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Abstract 

A new temperature sensor based on a divanadium pentoxide/4H-silicon carbide (V2O5/4H-SiC) Schottky diode is presented. The 
realized device shows a good linear dependence vs. temperature of the voltage drop measured across the forward-biased junction. 
The diode performance, i.e. linearity and sensitivity, were analyzed in the temperature range from 147 K up to 400 K. Moreover, 
fundamental diode parameters were extracted from current-voltage characteristics. 
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1. Introduction 

The favorable physical properties of 4H-Silicon Carbide (SiC), if compared to silicon (Si) and other semiconductors 
enable SiC devices to support high current and voltage, also at high temperature [1-5]. In fact, during the last years, 
4H-SiC based diodes have received remarkable attention as promising temperature sensing devices for harsh 
environment applications [6-12]. The advantage of diode-based temperature sensors, if compared with other sensors 
that can be on-chip integrated, e.g., thermistors, are the compatibility with IC technology, the low manufacturing costs, 
the quasi-linear output characteristic, preserving at the same time a high sensitivity [13-14]. 
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In this work we present a high performance single diode integrated temperature sensor based on V2O5/4H-SiC 
Schottky diode [15-16]. Compared to other metallic Schottky contacts, the thin layer of V2O5 can be deposited at 
relatively low temperatures, i.e. 723 K, with respect to those typically used for Ni, i.e., around 870 K [17]. The sensor 
sensitivity, together with the linearity of the VD-T output characteristics, were analyzed in a wide range of bias currents, 
and temperatures from 147 K to 400 K. Moreover, the main physical diode parameters, such as ideality factor ( ) and 
Schottky barrier height ( B), were calculated from I-V-T measurements. 

2. Temperature sensor 

2.1. Device structure 

The schematic Schottky diode structure is reported in Fig. 1. It consists of a lightly n-doped 
(N=8.8×1015±2.2×1015cm-3), 5 μm-thick, epi-layer grown with an industrial process on a 350 m-thick commercial 
4H-SiC substrate. The thermal evaporation of 5 nm-thick V2O5 (99.99% powered) layer was followed by the 
deposition of an Aluminum metal contact, 100 nm-thick, patterned through a shadow mask in circles of 500 μm in 
diameter, to form the anode contacts. Subsequently, the wafer was annealed at 723 K in Nitrogen environment for 10 
min. Finally, a thin film of Ni was deposited on the n+ cathode to form the back contact.  

 

 

Fig. 1. Schematic cross section of integrated V2O5/4H-SiC Schottky diode. 

2.2. Theory 

As well known, according to the Boltzmann statistic, the ID diode current at a given applied voltage VD can be 
described using the following formula: 
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where  is the ideality factor, Is is the saturation current, q is the electric charge and k is the Boltzmann constant. In 
our setup, the Schottky diode was biased with a current ID kept constant in the temperature range from 147 K up to 
400 K. Is can be expressed as: 
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where R**(R**=146 A·cm-2·K-2 for 4H-SiC [18]) is the Richardson constant and q B is the Schottky barrier height.  
For qVD>> kT and for a diode current range in which ohmic effect is negligible, the voltage dependence on 
temperature can be obtained from (1), as follows: 
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The equation (3) allows an indirect temperature measurement after the diode parameters extraction.  

2.3. Diode parameters extraction  

The devices were tested in a Janis Research Inc. cryo-system and several temperature ramps were performed from 
147 K to 400 K and vice-versa. The SiC microchip temperature was accurately monitored by using two Lake Shore 
Cryotonics Inc. silicon-diodes. In our setup, the dc bias current ID was varied in a range from 1 μA to 1 mA and the 
corresponding voltage drop VD across the V2O5/4H-SiC Schottky diode was measured as reported in Fig. 2(a).   

 

Fig. 2. (a) Current-voltage (ID-VD) characteristics in a temperature range T=147 K– 400 K. (b) Temperature dependence of ideality factor ( ) and 
Schottky barrier height (q B). 

 The ideality factor, , and Schottky barrier height, q B, are important parameters for semiconductor diodes to be 
taken into account, in particular for their correct characterization as temperature sensors. In particular, q B and  are 
calculated from the intercept with the vertical axis and from the slope of the ln(ID)-VD characteristics respectively. The 
obtained value are shown in Fig. 2(b). The ideality factor remains almost constant with temperature ( =1.05) with a 
standard deviation lower than 0.033, leading to a VD-T sensor output characteristic highly linear. 

2.4. Diode performance and simulation 

In Fig. 3(a), experimental VD-T curves at different bias currents are compared with a linear fitting. Thanks to an 
almost constant value of the ideality factor, VD-T characteristics exhibit a very high degree of linearity in the whole 
considered temperature range. The sensor sensitivity (S) can be calculated from the slope of the experimental data 
linear fitting, resulting in 1.52<S<1.94 mV/K. Moreover, in order to evaluate the agreement between the experimental 
measurements and the corresponding linear best-fit the coefficient of determination (R2) has been calculated.  

In Fig. 3 (b) and (c) are shown the calculated value of S and R2 for different bias currents. The experimental 
characteristics show a good degree of linearity (R2> 0.9995) for ID 4 A. As reported , when ID is 1 mA the sensitivity 
is 1.52 mV/K and monotonically increases up to 1.91 mV/K for ID=5 μA. The maximum of R2~0.99996 has been 
calculated for ID=16 A corresponding to a sensitivity S=1.86 mV/K. 
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Fig. 3. (a) Measured (points) VD-T for four ID values and corresponding sensitivities. The dashed lines are the best linear fittings of the 

experimental data. (b) Sensitivity and coefficient of determination for bias currents from 5 A to 1 mA. 

3. Conclusions 

In conclusion, the characterized sensor showed a good degree of linearity (R2=0.99996) and a high sensitivity 
(S=1.86 mV/K) in a wide temperature range, from 147 K up to 400 K, for bias currents ID~16 A. The good physical 
characteristics, i.e. ideality factor ~1 at room temperature remaining almost constant during the thermal variations, 
allow to obtain a highly linear sensor with respect to those based on conventional Schottky contacts. 
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