Raza et al. Advances in Difference Equations
https://doi.org/10.1186/513662-020-03116-8

(2020) 2020:663 ® Advances in Difference Equations

a SpringerOpen Journal

RESEARCH Open Access

Modeling the effect of delay strategy on

Check for
updates

transmission dynamics of HIV/AIDS disease

Ali Raza', Ali Ahmadian®*"

, Muhammad Rafig*, Soheil Salahshour®, Muhammad Naveed®,

Massimiliano Ferrara® and Atif Hassan Soori®

"Correspondence:
ahmadian.hosseini@gmail.com
?|nstitute of IR 4.0, The National
University of Malaysia, 43600 UKM,
Bangi, Malaysia

3School of Mathematical Sciences,
College of Science and Technology,
Wenzhou-Kean University,
Wenzhou, China

Full list of author information is
available at the end of the article

@ Springer

Abstract

In this manuscript, we investigate a nonlinear delayed model to study the dynamics
of human-immunodeficiency-virus in the population. For analysis, we find the
equilibria of a susceptible-infectious—immune system with a delay term. The
well-established tools such as the Routh—Hurwitz criterion, Volterra-Lyapunov
function, and Lasalle invariance principle are presented to investigate the stability of
the model. The reproduction number and sensitivity of parameters are investigated. If
the delay tactics are decreased, then the disease is endemic. On the other hand, if the
delay tactics are increased then the disease is controlled in the population. The effect
of the delay tactics with subpopulations is investigated. More precisely, all parameters
are dependent on delay terms. In the end, to give the strength to a theoretical
analysis of the model, a computer simulation is presented.

Keywords: HIV/AIDS disease; Delay model; Stability analysis; Reproduction number;
Computer results

1 Literature survey

HIV is the abbreviation of the human immunodeficiency virus. The white blood cells
(WBCs) of the immune system are targeted and infected by HIV in humans. HIV produces
millions of its copies in the bloodstream and consequently weakens the immune system
by defeating WBCs. This type of WBCs is called CD4 cells or T-helper cells. HIV can
be transmitted among people through different means, including unprotected sex with
infected persons, usage of infected syringe for drug injection, and unsterilized surgical
equipment [1]. Hence in order to prevent its transmission, we should spread awareness
about protected sex and using sterilized medical equipment. HIV infected persons must
go through antiretroviral treatment to fight infections. There is a way to treat HIV and
no vaccine is available yet, but HAART is an effective technique used to slow down the
progress of the disease. The Centre for Disease Control and Prevention (CDC) first recog-
nized HIV in 1981. According to the CDC report of 2011, over 34 million people have died
due to AIDS. According to the UNAID report of 2010, almost 36 million people are cur-
rently suffering from AIDS. In 2017, around 1.8 million people fell prey to HIV and around
0.94 million people died around the globe. By the end of 2018, almost 37.9 million people
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were suffering from HIV. In June 2019, almost 25.5 million people were reported to go
through antiretroviral therapy. AIDS has now become a global issue in the 21st century.
The mathematical models play a vital role in the study of the transmission dynamics of
HIV/AIDS. The delay models are more compatible with the real-world as the dynamics of
time from infection to infectiousness are captured by them. There are many models avail-
able in the literature, which exhibit the dynamics of this disease by the system of nonlin-
ear differential equations without any delay, although the delay inclusion makes the model
more realistic. The dynamical behavior of the population model with time delay has now
become a hot topic of research [2]. Ogunlaran et al. [3] presented an effective strategy to
fight against HIV infection in humans by using the compartment models. Duffin et al. [4]
studied the dynamics of the immune deficiency virus of the complete course of infection.
Omondi et al. [5] investigated the mathematical modeling of the impact of testing, treat-
ment, and control of HIV transmission in Kenya. Wodarz et al. [6] designed the pathogen-
esis and treatment compartment in the modeling of HIV. Ida et al. [7] investigated non-
linear dynamical analysis of the deterministic model of HIV infection. Mastroberardino
et al. [8] studied the dynamics of the virus in Cuba. Attaullah et al. [9] designed numer-
ical schemes to study the dynamics of HIV infection in the human population. Theys et
al. [10] studied the impact of HIV-I transmission dynamics in host evolution. Bozkurt et
al. [11] investigated the stability analysis of nonlinear differential equations of the HIV
epidemic model. Nosova et al. [12] planned a study of HIV-infection transmission and dy-
namics in the human population with the size of risk groups. Sun et al. [13] studied the
estimation of the incidence rate of HIV with different methods of mathematical modeling.
Sweilam et al. studied the modeling of HIV/AIDS and malaria disease with introducing
the optimal control technique in the fractional order derivative [14]. Jawaz et al. presented
a structure-preserving numerical method for the delayed modeling of the HIV/AIDS dis-
ease. In a biological sense, the numerical method keeps the structure-preserving proper-
ties like positivity, dynamical consistency, and stability. Mushanyu et al. investigated the
impact of late diagnosis of HIV with the approach of mathematical modeling. The main
focus of this article is to motivate individuals for self-testing, treatment, and awareness
programs [15]. In 2020, Danane et al. investigated the fractional order model for hepatitis
B virus infection with well-known assumptions of mathematics [16]. In 2020, Atangana
et al. gave critical analysis about Covid-19 and how much facemasks are effective to con-
trol this pandemic around the world [17]. Goufo et al. has made great contributions and
investigated the connection of HIV and Covid-19. Also, alert notes for some countries in
the current strain of coronavirus were issued [18]. Atangana et al. investigated the dynam-
ics of Ebola hemorrhagic fever in West African countries in [19]. Owusu et al. presented
the dynamics of HIV model of Covid-19 with demographic effects by using the modeling
with delay techniques of intracellular and interruptions [20]. Delayed mathematical mod-
eling plays a significant role in the field of biomathematics. The current effort is presented
for the modeling of HIV/AIDS disease by including the delay effect. The delay effect to
control the epidemic of HIV/AIDS disease in the human population includes proper in-
formation and communication about disease, implementation of school-based sex educa-
tion, motivation for voluntary counseling and testing, awareness programs organized in
domestic level, focus on condom promotion and social marketing, motivation to sexually
transmitted infection (STI) screening and testing, effective use of antiretroviral therapy,
implementation of blood safety practices, and universal precautions. The structure of our
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paper based on the following sections. In Sect. 2, we discourse the HIV/AIDS model with
a time delay effect and discuss the equilibria of the model. In Sect. 3, we investigate the re-
production number and the sensitivity of parameters of the model. In Sect. 4, we present
well-known theorems for the local and global stability. In Sect. 5, we discuss computer
results to strengthen a hypothetical analysis of the model. At the end, the conclusion of

the study is presented.

2 Model formulation

We consider the transmission of the HIV/AIDS epidemic model with a time delay ef-
fect in the human population. In our model, N(¢) represents the total population which
we further categorize into the subpopulations as follows: At any time ¢, the unin-
fected/susceptible humans are denoted by Hx(¢), infectious humans are presented with
Hy (t), while immune humans are presented with Hz(¢). The transmission dynamics of the
considered delay model as shown in Fig. 1.

The nonnegative constraints of the delay system are defined as follows: u is the rate of
natural incidences of immune humans, ;1 is the natural mortality rate of susceptible hu-
mans, [ is the natural mortality rate of infectious humans, g is the proportionality factor
of the virus, « is the contact rate of infectious and immune humans, d is the death rate of
humans due to virus which is greater than the natural death rate, A is the recruitment rate
of humans. The following assumptions based on the modeling of HIV/AIDS with delay
effect are as follows: the human population is homogeneous; considering only the contact
of susceptible humans with infectious humans under the law of mass action, the latency
period has been ignored. Without loss of generality, all other contacts with infectious hu-
mans have been overlooked. The mathematical representation of the HIV/AIDS disease

is based on the following nonlinear delay differential equations:

Hy =A— BHx(t—t)Hy(t — t)e ™" — u1Hx(t), Vte[-t,0],7 €0,00), (2.1)
Hy = BHx(t — T)Hy (¢t — t)e ™" —aHy(t) — uaHy(t), Vte[-7,0],7 €[0,00), (2.2)

H, =aHy(t) — (u + d)Hz(¢), Vte[-7,0], (2.3)

with the initial conditions Hx(0) > 0, Hy(0) > 0, H~(0) > 0.

A HaHy

R ( N / N
udh«—’ HX BHx(t = OHy(t— 1) t HY aHy HZ ——»dH;
\ J J A :

Y,

pHz

Figure 1 Stream map of the HIV/AIDS model
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The total dynamics of system (2.1)—(2.3) is found by combining the first three equations
as follows:

Hy(t) + Hy(¢) + Hy(£) <A - puiN() and  Hx(t) + Hy(¢) + Hz(¢) = N(¢),

dN(t)
dt

<A - uiIN().
The feasible region of model (2.1)—(2.3) is as follows:
T = {Hx(t), Hy(£), Hz(t) € R : N(¢) <A - uuN(2)}.

The initial value problem, ¢'(£) = A — 1 ¢(£), with ¢(0) = N(0), has solution ¢(¢) = kje 17 —
% and lim;_, o, ¢(£) = %. Therefore, N(¢) < ¢(t), which shows that lim;_, o, sup N (¢) <
%. Thus, all solutions of system (2.1)—(2.3) lie in I'. The given region I" is structure pre-

serving for system (2.1)—(2.3), as desired. Hence, the region I" is nonnegative invariant.

2.1 Model equilibria

In this section, the system (2.1)—(2.3) will be shown to admit three types of equilibrium
such as disease-free equilibrium (DFE), trivial equilibrium (TE), and endemic equilibrium
(EE) as follows:

A; = Trivial equilibrium (TE) = (Hy, Hy, Hy) = (0,0,0);
A

A, = Disease-free equilibrium (DFE) = (H}(,H)l,,Hé) = <—,O, 0);
231

A3 = Endemic equilibrium (EE) = (H}, Hy, H),

— A_”‘lH}*( H* = O‘H;
T BHye N 0Z

where Hy = £42, Hy = G-

X T BemT?

3 Reproduction number

In this section, we employ the next generation matrix method to the system (2.1)—(2.3),
for obtaining the reproduction number by calculating the transition and transmission ma-
trices as follows [21]:

Hy| [pxer o|[Hy| [e+m o0 |[Hy

H:| | o o||Hy —a  u+d||Hz|
Thus the transmission matrix F and transition matrix V, at the disease-free equilibrium
(DFE) A4, are

paet 0
F=| # and v=|%TH? .
0 0 - w+d
Notice that the spectral radius of FV~! is called reproduction number and denoted as Ry,
and in our case Rj = %e“”.

Before closing this section, we examine the sensitivity of the reproduction number with
respect to each of the parameters involved. To that end, the following identities can be
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easily verified:
B R, A R, wi R,
g=—X =1, Sp=— X =1, = — =-1,
R, 0B R, 0A R, 9om
R, R,
Sazix - , SM=&X -2
R, o o+ Uy R, du, o+ Uy

Observe that the numbers Sg and S4 are positive. Meanwhile, the remaining numbers are
negative. We conclude that the sensitive parameters of the reproduction number are
and A.

4 Local stability
In this section, we present theorems to provide the properties of the equilibria of the

model:

Theorem The disease-free equilibrium (DFE), Ay = (H}(,H},,Hé) = (%,0, 0), is locally
asymptotically stable (LAS) if Ry < 1, for any t € [-7,0] and t € [0,00). Otherwise the
system (2.1)—(2.3) is unstable if Ry > 1.

Proof The Jacobian matrix for the system (2.1)—(2.3) at A, is evaluated as follows:

—H1 —% 0
J(A2)=] 0 %e"” — (o + [2) 0 ,
0 o —(u+d)
—p1— A -2 0
JA)-aI| =] 0 %e-ﬂf — (o + p2) — A 0 =0.
0 o —(u+d)-x

Notice that all eigenvalues of the system are as follows:
)\,1=—,bL1<0, )\22—(/,L+d)<0,

but A3 = —(1 = Ry) <0, if Ro < 1.

Hence, all eigenvalues are negative and, by Routh—Hurwitz criterion, the given equilib-
rium A; is locally asymptotically stable.

If Ry > 1, that is,

BA

— e M1,
o+ o)

BA™T > (o + o),

—p1(a + o) + BAe™* >0,
then A3 > 0. Hence, A, is unstable. O

Theorem The endemic equilibrium (EE), As = (H}, Hy, H}), is locally asymptotically sta-
ble (LAS) if Ry > 1, for all t € [-7,0] and t € [0,00). Otherwise, the system (2.1)—(2.3) is
unstable if Ry < 1.
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Proof The Jacobian matrix for the system (2.1)—(2.3) at A3 is evaluated as follows:

_BHpe P —py  —BHLe 0
J(A3) = BHye ™ BHe™ —a — uy 0
0 o —(u+d)

The eigenvalues of Jacobian matrix J(A3) are obtained as follows:

)‘-1:_(/'L+d)<0’

-BHy e — 1 — A —-BHYe "
|](A3) —)J| = Y . e ! . e X =0,
BHye BHye ™ —o — sy — A

A2+ A[Cr+ iy + 200+ py = Col + [(o + 1) (e + o) = Co) + C1C2 ] = 0.

Put, C; = BHye ™7, C, = BHye ™",
We check the conditions of the 2nd order Routh—Hurwitz criterion:

Citur+2a+pu2-C>0 and (o +uy)((e+p2) = Co) + C1C2 >0, if Ry> 1.
Hence, Aj is locally asymptotically stable (LAS). d

5 Global stability
In this section, we apply the well-known theorems to get the global properties of the equi-
libria of the model as follows [22].

Definition 1 A function V : R” — R is positive (negative) definite in a neighborhood of
the equilibria of the model if V(0,0,...,0) =0and V(x) > 0 (< 0) for X #(0,0,...,0) in T".

Definition 2 A function V : R” — R is positive (negative) semidefinite in a neighborhood
of the equilibria of the model if V(0,0,...,0) =0 and V(x) > 0 (< 0) for X #(0,0,...,0)
inT.

Theorem Suppose X' = X(Hx(t), Hy(t), Hz(t)) has equilibria and there exists a feasible
region “T'” of the equilibrium points and a function V defined in I such that:
i) Thefirst partial derivatives are continuous;
it) V is positive definite;
iii) V' is negative semidefinite.
Then the equilibria of the model are globally asymptotically stable (GAS).

Theorem The disease-free equilibrium (DFE), Ay = (Hy, Hy, H}) = (%,0, 0), is globally
asymptotically stable (GAS) if Ry < 1, forall t € [-7,0] and t € [0, 00). Otherwise the system
(2.1)—(2.3) is unstable if Ry > 1.

Proof Consider the Volterra—Lyapunov function V : I" — R defined as [23]

1 1 H)l(
V= Hx—HX—HxlogI_T +Hy +Hz, V(Hx,Hy,Hz)Er,
X
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av _(,_Hx\dHx dHy dHy
dt Hy ) dt dt dr’

dv  (Hy-H}
— (== (A - BHxHye ™" — u1Hy) + BHxHye " — puyHy — (u + d)Hyz,
dt Hyx
du -A(Hx - Hy)? L L
a5 AT )T B(Hy — HY) (Hy — HY)e ™™
dr T memy P H)(Hy - Hy)e
Hye H*
- HzH}([l - /3;7} —(u+d)Hz
2

= 4 <0 for Ry < 1,and % = 0 only if Hy = H, Hy = H}, = 0. Therefore, the only trajec-
tory of the system (2.1)—(2.3) on which ‘Z—Lt[ =0 is A,. Hence, A, is globally asymptotically
stable (GAS) in T. O

Theorem The endemic equilibrium (EE), As = (Hy, Hy, H}), is globally asymptotically
stable (GAS) if Ry > 1, for all t € [-7,0] and t € [0,00). Otherwise the system (2.1)—(2.3) is
unstable if Ry < 1.

Proof Consider the Volterra—Lyapunov function V : I' — R defined as

HX HY
V = K| Hx - Hy - Hylog — | + K;| Hy — Hy — Hy log —
Hy Hy

H
+ K, (HZ — H} — H}log —Z>
HZ

where K; (i = 1,2, 3) are positive constants to be chosen later. Then

du H}\ dH. H}\ dH H3\ dH.
ok (1-2 ) EE i1 -2 )2 ks 1- 22 ) =2
Hy dt Hy dt H; dt

av Hy — H}
27 Kk X\ (A - BHyHye ™ - H
’r 1( Hy )( BHxHye 1 Hy)
Hy - H}
+ I(z(u> (,BHxHye_HT - (XHY - /,LzHy)
Hy
H; - H}
+Kg(u)(aHy—(,u+d)Hz),
Hz
av A(Hy - HL)?
& kXTI K B(Hy — HE) (Hy — HE)e ™
dt 1 HXH)*( lﬂ( X X)( Y Y)e
B(Hx — HY)(Hy — Hy)e™™* (Hy - Hy)(Hz - H)a
-K, -K3 .
HxHy Hyz

For K; = K; = K3 = 1, we have

dV  A(Hx - Hy)*
dr HyH;;
_ B(Hx - H3)(Hy - Hy)e™™"  (Hy - Hy)(Hz — H})a
H)(HY HZ

- B(Hx - Hy)(Hy - Hy)e ™"

<0
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Table 1 Values of parameters

Parameters  Values

A 0.5

w 0.5

d 0.03

B 0.5 (DFE)

0.7 (EE)

o 0.05

M 05

125 04

= ”2—‘; <0for Ry >1, and dd—‘t/ =0 only if Hx = Hy, Hy = Hy, Hz = H}. Therefore, the only
trajectory of the system (2.1)—(2.3) on which ”Zi—‘t/ =01is As. Hence, A3 is globally asymptot-
ically stable (GAS) in I" by using the Lasalle’s invariance principle. O

6 Computer results
In this section, we investigate the simulations of the system (2.1)—(2.3) by using different
values of the parameters assumed and presented in Table 1.

Example 1 (Simulation at equilibria of the model without delay effect) Figure 2(a)—(d)
exhibits the solution of the system (2.1)—(2.3) at the disease-free equilibrium (DFE), A, =
(Hy, Hy,H}) = (%,0, 0), by using the initial conditions Hx(0) = 0.5, Hy(0) = 0.3, Hz(0) =
0.2, and the values of parameters presented in Table 1. Therefore, the system (2.1)—(2.3)
converges to Ay, and the value of reproduction number in the absence of delay term is
Ry = 0.9091 < 1. Moreover, Fig. 2(e)—(h) exhibits the solution of the system (2.1)—(2.3)
at endemic equilibrium (EE) A3 = (H¥, Hy, H}) = (0.7857,0.1948,0.0184). So, the model
converges to As, and the value of the reproduction number is Ry = 1.2727 > 1, as desired.

Example 2 (Simulation at endemic equilibrium of the model with time delay effect) Fig-
ure 3(a)—(e), exhibits the solution of the system (2.1)—(2.3) at the endemic equilibrium
(EE) with time delay effect. We can observe that the number of uninfected humans in-
creases with the increase in the delay terms and ultimately the number of infected hu-
mans decreases. Eventually, the dynamics of the HIV/AIDS model moves to disease-free
equilibrium with the effective use of delay tactics as observed in Fig. 3. Also, the repro-
duction number decreases with the increase in the delay tactics. Even more, in certain
scenarios the value of the reproduction number is less than one. So, the dynamics of the
reproduction number is independent of the values of the parameters.

Example 3 (Effect of time delay term on the reproduction number) Let v = 0.47. It is clear
that the reproduction value decreases, which moves the dynamics of the dynamical sys-
tem from endemic to disease-free equilibrium. So, the absence of persistence of disease
is stable. Yet, Fig. 4 displays the fact that the increases in delay strategy can overcome the
epidemic of HIV/AIDS, as needed.

Example 4 (Simulation for the effect of delay term on the infected component of the
model) Letting t take different values shows that the number of infectious humans tends
towards and even touches zero. Ultimately, the described rate of infectious humans has
been controlled at the given real data. Subsequently, Fig. 5 displays the fact that the delay
strategy or delay tactics such as vaccination, quarantine, restrictions, and distancing mea-

sures, etc., have a vital role to control the epidemic of HIV/AIDS in the world, as desired.
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Figure 2
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Effect of ta on RO of Delayed HIV/AIDS Model
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Figure 4 Comparison graph of the reproduction number with effect of the delay term of the model
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Figure 5 Display of the effect of delay term on infectious humans at the endemic equilibrium (EE) of the
model

7 Conclusion

In the present study, we have investigated the dynamics of HIV/AIDS in humans with
the strategy of delayed techniques. The whole population has been categorized into three
components of the population, namely susceptible, infectious, and immune. We have ver-
ified the stability of the model locally and globally by using well-known theorems. Mean-
while, we have investigated the effect of delay techniques on the reproduction number and
the infectious component of human population. After that, we have concluded that all the
nonnegative constants of the model depend on the delay parameters. Furthermore, the de-
lay techniques such as vaccination, antiretroviral therapy (ART), safe sex, and new gloves
for every patient have been addressed. Before the end of that section, we have concluded
that the analysis of delayed mathematical modeling plays a significant role in the dynam-

ics of epidemic models. In the future, we shall propose the delayed fractional order model

Page 11 0f 13
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[24, 25]. Also, this idea could be extended for fractal-fractional and fractal-fractional par-
tial differential equation models [26-28].
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