11/3/2021 2nd International Conference on Theoretical, Analytical and Computational Methods for Composite Materials and Composite Structures (I...

Society for the Advancement of Material and Process Engineering

2nd International Conference on Theoretical, Analytical and Computational Methods for Composite Materials and Composite Structures (ICOMP2021)

March 5 @ 12:00 am - March 7 @ 12:00 am

+ Google Calendar + iCal Export

Details

Start: <u>March 5 @ 12:00 am</u>

End: <u>March 7 @ 12:00 am</u>

Event Category: External Event

Website: https://hello.last2tick et.com/event/3273

« European network for Lightweight Ship Structures

SAMPE UK & Ireland Annual Seminar 2021

ICOMP2021

2nd International Conference on Theoretical, Analytical and Computational Methods for Composite Materials and Composite Structures

5-7 March 2021

BOOK OF ABSTRACTS

Contents

1	Opening Antonio J. M. Ferreira, Heng Hu (Chairs)	7
	Opening	7
2	Damage Mechanics Menghua Zhang, Yuncaoyi Li, Zixuan Pang, Yunxiang Jia, Chenwei Shan Effect of Fiber Orientation on the Machinability of Ultrasonic Assisted Grinding	7
	of 2D-C/SiC Ceramic Matrix Composite	7
	On the imperfect interfaces in viscoelastic composite materials	7
	Damage evolutions and interactions of composite materials and structures under static and cyclic loading	8
3	Auxetic materials	10
	Lulu Wei, Xuan Zhao, Guohua Zhu In-plane compression behaviors of the auxetic star honeycomb: Experiment and numerical simulation	10
	Shuai Chen, Shaowei Zhu, Bing Wang Bi-material negative stiffness honeycombs for reusable energy trapping	10
4	Plates and Shells	11
	Liang Li, Qian Shao, Jie Yang, Heng Hu A data-driven method based on artificial neural network for composite structures Xiaowei Bai, Jie Yang, Heng Hu	11
	A novel data-driven computing algorithm for strong nonlinear response simulation of thin-walled composite structures	11
	Multiscale simulation of composite plates by Structural-Genome-Driven method . Zengtao Kuang, Qun Huang, Wei Huang, Jie Yang, Heng Hu	11
	Numerical simulation of multi-stability in laminated shell structures Armagan Karamanli, Thuc P. Vo	12
	Finite element model for carbon nanotube-reinforced and functionally graded mul- tilayer graphene nanoplatelet-reinforced composite beams	12
	Redouane Lombarkia, Augustin Gakwaya Numerical Crashworthiness investigations of a Full-Scale Composite Fuselage Section	13
	Jeremy Ryatt, Ramulu Mamidala Prediction of the effective modulus and strength of Tow Based Discontinuous Fiber Composites using meso-scale Finite Element models	13
	G.G. Sheng, X.Wang Nonlinear response of functionally graded cylindrical microshells conveying steady viscous fluid	14
	M. Najafi and R. Ganesan Rotordynamic Analysis of Tapered Composite Driveshaft Based on the Finite	1.4
	Element Formulation including Shear Deformation Effects C. Delvadiya and R. Ganesan	14
	THREE-DIMENSIONAL FREE VIBRATION RESPONSE OF THICK LAMI- NATED COMPOSITE DISCS	15

	Gyanesh Patnaik, Anshul Kaushik, A. Rajput, G. Prakash Influence of projectile shape, stacking sequence, thickness on perforation charac- teristics of CFRP laminates subjected to impact	18
	Diane Wowk, Mark Boctor	
	Effect of impact location on the variation of residual dent depth in metallic hon- eycomb sandwich panels	18
	Libin Zhao, Tiancheng Cao, Yu Gong, Jianyu Zhang Research on delamination behavior of multidirectional composite laminates under static loading	19
	Chao Zhang	
	Impact simulation of textile composites: from meso-scale model to multi-scale model Maxime Merle, Marco Gigliotti, Jean-Claude Grandidier, William Egea	19
	Numerical development of a discrete semi-continuous element to model laminated and woven composite behavior during impact loadings	20
	Jinming Li, Liu Liu	
	Dynamic Analysis of Metallic Integrated Thermal Protection Systems using Vari- ational Asymptotic Method with General Boundary Conditions in Thermal Envi-	
	ronments	21
	R. Augello, E. Carrera, A. Pagani, D. Scano	
	Mixing layer-wise and refined equivalent-single layer FEs based on Lagrange ex-	
	pansions	22
	Omer Civalek, Kadir Mercan, Mohammd Arefi	
	Free vibration of CNT and FGM reinforced doubly curved shells by discrete sin-	
	gular convolution and quadrature methods	22
	Nicholas Fantuzzi, Michele Bacciocchi, A. J. M. Ferreira	
	VIBRATIONS AND BUCKLING OF ORTHOTROPIC FUNCTIONALLY GRADE STRAIN GRADIENT NANO PLATES IN HYGRO-THERMAL ENVIRONMENT	
	A.R. Sanchez-Majano, A. Pagani	
	Buckling performance of variable stiffness composites considering material uncer-	
	tainties via multiscale stochastic fibre volumes	25
	On effective properties of beam-lattice structures considering flexoelectricity	26
	Bo Yang, Christophe Droz, Abdelmalek Zine, Mohamed Ichchou Dynamic behaviors of two-dimensional micro-sized periodic structures based on	
	second strain gradient elasticity theory	27
	Vibrations and Buckling of nonlocal laminated nanoplates solved by Finite Ele- ment Method	27
	Liming Zhou, Fangting Qu, Boxuan Feng, Xiaolin Li The multi-physical isogeometric analysis method for static and dynamic charac- teristics of the magneto-electro-elastic structures	27
	Andras Szekrenyes Application of differential quadrature method to delaminated first-order shear deformable composite plates	28
	Pakala Shyam Prasad, Swati Neogi, Raghu Raja Pandiyan Kuppusamy Performance Evaluation of Carbon-Epoxy Composite Ablators under Aerody-	20
	namic Loading using Simulation Approach.	29
5	Materials	30

Artūras Kilikevičius, Jurgita Malaiškienė, Rimvydas Stonys, Jonas Matijošius, Kristina	
Kilikevičienė	
Dynamic Measurements for Determining Mechanical Properties of MCC type Re-	
fractory Castable with Graphene Oxide	30
Jing Ban, Song Yao, Yanni Rao	
A multi-scale prediction model for longitudinal tensile strength of fuzzy fiber re-	
inforced polymers	32
Monika Pracht, Waldemar Swiderski	
Analysis of the influence of the structure of composites reinforced with aramid	
fibres on the detection of defects by IR thermography methods	32
Development of a submodel technique for FFT-based solvers in micromechanical	
analysis	32
N.A. Gudkov, S.V. Lomov, I.S. Akhatov, S.G. Abaimov	32
The sensitivity of computational electrical response in CNT-polymer self-diagnostic	
nanocomposites to input model parameters	33
K. LAOUBI, S. CHALAL	აა
Study of the mechanical properties of a LDPE composite based on a modified	
ceramic charge	34
Melih Soner ÇELİKTAŞ, Merve UYAN	
Shape Memory Polymer Composites: Stimuli methods, Application areas, Chal-	
lenges and Opportunities	35
Edwin Gevorkyan, Mirosław Rucki, Vladimir Chishkala, Wojciech Żurowski, Wojciech	
Kucharczyk, Voskan Barsamyan	
Analysis of the electroconsolidation of fine-dispersed structures out of Al2O3-WC	
nanopowders	35
A. A. Pisano, P. Fuschi	
Human femur: evaluation of mechanical strength by limit analysis	36
Dileep Bonthu, Bharath H S, and Mrityunjay Doddamani	
Additively Manufactured Foam under Compression	37
Yang Yang, Fei Wang	
Rotational 3D Printing of Carbon Fiber Reinforced Epoxy Composites with Con-	
trollable Fiber Orientation	37
Anita Zade, Swati Neogi, Raghu Raja Pandiyan Kuppusamy	
Optimization of Thermal Profile for Automotive Composite Part using Non-Isotherm	
RTM Cure Simulation	38
Miguel Marco, Ricardo Belda, María Henar Miguélez, Eugenio Giner	
Numerical analysis of mechanical behaviour of lattice and porous structures	39
Miguel Marco, Eugenio Giner, María Henar Miguélez, David González	
On the effect of geometrical fibre arrangement on damage initiation in CFRPs	
under transverse tension and compression	39
Van-Tho Hoang, Ga-Young Ahn, Kang-Sun Yoon, Jin-Hwe Kweon1, and Young-Woo	
Nam	
A novel design concept for radar absorbing structures and lightning strike protec-	
tion using Nickel-coated glass/epoxy composites	40
Adrian Chajec, Sławomir Czarnecki, Seweryn Malazdrewicz, Łukasz Sadowski	
The prediction of abrasion resistance of mortars modified with granite powder and	
fly ash using artificial neural networks	40

	Adrian Chajec, Łukasz Sadowski	
	Modeling of Bleeding of Cement Pastes Modified with the Addition of Granite	
	Powder	42
	ITE REINFORCED WITH ABACA AND KENAF FIBERS	44
	Modelling spring-in distortions of L-shaped structural profiles pultruded at differ- ent pulling speeds.	44
	Kamil Krzywiński, Łukasz Sadowski The durability of polymer-cementitious floor composite made of epoxy resin mod-	
	ified with recycled fine aggregate and concrete substrate	45
6	Optimization	46
	Ajeesh Suresh Nair and Rajamohan Ganesan	
	Optimization for FPF Strength of tapered composite tubes subjected to combined	
	axial and torsional loadings based on genetic algorithm	46
	Continuous fiber angle optimization method	46
7	Functionally graded materials and structures	48
	Boris I. Mitrin, Polina A. Lapina, Vladimir B. Zelentsov, Sergei M. Aizikovich	
	Mathematical model of wear of two-layered coating on elastic substrate Andrey S. Vasiliev, Sergei Aizikovich, Sergei S. Volkov	48
	Approximated analytical expressions for displacements of the surface of an FGM-	
	coated half-space under thermal and electric loading	48
	Theoretically-experimental study on nanoindentation of coated solids	48
	E.V. Sadyrin, D.V. Yogina, B.I. Mitrin, A.S. Vasiliev, A.L. Nikolaev, S.M. Aizikovich, S.Yu. Maksyukov	
	Efficacy of in vitro restoration of mechanical properties and mineral density of carious enamel: infiltration, sealing with composite and glass ionomer cement	49
8	Concrete-FRP	51
	Xiaoyong Zhang, Zhan Guo, Yu Chen	
	Behavior of concrete filled GFRP tubular columns with inner various section shapes of GFRP	51
	Slawomir Czarnecki	
	THE INFLUENCE OF THE TYPE OF THE FORMWORK ON THE AS-CAST	
	CONCRETE SURFACE MORPHOLOGY	51
	J. Szymanowski, Łukasz Sadowski	
	Analysis of influence of selected nanoadditives on mechanical performance of high-	
	strength layered cementitious composite in concrete floors	52
	Applicability of Prestressed Near Surface Mounted CFRP Bar System according	
	to Condition of Reinforced Concrete Beam	52

Farid Abed, Mohamad Kusay Sabbagh and Abdul Saboor Karzad	
Shear Analysis of basalt fiber-reinforced concrete deep beams reinforced longitu-	
dinally with BFRP bars using Strut-and-Tie Modeling	53
Xiaoyong Zhang, Yu Chen, Mengya Ye	
Research on square concrete filled GFRP tube columns strengthened with CFRP	
sheet	53
9 Joints	55
Lin Minxiao, Guo Shijun, Jafar Jamshidi	
Damage monitoring of adhesive-bonded composite T-joint by the embedded smart	
composite fasteners	55
Agnieszka Chowaniec, Sławomir Czarnecki, Łukasz Sadowski	
THE CHEMICAL AND MICROSTRUCTURAL ANALYSIS OF THE ADHE-	
SIVE PROPERTIES OF EPOXY RESIN COATING MODIFIED WITH WASTE	
QUARTZ POWDER	55
J.M.M. Dionísio, L.D.C. Ramalho, R.D.S.G. Campilho, Jorge Belinha, I.J. Sánchez-	
Arce, D.C. Gonçalves	
Analysis of the stress singularity in composite adhesive joints	56
10 Thermal problems on Composite Structures	57
Paweł Czapski	
Influence of manufacturing technique on buckling and post-buckling behaviour	
of thin-walled, composite channel-section columns – experimental and numerical	
studies	57
Li Tian, Guannan Wang, Haitao Zhao , Mingqing Yuan, Yahui Peng, Ji'an Chen	01
A Novel Semi-analytical Approach for Thermal Properties of Fuzzy Fiber Rein-	
	57
forced Composites	51

heating rate up to 500 °C/min, the grain growth was limited that resulted with enhanced mechanical properties of the obtained bulk material. The grains in the obtained bulk material were 500-700 nm, 5-6 times larger than the particles in the initial nanopowder. However, electroconsolidation at rates 250 °C/min and 50 °C/min resulted with respective grains 30-40 and 60-90 times larger than the powder particles. It is difficult to identify proper mechanisms of the consolidation even in a typical sintering processes despite they are examined for decades. Quick sintering at high heating rates poses additional theoretical problems, since vacancies flow is reduced, large pores are decreased, and grain growth is slowed down. When the porosity at the grain boundaries is quickly decreased, mobility in this area rapidly intensifies. Thus, high rate heating generates two opposite mechanisms. On the one hand, large number of small pores appears, and in the other hand, they provide conditions for the grain growth. The pores become the interference at the grain boundaries and thus grains tend to grow more intensely. During the heating under pressure, physical contact between grains leads to the formation of branched network of boundaries. The free surface energy is consumed by the boundaries formation, while the excessive energy is the main motor of sintering. High heating rate activates the sliding effect along grain boundaries leading to quick densification. Moreover, sintering mechanism is additionally powered by the energy of lattice imperfections, which in case of plasmochemically synthesized nanopowders is substantial. Due to the stresses in the necks of the sintered particles and gradient of vacancies concentration, diffusional displacement of the mass towards necks takes place. Methods for calculation of densification considering volumetric diffusion, as well as diffusion in boundaries and surfaces, allowed determination of the diffusion coefficients based on the experimental data. The results confirmed suggestion that the nanoparticles contained substantial amounts of linear imperfections and dislocations appeared in the contact area between the particles during sintering process under the electrical current and mechanical pressure.

Human femur: evaluation of mechanical strength by limit analysis

A. A. Pisano, P. Fuschi

University Mediterranea of Reggio Calabria, Via dell'Universitá 25, I-89124 Reggio Calabria, Italy aurora.pisano@unirc.it; poalo.fuschi@unirc.it

Population aging, especially in the more developed Countries, is an indicator of well-being, nevertheless it poses a number of problems such as, among other, the increasing of bone-related diseases, skeletal fractures and osteoporosis, which affect the health system and have significant economic implications. In the last few decades, several scientific efforts have been made to predict and describe the human bones mechanical behaviour under different loading conditions, see e.g. [1] and references therein. However, the complexity of the bone material depending, in contrast to engineering materials, by several external factors such as age, conditions of growth, type of feeding, environmental and working circumstances, has not allowed scientists to find approaches of general applicability, so that the research in this area is very active. Finding motivation on the above remarks, the present contribution proposes the application, in the above outlined context, of the Limit Analysis Theory, so focusing on the ultimate bone mechanical conditions. A sufficiently accurate and reliable prediction of the peak/collapse load for a human long bone is attained. In particular, a Finite Element (FE) numerical technique, namely the Elastic Compensation Method (ECM), is promoted to address the human femur limit analysis. The ECM is an iterative procedure made of sequences of linear elastic analyses, through which the elastic moduli of the constituent material are systematically varied to simulate the process of stress redistribution arising within the structure suffering an increasing load till the attainment of its strength threshold. The ECM has been applied by the authors in the past to structures made of engineering materials like steel, composites or reinforced concrete [2]. To deal with human bone material, a constitutive model of Tsai-Wu-type in principal stress space is assumed for the human bone [3], the latter is modelled in 3D and viewed, at a macroscopic level, as a structural element made of a composite anisotropic material. The obtained numerical results, even if at an early

stage, when compared with the ones present in literature and obtained via experimental findings, [4], encourage the authors to continue the undertaken research.

References

1. Murphy W., Black J., Hasting G., 2016. Handbook of Biomaterial Properties. 2nd Ed. Springer, New York, NY.

2. De Domenico D., Pisano A.A., Fuschi P., 2014. A FE-based limit analysis approach for concrete elements reinforced with FRP bars. Composite Structures, 107, 594-603.

3. Doblaré M., García J.M., Gómez M.J., 2004. Modelling bone tissue fracture and healing: a review. Engineering Fracture Mechanics, 71, 1809-1840.

4. Dall'Ara E., Luisier B., Schmidt R., Pretterklieber M., Kainberger F., Zysset P., Pahr D., 2013. DXA predictions of human femoral mechanical properties depend on the load configuration. Medical Engineering Physics, 35, 1564-1572.5.

Additively Manufactured Foam under Compression

Dileep Bonthu (1^*) , Bharath H S(2), and Mrityunjay Doddamani(1)

(1)Advanced Manufacturing Laboratory, Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India.

(2) Department of Mechanical Engineering, Siddaganga Institute of Technology, Tumakuru, Karnataka, 572104, India.

(*)dileepbonthusai@gmail.com, bharathhs@sit.ac.in, mrdoddamani@nitk.edu.in

In current work syntactic foam-based functionally graded material (FGM) is developed using fused filament fabrication (FFF). FGM is printed using lightweight filaments of glass micro balloon (GMB) reinforced high-density polyethylene (HDPE). Flat wise compressive behavior of 3D printed HDPE and syntactic foam-based FGM (0-20-40) are studied as per ASTM standard. Results reveal that the compressive modulus of the FGM is higher compared to neat HDPE with a slight decrease in strength. This is due to induced void content formed during the 3D printing. These voids enhance the weight reduction potential of the foams and help in improving damping and buoyancy properties. The specific modulus and strength of 3D printed FGM are higher compared to neat HDPE. Results of SEM analysis showed that sustainability of filler was good in pre-compression tested samples without any GMB failure which signifies that all the chosen process parameters for printing FGM are appropriate, whereas breakage of GMB filler is observed in post-tested samples.

Keywords: 3D printing; Syntactic foam; Glass micro balloons; Functionally graded material.

Rotational 3D Printing of Carbon Fiber Reinforced Epoxy Composites with Controllable Fiber Orientation

[Yang Yang, (Fujian Key Laboratory of Special Energy Manufacturing, Huaqiao University, Xiamen 361021, China)

(Xiamen Key Laboratory of Digital Vision Measurement Huaqiao University, Xiamen 361021, China), 15165205179@163.com] [Fei Wang, (Fujian Key Laboratory of Special Energy Manufacturing, Huaqiao University, Xiamen 361021, China)

(Xiamen Key Laboratory of Digital Vision Measurement Huaqiao University, Xiamen 361021, China), wangfei@hqu.edu.cn]

Carbon fiber reinforced epoxy resin composites play a vital role in application of aerospace, traffic vehicle and lightweight engineering. The composites exhibit exceptional mechanical performance that often arises from complex fiber orientation in the material. Controlling fiber orientation in materials is very challenging. A set of rotary extrusion 3D printing equipment was built to change fiber orientation. Using this equipment, orientation of short fibers in the printing trajectory can be