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Abstract: Several Internet of Things (IoT) applications are booming which rely on advanced artificial
intelligence (AI) and, in particular, machine learning (ML) algorithms to assist the users and make
decisions on their behalf in a large variety of contexts, such as smart homes, smart cities, smart
factories. Although the traditional approach is to deploy such compute-intensive algorithms into the
centralized cloud, the recent proliferation of low-cost, AI-powered microcontrollers and consumer
devices paves the way for having the intelligence pervasively spread along the cloud-to-things
continuum. The take off of such a promising vision may be hurdled by the resource constraints of
IoT devices and by the heterogeneity of (mostly proprietary) AI-embedded software and hardware
platforms. In this paper, we propose a solution for the AI distributed deployment at the deep
edge, which lays its foundation in the IoT virtualization concept. We design a virtualization layer
hosted at the network edge that is in charge of the semantic description of AI-embedded IoT devices,
and, hence, it can expose as well as augment their cognitive capabilities in order to feed intelligent
IoT applications. The proposal has been mainly devised with the twofold aim of (i) relieving the
pressure on constrained devices that are solicited by multiple parties interested in accessing their
generated data and inference, and (ii) and targeting interoperability among AI-powered platforms.
A Proof-of-Concept (PoC) is provided to showcase the viability and advantages of the proposed
solution.

Keywords: Internet of Things; edge computing; virtualization; edge AI; artificial intelligence; TinyML;
6G

1. Introduction

Today, an ever growing market of Internet of Things (IoT) applications, such as video
surveillance, intelligent personal assistants, smart home appliances, and smart manu-
facturing, requires advanced Artificial Intelligence (AI) capabilities, including computer
vision, speech recognition, and natural language processing. Such intelligent applications
are traditionally implemented using a centralized approach: raw data collected by IoT
devices are streamed to the remote cloud, which has virtually unlimited capabilities to run
compute-intensive tasks, such as AI model building/training and inference. Centraliza-
tion has the further advantage of storing the output of the inference stage which can be
requested later by other applications [1], with no need to re-run the computation.

Notwithstanding, there is a potential downside in leveraging the remote cloud for
running cognitive components. First, uploading a massive amount of input data to the
cloud consumes network bandwidth and energy of the IoT devices. Second, the latency to
the cloud may be prohibitive for delay-sensitive applications. Third, transferring sensitive
data retrieved by IoT devices may raise privacy issues [2].
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Edge computing, considered as one of the main pillars of fifth generation (5G) sys-
tems [3], can be used to augment the capabilities of IoT devices by pushing computing
and storage resources to close servers in several smart environments. Relying on the local
edge capabilities, instead of moving data to powerful remote data centers, can boost the
system performance by reducing the data traffic load traversing the core network and thus
ensuring low-latency access to context-aware cloud-like services. Recently, the availability
of edge computing solutions, coupled with the need to build inference and make intel-
ligent decisions as fast as possible, contributed to the marriage of edge computing and
AI, leading to the so-called edge AI paradigm [2,4]. Based on this innovative approach,
computation-intensive and latency-critical AI-based applications can be executed in a
real-time responsive manner by pushing the AI model computation close to the requesting
users, while also achieving a reduced pressure on the network and the protection of the
user privacy. Context-awareness is a further benefit of deploying cognitive components at
the edge [5].

Edge and cloud are not mutually exclusive but rather complementary, with the former
taking care of delay-sensitive tasks and the latter in charge of extremely computationally
intensive tasks. By applying such a split to the AI lifecycle workflow, model training can
be deployed into the cloud while inference can be performed at the edge. Similarly, some
of the Deep Learning (DL) model layers can be deployed at the edge, close to the input
data, while the extracted features, whose size is smaller than that of the input data, can be
transferred to the cloud [6].

Bringing the edge AI vision to the extreme, a true revolution will be achieved when
AI will be spread at the deep edge, being embedded into IoT devices, e.g., running on
micro-controllers units (MCUs), such as wearable devices, surveillance cameras, and
smartphones [1,7]. Of course, straightforwardly moving algorithms, which originally
run on powerful platforms, into IoT devices is not feasible, due to the relatively limited
computing power, memory footprint, and energy of such devices. Approaches like parallel
acceleration and AI model compression (e.g., weight pruning, data quantization) are
necessary to enable DL on IoT devices, while keeping the same accuracy as the original
models as much as possible [2,4,8].

The new trend, referred to as TinyML [9], of equipping IoT end-devices with capabili-
ties to execute Machine Learning (ML) algorithms paves the way for a wide plethora of
innovative intelligent applications and services, and contributes to the radical IoT shift
from connected things to connected intelligent things, which is at the basis of future sixth gener-
ation (6G) systems [10]. TinyML is getting close to reality thanks to recent advancements in
the miniaturization of AI-optimized processors and the definition of extremely lightweight
ML inference frameworks. Examples are the STM32Cube.AI [11] by STMicroElectronics,
which embeds human activity recognition and audio scene classification capabilities in
micro-controllers; the Snapdragon Neural Processing Engine (SNPE) Software Develop-
ment Kit (SDK) [12] released by Qualcomm, which enables DL into smartphones; and
uTensor [13], built on Tensorflow and optimized for ARM processors.

More distributed AI approaches can be also foreseen, which do not only spread
learning and inference tasks between the cloud and the (deep) edge, but also enforce
inference model splitting between device-edge, edge-edge, and edge-cloud tiers on a
per-application basis [14].

Having AI pervasively deployed over a distributed cloud along the cloud-to-things
continuum [7,15] would not come without challenges, as summarized in Table 1. Unlike in
centralized deployments, distributed AI solutions may suffer from interoperability issues,
due to fragmented and mainly application-specific solutions [1]. AI algorithms are typically
tightly coupled to the application that exploits them, so hindering the provisioning of the
same offered service to other applications. To circumvent this issue, it is crucial to set up
mechanisms to identify and discover AI components and build intelligent applications upon
them, while efficiently using network and computing resources. Indeed, solutions should
be devised to make interactions with resource-constrained IoT devices as light as possible
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and reduce the pressure on them for inference computation. Finally, the heterogeneity
of AI accelerators and chipsets calls for robust platform abstractions, which can ensure
transparent access to AI components by hiding the specific low-layer implementation details
to the upper layers that exploit them.

Table 1. AI at the deepest edge: main issues and our proposal.

Issue Description Proposed Solution

Interoperability Fragmented and mainly application-
specific AI solutions

Uniform semantic description of AI
components

Platform heterogeneity AI-enabled chips and compilers with
different features

Hardware- and software-agnostic ab-
straction

Pressure on constrained devices Multiple applications requesting the
same inference results to IoT devices

Caching of inference results and
lightweight messaging protocols

In this paper, we propose leveraging the IoT virtualization concept [16] and apply it
to AI-powered IoT devices in order to tackle the aforementioned issues. IoT virtualization
has the ability to make heterogeneous objects interoperable through the use of semantic
descriptions coupled to the digital counterpart of any real entity in the IoT. This approach
makes the discovery of IoT services easier, since metadata are used to index the virtual
objects. We couple the virtualization concept with edge computing to ensure quicker
interactions between the twinned physical devices and their virtual counterparts. Being
hosted at the edge facilities, the digital counterpart can augment the typically constrained
capabilities of the corresponding physical device, e.g., by caching inference results.

The main contributions of this paper can be summarized as follows:

• We propose to leverage the concept of IoT virtualization for the semantic descrip-
tion of AI-empowered IoT devices being part of the distributed cloud and for the
augmentation of their capabilities. The ultimate goal is to make their resources to
be discovered and accessed by different stakeholders as-a-Service, while ensuring
interoperability.

• We provide the semantic description of the AI-empowered IoT devices through
the well-known Open Mobile Alliance (OMA) Lightweight Machine-to-Machine
(LwM2M) resource description model [17] proposed in the IoT domain. Conceived
extensions to specifically deal with AI components embedded in IoT devices are
detailed.

• We promote the usage of the Constrained Application Protocol (CoAP) [18] to al-
low lightweight interactions between an AI-empowered IoT device and its virtual
counterpart at the edge.

• We realize a Proof-of-Concept (PoC) to showcase the viability of the conceived pro-
posal when referring to an object detection application and leveraging the Leshan
implementation of OMA LwM2M. We also measure the data footprint in terms of
exchanged bytes to retrieve the output of an object detection inference task.

The paper is structured as follows: Section 2 introduces the OMA LwM2M protocol
as the enabler for IoT virtualization as well as CoAP to facilitate message exchange. Our
proposal is discussed in Section 3 and the devised PoC is presented in Section 4. Final
remarks and conclusions are drawn in Section 5, by providing hints on future works.

2. Internet of Things (IoT) Virtualization
2.1. The VO Concept

Virtualization typically refers to the logical abstraction of underlying hardware devices,
through a software implementation/description. In the IoT context, it can either impact the
network and its functions [19] or the devices [16]. Notably, device virtualization has become
a key pillar of many reference IoT platforms (e.g., iCore [20], IoT-A [21]) and commercial
implementations (e.g., Amazon Web Services IoT). It is intended to make heterogeneous
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objects plug-and-playable: this means that, as soon as a device joins a network, it can
be immediately provided with mechanisms that enable its interaction with the external
world [16].

The Virtual Object (VO) represents the digital counterpart of the physical IoT device.
The most appropriate manner to represent IoT devices is by using semantic technolo-
gies [16]. Hence, the VO provides the semantic enrichment of data and functionalities
provided by the IoT device. The result of the semantic description is the VO model which
includes, for instance: objects’ characteristics, objects’ location, resources, services, and
quality parameters provided by objects. The VO model, intended as a software built for
such a service, is independent from a specific device; it is initialized at startup according to
the properties of the physical homologous it is going to represent thanks to a configuration
file built on purpose.

The semantic description copes with heterogeneity and provides interoperability in
the IoT domain eliminating vertical silos. In addition, it is very powerful in supporting
search and discovery operations. Indeed, search and discovery mechanisms allow for
finding the device that is most appropriate to perform a given application’s task.

The VO can also augment the physical counterpart with storage and computing
capabilities, by providing caching and preliminary filtering/aggregation/processing of raw
data streamed by the corresponding IoT device, before feeding IoT applications building
upon them. Caching data provided by the physical device would also avoid overwhelming
it with the same requests coming from multiple remote applications, which is particularly
helpful in case of resource-constrained IoT devices.

Although VOs were initially conceived to be deployed in the remote cloud, recent
literature solutions have disclosed the benefits of edge networks to satisfactorily meet
the latency constraints on pairing a physical device and its corresponding VO [22–24]. In
particular, in ref. [23], a proxy Virtual Machine (VM) is considered to be hosted at the edge,
and containers are instead considered to create virtualized cameras in ref. [25].

In the same context of abstractions for IoT, other approaches are advocating the
agent concept, as extensively surveyed in ref. [26]. Agents seem to have found a wide
use in the implementation of vertical IoT solutions within the same specific domain, for
instance, integration of multiple heterogeneous systems belonging to the same holder.
Nevertheless, agents actually look more viable for specific micro-operations or platform-to-
platform interconnection and, unlike VOs, not yet ready to boost up SOs’ connectivity and
interoperability [26].

2.2. The OMA LwM2M Protocol

Several semantic models exist for IoT device discovery and uniform data format.
Semantic technologies are largely leveraged in the web domain and extend the Web
with machine interpretable meaning, thus enabling data integration and sharing, and
interoperability amongst interconnected machines [27]. A well established Semantic Web
standard is the Web Ontology Language (OWL), developed by the World Wide Web
Consortium (W3C). The application of semantic technologies to the IoT domain has been
largely advocated in the literature [28–30]. More recently, such techniques have been
properly extended to match IoT peculiarities. The first attempt of standardization in IoT
semantic description was the Semantic Sensor Networks (SSN) ontology [31] which is an
OWL ontology for describing sensors developed by W3C. More recently, the W3C Web
of Things (WoT) has proposed Things description (TD) [32] that specifies a semantic way
to map IoT devices in the physical world to virtual things [33]. A proprietary ontology
is considered in ref. [25]. In addition, the popular IoT implementation, oneM2M, has
its ontology, the base ontology, which defines a device as a derivation of a generic thing
designed to accomplish a particular task through functions of the device [34].

In this work, we leverage OMA LwM2M [17], which provides a simple object-based
resource model for Machine-to-Machine (M2M) and IoT device management [35]. It has
been used in commercial implementations [36] and within the FIWARE initiative [37]. In
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ref. [38], OMA LwM2M is leveraged as a key pillar for the VO implementation. It is also
considered for several vertical markets, e.g., industry 4.0 [39] and automotive [40].

In OMA LwM2M, the device is represented by a collection of Objects and each object
is composed of Resources, as shown in Figure 1.

The Resource specifically identifies the elementary accessible entity which can define,
for instance, the information that a device can transmit [41]. It defines a specific resource
related to the OMA Object itself. For instance, a Resource could be the Value for a tempera-
ture sensor, the Latitude and Longitude values for a positioning equipment, as well as the
Memory Free and the Battery Level for a device [42].

Figure 1. OMA LwM2M data model.

In particular, Objects and Resources are represented through a Uniform Resource
Identifier (URI) path hierarchy, where each URI path component sequentially represents:
the Object Type Identifier (ID), the Object Instance ID, and the Resource Type ID. For instance,
the URI path for Latitude coming from a geo-localization sensor is /6/0/0. The component
6 identifies the object Location, 0 identifies the instance, and it is used to differentiate the
presence of multiple objects of the same type into the Device; 0 represents the Latitude value
(i.e., 38, 120766) of the sensor. The Longitude value, instead, is represented by a different
resource with path 6/0/1. All the resources included in the Location object are reported in
Table 2.

Table 2. OMA-LwM2M location object’s resources definition.

Resource Name Object ID Object Instance Resource ID

Latitude 6 0 0
Longitude 6 0 1
Altitude 6 0 2
Radius 6 0 3
Velocity 6 0 4
Timestamp 6 0 5
Speed 6 0 6

Objects defined by OMA as well as standard objects produced by third-party organiza-
tions are both provided by the public registry [42]. By following the technical specifications,
customized objects can be further defined.

Objects and resources are hosted by a data producer, which is referred to as the OMA
LwM2M client, and they are consumed by the so-called OMA LwM2M server. The object
structure and its resource data are defined within an eXtensible Markup Language (XML)
configuration file. The same configuration file must be kept by both client and server to
serialize/de-serialize the exchanged information.

The LwM2M Enabler interface provides access to resources through the use of CREATE,
READ, WRITE, DELETE, EXECUTE, WRITE-ATTRIBUTE, or DISCOVER operations.

2.3. The CoAP Protocol

OMA LwM2M leverages CoAP as a messaging protocol. CoAP has been proposed
within the Internet Engineering Task Force (IETF) to allow Internet Protocol (IP)-enabled
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IoT devices to work in a Web-like fashion [18]. This protocol provides discovery mecha-
nisms, resource abstraction, URIs, and request/response methods.

Although built upon the well-known Hyper Text Transfer Protocol (HTTP), it is
specifically customized to incur a low footprint in terms of bandwidth consumption and
implementation complexity, and, hence, to be deployed by constrained devices.

At the transport layer, it relies on User Datagram Protocol (UDP), instead of the heavier
Transport Control Protocol (TCP), and implements retransmissions at the application layer.

Besides request/response methods, it provides the asynchronous monitoring of IoT
resources through the OBSERVE extension. Such feature is particularly beneficial for
those resources that do not change with a fixed periodicity and for which, instead, a
periodical request/response approach would waste network bandwidth and device battery
for exchanging unchanged values of the resource.

3. Proposal
3.1. Reference Architecture

Our proposal builds upon the successful IoT virtualization concept that is extended to
the case of upcoming AI-empowered IoT devices. The resulting reference architecture is
reported in Figure 2.

Figure 2. Reference architecture.

At the bottom of the architecture, we have intelligent IoT devices, i.e., devices equipped
with AI capabilities. Through embedded sensing capabilities, they can collect data feeding
the on-board inference engine. The latter one mainly consists of models pre-trained on
massive datasets by more powerful platforms, e.g., the remote cloud. A typical pre-trained
ML inference model cannot be run on constrained IoT devices as it is, and must be con-
verted to fit the target limited device resources. Quantization and pruning [43] are just a
few examples of the techniques to be deployed by an ML compiler to build the optimized
model for the specific software and hardware platform that the device is featuring. Such
model can be installed (and also modified) into devices on-the-fly. Once the optimized
model is deployed into the device, the latter one can start inference.

At this stage of research, without loss of generality, we assume that ML models
deployed at physical devices are Artificial Neural Networks (ANNs) (also encompassing
deep learning, hence ANNs with complex multilayers [44]), which are widely leveraged
to accurately classify and recognize patterns. Hence, they can be particularly helpful to
support IoT applications by processing large amounts of unstructured data provided by
physical devices. Examples are the recognition of objects, traffic signs, speech as well
as obstacle avoidance, see, e.g., [45] and references therein. Moreover, the proposal is
intended to specifically support solutions already available on the market that foresee the
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implementation of pre-trained ANN models into constrained platforms; see, for instance,
the solution provided by STMicroelectronics [46].

In our proposal, the virtualization layer represented by the digital counterparts of the
physical devices is hosted at the edge. In particular, each physical device is associated with
what we refer to as Virtual Intelligent Object (VIO).

At the top of the architecture, we have intelligent IoT applications, which may request
inputs from cognitive components hosted in IoT devices, through the VIO. Such consumer
applications can be either hosted remotely (e.g., remote surveillance) or located close to the
intelligent IoT devices (e.g., augmented reality).

3.2. The VIO Design

The VIO represents the key novelty of our proposal. Similarly to the VO initially
conceived in IoT, its presence targets the following crucial objectives: (i) overcoming
platform heterogeneity, (ii) ensuring interoperability, (iii) improving search and discovery,
and (iv) reducing the pressure on constrained devices. In addition, in our proposal, its
design is enhanced to specifically support the augmentation of the physical AI-powered
device with additional functionalities detailed as follows:

• It provides the semantic description of the physical AI-empowered counterpart so to ensure
a common understanding of its features and capabilities among all potential con-
sumer applications. Specifically, it describes the cognitive embedded components
by abstracting the specific hardware and software platform implementation. Hence,
the VIO exposes the capabilities of the relevant physical device for interested ap-
plications, managing transparent access to the intelligent heterogeneous resources.
Such a feature is particularly beneficial for sophisticated applications relying on AI
inference capabilities. Indeed, the semantic description of AI-empowered IoT devices
can facilitate search and discovery procedures in order to identify the AI components
that are the most appropriate, according to the demands of the requesting application
(e.g., in terms of accuracy, expected inference latency), to perform a given inference
task. Moreover, in so doing, the conceived abstraction of the AI capabilities of IoT
devices makes the latter ones available to all interested applications in an interoperable
manner, by overcoming fragmentation.

• It acts as a proxy between the physical device and the consumer applications. It is in charge
of replying to the requesting applications, on behalf of the physical device.

• It caches the output of inference procedures performed by the physical device. Such cached
results can feed multiple consumer applications issuing multiple requests, which may
potentially overwhelm the constrained IoT device. It could happen, for instance, that
users within the same area request recognition tasks related to it [2]. As a result,
resources of the physical device will be saved, since there would be no need to re-run
the inference task to reply to each request issued by different applications.

• It is in charge of issuing the update of the ANN inference model on the physical device.
This can result either in the update of the weight parameters or in the modifications
of the model itself. The update can be issued for instance by monitoring the accuracy
levels achieved in performed inference procedures or upon feedback received by the
consumer applications.

• It can train the ANN model, on behalf of the cloud, by ensuring a higher proximity to
the physical device where it should be injected.

• It can optimize the pre-trained ANN model before its injection into the device. This is
more convenient than what is currently assumed, i.e., a remote server playing this
role. Indeed, the VIO knows the capabilities of the device, according to which it can
modify the model for a proper fitting.

3.3. OMA Object and Relevant Resources

In this work, we propose the use of a new OMA LwM2M object, named OMA-TinyML,
for the semantic description of the physical device which is kept by the VIO. Such object



J. Sens. Actuator Netw. 2021, 10, 13 8 of 14

defines the semantic representation of an ML capability embedded in an IoT device and
allows for exposing the capabilities of the device to external applications. We assign it
the OMA ID of 20,000, according to object classes defined by OMA [47]. The following
resources are defined for it:

• AI application: this resource describes the type of inference that can be performed by
the physical device, e.g., object detection, face recognition, and audio classification.

• Model: it describes the type of ANN that the device runs locally and for which it can
provide an inference, e.g., Convolutional Neural Network (CNN);

• CPU: it provides details about the processing capabilities of the device. It is expressed
in GHz.

• Start inference: it triggers the execution of the inference task by a consumer application.
• Output: it provides the output of the inference, e.g., the set of detected objects in a

picture or in video source, along with the measured accuracy and the coordinates of
the bounded box of the detected object.

The first three resources play a crucial role in the discovery procedure. In particular,
once an application identifies a given IoT device for an inference task, the parameter about
the CPU on board can provide some hints about the expected inference latency. The latter
information can be leveraged together with the residual battery level (exposed by the
legacy OMA LwM2M Device object, ID 3, at resource ID 9) and the free memory (exposed
by the legacy OMA LwM2M Device object, ID 3, at resource ID 10) to understand whether
the device can successfully accomplish the inference task.

It is worth noting that a consumer could leverage the OMA LwM2M OBSERVE
method in order to be updated on each output of performed inferences. In other words,
instead of explicitly requesting each output of the inference, some logic can be defined
upon which the physical device pushes updates on the performed inference to the VIO.
For instance, in case of a surveillance camera with an embedded face recognition engine
deployed in an office environment, the OMA client can issue an update on the Output
resource whenever an unrecognized individual is detected at closing hours.

Table 3 reports the OMA-TinyML Object and its resources.

Table 3. OMA-TinyML object resources.

Name Resource ID OMA LwM2M Resource URI Path

AI application 0 /20000/0/0/
Model 1 /20000/0/1/
CPU 2 /20000/0/2/
Start inference 3 /20000/0/3/
Output 5 /20000/0/4/

4. Proof-of-Concept

In this section, we aim to assess the viability of our proposal, by showcasing how the
VIO can be deployed to augment an IoT device running an ML algorithm for the sake of
object detection. Moreover, measurements concerning the incurred traffic footprint as well
as the inference latency when compared to the case in which inference is performed into
the edge are reported.

4.1. Experimental Set-Up

The experimental set-up for our study is shown in Figure 3. The OMA LwM2M client
component runs on the AI-powered device, i.e., a low-cost Rasbperry Pi, and provides the
set of resources feeding the corresponding digital counterpart.
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Figure 3. PoC set-up.

4.2. Results

For the OMA LwM2M implementation, we leverage Leshan [48], which is written in
Java and is provided by the Eclipse foundation. Leshan provides a set of libraries support-
ing the development of OMA LwM2M-compliant server and clients. Such implementation
covers most of the OMA LwM2M specifications [49].

In order to implement the described features, the Leshan client has been overhauled
to include the new object created and the relevant resources. The new client differs from
the vanilla Leshan one for the implementation of different classes that allow for connecting,
managing and controlling the ML components through the objects and related OMA
LwM2M resources exposed.

The Leshan server core is incorporated in the VIO as an interface to the physical
counterpart, the southbound interface, managing connection to the client and the OMA
LwM2M layer. The remaining architectural VIO levels are used for the implementation of
enriched functionalities that will be provided to consumers through more cloud-oriented
interfaces. Moreover, a database is associated with the VIO which stores the history of all
the data (e.g., inference outputs) received over a short term period (e.g., a day), from the
physical device. For the sake of the PoC, a laptop is leveraged as a network edge device
hosting the VIO.

4.2.1. The VIO Web Interface

Figure 4 shows the VIO web interface inherited from the Leshan server. The interface
enables users to issue OMA LwM2M methods like READ, OBSERVE, and EXECUTE.
The same interface can be reached using HTTP GET, PUT, POST, etc., which are bound
to a CoAP request. The bold text in the right side of the figure is the result of queries
on resources. The user can choose to query the single resource or the entire instance.
In the second case, it will receive the available data of all resources with READ function-
ality. In particular, the result of resource Output is a JavaScript Object Notation (JSON)
representation of the inference result provided by an object detection algorithm.

Figure 4. The VIO web interface.
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4.2.2. Exchanged Data Traffic

We measure the number of exchanged bytes to retrieve an inference result upon
a request issued by a remote consumer application. In particular, results reported in
Figure 5 refer to the following cases: (i) the request issued by the remote application is
forwarded by the VIO to the physical device, since there is no cached inference matching
the request (curve labeled as “No caching at the VIO”) and (ii) the inference requested by
the remote application is cached by the VIO (curve labeled as “Caching at the VIO”). To
enable caching at the VIO, whenever a new inference result is received by the physical
device, data are stored in the local database and sent to the requesting application. CoAP
is leveraged over the link between the Leshan client and the VIO to better match network
and device constraints. Instead, intelligent IoT applications consuming data can access the
VIO through HTTP interfaces adding the device name to the resource URI path defined by
OMA LwM2M. The metric is derived as the number of bytes composing GET requests and
replies exchanged between the OMA LwM2M client and the VIO (for the CoAP protocol),
and between the VIO and the remote application (for the HTTP protocol).

Figure 5. Exchanged traffic when varying the number of detected objects.

The measurement has been performed for different numbers of recognized objects
(from 1 to 20, as in the x-axis of Figure 5), as returned through the Output resource, and
performed through the Wireshark [50] protocol analyzer.

Figure 5 shows that the presence of the VIO allows for reducing the amount of
exchanged data traffic. This is more true as the number of detected objects increases.
Besides reducing the interactions with the physical device, the caching of inference results
at the VIO has the additional benefit of avoiding the physical device to re-run the inference,
by saving precious (limited) resources.

Although the overall amount of exchanged data is not significant, in the near future,
we expect massively deployed intelligent IoT devices. Hence, reducing the exchanged data
traffic would overall relieve the pressure on the network.

It is worth remarking that, even in case of no caching at the VIO, the exchanged traffic
with the physical device is limited thanks to the usage of CoAP, instead of HTTP. The
amount of transferred bytes incurred by the two protocols for the request of an inference
resulting in a single detected object as a reply is reported in Table 4.



J. Sens. Actuator Netw. 2021, 10, 13 11 of 14

Table 4. Number of exchanged bytes per a single detected object.

Method HTTP CoAP

GET request 295 54
GET reply 497 249

4.2.3. TinyML vs. Edge

Before concluding, we report results measuring the performance achieved when
running an object detection inference task. In particular, we leverage two different off-the-
shelf objection detection models to match the computation capabilities of different hosting
platforms considered as benchmarks, i.e., a more capable edge node and a constrained
Raspberry Pi device.

The Faster R-CNN ResNet-101 algorithm [51] has been run in an edge device with 2.1
GHz-CPU and 8 GB-RAM. Instead, the MobileNet object detection model [52] has been
deployed over the constrained Raspberry Pi device, being representative of the TinyML
approach.

The chosen models are widely used in the literature. Faster R-CNN ResNet-101 is a
region-based CNN. MobileNet is notoriously faster but less accurate than Faster R-CNN
ResNet 101 [53,54]. Indeed, MobileNet is designed for efficient inference in various mobile
and embedded vision applications. To effectively reduce both computational cost and
number of parameters, it builds upon depthwise separable convolutions which factorize a
standard convolution into a depthwise convolution and a 1 × 1 convolution. The focus
of this work being on the design of the virtualization layer, we leave as a future work the
adaptation of the same model used at the edge to a constrained platform, e.g., through
quantization and pruning techniques.

Table 5 reports the metrics of interest (i.e., transferred bytes, latency, accuracy) for the
detection of objects within two (input) images of different sizes. Our aim is not to support
real-time inference but to analyze the sources of latency in the entire inference process.
In the edge case, the inference is performed after the input data (an image) is transferred
from the IoT device to the edge. In the TinyML case, instead, the inference is performed
over the locally available image; hence, no data are exchanged over the network.

Table 5. TinyML vs. Edge.

Image Size
TinyML Edge

Transferred Bytes Latency (s) Accuracy Transferred Bytes Latency (s) Accuracy

127 kB - 4.15 0.9 140 kB 9.2 0.998
2.2 MB - 24.29 0.91 2.5 MB 25.5 0.997

We can observe that, as expected, the faster R-CNN ResNet-101 model deployed at
the edge achieves higher accuracy compared to the lighter (and simplified) model running
on the constrained device. Regarding latency, it encompasses the following contributions:
(i) the input image transfer delay, (ii) the processing delay for running the inference task,
and (iii) the delay for delivering the output (i.e., the indication of the set of detected objects
within the image, along with the measured accuracy and the coordinates of the bounded
box of each detected object). The first and latter contributions apply only to the edge case.
For the small image, the latency experienced by the TinyML approach is smaller compared
to the edge solution. Latency values for the two cases, instead, are close for the larger
image. This is because the latter one entails heavier computations, which are slower in the
constrained device.

Such a result would suggest to investigate the feasibility to offload the inference
(or part of it) to more powerful platforms at the edge as the computations get heavier.
This would be possible for instance, by equipping the VIO with inference capabilities
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complementing the corresponding physical device. The decision about whether to offload
the inference task mainly depends on the application demands in terms of latency and
accuracy and should be made according to (i) the network conditions experienced over the
link between the physical device and its counterpart and (ii) the computation capabilities
of both [55]. The design of effective offloading decision algorithms is outside the scope of
this work.

5. Conclusions and Future Works

In this paper, we have presented a novel solution to enable the vision of AI deployed
also at the deep edge in order to support intelligent IoT applications. The proposal relies
on the virtualization concept, we borrowed from the IoT literature, and we specifically
customized to meet the demands of emerging AI-powered IoT devices. We have designed a
VIO, as a virtual counterpart of constrained IoT devices equipped with AI inference engines.
For the semantic description of the cognitive device capabilities at the VIO, we relied on
OMA LwM2M, to ensure interoperability and facilitate the discovery of AI capabilities by
interested third-party applications requesting them. The conceived VIO also augments
devices with storage capabilities, by caching inference results that may serve multiple
consumer applications, as well as by pre-training and optimizing the pre-trained models
to be injected into the constrained physical device. We develop a PoC to showcase the
viability of the proposal. Results confirm a low pressure in terms of exchanged data on
constrained devices, thanks to the usage of CoAP as a messaging protocol as well as to the
caching of inference results at the VIO.

The proposal is intended to enable the semantic description of AI-powered (potentially
constrained) devices and favor the transparent access to the output of the inference engine,
regardless of the specific hardware/software implementation, while hiding details about
the ANN model (and relevant settings) in charge of the inference task. Notwithstanding,
the proposed VIO has been conceived with modularity in mind, and its usage can be
extended to support additional functionalities, besides the abstraction for the consumer
applications accessing AI resources as-a-service.

Hence, as a future work, we plan to apply the devised solution to specific distributed
ML contexts, e.g., federated learning, where the workers and the aggregator node may
need to interact for the interoperable exchange of models and relevant updates achieved
through local training.

More in general, through proper extensions, the conceived proposal can be leveraged
also to facilitate the orchestration of AI capabilities and resources along the cloud-to-things
continuum, e.g., the chaining of cognitive components which are split among multiple
(edge) devices with heterogeneous capabilities, as well as between the physical device and
the VIO.
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