

2
√

10
√
d√

2L
√
ε0L

√
1 +H6

H
T.(77)

Remark 6.4. Considering that d = 10−9, ε0 = 8.85 · 10−12 and L = 10−6, then d2
√

10
√
d√

2L
√
ε0L

√
1+H6

H ≈
8.15 · 10−16 � 1. Then, inequality (77) becomes

(78) (Vmin)inertia > (Vmax)permissible · 0.023k2T.

As known [15], k2 ≈ 1 because, physically, pel ' p and, in addition, T is of the order of 1000 Pa. Then
inequality (78) can be written as follows:

(79) (Vmin)inertia > (Vmax)permissible · 0.023k2T ' (Vmax)permissible · 0.023.

so that inequality (77) makes physical sense.

Remark 6.5. Inequality (77) provides a useful physical interpretation. In it, d2
√

10
√
d

4L
√
ε0L

√
1+H6

H can be

considered a constant only depending on the geometrical parameters of the device. In other words, we

can write G = G(L, d) = d2
√

10
√
d√

2L
√
ε0L

√
1+H6

H so that inequality (77) becomes:

(Vmin)inertia > (Vmax)permissibleGk2T(80)

from which, considering that k2 ≈ 1, it follows that:

(81)
(Vmin)inertia

(Vmax)permissible
> GT.

Thus, having chosen the material constituting the membrane (in other words, having fixed T ),
(Vmin)inertia

(Vmax)permissible
depends on a quantity (i.e., G) that changes with the geometry of the device. If, on

the other hand, we choose the geometry of the device (in other words, we fix the constant G), it is the

material that constitutes the membrane that determines (Vmin)inertia
(Vmax)permissible

. Fig. 2a displays (Vmin)inertia
(Vmax)permissible

versus T according to (81).
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7. Some Remarks about the Potential Energy in the Device

When the membrane is at rest, the distance between itself and the upper plate is equal to d, so that
the electrostatic capacity of the device is C = ε0

2L
d . Then, the potential energy of the device, when

the membrane is at rest, is Winitial = 1
2CV

2 = ε0L
d V

2. When the membrane deforms, the electrostatic

capacity becomes C = ε0
∫ +L
−L

dx
d−u(x) . Then, in this case, the final potential energy can be computed as

Wfinal = 1
2CV

2 = 1
2ε0V

2
∫ +L
−L

dx
d−u(x) . Therefore, the total variation of the potential energy, ∆W , is:

(82) ∆W = Wfinal −Winitial = ε0V
2
{1

2

∫ +L

−L

dx

d− u(x)
− L

d

}
.

We preliminary observe that d− u(x) ≥ d− d∗ from which 1
d−u(x) ≤

1
d−d∗ . Therefore, from (82), we can

write:

∆W = ε0V
2
{1

2

∫ +L

−L

dx

d− u(x)
− L

d

}
≤ ε0V 2

{ L

d− d∗
− L

d

}
= ε0V

2
{ Ld∗

d(d− d∗)

}
.(83)

But from (71) we can write 2Td3(1−d∗)
ε0Lθ

1+H6

H < V 2 < 2(1−d∗)d∗

kε0
so that, taking into account (83), it follows:

(84) ∆W ≤ ε0
{ Ld∗

d(d− d∗)

}
V 2 < 2ε0

{ Ld∗

d(d− d∗)

}(1− d∗)d∗

k
=

2(d∗)2(1− d∗)L
kd(d− d∗)

.

Moreover, from (36), V 2 > (Vmin)2
inertia >

8Td3(1−d∗)
ε0Lθ

1+H6

H from which we obtain:

(85) ∆W > ε0

{ Ld∗

d(d− d∗)

}
V 2 >

8d∗Td3(1− d∗)
d(d− d∗)θ

1 +H6

H

Finally, combining (84) and (85), we achieve the range of the admissible values for ∆W :

(86)
8d∗Td3(1− d∗)
d(d− d∗)θ

1 +H6

H
< ∆W <

2(d∗)2(1− d∗)L
kd(d− d∗)

Remark 7.1. 8d∗Td3(1−d∗)
d(d−d∗)θ

1+H6

H in (86) derives from the (Vmin)inertia and depends on both T and θ, i.e.

on the electromechanical properties of the membrane (θ) and on the mechanical tension of the membrane

before the deformation (T ). In addition, 2(d∗)2(1−d∗)L
kd(d−d∗) derives from (Vmax)permissible and depends on the

ration between the mechanical pressure and electrostatic pressure (k).

The (86), considering that in dimensionless conditions d∗ = d
10 , 1+H6

H ≈ 97 · 104, d = 1 and L = 0.5,
becomes:

(87)
7524T

θ
< ∆W <

0.005

k
.

Figure 2b displays the area of possible values for ∆W . Obviously, once T is fixed (i.e. the method of
anchoring the membrane on the lower plate is fixed), as the θ increases, the blue straight line rotates
clockwise, while the horizontal line decreases as k increases.

7.1. On the Value of V which maximizes ∆W

Proposition 7.1. V =

√
2dd∗(ε0+

√
ε0)

kε20
maximizes ∆W . In addition:

(88) V =

√
2dd∗(ε0 +

√
ε0)

kε20
< sup{(Vmax)permissible} =

√
2(1− d∗)d∗

kε0
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Figure 2. (a)
(Vmin)inertia

(Vmax)permissible
versus T . (b) Area of possible values for ∆W according to the (87).

Proof. Taking into account the inequality (38), we can write d−u(x) ≥ d− kε0V 2

2d∗

(
1−
(
x
L

)2)
> 2dd∗−kε0V 2

2d∗

from which 1
d−u(x) <

2d∗

2dd∗−kε0V 2 so that

(89) C = ε0

∫ +L

−L

dx

d− u(x)
< ε0

∫ +L

−L

2d∗

2dd∗ − kε0V 2
dx =

4Ld∗

2dd∗ − kε0V 2
.

Then, Wfinal = 1
2CV

2 < 1
2

4d∗LV 2

2dd∗−kε0V 2 so that ∆W = Wfinal −Winitial <
1

2

4d∗LV 2

2dd∗ − kε0V 2
− ε0LV

2

d︸ ︷︷ ︸
f(V )

.

Remark 7.2. It is easy to verify that f(V ), for usual values of the parameters d, d∗, L, k and ε0, and
considering the range (71), is a continuous functions. In fact, if in f(V ), 2dd∗ − kε0V 2 = 0, we would

obtain V =
√

2dd∗

kε0
≈ 0.1503V . But it easy to verify that this value is lower that inf(Vmin)inertia (see (33))

so that V ≈ 0.1503V is not within the range of possible values for V .

To calculate the stationary points for f(V ), simply impose df(V )
dV = 4d∗Lkε0V 2

(2dd∗−kε0V 2)2 + 4d∗L
2dd∗−kε0V 2 − 2ε0L

d = 0

from which, setting V 2 = t, we easily obtain t =
2dd∗(ε0±

√
ε0)

kε20
where 2dd∗ > 0, kε20 > 0 and ε0 −

√
ε0 < 0

achieving
2dd∗(ε0−

√
ε0)

kε20
< 0. Then, V ∈ C, so that t =

2dd∗(ε0−
√
ε0)

kε20
is to be discarded. Therefore

(90) V =

√
2dd∗(ε0 +

√
ε0)

kε20

We discard the negative root because this value of V would deform the membrane symmetrically with
respect to the lower plate (condition physically impossible to achieve). It is easy to verify that V (see
(90)) is a point of maximum for f(V ) (see Fig. 3a). Moreover, it is also easy to verify the inequality (88).

7.2. A Limitation for ∆W Obtained Starting from |E|.

Starting from models (1) and (4), we can write λ2

(1−u(x))2 = 1
θλ2

(
1 +

(
du(x)
dx

)2)3
(1 − u(x) − d∗)2

and taking into account that λ2

(1−u(x))2 = θ|E|2, we obtain |E|2 = 1
θ2λ2

(
1 +

(
du(x)
dx

)2)3
(1 − u(x) − d∗)2.

Therefore, taking into account both the initial potential energy and Wfinal = 1
2ε0|E|

2, we can write:

(91) ∆W = Wfinal −Winitial =
ε0

2θ2λ2

(
1 +

(du(x)

dx

)2)3
(1− u(x)− d∗)2 − ε0LV

2

d

And again, considering that du(x)
dx < H and 1− u− d∗ < 1− d∗, equality (91) becomes:

(92) ∆W = Wfinal −Winitial ≤
ε0

2θ2λ2
(1 +H2)3(1− d∗)2 − ε0L

V 2

d
.

51



P. Di Barba, L. Fattorusso, M. Versaci

Proposition 7.2. In (83), ε0V
2
{

Ld∗

d(d−d∗)

}
< ε0

2θ2λ2 (1 +H2)3(1− d∗)2 − ε0LV
2

d in (92).

Proof. If absurdly ε0
2θ2λ2 (1 +H2)3(1− d∗)2 − ε0LV

2

d ≤ ε0V
2
{

Ld∗

d(d−d∗)

}
and taking into account the con-

dition (8), after simple algebraic calculations, we achieve d3T (1+H2)3(1−d∗)2

2θ2ε0L3 < V 4

d−d∗ that, in dimensionless

conditions, becomes V > 4

√
3.10·103T

θ2 105. In other words V should be greater than an extremely high

amount. Then, it makes sense to write:

(93) ε0V
2
{ Ld∗

d(d− d∗)

}
<

ε0
2θ2λ2

(1 +H2)3(1− d∗)2 − ε0L
V 2

d
.

Finally, Proposition 7.2 help us to achieve an interesting increase for ∆W only depending on the elec-
tromechanical properties of the membrane (θ) and on how to fix the membrane to the lower plate. In

fact, from (93) and (8), we can write ∆W ≤ ε0V
2
{

Ld∗

d(d−d∗)

}
< d3T

2θ2L2V 2 (1 + H2)3(1 − d∗)2 − ε0LV 2

d that,

in dimensionless conditions, becomes ∆W < 12
T

θ2V 2
− V 2︸ ︷︷ ︸

g(V )

.

Figure 3. Area of possible values for ∆W according to (a) ∆W < f(V ) and (b) ∆W < g(V ).

8. Conclusions and Perspectives

The starting point of this work concerned the study of the stability of the equilibrium configurations
of a second-order nonlinear two point boundary value problem relating to a 1D electrostatic membrane
MEMS device. In this model, since E is locally orthogonal to the straight line tangent to the membrane
at the point considered, |E| was considered proportional to the curvature of the membrane at the same
point. The only equilibrium configuration obtained relates to the position of the membrane whereby the
height reached in the middle is equal to the maximum allowed height (that is, an amount equal to the
critical safety distance d∗ from the upper plate).

Using the typical linearization technique of the mathematical model (adequately rewritten) around
its equilibrium configuration, the study found the non-stability of the only equilibrium configuration
obtained. It is worth pointing out that one of the most important causes of the instability of electrostatic
membrane MEMS devices concerns the possibility that the pel inside the device undergoes variations
(albeit minimal) with respect to the expected values, also influencing the post-instability behavior.

As pel depends on V , these possible fluctuations in the pel can arise from fluctuations in V , so that
attention was also paid to the evaluation of the maximum and minimum values of V . Specifically, the
minimum value of V was obtained so that the membrane inertia is overcome ((Vmin)inertia) and the
maximum value of V so that the center line of the membrane does not exceed the critical safety distance
((Vmax)admissible). This work is to be framed in studies dedicated to solving the inverse problem in a 1D
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electrostatic membrane MEMS device. In fact, starting from the deformation of the membrane, the range
of permissible values of the applied V were evaluated.

The link between (Vmin)inertia and (Vmax)admissible was obtained and depended on the value of the
mechanical tension T where the membrane was subjected. Thus, once the material constituting the
membrane was chosen (which is equivalent to fixing T ) we obtained (Vmin)inertia

(Vmax)permissible
. We observed that

the mathematical models adhering to the physical reality of MEMS device were surprisingly complex and
did not facilitate easy study. Some simplifications in the geometry of the device were necessary in order
to obtain a simpler mathematical model to study.

Furthermore, some considerations on the variation of potential energy have made it possible to identify
optimal control conditions also starting from |E|.

The results obtained from the study of the simplified model hardly matched with the experimental
data but will provide interesting qualitative indications on the behavior of these devices characterized
by simplified geometries. If, on the one hand, the extension to 2D cases of this study is desirable, on the
other hand, the future choice of less simplified geometries will make the approach presented here more
robust to deal with inverse problems related to the electrostatic MEMS membrane.
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