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Abstract In this paper, a new differential model for electrostatic membrane
micropumps for drug delivery systems is presented. In particular, a new two-
dimensional nonlinear second-order differential model with singularity has
been determined in steady-state conditions in which the electric field magni-
tude has been considered proportional to the mean curvature of the membrane.
Then, a result of the existence of at least one solution for the model has been
obtained although, concerning the uniqueness of the solution, it is not guar-
anteed. Moreover, the stability of the solutions has been studied highlighting
that when a solution exists, then it is unstable. Moreover, the problem was
numerically solved by means of three-stage Lobatto IIIa formula achieving the
ranges of the electromechanical parameters of the material constituting the
membrane with or without ghost solutions. Finally, a criterion to select the
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intended use of the micropump starting from the electromechanical proper-
ties of the membrane and a criterion to choice the material constituting the
membrane starting from the intended use of the micropump are presented.

Keywords Electrostatic actuators and transducers · Singularities · Difffer-
ential geometry of the surfaces · Curvatures

1 Introduction to the Problem

Administering medical therapy in an efficient, targeted way is a key topic
in drug delivery research. The ultimate goal is to keep the release dose at
minimum while maximizing the efficacy of the drug. Delivering drugs at a
specific rate would also ensure that the requirements due to the pharma-
cokinetic properties would be fulfilled and the efficacy of the drug will be
improved [1]. Medical drugs hold the most diverse physio-chemical and phar-
macokinetic properties and conventional ways of administration (oral or in-
travenous) are not often the most suitable ones. Such ways indeed come with
several drawbacks: they may cause mild to severe side effects [2], weaken as
the the drug flows through the gastrointestinal path and hence lose efficacy
and require a larger dosage to ensure the drug reaches the desired the target
site at a proper therapeutic drug concentration [3–5]. Targeted delivery is of
paramount importance when administering pharmaceuticals that have short
half-lives in vivo or that are very toxic [6]. Furthermore, the possibility to
administrate therapy locally would have a great impact on the treatment of
the parts of the body that can be hardly reached by pharmaceuticals because
of physical barriers like, for example, the brain and the posterior part of the
eyes, that can be hardly reached through conventional intravenous administra-
tion. Transdermal systems cannot ensure a precise and efficient drug delivery,
this is the reason why the attention of the scientific community is focused on
micro-systems, either implantable or non-implantable [7]. Micro-technology or
Micro-electromechanical Systems (MEMS) is a promising technology in the
field of novel drug delivery systems’ development. Micro-technology indeed al-
lows to deliver a wide variety of drugs with high therapeutic efficacy. They
allow for miniaturization [8,9], integration [10,11] and electromechanical con-
trol [11]. MEMS devices include micro-particles, micro-reservoirs, bio-capsules,
micro-needles, and implantable micropumps [6]. MEMS micropump technol-
ogy allows to release drugs at a specific rate, according to the specific drug’s
pharmacokinetic properties, MEMS also allows to control infusion volumes and
also ensure a continuous drugs’ supply through a reservoir [12]. Implantable
subcutaneous drug delivery, although invasive, has several advantages. It al-
lows for a long-term drug administration (for example in case of insulin or of
cancer therapy) with no need of repeated needle injection, in this way making
drug administration independent from the subject’s daily activity, improving
the quality of the subject’s life and reducing the need of hospitalization. A mi-
cropump is a mechanical or non-mechanical pump whose dimension ranges in a
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micrometer scale, there are different kind of mechanical micropumps: electro-
static, thermo-pneumatic, piezoelectric, shape memory alloy, ionic conductive
polymer film, bimetallic [3].
This paper focuses on the first category: micropumps based on electrostatic
actuation mechanisms. Electrostatic micropumps consist of an inlet and an
outlet valves, two counter electrodes, an actuation chamber, a pump cham-
ber and a membrane (Figure 1). The membrane gets attracted or repelled by
an electrostatic force F, generated by the voltage V between the two counter
electrodes producing the pumping action [13]. Periodical membrane inflec-
tion/deflection can be produced by switching periodically V [14], [15],[3]. The
main drawbacks of electrostatic micropumps are that high voltages are re-
quired, membrane deflection is limited and only of non-conductive fluids can
be pumped [3]. In [16], a bidirectional electrostatic micropump for miniaturized
chemical analysis systems with a silicon pump that incorporated two passive
check valves has been developed. In [17] an electrostatic micropump that re-
quired a very small flow rate, meant for drug delivery applications was studied.
In [18], a methodology was proposed to predict the state of an electrostatic
micropump at equilibrium. The model was based on the minimization of the
overall energy which included: the energy of the fluid, the capacitive energy
and the diaphragm’s strain energy. In this paper, a novel differential model for
electrostatic membrane micropumps for drug delivery systems is introduced.
Given a voltage V , applied between the two counterelectrodes, an electrostatic
field E is generated which produces an electrostatic pressure pel which induces
a mechanical pressure p. In this way, the membrane is deflected, the average
deflection is proportional to |E|. A second order nonlinear differential model
with singularity is derived, which does not allow to find a closed-form solu-
tion (i.e. membrane’s profile). To overcome this issue, upper- and lower-bound
solutions are found, through an analytical approach based on finding specific
upper- and lower-solutions of the membrane’s profile. In this way, an algebraic
condition that ensures the existence of at least one solution is derived. Even
though the solution’s existence is ensured, the uniqueness is not guaranteed.
However, this paper proves that the stability of the membrane is not guaran-
teed when the solution exists. Moreover, the electromechanical properties of
the material determine the intended use of the micropump. In this regard, in
this work, we present a simple criterion that, starting from these electrome-
chanical properties, we select the intended use of the micropump. Moreover,
some numerical tests, based on three-stage Lobatto IIIa formula [19], [20], have
been performed to achieve ranges of the electromechanical parameters with or
without ghost solution (i.e., solutions obtained numerically that do not satisfy
the analytical condition of existence and uniqueness for the solution) and the
different areas where ghost solutions take places. Finally, a further criterion
proposed in this work helps us to choose the material constituting the mem-
brane once the intended use of the micropump has been chosen and vice-versa.
The paper is organized as follows. Starting from Section 2 in which an overview
of the previous works is reported, Section 3 describes the circular membrane
micropump device. Two points are taken into account: the first one, is related
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Symbols Meaning Symbols Meaning
F electrostatic force V voltage
E electrostatic field p mechanical pressure
L length of the 1D device d distance between the plates
v profile of the membrane T mechanical tension

of the membrane
ε permittivity of the free space C curvature of the membrane
θλ2 characteristics parameters R radius of the disks

of the membrane
r radial coordinate d∗ critical security distance
pel electrostatic pressure Cel capacitance
q thickness of the plate D flexural stiffness
v0 displacement µ function

at the center of the plate of proportionality
MC mean curvature v1, v2 lower and upper solutions

Table 1: List of the main symbols

to the actuator (Subsection 3.1) and the second one concerns the transducer
(Subsection 3.2). Then, after some considerations about both mechanical and
electrostatic pressures (Subsection 3.3) and how the transducer can help the
performance of the actuator (Subsection 3.4), the model is revised in terms
of mean curvature (Sections 4). Then, after some well-known preliminary re-
sults, Section 5 details the determined condition ensuring the existence of at
least one solution, and Section 6 explains why the problem does not admit
uniqueness of the solution. Once the instability of the solution has been veri-
fied (Section 7), the numerical tests perfomed are detailed in Section 8. Then,
the above mentioned criteria about the intended use of the micropump and
the characteristic electromechanical of the material constituting the membrane
are proposed (Section 9). Finally some concluding remarks as well as ideas for
future works complete the work. To improve the readability of the paper, a
list of the main symbols is shown in Table 1.

Fig. 1: The basic electrostatic micropump. v(r) vs r: visualization of v(r),
1− v(r), d∗ and upper and lower solutions v1(r) and v2(r).
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2 An Overview of the Previous Works

In [21] a 1D model of a steady-state micro-electro-mechanical system has been
studied. It consisted of two parallel metallic plates (with length is L), distant
from each other by a quantity d: the lower one is fixed and the upper one is
deformable but clumped at the boundary of a region Ω ∈ RN . The device is
also subjected to a voltage V . Once V is applied, the deformable plate deforms.
Let us indicate by v(x), x ∈ Ω, the profile of the deformed plate. As known,
the analytical model is the following:

∆2v(x) = m1(x)β1

(1−v(x))2 = β2(x)
(1−v(x))2

0 ≤ v(x) < 1 in Ω,

v = ∆v − d̂vν , on ∂Ω, d̂ ≥ 0.

(1)

In (1), β1 is computable as [22] β1 = ε0V
2L2

2Td3 in which T and ε0 represent
the mechanical tension of the plate and the permittivity of the free space,
respectively; m1(x) represents a bounded function depending on the dielectric
properties of the material constituting the lower plate. Moreover, β(x) depends
on both V and the dielectric properties of the material constituting the lower
plate. The aforementioned analitical model (1) has been studied in detail in
[23]. Specifically, the existence of at least one solution has been studied by
means of Steklov boundary condition achieving both Dirichlet and Navier
boundary conditions. It is worth nothing that vν represents the outer normal
derivative of u on ∂Ω if d̂ = 0 one achieves the Navier boundary conditions and
if d̂ =∞ one obtains the Dirichlet boundary conditions. From (1), in [21], [24],
[25], [26], [27], [28], a new elliptical semi-linear model for a 1D micro-electro-
mechanical device has been studied. Specifically, it has been formulated as
follows: {

vxx(x) = − (1+(vx(x))
2)3

θλ2 (1− v(x))2, in Ω = [−1, 1],

0 ≤ v(x) < 1, v = 0 on Ω,
(2)

with vx = ∂v
∂x , vxx = ∂2v

∂x2 . Furthermore, it is to be noted that the deformable
plate is replaced by a membrane and |E| is formulated proportional to the
curvature of the membrane, C. In [21], results of existence for the solution to
(2) have been obtained and the uniqueness condition does not depend on the
electromechanical properties of the material constituting the membrane. Then,
in [26], [28], [29] a new condition of uniqueness for the solution to (2) depending
on those properties has been determined. Numerically, (2) has been solved by
exploiting the shooting procedure (see [24], [28]); in particular, pointing out the
values of θλ2 and ensuring the convergence of the numerical method (without
ghost solutions). In [26], [28], finally, Keller-Box and shooting approaches have
been compared obtaining optimal values of θλ2 (without ghost solutions).This
work focuses on a 2D circular membrane micropump for drug delivery system
[3]. We observe an axial symmetry of the membrane; the z axis is the rotation
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axis and v is the profile of the membrane considered as a surface generated
by rotating a curve C around z on the vertical plane rz in the first quadrant,
with 0 ≤ r ≤ R. On this basis, one can conclude that v only depends on the
radial coordinate r considering the problem as a 1D problem (with x replaced
by r). Then, it can be noted that the only radial part of the Laplace operator
can be taken into account. Hence, (1) becomes:{

vrr(r) + vr(r)
r = − λ2(r)

(1−v(r))2 ,

v(R) = 0, vr(0) = 0,
(3)

where λ2(r) = β1(r)m1(r), 1
r is a singularity and λ2(r)

(1−v(r))2 represents |E|2 (see

[21]). Then, considering |E| proportional to the mean curvature MC of the
membrane, model (3) can be written as follows:{

vrr(r) = −vr(r)r − (1−v(r)−d∗)2
θλ2 ,

v(R) = 0, vr(0) = 0, 0 < v(r) < d,
(4)

in which d∗ represents the critical security distance ensuring that the mem-
brane does not touch the counter-electrode when it moves. In the following of
the work, we prove a result of existence of at least one solution to (4) althougth
its uniqueness is not ensured.

3 Circular Membrane Micropumps

3.1 The Actuator Point of View

An electrostatic micropump is a micro device constituted by a circular mem-
brane with radius R which moves between two parallel disks with the same
radius with mutual distance d. The membrane, deforming toward the upper
disk (counter-electrode) when V is applied, is clamped on the edge of the
lower disk considered at V = 0 (Figure 1). The membrane moves towards the
counter-electrode changing in volume the chamber below the membrane itself:
then, the drug fluid is drawn from the inlet check valve (Figure 1). When V
is removed, the membrane returns to its un-deflected position pushing out the
fluid through the outlet check valve (Figure 1). Repeating these operations,
the device results in a pumping action. It is worth nothing that the design of
an electrostatic membrane micropump is limited to the pull-in instability. In
particular, the volume under the membrane is small due to the limited range
of stable displacements of the membrane [22]. However, it is imperative that
the membrane smashes into the counter-electrode (pump in pull-in mode) [22].
As known, V generates inside the device an electrostatic field E and also an
electrostatic pressure, pel, deflecting the membrane [27]. It is to be noted that,
during the movement of the membrane, the direction of E is locally normal to
the tangent straight line of the membrane so that |E| depends on the local dis-
tance between the membrane itself and the cou nter-electrode [24]. Then, the
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capacitance Cel of the device changes because the distance between the mem-
brane and the counter-electrode locally also changes. Obviously, pel increases
with |E|, so, the mechanical pressure p increases deforming the membrane.
Consequently, C will be higher. It follows that |E| can be locally considered
to be proportional to C.

3.2 The Transducer Point of View

When a mechanical pressure p is applied to a two-plates micro device, the
deformable plate moves and its deflection v satisfies the well-known partial
differential equation [22] depending on ρ (density of the material constituting
the plate), q and D (thickness and the flexural stiffness of the plate, respec-
tively). In steady-state case, its solution is [22]

v(r) =
R4(1− ( rR )2)2

64D
p, (5)

with 0 ≤ r ≤ R, [30] from which, if r = 0, the displacement at the center of

the plate is v0 = R4

64Dp. Finally, v(R) =
(

1 −
(
r
R

)2)2
v0. On the contrary of

the actuator behavior, the device behaves as a transducer: indeed, p generates
v(r) varying the electrostatic capacitance Cel [22].

3.3 p & a Circular Membrane Micropump Transducer

Considering circular membrane devices, D values are lower than when a circu-
lar plate micropump is taken into account as lower values of D mean membrane
more flexible. It follows that v0 increases, so that the membrane is next to the
counter-electrode.

Remark 1 It is worth nothing that in the case of circular membrane devices
v0 increases remarkably when an external V is applied. Then, the distance
between the membrane and the counter-electrode is locally equal to 1− v(r).

Applying p to the membrane, it follows that

v0 =
0.25pR2

T
(6)

so that v(r) can be expressed as [22]:

v(r) = v0

(
1−

( r
R

)2)
. (7)

Moreover, fel, taking into account Remark 1, can be expressed as [22,30]
0.5ε0βR

2V 2

(1−v(r))2 , so that pel assumes the following form:

pel ∼=
fel
βR2

= 0.5
ε0V

2

(1− v(r))2
. (8)
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It is worth nothing that when both fel and pel are computed, the membrane
surface can be considered equal to βR2 even when the membrane moves to-
wards the counter-electrode. This is correct because d� R so that the varia-
tion of the surface, when the membrane moves, is negligible.

3.4 How the Transducer ”Helps” us to Understand the Performance of The
Actuator

As known, when V is applied to an actuator, E is produced inside the device so
that a pel is generated deforming the membrane. It follows that a link between
p and pel is verified. From (6), we can say that v0 linearly depends on p so

that one can write v0 = 0.25pR
2

T = αp, where α = 0.25R
2

T (constant value).
In addition, if other causes do not occur, p exclusively depends on pel, i.e.
p = p(pel), so that it is possible to write the following chain of equalities:

v0 = αp = αβpel = kpel, (9)

with both β and k constant. Then, taking into account (8) v0 becomes:

v0 = 0.5k
ε0V

2

(1− v(r))2
. (10)

In (10), 1− v(r) is the distance between v(r) and the counter-electrode. Since
the profile of the membrane does not touch the counter-electrode (the mem-
brane is at least d∗ away), one can write v(r) ≤ d−d∗ so that 1

(1−v(r))2 ≤
1
d∗2 .

The details can be observed in Figure ?? where a recovering of the membrane
is displayed in red color. Then, locally, the distance of the membrane from the
rest position and from the counter-electrode is valuable as v(r) and 1− v(r),
respectively. Then, Eq. (7) easily becomes:

v(r) ≤ v(r) =
0.5k

d∗2

(
1−

( r
R

)2)
ε0V

2. (11)

It is worth nothing that the link between p and pel highlights a duality in the
actuator-transducer model so that the transducer help us to understand how
the actuator works and vice-versa.

4 The Proposed Model: |E| Proportional to the Curvature of the
Membrane

As already mentioned above, λ2

(1−v(r))2 in model (3) is proportional to |E|2.

Hence, model (3) can be simplified to:{
vrr(r) + vr(r)

r = −θ|E|2;

θ ∈ R+, v(1) = 0, vr(0) = 0.
(12)
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We highlights that θ is a continuous function depending on r such that, if
C(r, v(r)) is the curvature of the deformed membrane, then |E(r)| is considered
proportional to C(r, v(r)) by means of a proportionality function, µ(r, v(r)).
It is worth nothing that µ(r, v(r)) depends on both r and u(r). This is due to
the fact that moving along the abscissa axis, |E| varies. Furthermore, different
membrane profiles (i.e. different v(r)) force different locations of E. Then, it
follows that |E(r)| = µ(r, v(r))C(r, v(r)). Therefore, if µ(r, v(r)) = λ

(1−v(r)−d∗) ,

model (12) can be expressed in the following non linear form with singularity
1/r: {

vrr(r) + vr(r)
r = −θµ2(r, v(r))C2(r, v(r)) = − θλ

2C2(r,v(r))
(1−v(r)−d∗)2 ,

θ ∈ R+, v(1) = 0, vr(0) = 0.
(13)

Obviously we need to explicitly define the curvature C. Since the problem is
2D, we need to formulate C relative to surfaces in space. Then, formulating
the curvature in terms of mean curvature MC can be a viable solution for our
goals [31]. Exploiting a well-known technique of differential geometry [31], it
is easy to obtain the following formulation for the mean curvature MC (for

detail, see Appendix A), MC(r) = − 1
2

(
vr(r)
r + vrr(r)

)
. Thus, the proposed

model (13) can be written as follows:vrr(r) + vr(r)
r = −

(
vr(r)

r +vrr(r)

)2

θλ2

4(1−v(R)−d∗)2

v(1) = 0, vr(0) = 0, 0 ≤ v(r) < d.

(14)

Model (4) is a particular version of a general problem formulated on Ω = [m,n]
with a singularity 1/r located at m. Therefore, (4) is a special case of the
following general model:{

vrr(r) = −P (r, v(r), vr(r)),

u(n) = S, ur(m) = t, S, t ∈ R.
(15)

In fact, it is sufficient to set P (r, v(r), vr(r)) = v(r)
r + (1−v(r)−d∗)2

θλ2 , with S = 0,
and t = 0, to achieve (4).

5 On the Existence of at Least One Solution

Now, we need to exploit the following results well-known in literature [22].

Result 1
On (15) we define v1(r) and v2(r) two twice continuously differentiable func-
tions such that [32] ∀r ∈ (m,n), v1(r) < v2(r) and, moreover,

v1rr(r) + P (r, v1(r), v1r(r)) > 0 (16)
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v2rr(r) + P (r, v2(r), v2r(r)) < 0. (17)

In addition, let us consider the continuous function P (r, y(r), yr(r)), defined
in W × (−∞,+∞) with

W = {(r, v) : m < r < n and v1(r) ≤ v(R) ≤ v2(r)},

satisfying the generalized Lipschitz’s condition:

M1(r)(v(r)− u(r)) +N2(r)(vr(r)− ur(r)(r)) ≤ (18)

≤ P (r, v(r), vr(r))− P (r, u(r), ur(r)) ≤
≤M2(r)(v(t)− u(r)) +N1(r)(vr(r)− ur(r)),

where M1(r), M2(r), N1(r) and N2(r) are continuous function defined on
(m,n]. Moreover, if v1r(m) ≥ v2r(m), with v1(n) = v2(n) = S, then (15) has
at least one solution (say, v(r)) in order that v1(r) ≤ v(r) ≤ v2(r), ∀r ∈ [m,n]
[32].

Result 2
Supposing that all the hypothesis of Result 1 are satisfied, we suppose that
both v1(r) and v2(r) satisfy the given boundary conditions. Then, if the fol-
lowing

vrr(r) +M2(r)v(r) +N1(r)vr(r) = 0

has nontrivial solution satisfying zero boundary conditions on any sub-interval
of [m,n], then the problem admits only one solution, v(r), such that v1(r) ≤
v(r) ≤ v2(r)[32].
Nowwearereadytopresentaresultofatleastonesolutionfortheproblemunderstudy.

Proposition 1 Let us consider the problem (4) and Results 1 and 2 above
detailed. Let also v1(r) and v2(r), with v1(r) < v2(r), be two twice continuously
differentiable functions, defined on the range [0, R] such that ∀r ∈ (0, R):

v1rr(r) +
v1r(r)

r
+

(1− v1(r)− d∗)2

θλ2
> 0 (19)

v2rr(r) +
v2r(r)

r
+

(1− v2(r)− d∗)2

θλ2
< 0 (20)

Moreover, let, for r 6= 0, vr(r)r + (1−v(r)−d∗)2
θλ2 be a continuous function satisfying

the generalized Lipschitz’s condition in

{(r, v) : 0 < r < R and u1(r) ≤ v(R) ≤ u2(r)} × (−∞,+∞).

If v1r(0) ≥ v2r(0), v1(R) = v2(R) = 0, and

θλ2 >
2R2d∗2

V 2ε0k
, (21)

there exists at least one solution for the problem (4). Then, (21) ensures the
existence of at least a solution for the problem (4).



Title Suppressed Due to Excessive Length 11

Proof See Appendix B

We note that on the plane d∗ − θλ2 the parabolic line changes its position
according to the values assumed by the single parameters present in the al-
gebraic inequality which guarantees the existence of at least one solution for
the model under study. Particularly, by fixing d∗, V and R, the greater k
will be the smaller θλ2 will be. Furthermore, since V is fixed, pel will also be
fixed (see (8)). Then, by means of (9), increasing k, v0 will increase so that
the membrane approaches the counter-electrode (direct problem). If, on the
other hand, we fix the position of the membrane, v0 is fixed so that, once
that k is also fixed, it follows that pel will be computed as v0/k (see, (9)).
Then, V will be computed by (10) (inverse problem). From the above proved
algebraic condition, setting d∗ = 10−3, R = 10−2, ε0 ≈ 10−12, we can write
θλ2 > 0.5V −2d∗R2(kε−10 ) ≈ 0.5 · 104(kV )−2. If, in addition, we introduce the
equivalence between p and pel, i.e. k = 1, we achieve θλ2 > 0.5 · 104V −2,
ensuring that in (14) the quantity vrr(r) is much less than zero ensuring a
significant deformation to the membrane when V (less than 1 Volt) is applied.

6 On the Uniqueness of the Solution

The following result proves that the uniqueness of the solution is not ensured.

Proposition 2 We take it for granted that all hypotheses of the Theorem 1
are satisfied. Moreover, we suppose that both v1(r) and v2(r) satisfy the given
boundary conditions. Then, we prove that the uniqueness of the solution for
the problem under study (4) v(r), with v1(r) ≤ v(r) ≤ v2(r), is not ensured.

Proof See Appendix C.

7 On the Stability of the Solution

Let us introduce the following Lemma [22].

Lemma 1 Problem (4) admits stable equilibrium position only if its eigenval-
ues are not with positive real part.

Proof See [22].

Let us consider the problem under study (4), in which we set

f̂(v(r)) = −4
(1− v(r)− d∗)2

θλ2
. (22)

In addition, let v∗(r) the root of f̂(v(r)), that is:

v∗(r) = 1− d∗. (23)
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Then, from (22) we can write f̂r(v(r)) = 8(1−v(r)−d∗)
θλ2 . In addition, taking into

account (23), we obtain:

f̂(v∗(r)) =
8(1− v∗(r)− d∗)

θλ2
= 0. (24)

We look for solutions whose structure is v(r) = v∗(r) + ξe−µr with ξ � 1, µ
eigenvalue, from which it follows that:

vr(r) = −µξe−µr; vrr(r) = µ2ξe−λ1r. (25)

Substituting both (25) in equation (4), we obtain

r−1(−λ1ξe−λ1r) + λ21ξe
−λ1r = f(v∗(r) + ξe−λ1r), (26)

from which, developing f(v∗(r) + ξe−λ1r) in Taylor’s series and taking into
account that f(v∗(r)) = 0, we can write

λ21 −
λ1
r
− f ′(v∗(r)) = 0 (27)

from which we achieve

λ1 =
1

2

(
1

r
±
√

1

r2
+ 4f ′(u∗(r))

)
(28)

and taking into account condition (24), we obtain:

1

2r
+

1

2r
=

1

r
> 0 (29)

If (29) holds, then, it proves that the Real{λ1} > 0 so that, by means Lemma
1 highlighting that the solution v(r) is unstable.

8 Numerical Tests: Interesting Ranges of θλ2 and Ghost Solutions
Areas

Instability phenomena of the membrane arise if V grows too much, so that
it is important to know the range of V generating instability. Thus, being V
linked to θλ2 (see (36)), the behavior of the membrane when θλ2 increases
gives us, if both d∗ and k are fixed, the range of V producing instability of the
membrane (with or without ghost solutions). We observe that by the ranges
of possible values for θλ2 (1), it is possible to know the operation parameters
in convergence area respecting (36) and the engineering areas of applicability
of the device. Therefore, we consider pel and p equivalent each other because
when V is applied |E| and pel are generated inside the device. Here, all the
simulations have been achieved by bvp4c MatLab R© solver with default relative

1 Depending on both the electromechanical properties of the material constituting the
membrane and V
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and absolute error tolerances achieving 100 grid points (2) lied to the proposed
model (14) reformulated as a system of first order differential equations as
follows (setting u1(r) = u(r) and u2(r) = ur(r)):

du1(r)
dr = u2(r);

du2(r)
dr = −u2(r)

r − (1−u1(r)−d∗)2
θλ2

u1(R) = 0; u2(0) = 0.

(30)

This solver has been exploited because its code implements the three-stage
Lobatto IIIa formula that represents a collocation formula exploiting a poly-
nomial providing a C1 continuous solution (fourth-order accurate). In this
work, three cases occurred.
In the first case, if θλ2 ∈ (10−6,+∞) no instabilities arose applying the the nu-
merical procedure: therefore, if θλ2 increased from 10−6, urr(r) increased from
negative values towards zero. Then, the concavity of the deformed membrane
decreased avoiding instabilities close to the edges. This occurrence is confirmed
by (36). Figures 2 depict a typical example of recovering of the membrane when
θλ2 = 0.5, with an initial guesses u1 ≤ 2.446 and u2 = 0. Here, being V small,
the membrane moves towards the upper plate just a little. There, instabilities
do not appear. If the initial guess of u1 increases (with u2 = 0), the behavior of
the procedure is different as shown in Figures 3, 4 and 5 in which examples of
recovering of the membrane are depicted when θλ2 = 0.5 and with initial guess
for u1 belonging to [2.447, 2.453], [2.454, 9.474], [9.63, 12.7] and [15.1, 19.978],
[9.475, 9.62], [12.71, 15] and [19.979,+∞), respectively (initial guess for u2 is
zero). Moreover, if the initial guess for u1 and u2 = 0 increase, the recovering
of the membrane is symmetrical but erratic (see Figure 3) until the profile
becomes a bell-shape (Figure 4). This erratic behavior also arise if the initial
guess increasing (see Figure 5). However, even if Figures 3, 4 and 5 depict
recovering of the membrane numerically correct, being u1 > d, they are not
realistic.
In the second case, if θλ2 ∈ (0, 10−7), the procedure does not work. In other

words, (1−u(r)−d∗)2
θλ2 increases too much because, as θλ2 → 0, (1−u(r)−d∗)2

θλ2 →∞
(the Jacobian matrix is singular).
In the last case, if θλ2 ∈ [10−7, 10−6] strong instabilities next to the edes
of the membrane arise, even if the numerical method does not stop. Figures
6 (obtained setting u1 = 0.1 and θλ2 = 5 · 10−7) and 7 ( achieved when
u1 = 1.2 and θλ2 = 10−6) show two typical recovering of the membrane when
θλ2 ∈ [10−7, 10−6] putting in evidence strong instabilities.

Moreover, from (21), being R = 1, d∗ = 10−9, k = 1 and ε0 ≈ 10−12, we easily
achieve

θλ2 >
R2d∗2

2V 2ε0k
≈ (10−6)2(10−9)2

V 210−12k
=

10−18

V 2k
(31)

2 By a greater number of grid points the performance did not improve
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Fig. 2: Recovering of the membrane: θλ2 = 0.5, u1 ≤ 2.446, u2 = 0.

Fig. 3: Recovering of the membrane: θλ2 = 0.5, 2.447 ≤ u1 ≤ 2.453, u2 = 0.

Fig. 4: Recovering of the membrane: θλ2 = 0.5, 2.454 ≤ u1 ≤ 9.474, 9.63 ≤
u1 ≤ 12.7 and 15.1 ≤ u1 ≤ 19.978, u2 = 0.

from which, being for θλ2 ≤ 10−6 the numerical procedure stably converge, it
follows that

θλ2 >
10−18

V 2k
∧ θλ2 ≥ 10−6

from which V 2k ≤ 10−12. Thus, the range of V 2k ensuring both convergence
and stability is V 2k ∈ (0, 10−12]. As already shown, ∀θλ2 ∈ (0, 10−7) the
procedure does not converge achieving

θλ2 >
10−18

V 2k
∧ θλ2 ≤ 10−7
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Fig. 5: Recovering of the membrane: θλ2 = 0.5, 9.475 ≤ u1 ≤ 9.62, 12.71 ≤
u1 ≤ 15 and u1 ≥ 19.979, u2 = 0.

Fig. 6: Recovering of the membrane: u1 = 0.1 and θλ2 = 5 · 10−7.

Fig. 7: Recovering of the membrane: u1 = 1.2 and θλ2 = 5 · 10−5.

so that V 2k ≥ 10−11. Therefore, ∀V 2k ∈ [10−11,+∞) the procedure does not
converge. If the procedure converges (also unstably), θλ2 ∈ [10−7, 10−6]. Thus,

θλ2 >
10−18

V 2k
∧ 10−7 < θλ2 < 10−6

In this paper, the numerical procedure converges even though, next to the
edge, instability phenomena could take place.
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No Convergence Convergence & Instability Convergence & Stability
θλ2 ≤ 10−7 10−7 < θλ2 < 10−6 θλ2 ≥ 10−6

V 2k ≥ 10−11 10−12 < V 2k < 10−11 V 2k ≤ 10−12

No Ghost Solutions No Ghost Solutions No Ghost Solutions
if θλ2 > 10−12

Table 2: Convergence and Stability Areas.

8.1 An Overview on the Ghost Solutions Areas

Starting from (54), setting r = 0, the displacement of the membrane at the

center of the device, v0, becomes v0 = kε0V
2

(1−v(r))2 , from which

V 2k =
2u0(1− v(r))2

ε0
(32)

that, combining with (31), becomes

θλ2 >
10−18ε0

2 u0(1− v(r))2
. (33)

However, ε0 ≈ 10−12, u0 ≈ 10−9 and (1−v(r))2 ≈ 10−9, so that (33) becomes:

θλ2 >
10−18ε0

2v0(1− v(r))2
≈ 10−1810−12

2 10−910−9
≈ 10−12. (34)

Thus, ∀θλ2 ∈ (0, 10−12] any solutions could be ghost solutions. Anyway, since
∀θλ2 ∈ (0, 10−7] the numerical method does not converge, it follows that
each numerical solution achieved does not represent a ghost solution. Table 2
summarizes the achieved results.

Remark 2 It is worth noting that the presence of ghost solutions are extremely
risky for the clinical applications of micropumps. This is due to the fact that
a ghost solution is in any case a solution that is not foreseen by the physical-
mathematical model. In other words, the numerical procedure detects a de-
formation of the membrane (and therefore inoculation of the drug) which in
reality does not occur.

9 On the Mechanical Properties of the Membrane & the Intended
Use of the Micropump

As mentioned above, we can write ξ|E|2 = λ2

(1−v(r))2 . In addition, taking into

account that λ2 = ε0(2R)2V 2

2Td3 = ρV 2 with ρ ε0(2R)2

2Td3 , we can also write

θ|E|2 =
λ2

(1− u(r))2
=
ε0(2R)2V 2

2Td3
1

1− v(r)2
.
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If we then multiply by λ2 all the above equation, we achieve:

θλ2 =
ε0R

4V 4

4T 2d6(1− u(r))2|E|2
. (35)

One can observe that, dimensionless conditions, d = R = 1 and (1−v(r))2 < 1.
Moreover, |E|2 < sup |E|2, from which 1

|E|2 >
1

sup |E|2 so that (35) becomes

θλ2 =
ε0V

4

4T 2(1− v(r))2|E|2
>

ε0V
4

4T 2(sup |E|2)
. (36)

We observe that θλ2 is a bounded quantity because, if this were not the case,
the equation of the model would be reduced to the Laplace equation admitting
Newtonian potentials and/or logarithmic potentials as solutions. Then, one can
write θλ2 < B with B positive constant so that inequality (36) can be written

as follows B > θλ2 > ε0V
4

4T 2(sup |E|2) . Then, it is easy to achieve the following

inequalities:

T >

√
ε0V 4

4B(sup |E|2)
(37)

or

V 4

sup |E|2
<

4BT 2

ε0
. (38)

Then, once the intended use of the micropump has been chosen (for example,
for a particular intravenous drug diffuser), the value of external V is fixed, and

therefore, through electrostatic calculations, the sup |E|. Then, once V 4

sup |E|2 is

known, by means of (37), we obtain the value of T which represents how much
tension must be subjected to the membrane in its rest position to deform,
under the effect of V , without touching the upper plate. Conversely, once T
is selected ((i.e. fixed the value of the mechanical tension when the membrane

is in the resting state), we obtain V 4

sup |E|2 which satisfies (38). In other words,

micro-pumps whose membrane at rest has a mechanical tension T , can be used
only in pharmacological diffusion devices whose voltage V (and therefore also
|E|) satisfy (38).

Remark 3 It is worth noting that inequality (38) has an important clinical
significance. In fact, if the micropump is inserted in an electric device subjected
to a given electric voltage V , it is necessary that inside the micropump the
material between the two plates produces an electric field whose upper end
of its amplitude together with the mechanics of the membrane T satisfy (38).
If this does not happen, the drug injection device is malfunctioning and not
ensuring the prescribed dosage.
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10 Conclusion and Perspectives

Micropumps for drug delivery within the human body represents one of the
most important clinical facilities especially with non-cooperative patients (pe-
diatric, oncology patients and so on). Scientific research has produced hospital
facilities operating according to the most varied physical principles. Among
them, electrostatic micropumps stand out as they are easy to manufacture
and require minimal maintenance. The models for such devices describe the
behavior of the device in the different operating phases in detail but they are
complex and therefore require simplifications for obtaining new and slimmer
models that, at least qualitatively, describe the behavior of the device itself.
Circular membrane electrostatic micropumps, whose physical-mathematical
simplified model is represented by an ordinary nonlinear differential equation
of the second order with singularity, are no exception. Furthermore, express-
ing |E| as a function of the mean curvature of the membrane opens interesting
scenarios regarding the study of the existence, uniqueness and stability of the
solution. On the one hand, because the use of mean curvature has provided the
possibility of obtaining an algebraic condition that manages the existence of
the solution (even if its uniqueness is not assured). Moreover, the use of mean
curvature has opened a scenario regarding the connection between the elec-
tromechanical properties of the membrane and the intended use of the device.
Such peculiarities, although encouraging from a physical-mathematical point
of view, should be considered as a first step for future developments where
the use of more sophisticated curvature formulations is hoped to highlight in
greater detail the link between the material constituting the membrane and
the intended use of the device.

Appendix A

A Useful Formulation for MC
Let be B a surface determined rotating a curve M located on the plane or-
thogonal to xy in a xyz Cartesian system (see Figure 8). It is known that the
curve M can be parameterized by a parameter, r, which does not represents
the curve-line coordinate [31]. So, a generic point P (r) on M can be defined
by

P (r) = (a(r), 0, b(r)), (39)

with r belonging to [0, R]. Moreover, a(r) and b(r) are regular functions such
that

(ar(r))
2 + (br(r))

2 ≥ 0. (40)

Finally, M can be parameterized as [31]

P (t, r) = (a(r) cos t, a(r) sin t, b(r)). (41)

We note that P (r) is a natural parameterization ensuring that M is a regular
curve. It follows that also S is regular.
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Fig. 8: Curve M located on the surface B on the plane orthogonal to xy in a
xyz cartesian system.

Coefficients of First and Second Fundamental Forms
By means of (41), we can write{

Pt = (−a(r) sin t, a(r) cos t, 0),

Pr = (ar(r) cos t, ar(r) sin t, br(r)).
(42)

Therefore, the coefficients of the first fundamental form, E, F and G become

E = ‖Pr(t, r)‖2 = a2(r), F = Pr(t, r) · Pt(t, r) = 0,

G = ‖Pt(t, r)‖2 = 1.

Being F = 0 everywhere, the coordinate lines always result orthogonal each
other. From both (42) we can write

Ptt(t, r) = (−a(r) cos t,−a(r) sin t, 0), (43)

Ptr(t, r) = (−a′r(r) sin t, ar(r) cos t, 0), (44)

Prr(t, r) = (arr(r) cos t, arr(r) sin t, brr(r)). (45)

We observe that

Pt(t, r)× Pr(t, r) = a(r)(br(r) cos t, br(r) sin t,−ar(r)) (46)

and the unit normal vector n̂ to M in P (t, r) becomes(
Pt(t, r)× Pr(t, r)

)
‖Pt(t, r)× Pr(t, r)‖

= (br(r) cos t, br(r) sin t,−ar(r)).

Hence, the coefficients of the second fundamental form, e, f and g become

e = Prr(t, r) · n̂ = −a(r)br(r), (47)

f = Prt(t, r) · n̂ = 0,

g = Ptt(t, r) = arr(r)gr(r)− ar(r)brr(r).
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Computation of the Mean Curvature MC(t, r)
The principal curvatures, pc1(t, r) and pc2(t, r), can be computed solving the
equation (e− kE)(g− pcG)− (f− pcF)2 = 0 achieving

pc1(t, r) = −br(r)
a(r)

(48)

and

pc2(t, r) = ar(r)br(r)− ar(r)brr(r). (49)

MC(t, r), known both pc1(t, r) and pc2(t, r), is computed as follows [31]

MC(t, r) =
1

2
(pc1(t, r) + pc2(t, r)), (50)

obtaining

MC(t, r) =
1

2

(
− br(r)

a(r)
+ ar(r)br(r)− ar(r)brr(r)

)
. (51)

It is worth nothing that M is located on the plane y = 0. Then, a(r) = r and
b(r) = v(r), so that ar(r) = 1 and arr(r) = 0, although by b(r) = v(r) we
achieve br(r) = vr(r) and brr = vrr(r). We observe that both ar(r) and br(r)

satisfy (40). Finally, we can write MC(r) = − 1
2

(
vr(r)
r + vrr(r)

)
.

Appendix B

Proof of Proposition 1
Exploiting (11), let us set v1(r) and v2(r) as v1(r) = 0 ∀r ∈ [0, R] and

v2(r) = v(r) =
kε0V

2

2d∗

(
1−

( r
R

)2)
(see Figure ??). It is simply to verify that, by construction, v1(r) < v2(r) and
both v1(r) and v2(r) are clearly twice continuously differentiable functions.
Then, from both (19) and (20), we can write:

v1rr(r) + F (r, v1(r), v1r(r)) = (52)

= v1rr(r) +
v1r(r)

r
+

(1− v1(r)− d∗)2

θλ2
> 0,

v2rr(r) + F (r, v2(r), v2r(r)) = (53)

= u2rr(r) +
v2r(r)

r
+

(1− v2(r)− d∗)2

θλ2
< 0.
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We note that, when u1(r) = 0 ∀r ∈ [0, R], we have v1r(r) = 0. Then, if
θλ2 > 0, (52) is verified. Moreover, knowing that

v2(r) =
kε0V

2

2d∗2

(
1−

( r
R

)2)
, (54)

we can write v2r(r) = − ε0kV
2

d∗2
r
R2 and v2rr(r) = − ε0kV

2

d∗2R2 . Then, the inequality
(53) becomes

ε0kV
2

θλ2

(
1− 1

2d∗2

(
1−

( r
R

)2)2
<
ε0kV

2

R2d∗2
(55)

It is easy to note that, in (55),

ε0kV
2

θλ2

(
1− 1

2d∗2

(
1−

( r
R

)2)2
< 1

so that if we impose 1
θλ2 <

2ε0kV
2

R2d∗2 , it follows that θλ2 > R2d∗2

2ε0kV 2 . In addition,

according to Result 1, we must prove that P (r, v(R), v′(r)) = vr(r)
r + (1−v(R))2

θλ2

satisfies the condition (18). Then, we can write:

F (r, v(r)− u(r), vr(r)ur(r)) = (56)

=
vr(r)

r
+

(1− v(r))2

θλ2
= −vr(r)

r
− (1− v(r))2

θλ2
=

=
(vr(r)− ur(r))

r
+
{(1− v(r)− 1 + u(r))(1− v(r) + 1− u(r))}

θλ2
=

=
(vr(r)− ur(r))

r
− (v(r)− u(r))

(2− (v(r) + u(r)))

θλ2
≥

=
(vr(r)− ur(r))

r
− 2(v(r)− u(r))

θλ2
=

= N2(r)(vr(r)− ur(r)) +M1(r)(v(r)− u(r)).

Moreover, we observe that the following chain of inequalities holds:

vr(r)− ur(r)
r

(v(r)− u(r))(2− (v(r) + u(r))

θλ2
≤ (57)

≤ vr(r)− ur(r)
r

− A(v(r)− u(r))

θλ2
=

= N1(r)(vr(r)− ur(r)) +AM2(r)((v(r)− u(r))).

We observe that in (57) the quantity 2−(v(r)+u(r)) is greater than or equal to
zero. Then, there exists a constant A such that 2−(v(r)+u(r)) > A > 0 holds.
Finally, we observe that Result 1 requires that v1r(m) ≥ v2r(m). In fact, since
a = r = 0, we achieve v1r(m) = v1r(0) = 0. And again, v2r(m) = v2r(0) = 0.
In addition, we observe that v1(R) = v2(R) = 0 concluding the proof of the
theorem.
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Appendix C

Proof of Proposition 2
From the chain of inequality (57), we can write

N1(r)vr(r) +M2(r)Av(r) =
vr(r)

r
− Av(r)

θλ2
.

Then, using Result 2, we write the following Bessel differential equation

vrr(r) +
vr(r)

r
− Av(r)

θλ2
= 0. (58)

The general solution for (58) can be written as a linear combination of two
linearly independent Bessel functions of the first and second kind of zeroth
order, J0(

√
(θλ2)−1Ar) and Y0(

√
(θλ2)−1Ar). Specifically, with B1 and B2

constant, we can write [33]:

v(r) = B1J0

(√
(θλ2)−1Ar) +B2Y0

(√
(θλ2)−1Ar

)
= (59)

= B1 +B1(22s(s!)2)−2
∞∑
s=1

(−1)s
(√

(θλ2)−1Ar
)2s

+

+2(λ)−1B2

(
b+ ln

(
0.5
(√

(θλ2)−1Ar
)))

[
1 +

+∞∑
s=1

(2s(s!))−2(−1)2(
√

(θλ2)−1Ar)2s+

+

∞∑
s=1

(22s(s!)2)−2(−1)s+1Hs

(√
(θλ2)−1Ar

)2s]
,

where b = 0.5772 represents the Euler-Mascheroni constant and Hs is com-
puted as 1 + 2−1 + 3−1 + · · ·+ s−1.

It is worth nothing that, the more r approaches zero, the more J0 approaches 1.

In addition, being Y0 = ln
(

0.5
√

(θλ2)−1Ar
)

, Y0 has a logarithmic singularity

when r is equal to zero. However, with B1 6= 0 and B2 = 0 the general solution
can be written as follows:

v(r) = B1

[
1 +

+∞∑
s=1

(22s(s!)2)−2(−1)s
(√

(θλ2)−1Ar
)2s]

.

Then, we have found a solution for the equation (58) (different from v(r) = 0).
As a consequence, the uniqueness of the solution for the problem under study
is not ensured. This remarks concludes the proof of the Theorem.
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