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Abstract In image pre-processing, edge detection is

a non-trivial task. Sometimes, images are affected by

vagueness so that the edges of objects are difficult to

distinguish. Hence, the usual edge-detecting operators

can give unreliable results, thus necessitating the use

of fuzzy procedures. In literature, Chaira and Ray ap-

proach is a popular technique for fuzzy edge detection in

which fuzzy divergence formulation is exploited. How-

ever, this approach does not specify the threshold tech-

nique must be applied. Then, in this work, starting from

Chairy and Ray procedure, we present a new fuzzy edge

detector based on both fuzzy divergence (thought and

proved to be a distance) and fuzzy entropy minimiza-

tion for the thresholding sub-step in gray-scale images.

Eddy currents, thermal infrared, and electrospinning

images were used to test the proposed procedure after
their fuzzification by a suitable adaptive S-shaped fuzzy

membership function. Moreover, the fuzziness content

of each image has been quantified by new specific in-

dices proposed here and formulated in terms of fuzzy

divergence. The results have been evaluated by suitable

assessment metrics here formulated and are considered

to be encouraging when qualitatively and quantitatively

compared with those obtained by some well-known I-

and II-order edge detectors.
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1 Introduction

Segmentation in Image Processing (IP) divides a digi-

tal image into disjoint regions with homogeneous char-

acteristics with respect to features, resulting in differ-

ent regions having different characteristics [?], [?], [?].

Methodologies use techniques of thresholding [?], group-

ing [?], compression [?], [?], variational procedures [?],

graph partitions [?], Partial Differential Equations (PDEs)

and multi-scale approaches [?], [?], and many others

[?], [?], [?], [?], [?]. Because they have high computa-

tional costs, such techniques are undesirable. However,
many engineering applications require only the edge de-

tection procedure (which, by the way, could represent

the first step of segmentation and registration proce-

dures). Therefore, one needs to use edge-detecting op-

erators to highlight discontinuities in features [?], [?],

[?], thereby simplifying the analysis of an image by

reducing the data to be processed [?], [?]. Although

edge detection is a technique widely addressed in sci-

entific literature, it still arouses great interest due to

the numerous fields of application [?], [?], [?], [?], [?].

There are many approaches for Edge Detection (ED).

For example, it can be implemented by a search-based

method, in which the edge strength is computed by

the I-order derivative, after which the local maxima are

sought (the Roberts, Prewitt, and Sobel approaches [?],

[?], [?], [?], [?]). Other ED procedures use the II-order

derivative or Laplacian of Gaussian (LoG) or the dif-

ference of Gaussian [?], [?], [?], [?], [?]. The LoG pro-

duces continuous closed boundaries because it is the

zero set of an implicit function; however, it is noise
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sensitive since it is a II-derivative operator [?], [?], [?],

[?]. Moreover, it can produce double edges and undesir-

able effects due to incomplete segmentation [?], [?], [?].

Then, the LoG extracts the edges by zero-crossing us-

ing very time-consuming procedures [?], [?], [?]. Thus,

the idea of using entropy for edge detection has ma-

tured and resulted in procedures with lower compu-

tational costs [?], [?]. Historically, Albuquerque et al.

[?] introduced the maximum entropy principle by us-

ing the Tsallis non-extensive entropy, while Sahoo and

Arona [?] used 2D Renyi entropy, which was obtained

from the 2D histogram established by the gray value of

the pixels and their local average. Since then, scientific

works on ED by entropy have been developed expo-

nentially. In particular, multi-threshold values for ED

have been computed by using Charvat’s and Shannon

entropies as well as sophisticated ED techniques that

are based on entropy combined with particle swarm op-

timization algorithms. However, sometimes, edges are

not clearly defined; thus, usual approaches can fail. In

such cases, Fuzzy Logic (FL) can be used to handle

vagueness, ambiguity, or both in an image by intro-

ducing suitable Membership Functions (MFs, which are

better if made adaptively). This approach makes some

Fuzzy Templates (FTs) [?], [?] or fuzzy reasoning reli-

able fuzzy edge detectors. Fuzzy Sobel ED [?], [?], for

example, calculates the gradient by combining special

gradients computed in two directions, and edges are de-

tected by thresholding using a trial and error method.

If pixels have large differences in gray levels compared

with their neighborhood region, then they are classified

in a fuzzy edge region; otherwise, they are classified

in a fuzzy smooth region. Then, the boundaries of the

two regions are determined from four threshold values

derived from a difference histogram calculated by the

maximum difference in the gray level of each pixel in

all eight directions. As performed by Kenneth [?], FTs

(denoting the possible edge directions of the image) are

convoluted with the image, and the fuzzy similarity be-

tween each pixel of the image and the pixel value of

each template is evaluated to highlight an edge in the

image by combining the obtained similarity values. As a

result, the edges are highlighted by alpha-cut threshold

operations [?], [?], [?]. Finally, Chaira and Ray [?], [?],

starting from the fuzzy Sobel procedure, proposed an

ED procedure based on 16 FTs so that the distances be-

tween the pixels of the templates and the image are for-

mulated by Fuzzy Divergence (FD), which transforms

the image into a matrix of divergences to be properly

thresholded. However, although Chaira and Ray proce-

dure the most popular approach for Fuzzy EDs (FEDs)

based on FTs, it does not take into account that entropy

represents uncertainty. The, in this work we exploit the

Fuzzy Entropy (FE) concept in order to describe the in-

formation of its uncertainty. It calculates the certainty

or uncertainty value of a dataset and helps in choosing

the dataset that satisfies the requirement of edge pix-

els, thus realizing effective edge detection. Therefore, a

reliable dataset and reliable ED can be obtained as out-

put with the function. So, in this paper, starting from

Chaira and Ray’s procedure [?], [?], a new FED ap-

proach is presented, as depicted in Fig. ??. The core of

Fig. 1: Flowchart of the proposed FED procedure.

the proposed approach (highlighted in red in the flow-

chart) is a new FE formulation. In particular, starting

from [?] in which a two-dimensional sample entropy was

exploited for assessing image texture through irregular-

ity, the new FE approach uses FD as the distances be-

tween fuzzified images to take into account the extent

of the distance between the first image and the sec-

ond one and vice versa. In addition, we prove that FD

represents a distance between images in a suitable func-

tional space. Moreover, to fuzzify each image, S-shaped

membership function has been built by exploiting both

FE minimization and noise reduction. Then, to evalu-

ate the fuzziness content of each image, four indexes of

fuzziness (IoFs) based on FD computation have been

constructed and tested on each image. The results are

interesting when quantitatively compared with other

well-established ED I- and II-order techniques [?], [?],

[?], [?] by using new formulations of reference Quality

Assessment Metrics (QAMs) here presented in which

the distances among images are computed by means of

FD formulation. Furthermore, two nonreference Qual-

ity Assessment Metrics (QAMs) [?], [?], [?] well-known

in literature have bee exploited to confirm the results

obtained with the metrics formulated in terms of FD.
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The paper is structured as follows. After some fuzzy

definitions (Section ??), the Chaira and Ray approach

is presented in Section ??. Then, the proposed algo-

rithm as a variant of the Chaira and Ray procedure is

presented in Sections ??, ?? and ??. The procedure, im-

plemented on an Intel Core 2 CPU 1.45 GHz machine

and and MatLab R© R2017a, was tested on different kind

of images (Eddy Currents (ECs) maps [?], Infrared (IR)

images [?], and Electrospinning (ES) maps [?] described

in Section ??). A brief overview on first/second-order

edge detection procedures is presented in Sections ??

and ??, respectively. Four Indexes of Fuzziness (IoFs)

were made to verify the fuzziness content in each image

as detailed in Section ??. The results are discussed in

Section ?? and compared, using the new formulation

of the reference QAMs formulation and non reference

QAMs well-known in literature (Section ??), with the

results obtained by I- and II- order techniques. Then,

some conclusions and perspective are drawn (Sections

?? and (??)). Finally, an appendix details the proof

of the Theorem ??. To improve the readability of the

paper, the list of acronyms used is shown in Tab. ??.

Table 1: Acronyms.

Acronym Description Acronym Description

IP Image ED Edge Detection
Processing

LoG Laplacian FL Fuzzy Logic
of Gaussian

FT Fuzzy FE Fuzzy
Template Entropy

FED Fuzzy Edge FD Fuzzy
Detection Divergence

MF Membership ECs Eddy
Function Currents

IR Infrared ES Electrospinning
Image

IoF Index of QAM Quality
Fuzziness Assessment

Metric
HNF Homogeneous MSE Mean Square

Nanofibers Error
MAE Mean Absolute SSIM Structural

Error Similarity
Measure

GSSIM Gradient
SSIM

2 Basic FL Concepts and Definitions

A 2D gray-level image with can be considered as a

matrix I constituted by M rows and N columns with

M ×N elements (i, j), i = 1, ...,M , j = 1, ..., N which

represent the pixels of I. We associate each pixel (i, j)

with its corresponding gray level, aij , to represent its

brightness on the range [0, 255].

Let us consider Inorm to be a new image in which each

pixel has a related gray level âij = (aij/255) ∈ [0, 1].

On Inorm, a fuzzy MF, defined as mInorm(âij) : Inorm →
[0, 1], formalizes the extent to which âij belongs to

Inorm. If mInorm(âij) = 1, then âij belongs to Inorm in

its entirety; if mInorm(âij) = 0, then âij does not be-

long to Inorm at all; finally, if mInorm(âij) ∈ (0, 1), then

âij partially belongs to Inorm. Let us consider F (Inorm)

as the fuzzified image of Inorm whose pixels represent

mI(âij), i = 1, ...,M and j = 1, ..., N .

Since the proposed procedure is a variant of the Chaira

and Ray fuzzy approach, we introduce the FED that

they proposed [?], [?].

3 FED: The Chaira and Ray Approach

Chaira and Ray’s approach uses the concept of fuzzy di-

vergence to compute the dissimilarity between fuzzified

images.

Definition 1 (Fuzzy Divergence). If U is the universe

of discourse, let us consider FS(U) as the set of all fuzzi-

fied images on U . The mapping D : FS(U)×FS(U)→
[0, 1] is a measure of FD if for each fuzzified images A

and B the following conditions are satisfied:

1) D(A,B) = D(B,A); 2) D(A,A) = 0;

3) D(A ∩ C,B ∩ C) ≤ D(A,B), ∀C ∈ FS(U);

4) D(A ∪ C,B ∪ C) ≤ D(A,B) ∀C ∈ FS(U).

From the axioms 2) and 4) we easily deduce the non-

negativity of the FD measurement.

Chaira and Ray used FD between Inorm and each of

a set of sixteen 3× 3 fuzzy templates (FTs), with gray

levels ∈ {0.3, 0.8}, to represent the edge profiles (for

details, see [?], [?]). The center of each FT is placed at

each pixel position (i, j) over Inorm. With the window of

the same size as that of the FT, indicated by (Inorm)w,

FD was defined as [?], [?]

max
number of FTs

[
min

3×3=9

(
Divergence((Inorm)w, FT)

)]
.

(1)

In (??), Divergence between (Inorm)w and FT is cal-

culated by computing the FD between each of the ele-

ments (Inorm)w(âij) and FT(i, j) of (Inorm)w, respec-

tively. We observe that, fuzzily, to define the total di-

vergence between (Inorm)w and FT, we need to take

into account how much (Inorm)w diverges from FT, i.e.

D((Inorm)w,FT), and, vice versa, how much FT di-

verges form (Inorm)w, i.e. D(FT, (Inorm)w). Then, the
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total divergence, labeled by D((Inorm)w,FT), can be

computed as [?], [?], [?]

D((Inorm)w,FT) = D((Inorm)w,FT)+ (2)

+D(FT, (Inorm)w),

where

D((Inorm)w,FT) = (3)

=

M∑
i=1

N∑
j=0

(
1−

(
1−m(Inorm)w(âij)

)
·

·em(Inorm)w( ˆaij)
−mFT(i,j) −m(Inorm)w(âij)·

·emFT(i,j)−m(Inorm)w( ˆaij)

)
and

D(FT, (Inorm)w) = (4)

=
M∑
i=1

N∑
j=1

(
1−

(
1−mFT(i,j)

)
·

·emFT(i,j)−m(Inorm)w( ˆaij) −mFT(i,j)·

·em(Inorm)w( ˆaij)
−mFT(i,j)

)
.

Remark 1 We observe that D((Inorm)w,FT), as com-

puted in (??) by (??) and (??), satisfies the four axioms

defining a measure of FD [?], [?].

Applying (??), (??), and (??) forms an FD matrix, re-

quiring the use of a threshold procedure to obtain the

edge-detected image. Chaira and Ray did not specify

which threshold technique must be applied; thus, the

choice of threshold procedure for the FD image is left to

the sensitivity of the operator. Therefore, in this work,

we present a new procedure based on FE in order to

take into account the measure of a quantity of fuzzy

information gained from a fuzzy construct.

4 The Proposed Algorithm as a Variant of the

Chaira and Ray Approach

We premise the following definition.

Definition 2 (Fuzzy Entropy) Let FE be a map de-

fined as FE : F (2X) → [0, 1], with X is a generic set.

FE, which is a fuzzy set defined on fuzzy sets, is a FE

measure if only if satisfies the following three axioms

[?]:

1) FE(A) = 0, if only if A ∈ 2X (A nonfuzzy);

2) FE(A) = 1 if only if mA(xi) = 0.5, ∀i;
3) FE(A) ≤ FE(B) if mA(x) ≤ mb(x) when mB(x) ≤
0.5 and mA(x) ≥ mB(x) when mB(x) > 0.5;

4) FE(A) = FE(Ac).

Here, as discussed in the previous Section, the proposed

approach applies the concept of FD between images,

as computed in (??), (??), and (??), and the steps of

the algorithm substantially overlap with the Chaira and

Ray procedure. However, a procedure to threshold the

FD matrix using a new approach based on both FE and

FD computations (see Section ??) is presented.

4.1 The Main Steps of the Proposed Procedure

The FED procedure proposed by the authors in this pa-

per can be divided into the following seven basic steps.

STEP 1. Apply an FT over Inorm by placing the center

of FT at each (i, j).

STEP 2. Calculate the FD value between each of the

elements of (Inorm)w and the FT, and select the mini-

mum value.

STEP 3. Repeat steps 1-2 for all 16 FTs.

STEP 4. Choose the maximum value among all 16 min-

imum FD values.

STEP 5. Place the maximum value at the point at

which the FT is centered over the image.

STEP 6. Repeat steps 2-5 for all the pixel positions to

construct a new divergence matrix.

STEP 7. Threshold the FD matrix by the joint use of

FE and FD. Here, the authors propose a new entropic

2D fuzzy thresholding method based on minimization

of FE and FD, too (see Section ??).

Once the FD matrix is computed, for each threshold

T ∈ [0 1], a σ-square matrix, Aσ
i,j

(T ), located on (i, j),

is set and considered to be another σ-square window,

Aσ
h,k(T ), located on another pixel (h, k). Their distance,

Dσ
i,j,h,k

, is first calculated by FD, D(Aσ
i,j

(T ),Aσ
h,k(T )).

The average value of all FDs obtained by moving (h, k)

in all possible positions is then calculated. Moreover,

we calculate the further average value obtained by mov-

ing (i, j) in all possible positions (indicated by χσ(T )).

We repeat the procedure for σ+ 1-square windows and

obtain χσ+1(T ). FE is the − ln of the conditional prob-

ability that two similar σ-dimensional patterns remain

similar for σ+1. FE is the − ln of the conditional prob-

ability that two similar σ-dimensional patterns remain

similar for σ + 1. Then,

FE(T ) = − ln(χσ+1(T )/χσ(T )), (5)

so that

FE(T ) = ln(χσ(T )/χσ+1(T )). (6)
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With (??) taken into account, Toptimum can be obtained

by

Toptimum = arg min
T

{
| ln(χσ(T )/χσ+)(T )|

}
. (7)

A pre-treatment can be implemented to improve the im-

age quality globally ([?], [?], [?]). Section ?? details the

proposed approach to compute a new 2D fuzzy entropy.

Before continuing with the discussion, the following re-

mark is necessary.

Remark 2 FD (??) (together with (??) and (??)) leads

to the calculation of Dσ
i,j,h,k

= D(Aσ
i,j
,Aσ

h,k). To con-

sider (??) as a distance between images, we first need to

define a suitable metric space and, on this space, verify

that (??) represents a distance function. The following

definition formalizes the metric space.

Definition 3 Let us consider the set X of all real-

valued MFs, mInorm(âij), of images Inorm on âij , de-

fined and continuous on Ω = [0 1]. Choosing the metric

D (i.e. fuzzy divergence, FD), defined by (??), (??),

and (??), we obtain C(Ω, D).

To ensure that D is a metric for C(Ω,D), we prove

that FD satisfies all the axioms of the metric spaces.

The following result holds.

Theorem 1 Let us consider three generic fuzzy images

F (Inorm)j, j = 1, 2, 3, whose respective MF values are

âij, b̂ij, ĉij ∈ X. Then, (??) satisfies the following four

properties of the metric spaces:

1) D(F (Inorm)1, F (Inorm)2) ≥ 0; (8)

2) D(F (Inorm)1, F (Inorm)2) = 0 ⇔ (9)

F (Inorm)1 = F (Inorm)2;

3) D(F (Inorm)1, F (Inorm)2) = (10)

= D(F (Inorm)2, F (Inorm)1);

4) D(F (Inorm)1, F (Inorm)2) ≤ (11)

≤ D(F (Inorm)1, F (Inorm)3)+

+D(F (Inorm)3, F (Inorm)2).

Proof See Appendix ??.

Remark 3 As shown in Appendix ??, the proof of The-

orem ?? is related to the images F (Inorm)1, F (Inorm)2,

and F (Inorm)3. However, the proof is still valid even if

their portions are considered.

Remark 4 It is worth nothing that the total divergence,

D((Inorm)w,FT), in (??), is computed by adding the

two items, D((Inorm)w,FT) and D(FT, (Inorm)w), de-

fined in (??) and (??), respectively. As declared in (??),

the total divergence, D((Inorm)w,FT), obeys commu-

tative law, while both the items D((Inorm)w,FT) and

D(FT, (Inorm)w) do not obey the commutative law. In

other words, D((Inorm)w,FT) 6= D(FT, (Inorm)w) but

D((Inorm)w,FT) satisfies the commutative law.

5 The Core of the Proposed Approach: A New

Formulation of FE

As in [?], let us consider a generic M×N normalized im-

age Inorm on which to define Aσ
i,j

, which is the σ-length

square window/pattern of origin (i, j). Aσ
i,j

represents

the pixels in Inorm of indices ranging from i to i+σ−1

and from column j to j + σ − 1. Matricially:

Aσ
i,j

=


Inorm(âi,j) .. Inorm(âi,j+σ−1)

Inorm(âi+1,j) .. Inorm(âi+1,j+σ−1)

.. .. ..

Inorm(âi+σ−1,j) .. Inorm(âi+σ−1,j+σ−1)


(12)

and Aσ+1

i,j
represents the σ+1 square window. Addition-

ally, Sσ = (M−σ)×(N−σ) denotes the total number of

square windows in Inorm generated for both the σ and

σ+1 size. It is necessary that both the last σ-length row

and column of Inorm are eliminated to ensure that Aσ
i,j

and Aσ+1

i,j
can be defined for all indices (1 ≤ i ≤M−σ,

1 ≤ j ≤ N − σ). For Aσ
i,j

and its neighboring windows,

Aσ
h,k, we quantify the distance between them, labeled

by Dσ
i,j,h,k

. By Theorem ??, Dσ
i,j,h,k

= D(Aσ
i,j
,Aσ

h,k).

Remark 5 In contrast to [?], the novelty introduced here

involves the use of FD as the distance between Aσ
i,j

and

Aσ
h,k to take into account how far Aσ

i,j
is from Aσ

h,k and

vice versa.

The degree of similarity of each pattern is averaged

to obtain

χσ
i j

= (Sσ − 1)−1

h=M−σ,k=N−σ∑
h=1,k=1

Dσ
i,j,hk

, (13)

with (h, k) 6= (i, j), constructing

χσ = (Sσ)−1

i=M−σ,j=N−σ∑
i=1,j=1

χσ
i j
. (14)
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Analogously, for σ + 1,

χσ+1

i j
= (Sσ − 1)−1

h=M−σ,k=N−σ∑
h=1,k=1

Dσ+1

i j,hk
, (15)

with (h, k) 6= (i, j), to construct

χσ+1 = (Sσ)−1

i=M−σ,j=N−σ∑
i=1,j=1

χσ+1

i j
. (16)

As in (??), the FE of Inorm can be computed as

FE(Inorm) = − ln(χσ+1/χσ) = ln(χσ/χσ+1). (17)

This concludes the main steps of the proposed approach,

which is based on the fuzzy MF concept. Considerable

attention must be paid to its formulation because it

is necessary to guarantee the smoothing properties of

fuzzified images to ensure adaptive formulations, de-

pending on the image to be fuzzified. The next section

proposes a procedure to adaptively construct suitable

fuzzy MFs by the joint application of a noise reduction

approach and the entropy maximization principle.

6 What About the Fuzzy MF?

To fuzzify Inorm, we use an S-shaped MF with good

smoothing properties, depending on three shape param-

eters, s1 s2, and s3, s1 < s2 < s3, set adaptively. ∀âij
in Inorm, it is defined as
mInorm(âij) = 0 if 0 ≤ âij ≤ s1,
mInorm(âij) =

(âij−s1)2
(s2−s3)(s3−s1) if s1 ≤ âij ≤ s2,

mInorm(âij) = 1− (âij−s3)2
(s3−s2)(s3−s1) if s2 ≤ âij ≤ s3,

mInorm(âij) = 1 if âij ≥ s3.

In U , s1 and s3 are adaptively set by a noise reduc-

tion approach. Since s2 is located around a gray level

whose MF value falls around 1/2 (maximum dispersion

of information), it is set it by the entropy maximization

procedure (see Fig. ??).

6.1 s1 and s3: A Noise Reduction Approach

Starting from [?], we consider the gray-level distribu-

tion of F (Inorm) and its histogram, Hist{F (Inorm)}. From

the trend of the histogram of F (Inorm) they are high-

lighted a number of peaks. Let g denote the number of

these peaks indicated by Hist{F (Inorm)}1,

Hist{F (Inorm)}2,..., Hist{F (Inorm)}g. Then we compute∑g
i=1Hist max(mInorm(âij))mInorm(âij)∑g

i=1mInorm(âij)
, (18)

Fig. 2: S-shaped membership function: noise reduction

and entropy maximization criteria to quantify the shape

parameters adaptively.

which represents the height of the center of gravity of

Hist{F (Inorm)}, taking into account the mutual posi-

tion of Hist{F (Inorm)}j , j = 1, 2, ..., g, in Hist{F (Inorm)}.

Remark 6 (??) is more complete than that obtained

from the typical one g−1
∑g
j=1Hist max(mInorm(âij)),

which does not take into account the mutual position

of Hist{F (Inorm)}j , j = 1, 2, ..., g, in Hist{F (Inorm)}.

From the set of g peaks, we select t ≤ g peaks larger

than (??) (the others are less significant). From this re-

duced set of peaks, we select both maximum and min-

imum values: all pixels with a gray level lower than

the minimum value are considered to be background,

while all pixels with a gray level higher than the max-

imum value are similar to noise. Moreover, assuming

that loss of information inside F (Inorm) occurs in the

neighborhood of the extremes of the range of their gray

levels, it is appropriate to identify two particular gray

levels, gl1 and gl2, with gl1 < gl2, so that the loss

of information is equal to a fixed value lossinformation:∑gl1
i=min(mInorm (âij))

Hist(i) = lossinformation,∑max(mInorm (âij))
i=gl2

Hist(i) = lossinformation, and

0 < lossinformation < 1. Thus, both s1 and s3 are ob-

tained as
s1 =

max
(
mInorm ( ˆaij)

)
−min

(
mInorm ( ˆaij)

)
2 +

+ min
(
mInorm( ˆaij)

)
,

s3 =
max

(
mInorm ( ˆaij)

)
+hk

2 + hk.

Once s1 and s3 have been adaptively set, s2 can be set

by the entropy maximization principle. The following

subsection details the idea.

6.1.1 s2: Entropy Maximization Adaptive Procedure

Since s2 ∈ (s1, s3), the entropy of F (Inorm), E
(
F (Inorm)

)
,

will depend on F (Inorm), and s1, s2, s3, as well, such

that min
{
mInorm(âij)

}
≤ s1 < s2 < s3 ≤max

{
mInorm(âij)

}
.

Furthermore, s2 must be located so that its fuzzy mem-

bership degree is equal (or very close) to 0.5. In other
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words, s2 represents the point of U at which the maxi-

mum FE occurs. Then, s2 can be obtained as{
s2
}
optimum

= arg max
s2
|
(
FE(Inorm), s1, s2, s3

)
|, (19)

where
(
FE(Inorm), s1, s2, s3

)
is computed using the pro-

posed algorithm in Section ??.

Remark 7 We observe that s2 has been computed through

the criterion of maximization of entropy. This is due to

the fact that s1 < s2 < s3, and s2 have a membership

degree very close to 0.5 where, notoriously, the fuzzy

entropy assumes a maximum value.

The procedure was qualitatively and quantitatively val-

idated by using three experimental gray-level image

datasets. The first database contains a set of gray-level

EC maps that were established by subjecting steel plates

to bi-axial loads, while the second dataset involves a

set of gray-level thermal camera IR images of ballistic

interest. Finally, gray-level electrospinning images are

taken into account.

7 The Experimental Databases Description

7.1 ECs maps

This campaign of measurements was developed at our

NDT & E Lab, in which 180 × 180 × 5m steel plates

under symmetrical bi-axial loads (160kN , with an un-

certainty of about 5%) were investigated. Because of

the microscopic structure of the material, the exter-

nal load locally modifies the magnetic properties of the

plates, whose degradation were investigated by analyz-

ing the changes in the magnetic field H induced in the

material when the deformations take place. The sen-

sor was a FLUXSET R© probe [?] whose pick-up voltage

provides a measure proportional to the component of

|H|, parallel to the longitudinal axis of the sensor. Fur-

thermore, both an AC sinusoidal exciting field (1kHz)

and an electric current (120 mA RMS) were applied.

With regard to the driving signal, a triangular shape at

a frequency of 100kHz with a 2V pp amplitude was cho-

sen. After the symmetrical bi-axial load application, the

specimens were investigated by obtaining four 2D sig-

nals that are representative of the real part, the imag-

inary part, the module, and the phase of the pick-up

voltage ([mV ]) at each point of the surface of the speci-

men. For our purposes, each 2D EC map is represented

as a gray-scale image (one of them is depicted in Fig.

??), and the considered database contains 75 images

that show the real part of the pick-up voltage.

(a) (b)

Fig. 3: (a) A Typical EC map. (b) An example of IR

image.

7.2 Thermal Camera IR Images

IR thermography is a non-destructive diagnostic tech-

nique that measures the IR emitted by a body to deter-

mine its surface temperature. According to the Stefan-

Boltzmann law, the amount of IR emitted depends on

the fourth power of the absolute surface temperature

of an object. The employed dataset, available online for

free at https://www.flir.com/oem/adas, contains more

than 14K total thermal 8-bit images, with more than

10K from short video segments and random image sam-

ples. The captured images were recorded at 30 Hz, with

sequences sampled at 2 (or 1) frame per second. In the

experiment, we chose IR images with presence of a hu-

man in thick vegetation (100 images). An Example of

IR images is shown in Fig. ??.

7.3 Electrospinning Images

ES is a process by which a solution or molten poly-

mer can be spun into small-diameter fibers (3 nm and 4

µm) by a high electric potential [?] to obtain fibers with

high surface area with respect to the volume and supe-

rior mechanical performances compared with any other
known form of material. The spinneret is connected to

a syringe containing the melted polymer, which passes

through the spinneret with a constant and controllable

flow. When a high potential difference is applied be-

tween the syringe capillary and the collector (usually

between 1 and 30 kV), a drop of the extruded polymer

is formed. As the electrical tension increases, the drop

undergoes a repulsive force, so it is distorted into a con-

ical shape [?], [?], [?], [?]. As soon as the electric field

exceeds a certain value, the electrostatic forces prevail

over the surface tension of the drop and cause the ex-

pulsion of a jet of liquid. The solvent traveling toward

the evaporate collector increases the surface charge of

the jet-inducing instability that the whipping motion

undergoes, leading to the formation of a thin wire. The

charged fiber is attracted by the collector and goes on

to deposit itself over it as a non-woven fabric with a

random orientation. Usually, poly-vinyl-acetate (with

an average molecular weight of 170 × 103 g/mol) and

ethanol are employed as the polymer and solvent, re-
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spectively. If the morphology of the produced nanofiber

is analyzed by means of a Phenom Pro-X scanning elec-

tron microscope (SEM), it is possible to produce gray-

level SEM images. In this work, the SEM image dataset

proposed in [?] was used. In particular, it consists of 75

images of homogeneous nanofibers (HNFs). All images

are 128×128. As an example, Fig. ?? shows HNF SEM

image. The proposed approach was applied to all fig-

Fig. 4: An example of HNF SEM image

ures of the three above-mentioned databases. Section

?? provides a brief overview of typical I- and II-order

edge detectors that were used in this work to compare

the results obtained by using the proposed procedure.

8 First-Order Edge Detection Procedures

8.1 The Roberts Procedure

Roberts operators are based on the implementation of

diagonal differences [?]. Taking into account a region

3 × 3 of I, [z1 z2 z3; z4 z5 z6; z7 z8 z9], the

diagonal differences, (I)i = z9 − z5 and (I)j = z8 − z6,

are implemented by means of 2 × 2 template filtering.
However, they are not able to calculate the direction

because they are not symmetrical with respect to the

central point, so one applies 3× 3 templates while con-

sidering the nature of the data on opposite sides with

respect to the central point.

8.2 The Prewitt and Sobel Procedures

The approximations of (I)i and (I)j , with 3 × 3 tem-

plates, are given by (z7 + z8 + z9)− (z1 + z2 + z3) and

(z3+z6+z9)−(z1+z4+z7), respectively. The difference

between the third and the first row of the 3×3 region ap-

proximates (I)i, while the difference between the third

and the first column approximates (I)j . Both (I)i and

(I)j can be implemented by filtering with two templates

that represent the Prewitt operators. Instead, consider-

ing 2z8 and 2z2, a slight smoothing of I is introduced.

The templates represent Sobel operators [?].

9 Second-Order Edge Detection Procedures

In an image, the intensity variations depend on the im-

age scale; thus, their identification requires the use of

operators with higher orders [?]. In addition, a sudden

intensity change produces either a peak along the first

derivative or a zero-crossing in the second derivative. To

build an operator, it is necessary that: 1) it represents

a differential operator able to calculate digital approx-

imations of first and second derivative, ∀(i, j) ∈ I; 2) it

is adjusted to act on each selected scale, so larger oper-

ators can be used to identify blurred edges, and small

operators identify poorly visible details [?], [?].

9.1 Laplacian of Gaussian (LoG) and Zero-Cross

Approaches

The best operator with respect to both conditions 1)

and 2) is ∇2G(i, j), where G(i, j) = e
i2+j2

std2 , with std

denoting the standard deviation. Combining ∇2(·) with

G(i, j), we achieve ∇2G =
[
i2+j2−2std2

std4

]
e−

i2+j2

2std2 , which

represents the LoG. It easy to prove that the zero-

crossings of the LoG occur in i2+j2 = 2std2. Then, tem-

plates are built by sampling ∇2G(i, j) and scaling its

coefficients so that they give a zero-sum. Alternatively,

it is possible to sample ∇2G(i, j) to the desired size

and convolve the results with a Laplacian template. By

convolving I with a template whose coefficient gives a

zero-sum, one obtains results with elements that give a

zero-sum to satisfy the requirement that the sum of the

LoG filter coefficient be zero. The algorithm performs

the convolution of ∇2G =
[
i2+j2−2std2

std4

]
e−

i2+j2

2std2 with

I; after that, it determines the edge position by com-

puting the zero-crossing (using a 3 × 3 pixel-centered

neighborhood so that the signs of at least two of its

opposite neighboring pixels must be different) [?], [?].

9.2 The Canny Approach

This approach uses the calculation of the variations for

the search of the function to optimize a given functional

defined as the sum of four exponential terms or by the

first derivative of a Gaussian function. If the algorithm

uses a filter based on a derivative before a Gaussian,

the results are affected by the noise in I, that needs

a pre-treatment based on convolution with a Gaussian

filter to obtain a slightly blurred image in which no

pixel is significantly affected by noise. After that, four

different filters identify the horizontal, vertical, and di-

agonal contours in I. The direction relative to the filter

that provides the most value is assumed to be valid
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on each resulting pixel. This direction, combined with

the value obtained by applying the filter, corresponds

to that in which there is the maximum brightness gra-

dient for each point of I. Only the points correspond-

ing to local maxima (points at which the derivative of

the gradient is zero) are considered to belong to an

edge. Finally, contour extraction is performed with a

thresholding procedure with hysteresis. In particular,

two thresholds are defined (one high and one low that

justify the reference to hysteresis) and compared with

the gradient at each point. If the gradient is less than

the low threshold, then the point is discarded; if, in-

stead, it is greater than the high threshold, the point is

considered to belong to an edge. Finally, if the gradi-

ent is between the two thresholds, the point is accepted

as an edge if it is contiguous to a previously accepted

point. For more details, see [?], [?].

9.3 The Otsu-Canny Approach

The Otsu operator [?], also-called the maximum class

square error method, is a self-adapting threshold deter-

mination method solving the Canny operator’s prob-

lem, which is that it is unable to select the high and

low thresholds adaptively according to the image char-

acteristics [?]. The Otsu operator uses the thresholds to

divide the image into background and target. The best

threshold occurs when the difference between the back-

ground and the target is greater. In other words, the

maximum variance between the background and target

classes is obtained. The procedure for obtaining the op-

timal threshold value for the Otsu operator is as follows.

If T is the segmentation threshold between the back-

ground and targe of an image, the grayscale range of

the image is G = [0, L−1], while the probability of each

grayscale is indicated by pi. Then, T divides the image

into two cateories: G0 = [0, T ] and G1 = [T + 1, L− 1].

Thus:

1. the probability of G0 and G1 are α0 =
∑T

0 pi and

αi = 1− α0, respectively;

2. the average gray values of the two categories G0

and G1 are µ0 = µT
α0

and µ1 = µ−µT
1−α0

, respectively,

in which µ =
∑L−1

0 i× pi and µT =
∑T

0 i× pi;
3. the cluster variance of the two categories is com-

puted as follows:

η2(T ) = α0(µ0 − µ)2 + α1(µ1 − µ)2− (20)

−α0α1(µ0 − µ1)2.

Finally, to obtain Toptimal it is sufficient to compute

max(η2(T )).

The procedure proposed in this paper is reasonable to

apply if the fuzziness content of each processed image,

quantified by suitable IoFs, assumes appreciable values.

In Section ?? we presents a new approach to evaluate

IoFs, based on FD formulation, that are useful for our

purposes.

10 Suitable Indexes of Fuzziness (IoFs)

An IoF of F (Inorm), defined in [?], is depending on

dp(F (Inorm), F (Inorm)), which represents a p-distance

between F (Inorm) and its nearest ordinary image

F (Inorm), whose MF is defined as in [?]. Moreover,

IoF (F (Inorm)) ∈ [0 1]. The higher the value of

IoF (F (Inorm)), the greater the fuzzy distance of F (Inorm)

from its nearest crisp image. In addition, IoF (F (Inorm))

can be considered a fuzziness measure in F (Inorm). To

underline the fuzziness of the problem, since FD is a dis-

tance between fuzzy images (Appendix ??) that takes

into account how far one image is from the other and

vice versa, we define IoFs as follows.

Definition 4 With Dp
(
F (Inorm), F (Inorm)

)
denoting

the FD between F (Inorm) and F (Inorm), in which the

differences among MF values are considered to be a

power of p ∈ N− {0}, we define a new IoF as

IoF (F (Inorm)) = 2(M ×N)−
1
p · (21)

·
(
Dp
(
F (Inorm), F (Inorm)

))1/p
, p ∈ N− {0}.

From which the linear and quadratic IoFs are

(IoF )p = 2(M ×N)−
1
p · (22)

·
(
Dp
(
F (Inorm), F (Inorm)

)) 1
p

, p = 1, 2.

Moreover, Yager’s Measure, defined as

(YM)p = 1− (M ×N)−
1
p · (23)

·
(
Dp
(
F (Inorm), F (Inorm)

)) 1
p

, p = 1, 2,

can be used.

Once the proposed procedure is applied to images, we

use QAMs to evaluate their quality performances. Sec-

tion ?? details some reference and nonreference QAMs

suitable for our purposes.
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11 QAMs for ED Procedures: Reference &

Nonreference ED Measures

11.1 Reference ED Measures: Mean Square Error

(MSE), Mean Absolute Error (MAE), Structural

Similarity Measure (SSIM)

The simplest way to evaluate the performance of an

edge detector is to quantify the distance (or the similar-

ity) between the segmented image, I(aij), and an image,

I(bij), whose edges have been optimally detected [?],

[?]. Two simple statistical indexes are MSE and MAE.

It is worth noting that, in this work, the distances be-

tween two fuzzified images, F (Inorm)1 and F (Inorm)2,

were quantified by FDs, D(F (Inorm)1, F (Inorm)2), in

order to take into account how far F (Inorm)1 is from

F (Inorm)2, and vice versa. Then:

MSE = (M ×N)−1· (24)

·
N∑
i=1

N∑
j=1

(
D(F (Inorm)1(i, j), F (Inorm)2(i, j))

)2
,

MAE = (M ×N)−1· (25)

·
N∑
i=1

N∑
j=1

∣∣∣D(F (Inorm)1, F (Inorm)2)
∣∣∣.

SSIM is based on the fact that the human visual system

extracts structural information to define the similarity

between two images, I1 and I2, as a function of lumi-

nance l(I1, I2), contrast c(I1, I2), and structure s(I1, I2)

(depending on statistical parameters). In other words,

SSIM = l(I1, I2)c(I1, I2)s(I1, I2). SSIM is applied to

non-overlapping windows. Thus, the mean of the SSIM

values over the entire image is used to indicate the simi-

larity between two images. For our goals, I1 and I2 rep-

resent fuzzified images, while they represent normalized

images for the remaining approaches used for compari-

son [?].

11.2 Nonreference ED Measures: Yitzhaky/Peli

Measure and Panetta Measure

Yitzhaki and Peli automatically estimate the background

truth map by examining the corresponding threshold

receiver operating characteristics curve, starting from

a range of detection results and obtained from differ-

ent detection parameter sets. The single parameter set

is identified from the edge map that is most similar

to the estimated background truth edge. The Yitzhaky

procedure, which uses the N results obtained from N

applications of an edge detector using N different pa-

rameters, selects the optimal operating parameters by

a specific criterion. For our purposes, if the edge detec-

tor used is of the crisp type, the images used are the

normalized raw images. Otherwise, using the proposed

algorithm, the images to be processed are the fuzzified

ones ([?]). The approach proposed by Panetta et al. [?]

is structured in three steps: 1) generation of a gray-

scale edge map; 2) reconstruction procedure; 3) use of

a similarity measure. Starting from an extracted edge

map, a continuous edge map is generated by a morpho-

logical dilation to contain information from the original

image and multiplied with the original image to achieve

a new gray-scale edge map. To establish an effective re-

construction procedure with a good balance and robust-

ness to noise, Panetta et al. [?] used a weighted α that

was trimmed on the basis of the parameter α (tuned

for different applications). The reconstructed image was

compared with the original image by a similarity mea-

sure on the basis of the Gradient SSIM index [?], which

compares both images and their gradient to produce a

similarity measure with good performance, even when

images are affected by distortions (for details, see [?]).

Remark 8 It is worth nothing that MSE, MAE and

SSIM are reference ED Measures. They measure a sort

of distance of an edge detected image from another one

considered as excellent. Here, Canny’s procedure with

Otsu operator provides the best results in terms of edge

detection (that is, the method that most details the

edges in an image) so that the images achieved by this

procedure represent the reference images from which to

compute MSE, MAE and SSIM , unlike the Yitzhaki
& Peli and Panetta measures which are non-reference

ED measures for which they do not require reference

images.

12 Numerical Results

For each image, (IoF )1, (IoF )2, (YM)1, and (YM)2
values were plotted in Figg. ??, ?? and ?? noting that

the indexes do not assume trends suggesting us that

behaviors can be linked to each category of images.

However, the high values obtained confirmed the high

content of fuzziness in each image; so that, all images

were edge-detected with performances considered satis-

factory because almost equivalent to the edge detection

results achieved by means of Canny’s procedure (with

Otsu operator). These results were confirmed through

the implementation of the references/non references QAMs.
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Fig. 5: IoF for EC maps.

Fig. 6: IoF for IR images.

Fig. 7: IoF for HNF images.

12.1 Edge Detection of ECs maps

The proposed procedure identifies the transversal lines

at which the most significant gradients occur; this is

in contrast to the I-order techniques, which are un-

successful. As regards the results obtained with the II-

order techniques, LoG and Zero-Cross identify the main

line of the pick-up voltage gradient (secondary diago-

nal, which is considered the most dangerous since it

is linked to high mechanical stress states) but do not

identify less intense gradients, which are necessary to

define the health of the plate. Completely different are

the results obtained with the Canny operator (with and

without Otsu operator), which identifies all the gradi-

ents of the pick-up voltage to provide a complete and

exhaustive edge detection. Therefore, qualitatively, the

performances obtained with the proposed approach can

be considered almost equivalent to those obtained with

the Canny procedure with Otsu operator. As an exam-

ple, Fig. ?? depicts the ED of an EC map (Fig. ??) by

the proposed procedure, showing that the performance

obtained is very close to that obtained with the Canny

& Otsu approach (Fig. ?? and Fig. ??). Figg. ??, ??,

and ?? demonstrate the disappointing results from ap-

plying the I-order procedures, while Figg. ?? and ??,

relating to the performance of the LoG and Zero-Cross

operators, respectively, confirm that a good detection

is achieved only of the diagonal of greater stress.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8: EC map: ED performed by (a) the proposed
approach; (b), (c), and (d) by the Roberts, Prewitt,

and Sobel approaches; (e), (f), (g) and (h) by the LoG,

Zero-Cross, Canny and Canny & Otsu procedures.

Quantitatively, the situation does not change in sub-

stance and agrees with the qualitative analysis. In fact,

with the image obtained using the Canny operator (qual-

itatively, it is the most complete in highlighting all the

edges) used as a reference, all the merit curves relating

to the reference QAMs are traced (see Figg. ??, ??, and

??), highlighting that the proposed procedure demon-

strates a performance that is very close to that obtained

by the Canny operator. To further confirm the similar-

ity between the performance of the proposed procedure

and the performance obtained with Canny’s operator,

the merit curves for Yitzhaky’s and Panetta’s measures

were determined (Figg. ?? and ??), and the similarity

is evident. Furthermore, it is worth noting that the non-

reference QAMs differentiate the performance between
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operators with greater clarity compared with the ref-

erence measures, which, while showing the similarity

in performance between the proposed procedure and

Canny’s approach, do not provide differentiation that

is sufficient to assess the differences in the performance

of other procedures.

(a) (b)

(c) (d)

(e)

Fig. 9: QAMs for EC maps: (a) MSE, (b) MAE, (c)

SSIM, (d) Yitzhaky’s measure, (e) Panetta’s measure.

12.2 Edge Detection of IR Images

The proposed approach is able to detect, with a good

level of detail, the presence of humans in shaded areas

with thick vegetation. The Roberts, Prewitt, and Sobel

techniques fail to detect the presence of humans while

detecting, with a fair degree of detail, edges related to

other areas of the images. The LoG and Zero-Cross,

which show better performance compared with the op-

erators of the first order, are able to detect the presence

of humans but with an insufficient level of detail. For

the EC maps, the Canny operator (with and without

Otsu procedure) exhibits excellent performance by de-

tecting the presence of humans even in dense shadow

areas (Figures ?? and ??). Additionally, for this type of

image, the performances of the proposed approach and

the Canny method can be considered similar. As an ex-

ample, Fig. ?? shows the performance of the proposed

approach as an elaboration of Fig. ??, highlighting the

good comparability to the performance obtained with

the Canny operator (see Fig. ??). The Roberts, Pre-

witt, and Sobel procedures, as shown in Figg. ??, ??,

??, do not exhibit acceptable performances. However,

Figg. ?? and ??, as II-order operators, detect, albeit

weakly, the presence of humans.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 10: IR image: ED performed by (a) the proposed

approach; (b), (c), and (d) by the Roberts, Prewitt,

and Sobel approaches; (e), (f), (g) and (h) by the LoG,

Zero-Cross, Canny and Canny & Otsu procedures.

The qualitative analysis was confirmed by tracing

the merit curves of the reference metrics (Figg. ??, ??,

??, referred to the image obtained with the Canny oper-

ator) and non-reference metrics (Figg. ?? and ??), high-

lighting the similarity between performances of the pro-

posed approach and the Canny procedure. It is worth

noting that, contrary to the results obtained with the

EC maps, given the wealth of details contained in the

images analyzed and the fact that they do not have

the same panoramic scenarios, the figures of merit are

erratic. However, despite the presence of these oscilla-

tions, the qualitative differences in performance of the

edge detectors are highlighted as a result of the loca-
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tion of the individual curves in certain ranges of metric

values.

(a) (b)

(c) (d)

(e)

Fig. 11: QAMs for IR images: (a) MSE, (b) MAE, (c)

SSIM, (d) Yitzhaky’s measure, (e) Panetta’s measure.

12.3 Edge Detection of HNF SEM Images

The proposed approach applied on HNF SEM images

is satisfactory since the detected textures are extremely

detailed (Fig. ??) and equivalent to those obtained with

the Canny procedure (Figures ?? and ??). The LoG

and Zero-Cross procedures (Figg. ?? and ??) offer good

results so they are still attractive in this type of image;

while the I-order techniques produce poor performances

(Figg. ??, ?? and ??).

The curves of merit (Fig. ??, ??, ??, ?? and ??)

confirm the results highlighted by the qualitative anal-

ysis. One more time, the curves of merit highlight the

different performances because of the distinct ranges of

metric values, each derived from edge detectors with

equivalent performance. Further, the presence of oscil-

lations in the curves of merit is due to the high differ-

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 12: HNF SEM image: ED performed by (a) the

proposed approach; (b), (c), and (d) by the Roberts,

Prewitt, and Sobel approaches; (e), (f), (g) and (h) by

the LoG, Zero-Cross, Canny and Canny & Otsu proce-

dures.

entiation of the images subjected to processing. How-

ever, the amplitudes of these oscillations are reduced

compared with the IR images because the textures of

the HNF SEM images are similar to each other, quan-

titatively confirming that which is highlighted by the

qualitative analysis.

13 Conclusions

In this paper, a new approach based on the joint use

of FE and FD is presented and tested for solving the

ED problems for gray-level images characterized by un-

certainty, imprecision, or both. First, it is proved that

a particular FD formulation is also a distance between

images. With a well-known FED approach (Chaira and

Ray [?]) and FE procedure (Silva [?]) used as a basis,

the proposed procedure acts on [?] in its thresholding

step by implementing the modified FE [?], in which the

distances between images are computed by means of

FD. In addition, the new approach for image fuzzifica-

tion presented in this paper, based on S-shaped mem-

bership functions in which the shape parameters have

been selected by FE and noise reduction, unlike other

well-known procedures [?], [?], allows us to adaptively
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(a) (b)

(c) (d)

(e)

Fig. 13: QAMs for HNF images: (a) MSE, (b) MAE, (c)

SSIM, (d) Yitzhaky’s measure, (e) Panetta’s measure.

fuzzify the images under study. This new formulation of

FE by FD, unlike Silva’s procedure [?] and other well-

established approaches [?], [?], [?], [?], allows us to take

into account how far an image is from another one and

vice versa. The proposed procedure was tested on three

kinds of images (EC maps, IR images, and, finally, ES

images after their fuzziness levels were checked by new

suitable IoFs here presented), and the obtained results

were compared with those achieved by well-established

crisp techniques based on I- and II-order derivatives [?],

[?]. The results are considered to be highly encouraging

because the ”ad hoc” formulated reference QAMs con-

firm, for all images analyzed, that the performance of

the proposed procedure is almost equivalent to the per-

formance of the most popular edge detector, namely,

Canny’s edge detector (with & without Otsu proce-

dure). In particular, the proposed QAM values, unlike

other existing and well-established metrics [?], [?], [?],

fall within certain numerical intervals that are distinct

from each other, even if depending on the applied ED

procedure. Therefore, this suggests that, for the same

images, different conditions lead to different trends of

merit curves. This is more intuitive if we refer to the EC

maps, in which different bi-axial loads result in differ-

ent EC maps and, therefore, different curves of merit.

Thus, in this case, the curves of merit can be used to

classify classes of bi-axial loads, even though this is fa-

vored by the fact that the values of the QAMs obtained

for the EC maps have reduced fluctuations with respect

to the QAM values achieved when IR and ES images

were analyzed. The proposed method is preferable to

the Canny method [?], [?], [?], [?] since the Canny

procedure (with or without Otsu thresholding) has a

considerably higher computational complexity (it is a

II-order differential method). Furthermore, the Canny

procedure does not take into account any fuzziness con-

tent of each image. In other words, the performance of

the Canny procedure (with or without Otsu threshold-

ing) is slightly higher than the proposed procedure, so

that, for real-time application, the proposed approach

is preferred as it is characterized by a lower computa-

tional complexity.

14 Perspectives

This work has to be considered as a forerunner for fu-

ture insights. The following remarks can be considered

as a starting point for future research. In particular:

– in this paper, the FD exploited was selected from

a large number of formulations which, on the one

hand, met the four axioms as detailed in Definition

?? and, on the other, could be considered as a mea-

sure of distance between fuzzified images. In this

framework, it would be appropriate to develop an
adaptive construction technique of FDs that must

meet regularity requirements and, moreover, ensure

both existence and uniqueness. Finally, it is imper-

ative that the choice of the FD construction should

be automated and made adaptive according to the

characteristics of the images under study;

– an important aspect of the proposed approach con-

cerns the fuzzification of images. The use of the S-

shaped MF, built using criteria based on entropy

maximization and noise reduction as well, has pro-

vided good results as the totally automated pro-

cedure is adaptive and sets the shape parameters

according to the image under study. However, it

would be appropriate to develop in the future a

more refined technique for noise reduction taking

into account the different types of corruption that

two-dimensional signals can suffer;

– crucial point of the proposed procedure concerns the

formulation of fuzzy entropy. The proposed proce-

dure, even if it is adaptive, does not take into ac-
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count the statistics of the image under study (and

its portions). In the future it is worth investigat-

ing this aspect in order to formulate entropies more

adherent to the morphology of an image;

– it is worth noting that, to fully evaluate an ED pro-

cedure, the number of edge detected would need to

be quantified. However, this is possible when the

analyzed images do not have jagged edges. The an-

alyzed images, excluding some details in each of

them, have highly jagged edges so the quantifica-

tion of the edges is impractical. So, in the near fu-

ture, it would be desirable to develop an edge de-

tected quantifier starting from the number of pixels

detected.

– the algorithm proposed in this paper is related to

the edge detection of grayscale images. It therefore

seems natural to extend the procedure to RGB im-

ages. Currently, in our Lab, the extension of the pro-

posed procedure to color images is at an advanced

stage;

– last, but not least, the new formulations of nonref-

erence metrics presented in this work have provided

results that operate, for the same type of images, a

sort of classification. An in-depth study in this sense

is desirable to provide new guidelines for the design

of fuzzy classification systems.

15 Remark

Literatures are not represented in chronological order.

A Proof of Theorem ??

Remark 9 Let us consider three fuzzy images, F (Inorm)j ,

j = 1, 2, 3, whose gray levels are âij , ˆbij , and ˆcij ∈ X, re-
spectively. Let us say, for simplicity, that

mF (Inorm)1(âij)−mF (Inorm)2( ˆbij) = α, (26)

mF (Inorm)2( ˆbij)−mF (Inorm)3( ˆcij) = β,

mF (Inorm)3( ˆcij)−mF (Inorm)1(âij) = γ,

such that α+β+γ = 0. Further, with (??) taken into account,
d(F (Inorm)1, F (Inorm)2), d(F (Inorm)2, F (Inorm)3), and
d(F (Inorm)3, F (Inorm)1), as the generic addends of
D(F (Inorm)1, F (Inorm)2), D(F (Inorm)2, F (Inorm)3), and
D(F (Inorm)1, F (Inorm)1), can be written as follows:
d(F (Inorm)1, F (Inorm)2) = 2 − (1 − α))eα − (1 + α)e−α,
d(F (Inorm)2, F (Inorm)3) = 2 − (1 − β))eβ − (1 + β))e−γ ,
d(F (Inorm)3, F (Inorm)1) = 2− (1− γ))eγ − (1 + γ))e−γ . If
they have the values

d(F (Inorm)1, F (Inorm)2) ≥ 0, (27)

d(F (Inorm)1, F (Inorm)2) = 0 ⇔ A = B, (28)

d(F (Inorm)1, F (Inorm)2) = (29)

= d(F (Inorm)2, F (Inorm)1),

d(F (Inorm)1, F (Inorm)2) ≤ (30)

≤ d(F (Inorm)2, F (Inorm)3)+

+d(F (Inorm)3, F (Inorm)1),

then, with the double summation operator applied to them,
(??), (??), (??), and (??) apply.

We prove (??).
If (??) is true, then d(F (Inorm)1, F (Inorm)2) = 2 − (1 −
α)eα − (1 + α)e−α ≥ 0, from which 2 ≥ (1 − α)eα + (1 +
α)e−α = eα−αeα+ e−ααe−α = (eα+ e−α)−α(eα− e−α).
Then, 2 ≥ 2 cosh(α) − 2α sinh(α) and, again, 1 ≥ cosh(α) −
α sinh(α). Now, we set f(α) = cosh(α) − (α) sinh(α). How-
ever, aiming to search for the minimum value of f(α), we
impose f ′(α) = sinh(α)− sinh(α)− α cosh(α) = 0 to achieve
α cosh(α) = 0. cosh(α) = 0 is never null, hence the station-
ary value of f(α) that one has for α = 0. Again, if α = 0,
f(α) = 1, while, if α = 1, f(α) = 1

e
< 1. From this, α is a

point of maximum for f(α). Thus, 1 ≥ cosh(α)−α sinh(α) is
always true. Then, given Remark ??, inequality (??) is also
verified.

We prove (??).
The sufficient condition is easy to prove. In fact, if F (Inorm)1 =
F (Inorm)2, then α = 0. Thus, d(F (Inorm)1, F (Inorm)2) =
2− (1−α)eα− (1 +α)e−α = 0. Vice versa, to prove the nec-
essary condition, we impose d(F (Inorm)1, F (Inorm)2) = 0,
obtaining 2 = (1 − α)eα − (1 + α)e−α = 0. Further, it is
reasonable to write the following chain of equalities: 2 =
(1 − α)eα + (1 + α)e−α = eα − αeα + e−α + αe−α = eα +
e−α−α(eα−e−α)−α(eα−e−α) = eα+e−α−α(eα−e−α) =
2 cosh(α) − 2(α) sinh(α) to achieve 1 = cosh(α) − α sinh(α)
verified iff α = 0. Thus, (??) is verified. Finally, by Remark
??, (??) is verified.

We prove (??).
d(F (Inorm)1, F (Inorm)2) = 2 − (1 − α)eα − (1 + α)e−α =
2− (1− α)e−α − (1 + α)e−α = d(F (Inorm)2, F (Inorm)1).

We prove (??).
d(F (Inorm)1, F (Inorm)2) = 2 − (1 − α)eα − (1 + α)e−α ≤
2− (1−β)eβ − (1 +β)e−β + 2− (1−γ)eγ − (1 +γ)e−γ , from
which

d(F (Inorm)1, F (Inorm)2) ≤ (31)

≤ 2− (1 + α+ γ)e−α−γ − (1− α− γ)eα+γ+

γeα+γ + 2− (1− γ)eγ − (1 + γ)e−γ .

By (??), we can write d(F (Inorm)1, F (Inorm)2) ≤ 2− (1 +
α)−α−γ − γe−α−γ − (1−α)eα+γ + γeα+γ + 2− (1− γ)eγ −
(1+α)e−α. Further, by adding and subtracting (1+α)e−α+
(1− α)eα, we obtain

d(F (Inorm)1, F (Inorm)2) ≤ (32)

≤ 2− (1 + α)e−α − (1− α)eα + (1 + α)e−α+

+(1− α)eα − (1 + α)e−α)−γ − γe−α−γ−
−(1− γ)eα+γ + γeα+γ + 2− (1− γ)eγ − (1 + γ)e−γ .
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In (??), 2−(1+α)e−α−(1−α)eα = d(F (Inorm)1, F (Inorm)2),
while 2−(1−γ)eγ−(1+γ)e−γ = d(C,A). Then, (??) becomes

d(F (Inorm)1, F (Inorm)2) ≤ d(F (Inorm)1, F (Inorm)2)+
(33)

+(1 + α)e−α + (1− α)eα − (1 + α)e−α−γ−
−γe−α−γ − (1− α)eα+γ+

+d(F (Inorm)3, F (Inorm)1),

thereby reducing the problem to show that (1+α)e−α+(1−
α)eα− (1 +α)e−α−γ −γe−α−γ − (1−α)eα+γ in (??) is not
negative. However, (1 +α)e−α ≥ 0 and (1−α)eα ≥ 0. Thus,
it remains to be shown that −(1+α)e−α−γ−γ)e−α−γ−(1−
α)eα+γ + γeα+γ ≥ 0. If, absurdly, it were −(1 +α)e−α−γ −
γe−α−γ − (1− α)eα+γ + γeα+γ < 0, we would get

γeα+γ < (1 + α)e−α−γ + γe−α−γ + (1− α)eα+γ = (34)

= (1 + α+ γ)e−α−γ + (1− α)eα+γ ,

from which γ < (1 +α+ γ)e
−α−γ

eα+γ + (1− α). If (??) is always

true, it is necessary that sup{γ} < inf{(1 + α + γ)e
−α−γ

eα+γ +

(1−α)}. However, inf{1−mB(bij)−mA(aij)} = 0 for which

inf{1 + α + γ} = 0 and sup{γ} = 1 which results in a false

inequality. Thus, (??) is true and, by Remark ??, (??) holds.
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