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A B S T R A C T

Finite element analysis of linear-elastic structures with spatially varying uncertain properties is addressed within
the framework of the interval model of uncertainty. Resorting to a recently proposed interval field model, the
uncertain properties are expressed as the superposition of deterministic basis functions weighted by particular
unitary intervals. An Interval Finite Element Method (IFEM) incorporating the interval field representation of
uncertainties is formulated by applying an interval extension in conjunction with the standard energy approach.
Uncertainty propagation analysis is performed by adopting a response surface approach which provides ap-
proximate explicit expressions of response bounds requiring only a few deterministic analyses. Then, the whole
procedure is implemented in ABAQUS’ environment by coding User Subroutines and Python scripts.

2D plane stress and bending problems involving uncertain Young's modulus of the material are analyzed. The
accuracy of the proposed IFEM as well as response variability under spatially dependent uncertainty are in-
vestigated.

1. Introduction

Uncertainty assessment of structural systems is attracting growing
interest in various engineering and industrial fields. Indeed, it is widely
recognized that uncertainties affecting model parameters, such as ma-
terial or geometrical properties, may have a significant influence on the
performance of engineering systems [1,2]. One of the most urgent
challenges in the context of non-deterministic analysis is to develop
efficient and robust algorithms for predicting the influence of uncertain
parameters on the response of real world large-scale systems. Over the
last decades, much research effort has been devoted to incorporating
uncertainties into the standard finite element method (FEM) in order to
exploit all capabilities of deterministic FE solvers as well as the in-
creasing power of available computational resources.

The extension of the classical FEM to problems involving un-
certainties modeled as random variables or random fields led to the
well-known Stochastic Finite Element Method (SFEM), which may be
viewed nowadays as the most powerful tool in the field of computa-
tional stochastic mechanics (see e.g., [3,4]). Many variants of the SFEM

have been proposed in the literature, while much less attention has
been devoted to the development of specialized software for the ana-
lysis of large-scale stochastic problems. To address the need for prob-
abilistic FE analysis in practical engineering, ANSYS Inc. released two
tools, namely the ANSYS Probabilistic Design System and the ANSYS
DesignXplorer [5]. Such tools enable random input variables to be ac-
counted for, such as material properties, boundary conditions, loads
and geometry, and to handle several types of analysis. However, the
description of uncertainties is limited to the use of random variables. A
random field [6] representation is required to take into account the
inherent spatial dependency of non-deterministic properties which may
significantly affect the reliability of a design. A stochastic FE library
(StoFEL) has also been coupled with ANSYS for predicting response
variability [7]. Among specialized software for SFE analysis, it is worth
mentioning computational stochastic structural analysis (COSSAN) [8],
numerical evaluation of stochastic structures under stress (NESSUS)
[9], and finite element reliability using MATLAB (FERUM) [10]. To the
extent of the authors' knowledge, only Shang et al. [11] faced the
challenging task of incorporating uncertain mechanical properties
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Nomenclature

Ai n−component vector whose j−th element is 1/Ai,j

Ai,j unknown coefficients of the proposed response surface
a0i,j midpoint of the i−th interval deviation Ui j

I
,

B(h)(x) strain-displacement matrix
BI(x) dimensionless interval fluctuation around the midpoint E0

of EI(x)
Bi,j unknown coefficients of the proposed response surface
b(x) body forces
CB parameter governing the degree of uncertainty of the in-

terval field
c.i.u.[•] coefficient of interval uncertainty of •
DI(x) interval constitutive matrix
D0 nominal constitutive matrix
Di(x) deviation matrix associated with the i-th extra unitary in-

terval
d(h)I interval nodal displacement vector of the h-th element
E0 midpoint of EI(x)
EI(x) interval Young's modulus field
E(LB)(x,y) sample of Young's modulus which yields the lower bound

of the response quantity of interest
E(UB)(x,y) sample of Young's modulus which yields the upper bound

of the response quantity of interest
êI interval vector collecting M extra unitary intervals
êi

I i−th extra unitary interval
êh k,

(LB) vector of the combinations of the endpoints of the extra
unitary intervals êh k i, ,

(LB) which give the lower bound of the
k−th component of the interval stress within the h−th
finite element

êh k,
(UB) vector of the combinations of the endpoints of the extra

unitary intervals êh k i, ,
(UB) which give the upper bound of the

k−th component of the interval stress within the h−th
finite element

F global nodal force vector
FVI interval field variable
f(h) nodal force vector of the h−th finite element
KI interval global stiffness matrix
K0 nominal global stiffness matrix
Ki i−th global deviation stiffness matrix
k(h)I interval stiffness matrix of the h− th finite element
k h

0
( ) nominal stiffness matrix of the h−th finite element

ki
h( ) i−th deviation matrix of the h−th finite element

I (superscript) denotes interval variables
L(h) connectivity matrix
L plate width
Le

I interval external work
lBx (lB) parameter ruling the spatial dependency of the uncertain

property along the x- direction
lBy (lB) parameter ruling the spatial dependency of the uncertain

property along the y-direction
M truncation order of the Karhunen–Loève-like expansion
mid{•} midpoint of •
max {•} maximum of •
min {•} minimum of •
N number of finite elements
N(h)(x) shape function matrix
NG number of integration points
n number of degrees-of-freedom
O(x, y, z) Cartesian coordinate system

real numbers
S boundary surface of the continuous body
St free surface of the continuous body
Su constrained surface of the continuous body

s x( )i,h( ) vector collecting the sensitivities s x( )i,k
h( ) of the interval

stress components x( )k
h I( ) within the h−th finite element

with respect to the i−th extra unitary interval
t(x) surface forces
UI interval global displacement vector
U0 nominal displacement vector
U(i)+ displacement vector obtained setting all the extra unitary

intervals equal to zero except the i−th which is set to 1
U(i)− displacement vector obtained setting all the extra unitary

intervals equal to zero except the i− th which is set to− 1
Uj

I j−th interval displacement component
U j0, j−th nominal displacement component
Ui j

I
, i−th interval deviation of the j− th displacement com-

ponent
uu(x) displacements imposed on the constrained surface
u(h)I(x) displacement field within the h−th finite element
V volume of the continuous body
Vh volume of the h− th finite element
XG,j vector listing the coordinates of the j− th integration

point
x position vector
ΓB(x,ξ) spatial dependency function
ΔE(x) deviation amplitude of EI(x)
ΔB(x) deviation amplitude of BI(x)
Δai,j deviation amplitude of the i− th interval deviation Ui j

I
,

ε(h)I(x) interval strain field within the h−th finite element
εR(%) absolute percentage error affecting the estimate of R
λi i−th eigenvalue of ΓB(x,ξ)
ξ position vector
ξ, η Cartesian coordinates
ΠI Interval Total Potential Energy functional
Σ solution set
σ(h)I(x) interval stress field within the h−th finite element
ΦI interval elastic strain energy
ψi(x) i−th eigenfunction of ΓB(x,ξ)
|•| absolute value of •
Overbar denotes the upper bound of an interval quantity
Over tildedenotes normalized interval variables
Underline denotes the lower bound of an interval quantity

Acronyms and abbreviations

c.i.u Coefficient of interval uncertainty
CIA Classical Interval Analysis
COSSAN Computational stochastic structural analysis
DOFs Degrees-of-freedom
EUI Extra Unitary Interval
FEM Finite element method
FERUM Finite element reliability using MATLAB
FFEM Fuzzy Finite Element Method
FV Field variable
IDW Inverse Distance Weighting
IFEM Interval Finite Element Method
IIA Improved Interval Analysis
IRSE Interval Rational Series Expansion
ITPE Interval Total Potential Energy
KL Karhunen-Loève
LB Lower bound
LIFD Local Interval Field Decomposition
NESSUS Numerical evaluation of stochastic structures under stress
SFEM Stochastic Finite Element Method
StoFEL Stochastic finite element library
TSD Total spatial dependency
TSI Total spatial independency
UB Upper bound
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modeled as homogeneous random fields into commercial finite element
programmes such as ABAQUS by coding a User Element subroutine
(UEL). Though well-established, the concept of a random field has not
yet been implemented in commercial FE software.

Since the mid-1990 s, non-probabilistic models of uncertainty have
been used in the context of FE analysis which are complementary rather
than competitive to the traditional probabilistic description, leading to
the formulation of the so-called Interval FEM (IFEM) and Fuzzy FEM
(FFEM) [12,13] approaches. The IFEM and FFEM describe the uncertain
input parameters as interval variables [14–16] and fuzzy sets [17],
respectively. Interval variables are characterized by assigned lower
bounds and upper bounds, while the fuzzy set concept also provides
information about the level of membership of a certain value to the
range of possible input values. The main feature of these models is that
they do not require a complete probabilistic characterization of un-
certainties which implies the availability of a large amount of data.
Furthermore, propagation of uncertainty through numerical algorithms
is usually less time consuming. Currently, research activities mainly
focus on IFEMs since, based on the α− level technique, the fuzzy
analysis reduces to the consecutive solution of a number of interval
problems [13]. The IFEM may be viewed as a useful computational tool
in early design stages when available information is generally in-
sufficient to perform a probabilistic analysis [12]. While the SFEM is
well-established and accepted by the scientific community, much re-
search efforts are still needed to further enhance the development and
dissemination of the IFEM in practical engineering. Several versions of
the IFEM have been proposed in the literature (see e.g., [18–24]) with
the purpose of addressing the following three key issues: i) the over-
estimation of the interval solution range due to the so-called dependency
phenomenon, which typically affects methods based on the Classical
Interval Analysis (CIA) [16]; ii) the inherent spatial character of un-
certainties, like material or geometric properties, which is not taken
into account by traditional IFEMs [18–24]; iii) the need for computa-
tionally efficient propagation procedures.

Among the approaches proposed in the literature to limit the effects
of the dependency phenomenon, the so-called Improved Interval AnalysisI
via Extra Unitary Interval (IIA via EUI) [25] has proved to be an effective
remedy to reduce conservatism in the context of interval structural
analysis. This approach relies on the use of a particular unitary interval,
called EUI, which does not follow the rules of the CIA.

To describe the spatial character of interval uncertainties, the in-
terval field model [26,27] has been recently introduced as the natural
extension of the random field concept to the non-probabilistic frame-
work. The interval field description of an uncertain property basically
consists of a superposition of deterministic basis functions representing
the spatial character, weighted by independent interval coefficients
representing the uncertainty. Different definitions of the interval field
have been introduced in the literature, such as those based on the In-
verse Distance Weighting interpolation (IDW) or the Local Interval
Field Decomposition method (LIFD) [28]. Recently, an interval field
model based on the IIA via EUI [29] has been proposed with the pur-
pose of handling both overestimation and spatial dependency issues.
This model expresses the generic uncertain property as superposition of
deterministic functions and EUIs. To date, applications of the interval
field model based on the IIA via EUI are limited to the static analysis of
one-dimensional problems involving spatially varying uncertain
Young's modulus [29–31]. Faes and Moens [32] presented a novel
methodology for the identification and quantification of spatial un-
certainty modelled as an interval field, based on a large set of mea-
surement data, by extending a recently proposed method to identify
interval scalars [33].

So far, very few studies have been devoted to the incorporation of
the interval field model into the standard FEM (see e.g., [27,34–36]).
Furthermore, the development of specialized software, able to interact
with powerful third-party software for the analysis of large-scale pro-
blems with uncertain properties modeled either as interval variables or
interval fields, has not been addressed in the scientific literature.

To fill this gap, the present paper deals with the formulation and
implementation of an IFEM for the analysis of structures made of linear-
elastic isotropic materials with spatially varying uncertainties described
using the interval field model based on the IIA via EUI. Without loss of
generality, only Young's modulus of the material is assumed to be un-
certain. The key idea is to incorporate the interval field representation of
the uncertain material property into the standard FEM by defining the
pertinent interval element constitutive matrix which depends on the
spatial coordinates as well as on a certain number of EUIs. Then, in-
terval extension of the standard energy approach and the conventional
assembly procedure yield the set of linear interval equations governing
the interval global displacements of the FE model. Within the interval
framework, the solution of such equations is pursued by evaluating the
bounds of the interval displacement vector. To achieve this aim, an
efficient procedure based on the application of a ratio of polynomial
response surface in conjunction with the IIA via EUI is adopted. The
challenging task of evaluating the bounds of the interval stress com-
ponents is also addressed by exploiting the response surface approx-
imation combined either with a sensitivity or a combinatorial approach.
The proposed response surface strategy for propagating the interval field
requires only a certain number of deterministic analyses, thus allowing
a significant reduction of the computational burden compared to the
classical combinatorial procedure, known as the vertex method [37].

The main feature of the described IFEM, incorporating the interval
field model of Young's modulus, lies in its capability of interacting non-
intrusively with a commercial FE code thus providing a powerful tool
for the analysis of real engineering problems. Indeed, the basic steps of
the IFEM formulation are the same as those of the standard FEM, and
the proposed uncertainty propagation strategy requires repeated de-
terministic analyses which can be efficiently performed by a FE solver.
In view of these observations, one of the main purposes of the present
study is to integrate the proposed IFEM into the commercial FE soft-
ware ABAQUS. This challenging task is pursued by implementing User
MATerial (UMAT) or USerDefinedFieLD (USDFLD) subroutines [38] in
the FORTRAN 77 language and Python scripts which enable the interval
Young's modulus field to be incorporated into the constitutive beha-
viour of any type of FE available in ABAQUS’ library. To the best of the
authors’ knowledge, this is the first attempt to integrate the interval field
model of uncertainty into commercial FE software. The approach
adopted here can be readily employed to develop similar routines for
other commercial FE packages.

Numerical results concerning 2D plane stress and bending problems
with uncertain Young's modulus are presented. The accuracy and effi-
ciency of the proposed IFEM are demonstrated by suitable comparisons
with the bounds of the response provided by the vertex method.

The paper is organized as follows: Section 2 outlines the formulation
of the IFEM incorporating the uncertain Young's modulus described as
an interval field based on the IIA via EUI; Section 3 is devoted to the
development of response surface based strategies for evaluating the
bounds of the interval displacements and stresses; Section 4 focuses on
the implementation of the IFEM into the commercial FE software
ABAQUS; finally, in Section 5, two numerical applications are pre-
sented.

UEL User Element
UMAT User MATerial

USDFLD USerDefinedFieLD
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2. Interval finite element method incorporating spatially varying
uncertainties

The underlying idea of the interval model, originally developed
from the interval analysis [14–16], is to describe the generic uncertain
parameter as an interval variable with given lower bound (LB) and
upper bound (UB). This model is very useful when only the range of
variability of the uncertain parameters is known, while available in-
formation is insufficient to define the type of distribution within the
range, as often happens in the early stages of design.

The so-called Interval Finite Element Method (IFEM) has been de-
veloped as an extension of the traditional FEM by incorporating un-
certain input parameters modeled as interval variables (see e.g.,
[12,13]). The standard formulation of the IFEM relies on the extreme
assumption of total spatial independency (TSI) of uncertainties. Specifi-
cally, a spatially varying uncertain property, such as Young's modulus
of the material, is represented as a set of interval variables, one for each
FE. This assumption may lead to serious shortcomings such as over-
estimation of the actual uncertainty, mesh-dependency of the solution
and increase of the computational effort [23]. Furthermore, interval
variables are by definition unable to account for mutual dependency
between the values of spatially varying properties at different locations.
Alternatively, relying on the opposite extreme hypothesis of total spatial
dependency (TSD), the uncertain property can be described as a single
interval variable over the entire model.

A more realistic and computationally efficient description of spa-
tially varying interval uncertainties can be obtained by resorting to the
interval field model [26,27], which is able to quantify the dependency
between adjacent values of an interval quantity that cannot differ as
much as values that are further apart. The key idea is to represent the
spatial character and the uncertainty separately by expressing an un-
certain property as a superposition of deterministic basis functions
weighted by independent interval coefficients. In the context of a FE
formulation, the interval field model enables the spatial dependency of
the uncertain properties to be taken into account as well as to drasti-
cally reduce the dimensionality of the uncertainty. Indeed, the latter is
not related to the number of FEs of the selected mesh, as in the standard
IFEM, but it is given by the number of series terms retained in the in-
terval field representation.

High dimensionality of uncertainty may have negative effects on
both the computational efficiency and accuracy of IFE procedures.
Indeed, one of the main drawbacks of IFEMs based on the Classical
Interval Analysis (CIA) [14] is the overestimation of the interval solution
range due to the so-called dependency phenomenon [16], which increases
tremendously with the number of interval variables involved and the
number of interval computations. Hence, within the interval frame-
work, it is highly desirable to reduce the dimensionality of uncertainty.

To overcome the main limitations arising from the use of discrete
interval variables in the context of FE analysis, in the present study, a
novel IFEM incorporating the interval field description of spatially
varying uncertainties is developed.

2.1. Uncertain Young's modulus modeled as an interval field

Let us consider a continuous body made of a linear-elastic isotropic
material which occupies the volume V bounded by the surface S in its
undeformed state. The body is subjected to volume forces b(x) in V and
surface forces t(x) on the free portion St of the boundary surface S, with
x denoting the position vector of a generic point referred to a Cartesian
coordinate system O(x, y, z); the displacements uu(x) are imposed on
the constrained portion Su ofS. The loads act by hypothesis in a quasi-
static manner and infinitesimal displacements are considered. Without
loss of generality, all input parameters are assumed to be deterministic,
except Young's modulus of the material which is treated as an uncertain
property in the context of the interval model of uncertainty. In order to
take into account the inherent spatial dependency of continuous

material properties, the uncertain Young's modulus is described re-
sorting to a recently proposed interval field model [29] based on the
Improved Interval Analysis via Extra Unitary Interval (IIA via EUI) [25].
The main features of the assumed interval field model are herein briefly
summarized. Let Young's modulus be represented by the following in-
terval function:

= = +E E E E B Vx x x x x( ) [ ( ), ( )] [1 ( )],I I
0 (1)

with midpoint and deviation amplitude given, respectively, by:

= + =E E E E E E E

E B V

x x x x x x

x x

mid{ ( )} ( ) ( )
2

; ( ) ( ) ( )
2

( ), .

I
0

0 (2a,b)

In the previous equations, the superscript I denotes interval quan-
tities; E x( ) and E x¯ ( ) are the lower bound (LB) and upper bound (UB)
functions; the operator mid{•} yields the midpoint of the interval
quantity between curly brackets; =B B Bx x x( ) [ ( ), ¯ ( )]I is a dimension-
less interval function with zero midpoint and deviation amplitude ΔB
(x) < 1, so as to ensure values of the uncertain material property are
always positive. Notice that the midpoint value of EI(x), herein assumed
constant over the volume V, coincides with the nominal value of the
uncertain Young's modulus E0 (see Eq. (2a)).

The key idea behind the interval field model based on the IIA via EUI
is to describe the spatial dependency of the uncertain property by in-
troducing the following real, deterministic, symmetric, non-negative
function:

= B B E E
E

Vx x x x( , ) mid{ ( ) ( )} mid{ ( ) ( )}
( )

1, ,B
I I

I I

0
2 (3)

called spatial dependency function. This function is intended to provide
information on how similar the values of BI(x) at nearby locations of the
domain are. If the mid{•} operator is regarded as the analogue of the
stochastic average operator [29], the function ΓB(x,ξ) may be viewed as
the non-probabilistic counterpart to the autocorrelation function char-
acterizing random fields [6]. Specifically, the spatial dependency function
provides a measure of the dependency between the values of the di-
mensionless interval function BI at different locations x and ξ. It may
also be viewed as the relative difference between the midpoint of the
product of Young's modulus at different locations, x and ξ, and the
squared midpoint of the interval field E0 (see Eq. (3)) assumed constant
over the whole domain. The analytical expression of the spatial de-
pendency function has to be postulated in a physically consistent way.
For instance, an exponential or squared exponential form can be as-
sumed. So far no measurement-based functions have been defined.
Based on Eq. (3), experimental tests should be designed in such a way
that the value of Young's modulus at different pairs of locations can be
measured.

In the context of finite element (FE) formulations, it is useful to
represent the continuous interval function EI(x) in terms of a set of
independent interval coefficients. To this aim, the following spectral
decomposition of the spatial dependency function is adopted:

= =
= =

Bx x x x x x( , ) ( ) ( ) ( , ) mid{( ( )) } ( )B
i

i i i B
I

i
i i

1

2

1

2

(4)

where λi and ψi(x), (i=1, 2, …), are the eigenvalues and associated
eigenfunctions of ΓB(x,ξ), which are solutions of the following homo-
geneous Fredholm integral equation of the second kind:

=x x x( , ) ( )d ( ).
V

B i i i
(5)

By introducing the so-called EUI [25], = +ê [ 1, 1]i
I , and truncating

the decomposition (4) to the first M terms, the following Karhunen-
Loève (KL)-like expansion of the dimensionless interval function BI(x)
(see Eq. (1)) is obtained:
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=
=

B e Vx x x( ) ( ) ^ , .I

i

M

i i i
I

1 (6)

Then, substituting Eq. (6) into Eq. (1), the interval field representa-
tion of the uncertain Young's modulus EI(x) based on the IIA via EUI is
obtained [29]:

= +
=

E E e Vx x x( ) 1 ( )^ ,I

i

M

i i i
I

0
1 (7)

where the deterministic functions x( )i i describe the spatial char-
acter, while the associated EUIs, êi

I , represent the uncertainty.
The LB and UB of the interval Young's modulus (7) are spatially

dependent functions given by the following relationships:

= = +E E B E E B Vx x x x x( ) [1 ( )]; ( ) [1 ( )],0 0 (8a,b)

where

= =
=

B E
E

Vx x x x( ) ( ) ( ) ,
i

M

i i
0 1 (9)

with |•| denoting the absolute value of •.
It is worth remarking that the interval field model based on the IIA

via EUI in Eq. (7) describes the spatial dependency and the uncertainty
of Young's modulus separately by means of the deterministic functions

x( )i i and the associated EUIs, êi
I , respectively. This is a highly

desirable feature in the framework of interval field representation (see
e.g., [33]) which enables propagation techniques commonly used for
discrete input interval variables to be applied.

Taking into account Eq. (7), the interval constitutive matrix DI(x)
for the continuous body with interval Young's modulus can be ex-
pressed as follows:

= + = +
= =

e eD x D x D D x( ) 1 ( ) ^ ( ) ^I

i

M

i i i
I

i

M

i i
I

0
1

0
1 (10)

where D0 is the nominal constitutive matrix and =D x x D( ) ( )i i i 0 is
the deviation matrix associated with the i-th EUI.

It is worth mentioning that the random field model remains the
most valuable representation of spatially varying uncertainties when
objective information on non-determinism is available and a probabil-
istic description of the output is desired. As known, the characterization
of a random field requires a large amount of experimental data to define
the probability density function and the correlation structure. Often,
the lack of sufficient information leads to strong assumptions on the
probabilistic characterization of the random field. Even small devia-
tions from the true probabilistic model may have a high impact on
reliability estimates. In these cases, the interval field model represents a
suitable alternative since it does not require a complete probabilistic
description of the uncertain property.

2.2. Interval finite element formulation

Let the body be subdivided into N FEs of volume Vh (h=1, 2, …, N).
According to the standard displacement-based FE formulation, the in-
terval displacement field within the h−th FE can be approximated as
follows:

= =h Nu x N x d( ) ( ) , ( 1, 2, , )h I h h I( ) ( ) ( ) (11)

where N(h)(x) is the matrix collecting the deterministic shape functions;
d(h)I is the interval vector listing the element nodal displacements.

Substituting Eq. (11) into the strain-displacement and linear-elastic
constitutive equations yields, respectively, the following expressions of
the interval strain and stress fields within the h−th FE:

=
=

x B x d
x D x B x d

( ) ( ) ;
( ) ( ) ( )

h I h h I

h I I h h I

( ) ( ) ( )

( ) ( ) ( ) (12a,b)

where B(h)(x) is the strain-displacement matrix and DI(x) denotes the
interval constitutive matrix defined in Eq. (10). Notice that the interval
stress field is affected by uncertainties both through the interval nodal
displacements and the interval constitutive matrix. Multiple occur-
rences of the same interval variable in Eq. (12b) makes the stress field
more sensitive to the dependency phenomenon than the displacement
field [23].

By virtue of the interval extension [16] and taking into account
Eqs. (11) and (12), the following discretized form of the Interval Total
Potential Energy (ITPE) functional of the body is obtained:

= =

+

=

=

L V

V S

d B x D x B x d

d N x b x N x t x

1
2

( ) ( ) ( ) ( )d

( ) ( ) ( )d ( ) ( )d

I I
e
I

h

N
h I

V

h I h h h I

h

N
h I

V

h h

S

h h

1

( ) T ( ) T ( ) ( ) ( )

1

( ) T ( ) T ( ) ( ) T ( )

h

h
f
h

( )

( ) ( )

(13)

where ΦI is the interval elastic strain energy stored in the deformed
body, while Le

I is the interval work done by the external loads, ex-
pressed as sum of the contributions associated with each FE. Eq. (13)
can be rewritten as follows:

=
= =

d k d d f1
2

( ) ( )
h

N
h I h I h I

h

N
h I hI

1

( ) T ( ) ( )

1

( ) T ( )

(14)

where

= Vk B x D x B x( ) ( ) ( ) dh I

V

h I h h( ) ( ) T ( ) ( )

h( ) (15)

is the interval element stiffness matrix, formally analogous to the one
pertaining to the deterministic FE, and

= +V Sf N x b x N x t x( ) ( )d ( ) ( )dh

V

h h

S

h h( ) ( ) T ( ) ( ) T ( )

h
t

h( ) ( ) (16)

denotes the element force vector, which is not affected by uncertainty.
By substituting expression (10) for the constitutive matrix DI(x) in

Eq. (15), the interval element stiffness matrix can be recast as:

= +
=

ek k k ^h I h

i

M

i
h

i
I( )

0
( )

1

( )

(17)

where

= Vk B x D B x( ) ( )dh

V

h h h
0
( ) ( ) T

0
( ) ( )

h( ) (18)

denotes the element nominal stiffness matrix, while

= Vk x B x D B x( ) ( ) ( )di
h

i
V

i
h h h( ) ( ) T

0
( ) ( )

h( ) (19)

represents the deviation matrix associated with the i− th term of the
KL-like decomposition. It is worth remarking that the interval element
stiffness matrix in Eq. (17) is affected simultaneously by all the EUIs
describing the uncertainty of the spatially dependent Young's modulus
over the body domain.

Like in the standard FEM, the interval nodal displacement vector of
the h-th FE, d(h)I, is related to the global nodal displacements, collected
into the interval vector UI, by the following relationship:

=d L Uh I h I( ) ( ) (20)

where L(h) is the connectivity matrix.
Substituting Eq. (20) in Eq. (14) and imposing the stationarity

conditions of the ITPE, the following set of linear interval equations
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governing the equilibrium of the FE model is obtained:

=K U F.I I (21)

In the previous equation, KI is the interval global stiffness matrix,
defined as:

= +
=

eK K K ^I

i

M

i i
I

0
1 (22)

where K0 denotes the nominal global stiffness matrix and Ki is the
global deviation stiffness matrix associated with the i−th term of the
KL-like decomposition of the uncertain Young's modulus (7), given,
respectively, by:

=

=

=

=

K L k L

K L k L

;

.

h

N
h h h

i
h

N
h

i
h h

0
1

( )T
0
( ) ( )

1

( )T ( ) ( )

(23a,b)

By inspection of Eq. (22), it is observed that the deviation of the
interval global stiffness matrix from the nominal one is given by the
superposition of the deviation matrices, Ki, weighted by the corre-
sponding EUIs, êi

I .
Finally, in Eq. (21) F is the global nodal force vector defined as

follows:

=
=

F L f .
h

N
h h

1

( ) T ( )

(24)

It is worth remarking that Eq. (21) is formally analogous to the set
of linear interval equations governing the equilibrium of FE modelled
structures with uncertain properties described by a number of discrete
interval variables (see e.g., [23,24]). Such a notable feature allows us to
apply the same propagation strategies to deal either with interval field or
discrete interval variable descriptions of the uncertain input. In this
regard, however, it is observed that the number of independent interval
variables of the model (see Eq. (22)), sayM, is not related to the number
of FEs of the selected mesh, as is customary in classical IFEMs, but it is
always given by the truncation order M of the KL-like decomposition.
This property generally implies a considerable reduction of the com-
putational burden of the subsequent uncertainty propagation analysis.
In view of the analogy between the spatial dependency function and the
autocorrelation function, the optimal truncation orderMmay be chosen
relying on the large number of studies devoted to the convergence of
the KL expansion of random fields (see e.g., [39]).

3. Approximate explicit bounds of the response

The exact solution of the linear interval global equilibrium equa-
tions (21) proves to be a non-trivial task. Indeed, the set containing all
the solutions of Eq. (21), obtained when the EUIs range independently
between−1 and+1, may be very complicated and its exact compu-
tation is challenging. Such a solution set can be formally defined as:

= = = +e eU KU F{ , ^ ^ [ 1, 1]}n
i i

I
(25)

where n is the number of degrees-of-freedom (DOFs) of the FE model;
{S|P} means “the set of quantities S such that the proposition P holds”.
The square interval matrix KI is regular, that is each matrix K ∈ KI is
non-singular [40]; this implies that the solution UI of Eq. (21) exists for
all K ∈ KI. In the literature, several attempts have been made to develop
interval versions of classical direct or iterative algorithms [16], such as
Gaussian elimination or the Gauss-Seidel method. Due to the large
number of interval computations involved, however, such algorithms
are strongly affected by the dependency phenomenon [16], which leads
to extremely conservative solutions for real FE models. Over the last
decades, much research effort has been devoted to develop alternative
solution strategies able to limit the overestimation of the interval

output range, so as to enhance the application of the interval model of
uncertainty in the field of engineering. In this context, some ap-
proaches, such as the ones based on Interval Rational Series Expansion
(IRSE) [23] or the response surface method [24,35], focus on the deri-
vation of approximate explicit expressions of the solution of Eq. (21) as
a function of the interval parameters. The knowledge of such expres-
sions allows a straightforward computation of the approximate LB and
UB of the interval displacement vector UI, containing the solution set Σ
in Eq. (25), which has the narrowest interval components.

3.1. Bounds of the interval displacements

In the present study, the bounds of the interval displacement vector
UI are evaluated by applying a response surface approach recently pro-
posed by one of the authors for the analysis of Euler-Bernoulli beams
with interval Young's modulus [35].

Let us assume that the j− th interval displacement component, Uj
I ,

can be approximated as the sum of the nominal value, U j0, , plus a de-
viation due to theM terms of the KL-like decomposition of the uncertain
Young's modulus (7), say to the EUIs êi

I (i=1, 2, …, M), separately
taken, i.e.:

= +
=

U U U .j
I

j
i

M

i j
I

0,
1

,
(26)

Further, let the deviation, Ui j
I
, , associated with the i−th EUI be

approximated by a rational function of êi
I , so that Eq. (26) can be recast

as:

= + = +
+= =

U U U U e
A B e

U e
^

^
(^ )j

I
j

i

M

i j
I

j
i

M
i
I

i j i j i
I j

I
0,

1
, 0,

1 , , (27)

where = …e e eê [^ ^ ^ ]I I I
M
I T

1 2 is the interval vector collecting the M EUIs;
Ai,j and Bi,j are 2M unknown coefficients. Such coefficients can be
evaluated by fitting the approximate response (27) to the exact implicit
one at 2M selected sampling points which define an appropriate design
of experiment [41]. Within the interval framework, an effective selection
of the sampling points consists of setting all the EUIs equal to zero
except the i−th interval which is set either to the UB or to the LB, i.e.:

= +ê 1i
I , =ê 0j

I , i ≠ j=1, 2, …, M; =ê 1i
I , =ê 0j

I , i ≠ j=1, 2, …, M.
Thus, the evaluation of the coefficients Ai,j and Bi,j requires the solution
of the following 2M+1 sets of linear algebraic equations:

=
= +
= =

+

i M

U K F
U K K F
U K K F

;
( ) ;
( ) , ( 1, 2, , )

i
i

i
i

0 0
1

( )
0

1

( )
0

1 (28a-c)

where U0 denotes the nominal displacement vector; U(i)+ and U(i)− are
the deterministic displacement vectors obtained by setting all the EUIs
equal to zero except the i−th interval which is set to = +ê 1i

I and
=ê 1i

I , respectively.
Once the coefficients Ai,j and Bi,j are known, Eq. (27) provides an

approximate explicit expression of the response in terms of the EUIs,
which can be exploited to evaluate the bounds of the interval dis-
placement vector UI. For this purpose, different strategies can be ap-
plied, such as classical optimization procedures or combinatorial ap-
proaches, whose computational efficiency would be significantly
enhanced by virtue of Eq. (27). In the present paper, a more efficient
approach, able to provide analytical expressions of the bounds of the
interval displacements, is adopted. To this aim, Eq. (27) is rewritten in
the following affine form:

= + +
=

U U a a e( ^ )j
I

j
i

M

i j i j i
I

0,
1

0 , ,
(29)

where

A. Sofi et al. Advances in Engineering Software 128 (2019) 1–19

6



=
+

=

a
U U

a
U U

¯
2

;

¯
2

i j
i j i j

i j
i j i j

0 ,
, ,

,
, ,

(30a,b)

are the midpoint and deviation amplitude of the i−th interval devia-
tion Ui j

I
, in Eq. (27), whose LB and UB, U i j, and Ūi j, , are given, respec-

tively by:

=

=

+

+

{ }
{ }

U

U

min , ;

¯ max , .

i j A B A B

i j A B A B

,
1 1

,
1 1

i j i j i j i j

i j i j i j i j

, , , ,

, , , , (31a,b)

Based on the affine form (29) and applying the rules of the IIA via
EUI, the following approximate explicit expressions of the LB and UB of
the j−th interval displacement component are obtained:

=

= +
=

=

U U a

U U a

mid{ } ;
¯ mid{ }

j j
I

i
M

i j

j j
I

i
M

i j

1 ,

1 , (32a,b)

where

= +
=

U U amid{ }j
I

j
i

M

i j0,
1

0 ,
(33)

is the midpoint value.
It is worth remarking that the proposed approach is much more

computationally efficient than the vertex method [37]. Indeed, the latter
evaluates the exact bounds of the response as the minimum and max-
imum among the solutions pertaining to all possible combinations of
the endpoints of the EUIs, say 2M, if M terms are retained in the KL-like
expansion of the uncertain Young's modulus. This implies that the vertex
method requires 2M deterministic FE analyses against the 2M+1 ana-
lyses (see Eqs. (28a-c)) needed to define the proposed ratio of poly-
nomial response surface.

3.2. Bounds for the interval stress

Substituting the interval constitutive matrix DI(x) given by Eq. (10)
and the proposed response surface approximation of the interval dis-
placements (27) into Eq. (12b), the following explicit relationship be-
tween the interval stress field within the h-th FE and the EUIs is ob-
tained:

= +
=

ex D D x B x L U e x e( ) ( )^ ( ) (^ ) ( ; ^ )h I

i

M

i i
I h h I h I( )

0
1

( ) ( ) ( )

(34)

where U e U(^ )I I is the vector collecting the interval displacements
defined in Eq. (27).

As already observed, the interval stress is affected by uncertainty
both through the interval constitutive matrix and the interval global
displacements. In particular, it is noted that each EUI appears more than
once in the approximate explicit expression (34) of the interval stress
vector. This circumstance may lead to high overestimation of the in-
terval stress range unless suitable approaches are adopted to predict
sharp bounds. Based on the knowledge of the approximate functional
dependence (34) of the stress components on the EUIs, two main stra-
tegies are herein proposed to address this issue: the first one relies on a
sensitivity analysis, while the second approach is conceived as an en-
hancement of the classical combinatorial procedure. It is worth re-
marking that, when applying these strategies, the use of the IIA [25]
allows us to keep track of uncertainties throughout calculations by
means of the EUIs and thus reduce the overestimation due to the de-
pendency phenomenon.

The proposed sensitivity-based procedure relies on the observation
that, at a given position x, the stress components are monotonic func-
tions of the EUIs. The key idea is to perform a preliminary sensitivity

analysis to predict the monotonic increasing or decreasing behaviour of
the stress components as functions of each EUI. The vector collecting
the sensitivities of the interval stress x e( ; ^ )h I( ) within the h− th FE
with respect to the i−th EUI = +e e^ ^ [ 1, 1]i i

I can be evaluated
analytically by direct differentiation of Eq. (34), i.e.:

= = +

=
=e

i

M

s x x e D x B x L U D B x L A( ) ( ; ^)
^ ( ) ( ) ( ) , (

1, 2, )

i

h

i
i

h h h h
i

e 0
,

( )

^

( ) ( )
0 0

( ) ( )h( )

(35)

where e e^ ^ I ; Ai denotes a n−component vector whose j− th com-
ponent is 1/Ai,j. Eq. (35) provides information on the change of the
stress at a prescribed position x within the h− th FE due to a change of
the i−th EUI, êi

I , over the range [− 1, +1]. Specifically, the k−th
interval stress component, x( )k

h I( ) , is an increasing or decreasing
function of êi

I depending on whether >s x( ) 0i,k
h( ) or <s x( ) 0i,k

h( ) , re-
spectively. Based on this observation, the combinations of the endpoints
of the EUIs which give the LB and UB of the k−th interval stress
component, x( )k

h I( ) , denoted by êh k i, ,
(LB) and êh k i, ,

(UB) (i=1, 2, …, M), re-
spectively, can be determined as follows:

> = + =

< = = + =

s e e

s e e i M

x

x

if ( ) 0, then ^ 1, ^ 1;

if ( ) 0, then ^ 1, ^ 1, ( 1, 2, , ).

i h k i h k i

i h k i h k i

, , ,
(UB)

, ,
(LB)

, , ,
(UB)

, ,
(LB)

k
h

k
h

( )

( ) (36a,b)

The combinations êh k i, ,
(LB) and êh k i, ,

(UB) of the EUIs provided by the sensi-
tivity analysis can be collected into the following vectors:

=

=

e e e

e e e

e

e

^ ^ ^ ^ ;

^ ^ ^ ^ .

h k h k h k h k M

h k h k h k h k M

,
(LB)

, ,1
(LB)

, ,2
(LB)

, ,
(LB)

T

,
(UB)

, ,1
(UB)

, ,2
(UB)

, ,
(UB)

T

(37a,b)

Then, approximate explicit expressions of the LB and UB of the
k− th interval stress component, x( )k

h I( ) , can be readily obtained by
substituting the vectors êh k,

(LB) and êh k,
(UB), respectively, into Eq. (34), i.e.:

=

=

x x e

x x e

( ) ( ; ^ );

¯ ( ) ( ; ^ ).
k

h
k

h
h k

k
h

k
h

h k

( ) ( )
,

(LB)

( ) ( )
,

(UB)
(38ab)

Alternatively, instead of using Eq. (34), two separate deterministic
FE analyses can be run for the two combinations of the EUIs specified in
Eqs. (37a,b), at the expense of higher computational time.

It is worth mentioning that the sensitivity-based approach may be
time-consuming since the combinations of the endpoints of the EUIs
(37a,b) need to be computed for each stress component. However, in
practical engineering, often a knowledge of the extreme values of stress
components at a few critical points is of interest for design purposes.

The alternative approach herein proposed for evaluating the bounds
of stress components relies on the use of the ratio of polynomial response
surface (34) in conjunction with the vertex method. The key idea is to
evaluate the stress components pertaining to all possible combinations
of the bounds of the EUIs, say 2M, by simply substituting such combi-
nations into Eq. (34) rather than repeating the solution of the equili-
brium Eq. (21). Then, following the classical combinatorial procedure,
the LB and UB of each stress component are identified as the minimum
and maximum among the 2M computed stresses, respectively. The
computational times are drastically reduced compared to the crude
vertex method which, as already mentioned, requires 2M deterministic
analyses to be performed with the associated inversions of the global
stiffness matrix (see Eq. (21)).

A. Sofi et al. Advances in Engineering Software 128 (2019) 1–19

7



4. Implementation

The proposed IFEM, which relies on the use of the interval field
model, enables the spatial dependency of uncertainties to be taken into
account, leading to tremendous computational savings compared to
standard IFEMs. The formulation of the method (see Section 2) retains
the main steps of the deterministic FEM, such as the standard assembly
procedure which yields the interval global equilibrium equations gov-
erning the discretized model. Furthermore, the proposed response sur-
face approach for propagating the interval field exhibits a non-intrusive
nature, since it just involves a sequence of deterministic FE analyses.
These desirable features allow the developed IFEM to be incorporated
into commercial FE software in a straightforward manner. In the pre-
sent study, a computational tool consisting of a combination of User
Subroutines and Python scripts is developed to integrate the proposed
IFEM into the commercial code ABAQUS. A similar procedure to that
described here can be adopted to incorporate the methodology in other
FE codes, provided they permit the user access to routines which allow
manipulation of the constitutive relationships employed in the models.

To incorporate the interval field model of Young's modulus in
ABAQUS, we need to implement the interval constitutive matrix of
Eq. (10), which depends on the position vector x, and is expressed as
the sum of the nominal value plus an interval deviation given by the
superposition of independent contributions associated to the EUIs. This
task is herein efficiently accomplished by coding either User MATerial
(UMAT) or USerDefinedFieLD (USDFLD) subroutines, written in FOR-
TRAN 77.

The general purpose of the UMAT subroutine is to define the con-
stitutive behavior. The UMAT subroutine is called at every integration
point of the numerical integration scheme adopted by ABAQUS to
evaluate element properties. This feature enables the spatial de-
pendency of the interval Young's modulus to be taken into account by
evaluating the interval constitutive matrix at the NG integration points
of the model, i.e.

= +

= + =

=

=

e

e j N

D X D X

D D X

( ) 1 ( ) ^

( )^ ,( 1, 2, , )

I
G j

i

M

i i G j i
I

i

M

i G j i
I

G

, 0
1

,

0
1

,
(39)

where XG,j is the vector which contains the coordinates of the j−th
integration point. As will be outlined in detail next, to implement the
proposed response surface approach for uncertainty propagation (see
Section 3), the EUIs appearing in Eq. (39) are conveniently treated as
parameters which are set either to− 1 or+ 1 within the context of the
analysis.

Once the UMAT is implemented, the evaluation of the interval
element stiffness matrix in Eq. (15), for any selected element type, is
performed by ABAQUS through numerical integration. Repeated calls
of the UMAT allow the evaluation of the interval constitutive matrix
DI(XG,j) at each integration point.

It is observed that Eq. (39) requires the knowledge of the eigenva-
lues and eigenfunctions of the spatial dependency function ΓB(x,ξ), which
are solutions of the Fredholm integral equation reported in Eq. (5). For
regular domains and selected analytical expressions of the spatial de-
pendency function, such as exponential, closed-form expressions of the
eigenvalues and eigenfunctions are available [42]. In general, a nu-
merical solution of the Fredholm integral equation is needed [43]. For
this purpose, FE based Galerkin approaches are most often used in the
literature [42]. The use of these methods leads to dense and compu-
tationally expensive matrices, especially for 2D and 3D domains [44].
Several strategies have been proposed in the literature to achieve an
accurate and efficient solution of the integral eigenvalue problem in
Eq. (5) (see e.g., [44–47]).

Alternatively, the interval field representation of the uncertain

Fig. 1. Square plate under uniformly distributed traction with uncertain
Young's modulus.

Fig. 2. Proposed a) UB and b) LB of the interval displacement of node 20 in the
load direction of the plate under uniform traction versus the number M of terms
of the KL-like decomposition for different values of the parameter lB.
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Young's modulus based on the IIA via EUI can be introduced into the
linear-elastic constitutive model of the material by coding a USDFLD
subroutine, which allows the user to define spatially varying field
variables (FVs). Specifically, the uncertain Young's modulus in Eq. (7) is
defined so as to be proportional to an interval FV which is evaluated at
each integration point as:

= + =
=

FV e j NX X( ) 1 ( ) ^ ,( 1, 2, , )I
G j

i

M

i i G j i
I

G,
1

,
(40)

where, also in this case, the EUIs are treated as parameters which can be
set either to− 1 or+ 1 within the context of the analysis.

Based on Eq. (40), the interval constitutive matrix in Eq. (10) can be
readily computed at the NG integration points as follows:

= =FV j ND X D X( ) ( ), ( 1, 2, , ).I
G j

I
G j G, 0 , (41)

Then, the evaluation of the interval element stiffness matrix in
Eq. (15) can be performed by ABAQUS through numerical integration
for any type of element. As before, eigenvalues and eigenfunctions of
the spatial dependency function ΓB(x,ξ) at the integration points must be
specified.

Once the interval field description of the uncertain Young's modulus
is incorporated into the FE formulation, coded as either UMAT or
USDFLD subroutines, the analysis can take advantage of ABAQUS’ pre-
and post-processing interfaces and exploit the computational cap-
abilities of the ABAQUS Standard solver. Moreover, it is worth em-
phasizing that, the implemented interval constitutive behavior of the
material can be used in conjunction with any type of element contained
in ABAQUS’ libraries without writing ad hoc code for each FE type.

The next step of the implementation of the proposed IFEM concerns
the solution of the interval global equilibrium equations (21) by means

of the response surface approach described in Section 3. In this regard, it
is recalled that the definition of the ratio of polynomial response surface
(see Eq. (27)) requires a certain number of deterministic analyses to be
performed which differ from one another in the values assumed by the
EUIs (see Eqs. (28a-c)). Such deterministic analyses are herein effi-
ciently performed as parametric studies by coding Python scripts. In-
deed, as already mentioned, the interval constitutive matrix, either in
the context of the UMAT (see Eq. (39)) or USDFLD (see Eq. (41)), is
treated as a parametric matrix with the EUIs playing the role of para-
meters which can take either the value−1 or+1. The Python script to
implement parametric studies in ABAQUS contains the instructions
needed to generate, execute, and gather the results of multiple analyses
that differ only in the values of some of the parameters herein re-
presented by the EUIs. The Python script requires a parameterized input
file, containing the geometry of the problem, boundary and load con-
ditions, the assigned type of FE and the parametric material constitutive
behavior, which is defined through a User Subroutine (UMAT or
USDFLD) and depends on the values assumed by the EUIs. The assembly
procedure is then automatically performed by ABAQUS, which delivers
the global stiffness matrix, as well as the load and boundary conditions,
to the numerical solver.

The computational framework developed in the present study pro-
vides a simple, efficient and versatile tool to analyze complex structures
exhibiting non-deterministic parameters, able to enrich the formulation
of well-established deterministic FEs by introducing the interval field
representation of the uncertain properties.

For problems involving complex domains, large computational
times may be needed for the numerical solution of Eq. (5). Thus, the
crucial issue in the application of the developed computational scheme
to real engineering problems is the ability to compute a large number of
eigenpairs of the spatial dependency function accurately and rapidly. To

Fig. 3. LB, UB and two typical samples, E(1)(x,y) and E(2)(x,y), of the interval Young's modulus field over the plate domain for CB=0.05: a) lB=0.5L and b) lB=5L.
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this aim, numerical methods proposed within a probabilistic framework
for the solution of the Fredholm integral equation (5) with arbitrary
integral kernel over non-rectangular domains may be adopted (see e.g.
[44–47]).

It is worth mentioning that the proposed approach is also able to
analyze problems involving multi-interval fields. In the present study, for
the sake of simplicity, only Young's modulus of the material is assumed
to be uncertain. Additional uncertain properties described as interval

fields, such as Poisson's ratio, can be incorporated into the FE for-
mulation by coding suitable User Subroutines. This would imply an
increase of the dimensionality of uncertainty which can be handled by
the proposed propagation strategy with reasonable computational
costs.

Finally, it is observed that the non-intrusive implementation pre-
sented in the paper can be readily extended to the case of uncertain
properties modelled as random fields. Indeed, as outlined in Ref. [29],
the interval field model based on the IIA via EUI is formally analogous to
the classical KL expansion of a random field consisting of a super-
position of deterministic spatial functions with corresponding random
coefficients [42]. Within the probabilistic framework, a set of un-
correlated standard random variables plays the same role of the EUIs.
The propagation of random fields is more time consuming than the one
of interval fields, especially when higher-order response statistics are
desired. The probabilistic characterization of the response may be
carried out by using the proposed ratio of polynomial response surface in
conjunction with Monte Carlo simulation [24]. As known, however, the
computational efficiency of sampling-based procedures rapidly worsens
as the truncation order of the KL expansion increases since samples of a
large number of random variables need to be generated. Conversely, the
bounds of the interval response can be efficiently evaluated even for
large truncation orders M of the KL-like decomposition of the interval
field.

Fig. 4. Bounds of the interval nodal displacements in the load direction of the
plate under uniform traction: comparison between the estimates provided by
the proposed method and the vertex method for lB= L, a) CB=0.05 and b)
CB=0.1.

Fig. 5. Coefficient of interval uncertainty of the nodal displacements in the load
direction of the plate under uniform traction: comparison between the esti-
mates provided by the proposed method and the vertex method for lB= L, and
two values of CB, namely CB=0.05 and CB=0.1.

Fig. 6. Proposed coefficient of interval uncertainty of the displacement of node 20
in the load direction of the plate under uniform traction versus the ratio lB/L
(CB=0.05).

Fig. 7. Bounds of the interval displacement of node 20 in the load direction of
the plate under uniform traction versus the ratio lB/L (CB=0.05): comparison
between the proposed estimates and the ones obtained under the assumption of
TSI and TSD of the interval Young's modulus.
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5. Numerical applications

The proposed IFEM implemented in ABAQUS is applied to analyze
two square plates under different loading and boundary conditions. In
both cases, the constitutive behaviour of the material is assumed to be
linear-elastic isotropic with uncertain Young's modulus modelled as an
interval field based on the IIA (see Eq. (7)), i.e.:

= + = +
=

E x y E B x y E x y e( , ) [1 ( , )] 1 ( , ) ^I I

i

M

i i i
I

0 0
1 (42)

where x and y are the Cartesian coordinates of a generic point of the 2D
domain of the plates.

The spatial dependency function (see Eq. (3)) characterizing the in-
terval field EI(x,y) in Eq. (42) is assumed to have the following ex-
ponential form:

=x y C x
l

y
l

( , ; , ) expB B
Bx By

2

(43)

where (x,y) and (ξ,η) are the Cartesian coordinates of two different
points of the 2D domain. The parameter CB may be regarded as the non-
probabilistic counterpart to the standard deviation in random field
theory [6], since it affects the deviation amplitude of the interval field

and thus the degree of uncertainty. Similarly, lBx and lBy may be viewed
as the analogue of the correlation lengths since they rule the spatial
dependency of the uncertain property along the x- and y-directions.
Without loss of generality, it is herein assumed that lBx= lBy= lB. No-
tice that, if lB→∞, the spatial dependency function in Eq. (43) ap-
proaches the valueCB

2, and the dimensionless interval function BI(x,y) in
Eq. (42) reduces to a symmetric interval variable, i.e.

=B x y b be( , ) ^I I I with deviation amplitude b= CB. This circumstance
implies the TSD of the uncertain Young's modulus which, indeed, turns
out to be described by a single interval variable over the whole domain
i.e. = +E x y E E be( , ) (1 ^ )I I I

0 . At the opposite extreme, as lB→0, the
TSI of the uncertain material property is achieved. In this case, Young's
moduli of the FEs of the selected mesh are described by independent
interval variables (see e.g., [23,24]).

It is worth mentioning that, for regular domains, such as those
employed in the square plates analyzed here, the eigenvalues and ei-
genfunctions of the exponential function in Eq. (43) can be evaluated in
analytical form [42].

The accuracy of the proposed IFEM is assessed by performing ap-
propriate comparisons with the bounds of the response provided by the
vertex method, which requires 2M deterministic analyses, M being the
truncation order of the KL-like expansion of the uncertain Young's
modulus in Eq. (42).

Fig. 8. Samples of the interval Young's modulus (CB=0.05, lB= L) which yield the a) LB and b) UB of the interval displacement along the y−direction of node 20 of
the plate under uniform traction.
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5.1. Plate under uniform traction with interval Young's modulus

The first application concerns a typical plane stress problem, i.e. a
square plate clamped along one edge and subjected to a uniformly
distributed traction along the opposite edge (Fig. 1). The material is
assumed to have uncertain Young's modulus described by the interval
field in Eq. (42). The following data are considered: width and thickness
of the plate L=0.1 m and t=0.001 m, respectively; nominal Young's
modulus E0= 210 GPa; Poisson's ratio ν=0.3; traction p=10 MPa.
The plate is discretized into N=16 plane stress four-node elements. A
complete Gauss quadrature integration rule is adopted. The interval
nodal displacements in the load direction, Ujy

I , (j=1, 2, ..., 20), are
selected as response quantities of interest.

Both UMAT and USDFLD subroutines have been coded to in-
corporate the interval field representation of Young's modulus into the
formulation.

The truncation order M of the KL-like decomposition is selected by
analyzing the rate of convergence of the proposed response surface ap-
proximation (see Eq. (27)). Specifically, attention is focused on the LB
and UB of the interval displacement of node 20 in the load direction,
U y

I
20 . In Fig. 2, such bounds are plotted versus the truncation order M,

for CB=0.05 and different values of the parameter lB. By inspection of
Fig. 2, it can be inferred that, as the parameter lB increases, the series
converges more quickly, so that a smaller number of terms is required
to represent the response surface in Eq. (27) and, therefore, the interval

Young's modulus in Eq. (42). To ensure a reasonable trade-off between
accuracy and computational efficiency, M=10 terms are retained for
all values of the parameter lB herein considered. Alternatively, the op-
timal truncation order M may be selected referring to suitable error
measures similar to those introduced in the literature for assessing the
accuracy of the truncated KL expansion of random fields (see e.g.,
[44–46]). For instance, in view of the analogy between the parameter
CB in Eq. (43) and the standard deviation, global error measures related
to the variance of the random field may be translated to the interval
field. Furthermore, the number of series terms may be significantly re-
duced by modifying the exponentially decaying spatial dependency
function to remove the non-differentiability at the origin [48].

In order to highlight the main features of the 2D interval field re-
presenting the uncertain Young's modulus (42) over the plate domain,
Fig. 3 shows the LB function, E x y( , ), the UB function, E x y¯ ( , ), (see Eqs.
(8a,b)), and two typical samples, E(1)(x,y) and E(2)(x,y), for CB=0.05
and two different values of the parameter lB, lB=0.5L and lB=5L.
Specifically, the samples E(1)(x,y) and E(2)(x,y) are obtained from
Eq. (7) setting = =e i^ 1, 1, 3, 5i

I , =e j i^ 1,j
I and

= =e i^ 1, 1, 5, 7, 8, 10i
I , =e j i^ 1,j

I , respectively. As expected, the
results are enclosed by the LB and UB functions. Furthermore, it is
observed that, as the value of the parameter lB increases, the pattern of
the interval field realizations consistently becomes more regular. Indeed,
as already mentioned, when lB→∞, the interval field reduces to a single
interval variable over the plate domain, that is the condition of TSD of
the interval Young's modulus is approached.

For validation purposes, the proposed bounds of the selected in-
terval nodal displacements, Ujy

I , (j=1, 2, ..., 20), are contrasted in
Fig. 4 with the ones obtained by means of the vertex method, for lB= L

Fig. 9. Contour plot of the displacement of the plate in the y−direction cor-
responding to the realizations of the interval Young's modulus which yield the
a) LB and b) UB of the displacement in the y−direction of node 20, respec-
tively (CB=0.05, lB= L).

Fig. 10. Interval stress component in the load direction of the plate under
uniform traction evaluated at the integration points of a) FE 12 and b) FE 16:
nominal value and bounds provided by the proposed method and the vertex
method for lB= L and CB=0.05.
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and two different values of the parameter CB which describes the degree
of uncertainty, CB=0.05 and CB=0.1. It can be noticed that the es-
timates of the LB and UB of the nodal displacements provided by the
proposed IFEM are in very good agreement with the ones yielded by the
vertex method, even for relatively high degrees of uncertainty. Fur-
thermore, as expected, the region of the interval displacements widens
when larger values of CB are considered.

A further insight into the propagation of Young's modulus un-
certainty can be gained by evaluating the so-called coefficient of interval

uncertainty (c.i.u.), which provides a measure of the dispersion of the
response quantity of interest around its midpoint value. The c.i.u. of the
nodal displacements in the load direction, Ujy

I , (j=1, 2, ..., 20), is de-
fined as follows:

= =
+

U
U

U
U U
U U

c.i.u. [ ]
mid{ }

¯
¯ .jy

I jy

jy
I

jy jy

jy jy (44)

Fig. 5 shows the comparison between the c.i.u. of the nodal dis-
placements Ujy

I provided by the proposed method and the vertex method
for lB= L and two different values of the parameter CB, CB=0.05 and
CB=0.1. Besides the accuracy of the proposed method, it is observed
that the dispersion of the response around the midpoint value con-
sistently increases with the parameter CB. Furthermore, it can be no-
ticed that the uncertain Young's modulus has a different influence on
the selected degrees of freedom, with the interval displacements of
nodes 1 and 5,U y

I
1 andU y

I
5 , exhibiting the largest dispersion around their

midpoint value. These nodes are at the edges of the plate and experi-
ence less constraint than nodes within the bulk of the plate away from a
free surface.

Attention is now focused on the influence of the spatial dependency
of the interval Young's modulus on the response. To this aim, in Fig. 6,
the proposed c.i.u. of the displacement of node 20 in the load direction,

Fig. 11. a) Simply-supported plate with uncertain Young's modulus subjected to a downward uniformly distributed transverse load; b) FE mesh.
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Fig. 12. Proposed a) UB and b) LB of the normalized interval deflection of node
A of the simply-supported plate versus the number M of terms of the KL-like
decomposition for different values of the parameter lB.

Table 1
Bounds of the normalized interval deflection ŨAz

I of node A of the simply-sup-
ported plate provided by the proposed method and the vertex method, and as-
sociated absolute percentage errors (lB=0.5L).

Ũ I
Az LB UB

Proposed
method

Vertex
method

(%)U Az˜ Proposed
method

Vertex
method

(%)UAz˜̄

CB=0.05 4.4116 4.4125 0.0194 4.7268 4.7293 0.0540
CB=0.1 4.2715 4.2743 0.0652 4.9034 4.9156 0.2478

Table 2
Bounds of the normalized interval rotation around the x−axis of node B ˜Bx

I

provided by the proposed method and the vertex method, and associated abso-
lute percentage errors (lB=0.5L).

˜ I
Bx LB UB

Proposed
method

Vertex
method

(%)Bx Proposed
method

Vertex
method

(%)Bx˜̄

CB=0.05 0.1443 0.1445 0.1372 0.1583 0.1586 0.1730
CB=0.1 0.1379 0.1386 0.5080 0.1659 0.1672 0.7572
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U y
I

20 , versus the ratio lB/L is plotted (CB=0.05). Notice that the dis-
persion of the selected response quantity around its nominal value is
significantly affected by the parameter lB governing the spatial de-
pendency of the uncertain material property. In particular, the c.i.u. of
the interval displacement U y

I
20 is generally greater than the value

=U Cc.i.u.[ ] 0.05y
I

B20 pertaining to the case of TSD (lB→∞) of the
interval Young's modulus.

The influence of the spatial dependency of the uncertain material
property on the response of the plate is further scrutinized in Fig. 7
where the LB and UB of the interval displacement of node 20 in the load
direction, U y

I
20 , versus the ratio lB/L are plotted (CB=0.05). Specifi-

cally, the bounds provided by the proposed IFEM, assuming the interval
field representation of Young's modulus, are compared with the bounds
pertaining to the extreme assumptions of TSD (lB→∞) and TSI (lB→0)
of the uncertain material property over the plate domain. The latter are
obtained by applying the vertex method. As shown in Fig. 7, the interval
field model yields a region of the interval displacement U y

I
20 which is

wider than the one predicted under the assumption of TSD (lB→∞),
whatever value of the parameter lB is selected. This implies that, in spite
of its simplicity, the representation of Young's modulus as a single in-
terval variable over the whole domain may lead to serious under-
estimation of response variability. Conversely, under the assumption of
TSI (lB→0), the width of the region of the interval displacement U y

I
20

may be underestimated or overestimated depending on the value of the
parameter lB. It follows, that the spatial dependency of interval un-
certainties plays a crucial role in order to obtain a reliable prediction of
response variability.

As outlined in Section 3, at a prescribed location, the response of the
plate is a monotonic function of the EUIs appearing in the interval field
representation (42) of Young's modulus. It follows that, in general, the
bounds of the interval displacements correspond to different combi-
nations of the extreme values of the EUIs and therefore to different
realizations of the uncertain Young's modulus (see Eq. (37a,b)). Fig. 8
displays the samples of the interval Young's modulus (CB=0.05,
lB=0.5L), E(LB)(x,y) and E(UB)(x,y), which yield the LB and UB, U y20
and Ū y20 , of the interval displacement of node 20 in the load direction,
U y

I
20 (see Fig. 1). The spatial variability of E(LB)(x,y) consistently entails

larger values of Young's modulus close to node 20 and lower values far
from the node, whereas an opposite pattern is exhibited by the sample
E(UB)(x,y). Fig. 9 shows the contour plots of the displacement of the
plate along the load direction corresponding to the samples of the un-
certain Young's modulus shown in Fig. 8, where the bounds, U y20 and
Ū y20 , of the interval displacement U y

I
20 are achieved.

Finally, the capability of the proposed IFEM to yield accurate pre-
dictions of the interval stress over the plate is investigated. As outlined
in Section 3, the bounds of the interval stress can be evaluated

Fig. 13. Samples of the normalized interval Young's modulus (CB=0.05, lB=0.5L) which yield the LB of the normalized interval deflection at node A of the simply-
supported plate.

A. Sofi et al. Advances in Engineering Software 128 (2019) 1–19

14



combining the response surface approximation (34) either with sensi-
tivity analysis or with a combinatorial procedure. Fig. 10 shows the
comparison between the LB and UB of the stress component in the load
direction at the Gauss points of FE 12 and FE 16 (see Fig. 1) provided by
the proposed method and the vertex method for lB= L and CB=0.05.
Notice that the proposed stress bounds, obtained by applying the re-
sponse surface approximation (34) in conjunction with the combina-
torial procedure, are very close to the ones provided by the vertex
method. Very accurate estimates, herein omitted for conciseness, are
also provided by the sensitivity-based procedure described in Section 3.
For comparison purposes, Fig. 10 also displays the nominal stress
component (i.e. for E(x, y)= E0) in the load direction at the Gauss
points of FE 12 and FE 16 which turns out to be enclosed by the LBs and
UBs predicted in the presence of spatially varying uncertainty. It has to
be mentioned that, for the analyzed plate, if the uncertain Young's
modulus were assumed TSD (lB→∞), the stress would not be affected
by uncertainty and the nominal stress would be obtained for any value
of the TSD Young's modulus. This implies that spatial variability of the
uncertain material property significantly affects the stress distribution
over the plate.

It is worth emphasizing that, for the selected case-study, the vertex
method and the proposed procedure require 2M=210 and 2M+1=21
deterministic analyses, respectively. Thus, the IFEM developed in the

present study enables the prediction of very accurate estimates of the
bounds of both interval displacements and stresses, which require much
lower computational effort than the classical combinatorial procedure.
In this regard, it is recalled that the deterministic analyses needed to
apply either the proposed response surface approach or the vertex method
are efficiently performed exploiting ABAQUS’ computational power.

5.2. Plate under uniformly distributed transverse load with interval Young's
modulus

As a second numerical application, a simply-supported square plate
under downward uniformly distributed transverse load q (see Fig. 11a)
is considered. The constituent material is assumed to be linear-elastic
isotropic with Poisson's ratio ν = 0.25 and uncertain Young's modulus
described by the 2D interval field (42) with exponential spatial de-
pendency function (43). The ratio between the width and thickness of the
plate is assumed to be L/t=100. The z-axis is taken positive downward
from the x− y plane (see Fig. 11a). The plate is discretized into
N=800 three noded triangular thin shell elements. Complete Gauss
quadrature integration is adopted. The normalized interval displace-
ment of the central node A (see Fig. 11b) in the load direction,

=U E t qL U˜ ( 10 / )I
Az Az

I
0

3 2 4 , and the normalized interval rotation around
the x−axis of node B (see Fig. 11b), = E t qL˜ ( / )I

Bx Bx
I

0
3 3 , are selected

Fig. 14. Samples of the normalized interval Young's modulus (CB=0.05, lB=0.5L) which yield the UB of the normalized interval deflection at node A of the simply-
supported plate.
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as response quantities of interest.
Fig. 12 shows the proposed estimates of the UB and LB of the nor-

malized interval displacement of node A, Ũ I
Az, versus the truncation

order M of the KL-like decomposition of the interval Young's modulus
(42) for different values of the parameter lB. By examining the con-
vergence rate of the bounds of Ũ I

Az, the first M=10 terms are retained
for all values of the parameter lB herein considered.

Tables 1 and 2 list the bounds of the response quantities of interest,
Ũ I

Az and ˜ I
Bx , respectively, provided by the proposed method and the

vertex method along with the associated absolute percentage errors,
obtained assuming lB=0.5L and two different values of the parameter
CB, CB=0.05 and CB=0.1. Notice that the proposed IFEM yields very
accurate estimates of the bounds of the selected normalized nodal
displacement and rotation even for relatively high degrees of un-
certainty.

Figs. 13 and 14 display the samples of the normalized interval
Young's modulus (CB=0.05, lB=0.5L), E(LB),i(x,y)/E0 and E(UB),i(x,y)/
E0 (i=1, 2), which yield the LB and UB of the normalized interval
deflection of node A. Due to the symmetry of the analyzed plate, each
bound of the central node deflection can be achieved considering two
different realizations of Young's modulus. Furthermore, the spatial
variability of the samples E(LB),i(x,y)/E0 (i=1, 2) consistently implies
larger values of Young's modulus close to node A, whereas the samples
E(UB),i(x,y)/E0 (i=1, 2) exhibit an opposite pattern.

In order to investigate the influence of the spatial dependency of the
uncertain property on the response, the LB and UB of the interval re-
sponse quantities of interest, Ũ I

Az and ˜ I
Bx , versus the ratio lB/L are

plotted in Fig. 15 for CB=0.05. In particular, the proposed bounds are
compared with the ones obtained under the extreme assumptions of
TSD (lB→∞) and TSI (lB→0) of the uncertain Young's modulus over

the plate domain. Notice that, for the present case-study, the TSI as-
sumption (lB→0) implies the introduction of N=800 interval vari-
ables to describe the uncertain Young's moduli of the FEs of the adopted

Fig. 15. Bounds of a) the normalized interval deflection of node A and b) the
normalized interval rotation around the x−axis of node B of the simply-sup-
ported plate versus the ratio lB/L (CB=0.05).

Fig. 16. Proposed coefficient of interval uncertainty of a) the normalized interval
deflection of node A and b) the normalized interval rotation around the
x−axis of node B of the simply-supported plate versus the ratio lB/L (M=10,
CB=0.05).

Table 3
Bounds of the normalized interval stress component ˜ I

xx evaluated at the in-
tegration points of FE 419 of the simply-supported plate provided by the pro-
posed method and the vertex method, and associated absolute percentage errors
(CB=0.05, lB=0.5L).

˜ I xx LB UB
Integration
point

Proposed
method

Vertex
method

(%)xx Proposed
method

Vertex
method

(%)xx˜̄

1 0.2680 0.2685 0.1570 0.2798 0.2808 0.3683
2 0.2701 0.2698 0.1216 0.2811 0.2819 0.2874
3 0.2704 0.2681 0.8920 0.2791 0.2819 0.9923

Table 4
Bounds of the normalized interval stress component ˜ I

xx evaluated at the in-
tegration points of FE 419 of the simply-supported plate provided by the pro-
posed method and the vertex method, and associated absolute percentage errors
(CB=0.1, lB=0.5L).

˜ I xx LB UB
Integration
point

Proposed
method

Vertex
method

(%)xx Proposed
method

Vertex
method

(%)xx˜̄

1 0.2593 0.2616 0.8914 0.283 0.2865 1.2107
2 0.2632 0.2630 0.0707 0.2852 0.2873 0.7336
3 0.2647 0.2602 1.7112 0.2822 0.2882 2.0879
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mesh. The vertex method is obviously unfeasible since it would require
2800 deterministic analyses. For this reason, the bounds of the response
pertaining to the TSI condition (lB→0) are herein evaluated by ap-
plying a sensitivity-based procedure [23]. Such a procedure highlights
that, for the problem under consideration, the bounds of the normalized
interval deflection Ũ I

Az are achieved assuming the so-called trivial
combinations of the uncertain parameters, that is setting all the interval
Young's moduli either to their LB or their UB. As shown in Fig. 15a, this
entails that identical bounds of the normalized interval deflection Ũ I

Az
are obtained under the extreme assumptions of TSD (lB→∞) and TSI
(lB→0). Such bounds generally enclose the ones obtained adopting the
interval field model. Furthermore, it is observed that, as the ratio lB/L
increases, the bounds of the normalized interval deflection Ũ I

Az per-
taining to the interval field model consistently approach the LB and UB
obtained assuming TSD (lB→∞) or TSI (lB→0) of the uncertain
Young's modulus. Fig. 15b shows that, except for small values of the
ratio lB/L, the region of the normalized interval rotation ˜ I

Bx provided
by the proposed IFEM is wider than the ones obtained under the as-
sumptions of TSD (lB→∞) and TSI (lB→0), which therefore entail
underestimation of response variability. Furthermore, it is worth
mentioning that, in the case of TSI (lB→0), the bounds of ˜ I

Bx do not
correspond to the trivial combinations. Though very close, such bounds
actually are different from the ones obtained under the assumption of

TSD (lB→∞).
Further information on the influence of spatial dependency can be

deduced from Fig. 16, where the proposed c.i.u. of the normalized in-
terval displacement Ũ I

Az and rotation ˜ I
Bx versus the ratio lB/L are

plotted (CB=0.05). As expected, the dispersion of both the selected
response quantities around the midpoint value is significantly affected
by the parameter lB. In particular, it is observed that the c.i.u. of the
normalized interval displacement Ũ I

Az (Fig. 16a) is smaller than the
value =U Cc.i.u[ ˜ ] 0.05I

Az B pertaining to the case of TSD (lB→∞).
Conversely, the plot of the c.i.u. of the normalized interval rotation ˜ I

Bx
(Fig. 16b) shows that, except for small values of the ratio lB/L, the
dispersion of ˜ I

Bx around the midpoint value is greater than the one
obtained under the assumption of TSD (lB→∞), i.e.

> =Cc.i.u[ ˜ ] 0.05I
Bx B . Also for this case-study, numerical results de-

monstrate that the spatial dependency of interval uncertainty may
significantly affect response variability.

Tables 3 and 4 list the LB and UB of the normalized stress compo-
nent = h L q˜ ( / ) /I

xx
I

xx
2 evaluated at the Gauss points of FE 419 (see

Fig. 11b) by applying the vertex method and the proposed response
surface approximation (34) in conjunction with sensitivity analysis, for
lB=0.5L and two different values of CB, CB=0.05 and CB=0.1, re-
spectively. It is observed that the proposed IFEM provides accurate
estimates of the interval stress components even when the degree of

Fig. 17. Samples of the normalized interval Young's modulus (CB=0.05, lB=0.5L) which yield the a) LB and b) UB of the normalized interval stress component ˜ I
xx

in the x−direction evaluated at the integration point 2 of FE 419 of the simply-supported plate.
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uncertainty increases. Very accurate results, herein omitted for con-
ciseness, are also obtained by using the proposed response surface ap-
proximation (34) of the stress components in conjunction with the
combinatorial procedure, as described in Section 3. It is worth men-
tioning that, also for this case-study, if the uncertain Young's modulus
were assumed TSD (lB→∞), the stress would not be affected by un-
certainty and the nominal stress would be obtained for any value of the
TSD Young's modulus. In particular, the maximum nominal value of the
normalized stress = h L q˜ ( / ) /I

xx
I

xx
2 over the plate, which is reached

at Gauss point 2 of FE 419 is 0.2760. By inspection of Tables 3 and 4 it
is inferred that this value is smaller than the UB predicted by using the
interval field model. This result demonstrates the significant influence of
spatial variability of the uncertain material property on the stress dis-
tribution.

Finally, Fig. 17 displays the realizations of the normalized interval
Young's modulus (CB=0.05, lB=0.5L), E(LB)(x,y)/E0 and E(UB)(x,y)/E0,
which yield the LB and UB of the normalized interval stress

= h L q˜ ( / ) /I
xx

I
xx

2 at the integration point 2 of FE 419 listed in
Table 3. As expected, the spatial variability of the sample E(LB)(x,y)/E0
is such that Young's modulus takes smaller values close to FE 419 (see
Fig. 11), while an opposite pattern is exhibited by the sample
E(UB)(x,y)/E0.

6. Conclusions

An Interval Finite Element Method (IFEM) for the analysis of
structures made of linear-elastic isotropic material with spatially
varying uncertain properties has been presented. Without loss of gen-
erality, only Young's modulus of the material has been assumed to be
uncertain. The inherent spatial dependency of the uncertain material
property has been taken into account resorting to a recently proposed
interval field model based on the so-called Improved Interval Analysis via
Extra Unitary Interval (IIA via EUI). The propagation of the interval field
has been performed by an efficient response surface approach which
yields the bounds of both displacements and stresses in approximate
explicit form. Relying on its non-intrusive nature, the developed IFEM
has been integrated into the commercial FE software ABAQUS by
coding suitable User Subroutines and Phyton Scripts. To the authors’
knowledge, this is the first research effort in the literature to in-
corporate spatially varying uncertainties modelled as interval fields into
a commercial FE software. The interaction with ABAQUS allows the
analyst to handle, in principle, arbitrarily complex engineering pro-
blems, by exploiting the computing power of the FE solver as well as
pre- and post-processing interfaces. In particular, the modelling phase
may involve arbitrary types of FE belonging to FE packages libraries
whose constitutive behaviour incorporates the interval field description
of Young's modulus once suitable User Subroutines are coded. Thus, the
analyst does not need to write a new FE code for any specific problem
or any type of FE used in the modelling phase.

The main features of the proposed IFEM may be summarized as
follows: i) unlike the traditional IFEMs, it takes into account the spatial
dependency of the uncertain material property; ii) the dimensionality of
uncertainty is drastically reduced since it does not depend on the
number of FEs of the adopted mesh; iii) very accurate approximate
explicit expressions of the bounds of both displacements and stresses
are obtained by performing just a few deterministic analyses, even in
the presence of relatively high degrees of uncertainty; iv) the compu-
tational efficiency is greatly enhanced compared to the classical com-
binatorial procedure; v) the implementation into the commercial FE
software ABAQUS yields a very powerful and versatile tool for the
analysis of complex structural systems with spatially varying properties
modelled as interval fields.

Potential extensions of the developed computational tool to the
analysis of nonlinear and dynamic problems are also envisaged. Indeed,
spatially varying interval uncertainties affecting the mass, stiffness and
damping matrices can be readily incorporated into commercial FE

software by coding suitable UMAT or USDFLD subroutines. Then, effi-
cient propagation strategies able to exploit the potential of the FE solver
need to be developed.
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