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Abstract: Traditional data analytics tools are designed to deal with the asymmetrical type of data 

i.e., structured, semi-structured, and unstructured. The diverse behavior of data produced by 

different sources requires the selection of suitable tools. The restriction of recourses to deal with a 

huge volume of data is a challenge for these tools, which affects the performances of the tool’s 

execution time. Therefore, in the present paper, we proposed a time optimization model, shares 

common HDFS (Hadoop Distributed File System) between three Name-node (Master Node), three 

Data-node, and one Client-node. These nodes work under the DeMilitarized zone (DMZ) to 

maintain symmetry. Machine learning jobs are explored from an independent platform to realize 

this model. In the first node (Name-node 1), Mahout is installed with all machine learning libraries 

through the maven repositories. The second node (Name-node 2), R connected to Hadoop, is 

running through the shiny-server. Splunk is configured in the third node (Name-node 3) and is used 

to analyze the logs. Experiments are performed between the proposed and legacy model to evaluate 

the response time, execution time, and throughput. K-means clustering, Navies Bayes, and 

recommender algorithms are run on three different data sets, i.e., movie rating, newsgroup, and 

Spam SMS data set, representing structured, semi-structured, and unstructured data, respectively. 

The selection of tools defines data independence, e.g., Newsgroup data set to run on Mahout as 

others cannot be compatible with this data. It is evident from the outcome of the data that the 

performance of the proposed model establishes the hypothesis that our model overcomes the 

limitation of the resources of the legacy model. In addition, the proposed model can process any 

kind of algorithm on different sets of data, which resides in its native formats. 

Keywords: hadoop; MapReduce; big data; response time; symmetrical streaming; machine 

Learning 
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1. Introduction 

The term Big Data reflects a volume of data that is huge and yet growing exponentially with 

time. Such large and complex data is too difficult to process and manage effectively, with the help of 

traditional data management tools. Big data has novel values, which originate out of necessity for 

hefty firms such as Yahoo, Google, and Facebook, to evaluate large amounts of information [1]. Due 

to a revolution in technology, these days, millions of people produce large amounts of data (for 

example via Facebook) using devices such as computers, cell phones, etc.; apart from that, remote 

sensors are also responsible for generating heterogeneous data at large scale. This kind of 

heterogeneous data may be in the structured form or unstructured form. 

Since the creation of PCs, a lot of information has been produced at a quick rate. This situation 

is the key inspiration for present and imminent research boundaries. Present era devices such as 

mobile phones, digital sensors, communications devices, etc. have abilities to store bulk amounts of 

symmetrical (showing similarity) data [2]. From corporate pioneers to civil organizers and academics, 

a huge amount of information is the subject of consideration, and it is somewhat fearsome. The abrupt 

rise of this huge amount of information has made numerous researchers improvise. Within five years, 

the world’s total amount of data has increased nine times according to the IT company Industrial 

Development Corporation (IDC) [3], and it is expected to double every two years [4]. Several 

enlightenments from 3Vs (Volume, Variety, and Velocity) to 6Vs (Volume, Velocity, Variety, 

Veracity, Validity, and Value) have been introduced to outline big data [5–11]. 

The dimensions of datasets are growing at a very fast pace because of the expansion of 

digitalization. It involves four additional Vs consisting of the variability that denotes inconsistency 

speed in data, volatility shows the unstable or changeability of data, vulnerability to ensure the data 

privacy, and visualization, which define the image of the data. In this way, we are in the stage of 10Vs 

concept to express the big data as shown in Table 1. 

Table 1. 10Vs of Big Data. 

Volume  Data at rest 

Velocity Data in motion 

Variety Data in many form 

Veracity  Data in doubt 

Variability Data in inconsistency speed  

Validity Data for accuracy 

Volatility  Data is unstable or changeable  

Vulnerability Data for privacy 

Visualization Data for imagination 

Value  Data for benefits  

Big data can be structured, semi-structured, or unstructured, which causes hurdles in handling. 

The solution to this problem is Hadoop, Hadoop with R and on Spark to enhance the performance of 

parallelism and scalability [12–26]. Data handling (catching and storing enormous information) has 

increased critical consideration in recent years, for example, the MapReduce model. Nowadays, the 

necessity of further development of platforms is realized, which can bridle these innovations to 

increase significant understanding to settle on knowledgeable commercial decisions. The usage of 

data analytics on such datasets is normally termed as big data analytics. Data mining and AI 

strategies are now utilized over a wide scope of enterprises to help associations in improving their 

business, reduce risks, and increment productivity. Areas utilizing these strategies incorporate 

venders, banking establishments, and insurance agencies as well as health-related fields [27,28]. In 

the present marketplace, data analytics has turned into a business prerequisite for many 

organizations hoping to increase a viable lead on virtualization and distributed computing [29]. This 

has been significantly perceived in the technical support space of leading multinationals. Call centers 

have considered the use of information application as an approach to streamlining the commercial 

and adding knowledge in esteems to client’s desires, a necessity in an industry-tested by financial 

weights, and prolonged challenges [30]. 
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The requirement for proficient, scale-out responses to help component failures and give data 

consistency persuaded the advancement of the Google File System (GFS) [31] and the MapReduce 

[32] model in the mid-2000s. The reason behind the Google File System and MapReduce is to circulate 

data over the product servers to such an extent that computation of information is performed, where 

the information is stored. This methodology dispenses with the need to move the data over the 

network system to be prepared. Moreover, strategies for assuring the flexibility of the cluster and 

load adjustment of processing were indicated. GFS and MapReduce structure are the reason for the 

Apache Hadoop venture, involving two principal parts: the Hadoop Distributed File System (HDFS) 

and Hadoop MapReduce [33]. 

HDFS is the appropriate storage element of Hadoop with sharing nodes succeeding in a 

master/slave manner. All data is captured in HDFS [34] are divided into chunks, which are imitated 

and distributed across over various slave nodes on the cluster recognized as data nodes, with a master 

node recognized as name node, keeping metadata for example chunks involving files, wherein the 

cluster these chunks are found. 

MapReduce [35] is a programming model of the Hadoop and governed by a software daemon 

recognized as the Job Tracker. A Job is a MapReduce program that includes the implementation of 

Map and Reduces function over a dataset. The MapReduce programming model also depends on a 

master/slave design. The Job Tracker runs on the master node and allocates Map and Reduce 

assignments to the slave node on the cluster. The slave nodes run different software daemon termed 

as Task-Tracker that is liable for starting up the Map and Reduce function and revealing the 

advancement back to the Job Tracker. The prolonged Hadoop ecosystem embraces a growing list of 

results that integrate or enlarge Hadoop’s competences, such as the mahout machine library (such as 

collaborative filtering, classification, and clustering algorithms), which is an open-source tool able to 

run on the top of the Hadoop, to deliver distributed analytics abilities [36]. HBase, which is a 

distributed database, gives real-time read/write ability for the dataset that resides in the HDFS [37]. 

Hive is a query language that alters the MapReduce task using HiveQL queries for execution on a 

cluster [38]. However, some studies have shown their experiments in machine learning such as 

Mahout k-means clustering used on a 1.1 GB data set for scalability quality assessment [39]. System 

performance is evaluated by clustering algorithms on an 11 GB Wikipedia data set [40], for the 

evaluation of the performance of the clustering algorithms over the Hadoop environment using the 

1987 Reuters dataset [41]. However, some significant contribution, Discovery Information using 

Community detection (DICO) for online social networking to provide cyber security have been nicely 

discussed by various workers [42–44]. 

In the present era, traditional distributed techniques are not capable to store and capture data 

because of its less scalability of the environment. On the other hand, relational databases have limited 

schema and data warehouses are not capable to process its entire data due to huge size. Due to the 

above limitations, big data requires a novel model, which is flexible and perform equivalent 

processing efficiently. In the present paper, we proposed a model (A Three Master Node (Name 

Node) Model), which is platform-independent for big data analytics and delivers faster results in 

comparison to traditional systems. Performance test (such as response time of the system, execution 

time (time taken by the MapReduce programming model), and throughput) between the proposed 

model and the legacy model (existing model) is done on three different data sets. These sets have 

different behaviors and uses diverse algorithms such as K-Means clustering, Navies Bayes, and the 

Recommender system for inspection of its application capabilities. 

2. Proposed Hybrid Framework: A Three Master Node (Name Node) Model 

In the present proposed model (Figure 1), we attached three master nodes (Name-Nodes), three 

Data-Nodes and one client node, which works in the demilitarized zone (called an edge node), i.e., 

the Resource manager will run on the Master node and the Data-Node services, and application 

master and node manager will run on the Data-Node. Different tools are used for machine learning 

to make it suitable for any kind of data processing. The analytical tools are put on the master node 

(all the master nodes share their respective recourses with each other) to keep the services as well as 



Symmetry 2020, 12, x FOR PEER REVIEW 4 of 15 

 

data movement in a symmetrical synchronization. Mahout, R, and Splunk is installed on the system. 

Splunk is the log analytical tool, which has taken the logs of the system and help the user to analyze 

the logs for the error or any kind of security or data breaches. 

 

Figure 1. Block diagram of the proposed model. 

The proposed model includes the High Availability (HA) concept, which comes out to be a 

scalable and enhanced model in terms of time and performance. Hadoop runs on the top of java. 

Thus, in the proposed model, there is no restriction on the Java Virtual Machine (JVM), as it depends 

on the number of sessions created by the user on the Name-Node, which actually works for user 

queries (read and write). Each write and read will create a JVM, which is the Application master 

container in our environment. There is no compulsion that only one application master can run on a 

data node. This means more than one JVM can run on a single Data-Node as per the data and the 

user request. 

The present model includes the concept of the high availability, which means if one master 

server, which is the Active Name-Node, went down or somehow experienced a high load making it 

unable to work, then the standby Name-Node automatically changes its state to active and start to 

serve the user request. This happens because of an on daemon called the secondary Name-Node, 

which is basically the service that keeps track of edit logs and file system images (FS image), and 

whenever the Name-Node went down it provides the latest logs to help the standby Name-Node to 

get active.  

All the master services are hosted on the master servers and three Data-Nodes are the nodes, 

where the real data will reside. In this experiment, the replication factor is 3, and block size we 

configured 128 MB. This value will help to run the job (Hadoop job or user query is called an 

application or job in Hadoop) in an efficient manner as the default size of a block is 64 MB. Block is a 

storage unit, where the data is kept on the HDFS. Data is in the form of the data blocks in the cluster. 

All the nodes, i.e., three Master nodes and three Data-Nodes share the common HDFS. The (HDFS) 

is a distributed file system designed to run on commodity hardware, which is highly fault-tolerant, 

designed, and developed to be deployed on low-cost hardware. HDFS provides high throughput 

access to application data. It is suitable for applications that have large data sets. HDFS enables 

symmetrical streaming access to file system data. 

According to the working scenario of the proposed model, the Client node sends the request and 

the query to the name node, this request or query can be a read or write request. The Master service, 

Mahout, is deployed on Name-Node 1 (Active), R-Hadoop on Name-Node 2 (Standby), and Splunk 

on Name-Node 3 (standby). If a user opens a session of R-Hadoop and Mahout at the same time, then 

they can use both the services at the same time. After the processing, the processed data is sent to 
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HDFS to get stored. Following equations is taken for setting up a Hadoop infrastructure/Proposed 

model. Size of the Data (Ds) is taken (where Ds ≥ 1 GB || Ds ≤ 10 GB) for the experimental outcomes, 

since the construction of Hadoop cluster data size and the resource size (RAM and cores) might vary 

as per the user’s needs. Equations defines the correct HDFS size (HS) and the Number of data nodes 

(ND) required when forming the new Hadoop infrastructure/Proposed model (see Algorithm): 

HS = A*B*S(D)/(1-C) *120% (1) 

ND = HS/S(d) (2) 

In Equation (1), A symbolizes the Compression ratio. A = 1, when no compression is deployed 

and it can be changed if the specific type compression is applied (for example snappy, etc.) B signifies 

the Replication factor; commonly, it is 3 for the production cluster. S(D) describes the actual data size, 

when data is injected in Hadoop. C is the transitional data factor; typically, it is 1/3 or 1/4. This is the 

Hadoop’s Intermediate employed storage deployed to stacking transitional results of Map Jobs, 

which is 120% or 1.2 times of the entire size; this is due to fundamental of the HDFS that wishes 

possibility for the file system. For example, assume the total size of the cluster is 1200 TB but it is 

recommended to utilize up to 1000 TB. By Equation (2), S(d) expresses the disk space existing per 

node. 

Algorithm HYB_NAME_NODE for the Proposed Model 

*//All the algorithms are implemented on DN (Data-Node), Controlled by the Name-Node (Master 

Node)//* 

HYB_NAME_NODE (Ds, Ds ext, S(D), N1, N2, N3, CM, Sp, Bp, DN) 

Ds= Data 

Ds ext= Data extension  

S(D) = Data Size  

N1 = Name-Node (Master Node 1)//Shared resources  

N2 = Name-Node (Master Node 2)//Shared resources 

N3 = Name-Node (Master Node 3)//Shared resources 

CM = Client-Node (Client Machine) 

Sp = Stream Data 

Bp = Batch Data 

DN = Data-Node 

Step 1- Input the Data Ds from CM 

Step 2- If (S(D) ≤ 1 GB && Ds ∈ Sp || Ds ∈ Bp) 

  Process N2  

 Else if (S(D) >1 GB && Ds ∈ Sp || Ds ∈ Bp) 

  Process N1 

 Else if (Ds ext = “. Log”) 

Process N3 

 Exit (0); 

Step 3- Name-Node (M1, M2, M3) process the Job, given by the CN (User/Client machine) 

Step 4- if (job request Algo = K-Means)//All 3 algorithms are used for the application purpose// 

  { 

  Launch = K-Means () 

  Result () 

}  

 Else if (job request Algo = Recommender) 

  { 
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  Launch = Recommender () 

  Result () 

}  

  Else if (job request Algo = Naïve Bayes) 

  { 

  Launch = Naïve Bayes () 

  Result () 

}  

  Exit (0); 

Step 5- If the result is final (result after reducer/completion of the algo) 

{ 

Output stores in HDFS 

} 

 

The proposed model follows the above algorithm, which work on three equations, i.e.: 

(S(D) ≤ 1 GB && Ds ∈ Sp || Ds ∈ Bp) (3) 

(S(D) > 1 GB && Ds ∈ Sp || Ds ∈ Bp) (4) 

(Ds ext = “. Log”) (5) 

The above three equations are accountable for the selection of the one managerial 

(administrative) power from N1, N2, or N3. All three Name-Node has shared resources. According 

to Equation (3), the size of S(D) is 1 GB or less and Ds belongs to Sp or Bp processing, N2 administrative 

power will start processing the job. Similarly, in Equation (4) if S(D) is more than 1 GB and Ds belongs 

to Sp or Bp processing, N1 managerial power will start processing the job. Equation (5) is functional 

when Ds ext (extension) is “. Log”, which means, when Log analytics is needed, N3 administrative 

power will start working. 

As stated above, respective recourses of all the three Name-Node, has shared with each other. 

Therefore, managerial (administrative) power of the one Name-Node will work as the collective three 

Name-Node. After the assortment of the administrative power, Master node (Name-Node) will start 

processing the Job provided by the CM. For this purpose, we have selected three different algorithms 

such as K-Means (Clustering), Naïve Bayes (classification), and Recommender (collaborative 

filtering). After finalizing the reducer phase/successful completion of the algorithm, the result are 

stored in HDFS. 

Contribution 

As per the traditional (legacy model) Hadoop infrastructure, there is one Name-Node (Master 

Node) that is coupled with the several Data-Node (worker nodes), which implement on compatible 

data sets, i.e., dedicated for the specific algorithm (expresses the dependency of the platform). 

In the present proposed model, three frameworks, namely mahout to work on machine learning, 

R for machine learning as well as data analysis, and log analysis Splunk, were established: 

1. For smooth running of the system, a maven repository for the mahout is build, which can easily 

use the machine learning library. 

2. core-site.xml, yarn-site.xml arrangements are altered as per the requirement of cluster. This is 

Twisted for the HA (High Availability) formation. 

3. To make R work on Linux and Hadoop, an R-server is built. 

4. To simplify a feasible condition of this combined cluster requires multiple repositories and OS 

repository for accessing and building “YUM,” which can work on Linux. 
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Worker nodes elect the master based on availability (distance, i.e., the same rack would be given 

preference), available resources, i.e., cores and rams, and the connection that is the SSH (Secure shell) 

communication between the master and the worker nodes. This way, the ensemble (worker nodes) 

chose the master of the cluster. 

5. Serialization is tuned in yarn-site.xml with respect to the Data Node RPC (Remote Procedure 

Call, which is the heartbeat signal offers the communication among the Name-Node and Data-

Node and accountable to allot job processing location) and movement of the data directly in the 

form of input splits from the HDFS. 

By the mutual HDFS, any kind of data can be kept, which might come from diverse sources or 

nodes. In other words, the proposed model can manage the whole data lake. The data lake is just like 

a pond, which has numerous organisms, stones, gravels, and sand in its own native environment. 

The basic idea behind the data lake is to have a centralize storage for all the enterprise data in the 

captive from raw data (which is just generated and no transformation is applied on this data) to fully 

processed data, which is further utilized to have an insight from the data by applying analytics, 

machine learning techniques, and visualizations. 

3. Legacy Model 

In the legacy model, there is a single node, which is composed of all the demons (services) 

running in a single machine. It provides a full environment to run Hadoop related jobs. There is one 

JVM, i.e., java virtual machine, which helps to run the MapReduce jobs in the single node cluster. 

Whenever the job is submitted by the client (i.e., the user), first the job is analyzed by the Name-node 

and sent to the resource manager. The resource manager coordinates with the node manager and the 

application master for providing the container and the resources. Thereafter, the job proceeds with 

the different stages for processing. 

As mentioned above, there is one JVM, which means one master node is applied. Furthermore 

if the master node went down somehow, then the whole cluster will be dissolved, i.e., the whole 

cluster will be destroyed, and to save this single point failure there is the concept of the secondary 

name node, which is responsible for taking the edit logs as well as the File system image (Fs image), 

but still, to make the master node or the Name-Node alive from dead, it takes a downtime in which 

the Hadoop admin figure out and analyze the edit logs and fs image to get the cause of the Name-

Node down. Several forms of algorithms, such as frequent itemset mining, classification (Navies 

Bayes), Clustering (K-Means), and collaboration filtering (recommender algorithms), have been 

presented and executed separately by the legacy model to demonstrate the parallelism and scalability 

[12–26,45,46]. 

In traditional Hadoop infrastructure, there is one Name-Node (Master Node) that is connected 

with the multiple worker nodes (Data-Node) and creates a single HDFS, which executes a compatible 

data set, i.e., assigned for the particular algorithm (which shows the dependency of the platform), 

that restricts the performance to maintain the data streaming. Therefore, there is a need for a model 

that shares common HDFS, which enables the symmetrical streaming access of the data for the 

multiple nodes configured with the different variety of tools. The present proposed model reflects 

the novelty of performance with respect to job execution processing time on different data sets. 

4. Results 

4.1. Data Description 

To perform this experiment, three-dummy data sets are considered from reliable sources. The 

size of each data sets is 9 GB (9216 MB) and the description of the data sets are as follows: 

Data set 1: Twenty News group data is the set of information, which contains a survey on persons 

through the website, i.e., what kind of updates they read and what they like [47]. 
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Data set 2: The movie dataset contains numerous files, which have a customer_id that describes who 

watches the movie, the movie id, and the year of release. These movies are separated as per the 

votes and score provided by the users. The movie id is in a range from 1 to 17,770 [48]. 

Data set 3: The Spam SMS dataset consists of a message per line with the label and the raw text. This 

The SMS is not always spam, but can be a message between two individuals. This is a completely 

text-based dataset. It has 6000+ rows of messages and two columns. The spam message is mined 

from website with the help of a web crawler [49]. 

4.2. Job Execution Process in Hadoop Infrastructure 

The Performance of the proposed and the existing model has also measured on the basis of 

response time, execution time (time taken by the MapReduce programing model), and throughput. 

In this experiment, in the system configuration of the proposed model, each node has 2 GB of memory 

and two cores for processing, whereas the legacy model memory and CPU size are increased up to 6 

GB and four cores with stable 9 GB datasets of three different kinds. Each dataset between legacy and 

proposed model is run three times. Outputs of the experiment are given as mean ± SE. Student’s t-

test is applied in between the output results of legacy and proposed model to observe Significance 

difference. Steps of the job execution is as follows 

1. New stage: When a user provide instruction to the Name-Node to execute any job, it comes 

under a new stage. 

2. Submitted stage: When the Name-Node accepts and submits the job to the Resource manager 

for further execution, it comes under submitted stage. 

3. Analyzing stage: The Resource manager will do some validation and check for the input path 

and output path and the data. 

4. Accepted stage: After completing the submitting and analyzing stage the job will wait for the 

Application Master (AM) container to be launched. This stage is just above the 

execution/running stage. 

5. Running stage: When the Application master (AM) container assigned, the job starts running in 

the cluster, where the data resides, i.e., on the Data-Nodes. 

1. Map stage: The map stage is the stage where the data is processed and converted in the Key 

Value pairs and these key value pairs are then given to reducer. 

2. Reducer Stage: In the reducer stage, the key value pairs are club together as per the 

characteristics, such as what are the values associated with key 1 and so on. 

3. Committer stage: In the committer stage, the output from the reducer process are clubbed 

into a single output file so that instead of having multiple part files user can have a single 

output file. 

6. Finished stage: when the resource manager marked the job to be finished and AM container is 

cleaned up by the node manager in simple word the job is successfully completed. 

4.2.1. Response Time Comparison Between Proposed and Legacy Model 

Response time is the total time taken by new stage, submitted stage, analyzing stage and 

accepted stage. Below, Table 2 defines the response time of K-Means, Naïve Bayes, and recommender 

algorithms using three different datasets of 9 GB on both models. 

Table 2. Response time (in millisecond). 

Algorithms with Environment Dataset 1 Dataset 2 Dataset 3 

K-Means Legacy Model  * 2500 ± 2.59 * 2700 ± 2.82 * 2000 ± 2.72 

K-Means Proposed Model * 1155 ± 3.57 * 1075 ± 1.86 * 1150 ± 1.41 

Recommender Legacy Model  * 2100 ± 1.41 * 1800 ± 0.94 * 2100 ± 1.41 

Recommender Proposed Model  * 1009 ± 1.86 * 900 ± 2.82 * 1100 ± 2.82 

Naïve Bayes Legacy model  * 2400 ± 2.35 * 2500 ± 1.88 * 1900 ± 1.41 
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Naïve Bayes Proposed Model  * 1300 ± 1.41 * 1000 ± 0.94 * 975 ± 1.41 

Significant, when student’s t-test is applied in between response time of legacy and proposed model- 

* (P < 0.01). Values are given as mean ± SE. 

Response time defines the quick behavior towards the job instruction submitted to the Name-

Node. It is clear from Figure 2 that performance of the proposed model is better than the legacy model 

in terms of response. 

 

Figure 2. Response time of both models. 

4.2.2. Time Taken (Running Time) By the MapReduce Programming Model 

MapReduce programming model has three different phases such as Mapper, Reducer, and 

Committer. All are processed in a sequence manner. Table 3 shows the time taken by MapReduce 

programing model (running Stage), to complete three different algorithms using three different data 

sets on both models. 

Table 3. Total time taken by the MapReduce Programming Model. 

Algorithms with Environment Dataset 1 Dataset 2 Dataset 3 

K-Means Legacy Model  * 0:33:55 ± 0.28 * 0:33:46 ± 0.02 * 0:31:00 ± 0.02 

K-Means Proposed Model * 0:16:50 ± 0.24 * 0:17:28 ± 0.04 * 0:15:16 ± 0.02 

Recommender Legacy Model * 0:37:00 ± 0.03 * 0:37:01 ± 0.01 * 0:34:46 ± 0.02 

Recommender Proposed Model * 0:19:01 ± 0.01 * 0:16:34 ± 0.02 * 0:16:37 ± 0.03 

Naïve Bayes Legacy model * 0:34:13 ± 0.01 * 0:36:00 ± 0.01 * 0:34:17 ± 0.03 

Naïve Bayes Proposed Model * 0:16:15 ± 0.02 * 0:18:15 ± 0.01 * 0:16:20 ± 0.03 

Significant when student’s t-test is applied in between response time of legacy and proposed model—

* (P < 0.01). Values are given as mean ± SE. 
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Figure 3. Total time taken by the MapReduce Programming Model. 

4.2.3. Throughput (Time Taken by the Single Mapper of Map Function) 

The throughput defines a single unit of work done over a specified time period to evaluate the 

efficiency of the system [50]. For this, we have calculated the execution time (shown in Table 4) for 

the single Mapper while executing three different algorithms using three different data sets on both 

models. 

Table 4. Execution time (for single Mapper) in seconds. 

Algorithms with Environment Dataset 1 Dataset 2 Dataset 3 

K-Means Legacy Model (Single Mapper) * 17.04 ± 0.01 * 16.02 ± 0.01 * 17.62 ± 0.01 

K-Means Proposed Model (Single Mapper) * 9.16 ± 0.01 * 8.51 ± 0.01 * 7.75 ± 0.02 

Recommender Legacy Model (Single Mapper) * 17.5 ± 0.18 * 19.4 ± 0.18 * 16.06 ± 0.02 

Recommender Proposed Model (Single Mapper) * 10.0 ± 0.47 * 8.45 ± 0.02 * 9.2 ± 0.09 

Naïve Bayes Legacy model (Single Mapper) * 16.67 ± 0.07 * 17.78 ± 0.03 * 18.34 ± 0.01 

Naïve Bayes Proposed Model (Single Mapper) * 9.17 ± 0.03 * 10.1 ± 0.13 * 8.67 ± 0.03 

Significant when student’s t-test is applied in between response time of legacy and proposed model—

* (P < 0.01). Values are given as mean ± SE. 

Figure 4 defines throughput measurement, that shows time taken by the single Mapper (single 

unit of work done) of the MapReduce programming model on both (Proposed and Legacy) models, 

while running the K-Means, Recommender, and Naïve Bayes algorithms using three different data 

sets of 9 GB. 
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5. Discussion 

The present paper deals with the performance of the proposed model with respect to the legacy 

model to measure the difference of response time, running time (time taken by the MapReduce 

programing model), and throughput. The validation of the proposed model is the process and 

activities intended to verify its performance as expected, in line with their design objectives. The 

validation also identifies the potential limitations and assumptions, and assesses their possible 

impact. The proposed model system configuration, which contains three Name-Node, three Data-

Node, and one client node, in which each node has 2 GB of memory and two cores for processing, 

whereas in the legacy model, memory and CPU size are increased up to 6 GB with four cores. In this 

way both models have stable 9 GB datasets of three different kinds. In the present work it was 

expected and assumed that the proposed model should be better response time, running time, and 

throughput. 

Response time in data set 1 of the legacy model and proposed model on three algorithms, i.e., 

K-means, recommender, and Naïve Bayes, reduced from 2.5 to 1.1, 2.1 to 1.0, 2.4 to 1.3 s, respectively, 

which is also noticed in Data set 2 and Data set 3. It shows that the proposed model gives a quick 

response to the job process as compare to the legacy model. MapReduce (Running Time) completion 

time in data set 1 of the legacy model and proposed model on three algorithms, i.e., K-means, 

recommender, and Naïve Bayes reduced from 0.33 to 0.16, 0.37 to 0.19, 0.34 to 0.16 h, respectively. 

When Data set 2 and Data set 3 are run, the same trend of MapReduce completion time is found. It 

defines that the proposed model completed the Mapper, Reducer, and Committer phase of the 

MapReduce programming model in less time as compared to the legacy model. Throughput in data 

set 1 of the legacy model and proposed model on three algorithms, i.e., K-means, recommender, and 

Naïve Bayes reduced from 17.04 to 9.16, 17.5 to 10, 16.67 to 9.17 s, respectively. A similar pattern is 

observed in Data set 2 and Data set 3. It defines that the proposed model took less time to complete 

a single Mapper, which is 128 MB as compared to the Legacy model. The improved performance of 

the proposed model establishes the hypothesis that our model overcomes the limitation of the 

resources of the legacy model. The present proposed model configuration performance is given for 

the first time, so that comparative published/known findings are lacking. 
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Table 2 defines comparative response time of the both models. It is measured on the basis of 

total time taken by the four initial stages of the job execution, i.e., the new stage, submitted stage, 

analyzing stage, and accepted stage. It is evident from Table 2 and Figure 2 that the response time of 

the three algorithms (K-Means, Naïve Bayes, and recommender) using three different datasets on the 

proposed model is significantly (P < 0.01) less compared to the legacy model. That denotes the quick 

response of the proposed model (Infrastructure). 

The experiment of the execution time/running stage (time taken by the MapReduce 

programming model) shown in Table 3 defines MapReduce programing model/running stage (total 

time taken by the MapReduce programming model) on both models (the proposed and the existing 

model), respectively. Table 3 clearly indicates that three algorithms (K-Means, Naïve Bayes, and 

recommender) on three different datasets for proposed model completed their jobs faster than the 

existing model. In fact, the proposed model took significantly (P < 0.01) less time as compare to the 

legacy model, as shown in Figure 3. 

Table 4 defines the throughputs of the both models using three algorithms (K-Means, Naïve 

Bayes, and recommender) on three different datasets. According to the definition of the throughput, 

a single unit of work is done in the specified time period to evaluate the efficiency of the system, so 

that in this experiment the time taken to complete job by the single mapper of Map function is 

calculated. It is measured with the help of a data set with chunks the size of a single mapper, which 

is 128 MB in case of YARN (Yet Another Resource Negotiator). The present study demonstrates that 

the proposed model is significantly (P < 0.01) efficient compared to the legacy model, as shown in 

Figure 4. 

Therefore, the above findings clearly indicate that the proposed model is better than the legacy 

model in terms of response time of the system, execution time/running stage (time taken by the 

MapReduce programing model), and throughput. In addition to this, the proposed model is highly 

efficient to configure any kind of algorithms and any kind of data of different size simultaneously. 

6. Conclusion 

Conclusively, the present paper demonstrates that a time-efficient proposed model that shares 

common HDFS with the integration of three Name-node (having Mahout, R-Hadoop, and Splunk), 

three Data-node, and one client node, can communicate and share their business demands with all 

three Name-nodes. Time optimization of our model is done by the performance evaluation of the 

response time, execution time, and throughput using three different algorithms (K-means clustering, 

Navies Bayes, and Recommender system) on three different data sets. With the outcome of the 

definition and the experiments in the present study, it can be concluded that the proposed model is 

highly efficient compared to the legacy model. In addition to this, by the common HDFS, all the Data-

node and Name-node can access any data residing in the HDFS, whether it is processed or used by 

any other node. Any algorithms on the different types of data can be run efficiently with the help of 

our present proposed model for Big Data analytics. In the future, the performance of the model can 

be explored for a bigger number of master nodes as well as data nodes. 
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