Information-Centric Networking for M2M
Communications: Design and Deployment

Marica Amadeo, Orazio Briante, Claudia Campolo,
Antonella Molinaro, Giuseppe Ruggeri
University “Mediterranea” of Reggio Calabria - DIIES Department
Email: {name.surname}@Qunirc.it

March 19, 2021

Abstract

The European Telecommunications Standards Institute (ETSI) re-
cently released a set of specifications for a reference architecture to globally
access resources provided by machines over heterogeneous technologies in
an interoperable way through a RESTful interface. Resources are named
through Uniform Resource Identifiers (URIs) at the application layer and
typically reachable at the network layer through IP connectivity. Such
an approach can be used also to access extremely resource-constrained
devices, provided that lightweight interactions with a gateway, remotely
exposing their resources, are granted. Among potential alternatives to
support communication between the gateway and such constrained de-
vices, we investigate the Information-Centric Networking (ICN) paradigm,
gaining momentum in the future Internet research arena. It differs from
the host-centric IP networking in that it cares for the content to re-
trieve instead of the device hosting it. By directly using content names
at the network layer and a receiver-driven communication, ICN well fits
the requirements of many machine-to-machine (M2M) applications that
are information-centric in nature and rely on a publish-subscribe service
model.

In this paper, we propose an ICN-based solution to be deployed on top
of constrained devices whose named resources are exposed at a wide area
scope by an M2M gateway. The proposal aims at ensuring easy interoper-
ability with ETSI M2M specifications, thus allowing remote applications
to access the resources of ICN-enabled nodes. To showcase the viability
of our proposal, a test-bed has been deployed leveraging low-cost devices
for home automation. Experimental results confirm a good performance
in terms of device resources consumption, easiness of implementation and
latency of communication.

https://doi.org/10.1016/j.comcom.2016.03.009

1 Introduction

Machine-to-machine (M2M) communications aim at connecting devices that
operate autonomously, i.e., without human intervention, and enable numerous
services in smart contexts such as smart home, smart grid, smart transportation,
among many others [1].

M2M systems are typically composed of devices equipped with sensors and
actuators, organized in a M2M Area Network, whose resources can be accessed
by local and remote applications (directly or through a gateway). Machines can
be constrained with respect to energy, computation, storage, and bandwidth
[2]. As a result, M2M Area Networks usually require low-power low-rate radio
technologies (e.g., Bluetooth, IEEE 802.15.4) and ad-hoc defined lightweight
networking and upper-layer protocols.

So far, different vertical M2M solutions have been designed separately for
different application domains, thus hindering interoperability and large-scale
deployment [1]. To facilitate the standardization process and limit the gap
between M2M architectural proposals, the European Telecommunications Stan-
dards Institute (ETSI) released a set of specifications for a common M2M service
platform. It is based on a RESTful (REpresentational State Transfer) approach
with open interfaces that enable the deployment of services independently of the
underlying technologies [3].

The ETSI M2M model is today embraced by many commercial platforms
(e.g., ThingSpeak, Nimbits, EVERYTHNG [1]) and by the oneM2M Initiative,
an international partnership project currently active to define a globally appli-
cable, access-independent M2M horizontal service layer specification [4]. The
OM2M project has been also proposed as an ETSI-compliant platform for M2M
interoperability [5].

Since the Internet today provides IP-based connectivity, the tendency fol-
lowed by ETSI M2M is to couple the RESTful paradigm, which addresses
resources at the application layer via Universal Resource Identifiers (URIs),
with the IP protocol, to ensure global access to services and information. The
strengths of IP are universally well-known, however its flexibility is achieved
through eztensions conceived to cope with the demands of emerging M2M sce-
narios, e.g., resource-constrained devices require IP protocol adaptations like
6LoWPAN [6].

In parallel, the research community is also exploring alternative network-
ing solutions for the future Internet. Omne of the most attractive proposal
is Information-Centric Networking (ICN), whose benefits have been evaluated
both in the core network [7] and in different wireless environments [8]. Lately, it
showed high potential also in M2M systems [9]. In ICN, resources are identified
by unique and persistent names, which are directly used by routers for search
and provisioning operations in the network. This is a fundamental departure
from the IP-based approach, where communication is host-centric, being based
on the IP addresses of source and destination nodes.

ICN well matches the information-centric pattern of many M2M applica-
tions (e.g., measured data reports from meters in the smart grid, monitored

temperature values in the smart home), which care about what data to retrieve
(or service to request) instead of which node to connect to [9]. Through flexible
name-based primitives, ICN would simplify M2M data/service access and facili-
tate the support of not only single consumer/single source interactions, but also
group-based communications with multiple consumers/multiple sources interac-
tions. The latter ones are typical in M2M systems, e.g., multiple stakeholders
retrieving home energy measurements, multiple home sensors providing temper-
ature values.

Recent works have evaluated the real applicability of ICN in local M2M
scenarios, e.g., building automation [10], energy management in a smart home
[11]. Large-scale deployment and evaluation of clean-slate M2M-ICN systems
are however currently infeasible, since the global connectivity is IP-based. To
allow remote applications to access resources of M2M-ICN devices, a convenient
solution would deploy interworking prozy capabilities in special network nodes
that connect the ICN and the IP domains, i.e., in the gateway connecting an
M2M-ICN Area Network with the Internet.

In this paper, by elaborating on the concept of interworking prozxy, we deploy
a communication framework that enables interactions between remote consumer
applications and the resources in an M2M-ICN Area Network. The approach
exploits some similarities between the ICN name-based access to resources and
the ETSI RESTful logic. In both cases, application-level identifiers (URI or
names) are used to fetch the resources, but in ICN a name does not need to
be mapped into the IP address of the node owning the resource. In the pro-
posed functional architecture, the Gateway exposes the resources available in
the M2M-ICN Area Network by following the ETSI M2M name structure, and
the remote applications follow the well-defined procedures to access them [3].
Then the Gateway translates the incoming requests into ICN messages to be
forwarded to the M2M devices to retrieve resources (or trigger actions) in the
M2M Area Network. ICN names are designed according to the ETSI M2M
name structure, thus facilitating the implementation of the proxy capability in
the Gateway. At the same time, we customize the ICN primitives to support
low-overhead lightweight communications in the M2M Area Network.

The viability of the proposed framework is assessed through an experimental
test-bed leveraging extremely resource-poor devices in a smart home domain,
as a representative M2M use case. Indeed, M2M communications may play a
major role in houses, where automation of some processes appears essential in
many home-related sectors such as comfort, health, security, energy efficiency,
etc. Results demonstrate that ICN is an attractive solution in M2M contexts.

To the best of our knowledge, this paper is the first tentative of designing
and providing evidence of an M2M system that supports communication on a
global scale and benefits from both ICN communication and the ETSI M2M
standardization efforts.

The remainder of the paper is organized as follows. Section 2 provides an
overview of M2M communications based on the ETSI M2M architecture. Sec-
tion 3 introduces the ICN paradigm along with a description of the main related
literature. Section 4 describes our proposed M2M-ICN framework; Section 5

M2M Device & Gateway Domain I M2M Network Domain

M2M Device M2M Gateway I WIDE AREA NETWORK
1
AREA ! UIRELESS s Application
NETWORK| 1 Capabilities
M2M . . Layer (M2M
Gateway 1 MOBILE NSCL)
Bz e =
Capability |ie - — = = = —= = == Application
Device '
Application 1

; FIXED
(DA) M2M Device CmiAD>—viom
(). Application
M2M App.

1
Q I
| . CTHER
M2M Device L QdA) 1 G
< . Network
(— w2m -

Proprietary
1 Device . miID Application
| Service - S — (NA)
Capability |

REFERENCE POINTS

Figure 1: ETSI M2M Functional Architecture [3].

details the experimental test-bed that showcases the viability of the conceived
framework. Performance evaluation is reported in Section 6. Finally, Section 7
concludes the paper.

2 ETSI M2M architecture

2.1 Basic model

The reference ETSI M2M functional architecture in [3] consists at high-level
of two main parts, namely the Device and Gateway Domain and the Network
Domain. As shown in Figure 1, in the Device and Gateway Domain, M2M
devices can run M2M Device Application(s) (DAs) using M2M Service Capa-
bilities. They can be directly connected to the Network Domain via the access
network, or are connected to a Gateway through an M2M Area Network. The
Gateway acts as a proxy between M2M Devices and the Network Domain and
manages authentication, authorization, management, and provisioning proce-
dures through its M2M Service Capabilities. The Network Domain includes
the Access and Core Network together with M2M Service Capabilities, Network
Applications (NAs) and a set of management functions.

The Service Capability Layer (SCL) includes the set of common functions
to enable M2M communications between different entities. An SCL is therefore
deployed on networks (NSCL), gateways (GSCL) and devices (DSCL), while
reference points (mla, dla, mlId in Figure 1) based on open Application Pro-
gramming Interfaces (APIs) are specified that offer generic and extendible mech-

anisms for interactions between different SCLs and between Applications and
SCLs [12]. A central role in the system is maintained by the NSCL, which is
involved in mutual SCLs authentication, registration of NAs and D/GSCLs,
resource discovery, subscriptions and provisioning operations.

2.2 Resource representation and management

ETSI M2M adopts a RESTful style to define how Applications and/or SCLs ex-
change information with each other. The REST paradigm implies a client /server
model and is based on the notion of resource: anything in the system that can
be named and addressed can be a resource, e.g., data, services.

ETSI M2M addresses all the resources residing in the SCLs by introducing a
hierarchical tree which models the structure of the resources, the relationships
between them and their properties, such as registered SCLs, registered applica-
tions, access rights, subscriptions. The same tree structure applies to resources
in NSCL, GSCL and DSCL. As shown in Figure 2, the root for all resources on
a hosting SCL is called <sclBase> and includes a set of child resources, e.g., a
collection of <scl> resources representing remote SCLs with which the hosting
SCL is registered to.

As a result, resources are uniquely addressable and identifiable via URIs,
which are obtained by concatenating the name components in the hierarchical
tree. Resources are transferred and manipulated by the CRUD (Create, Re-
trieve, Update, and Delete) verbs over different transport protocols, e.g., Hyper
Text Transfer Protocol (HTTP). Two additional verbs are also considered in
M2M: (i) Notify, to report a resource change as a consequence of a subscrip-
tion, (ii) Execute, to execute a management command /task.

In general, the access to M2M resources from consumer applications can
be handled in two main ways: request-response and publish-subscribe. The
request-response scheme enables synchronous interactions: the issuer sends a
request and receives the information in a response message. In the publish-
subscribe scheme, the issuer subscribes to a resource and is notified of the
resource status periodically or when it changes. Thanks to the definition of
the <subscription> resource in the hierarchical tree, publish-subscribe mecha-
nisms are standardized by the ETSI M2M architecture, which denotes an ac-
tive subscription to the resource identified by a resourceURI with the name:
<resourceURI> /subscriptions/< subscription> and includes several attributes
like expirationTime and minimalTimeBetweenNotifications.

2.3 The case of constrained devices

By standardizing the structure of resources that reside on SCLs and the pro-
cedures for handling them, ETSI M2M enables the development of M2M ser-
vices with a global scope and in presence of heterogeneous devices. Resource-
constrained nodes unable to implement the SCL are reachable through the Gate-
way, which exposes all the available resources to the NSCL.

<sclBase>

"attribute"

scls

applications

containers

groups

accessRights

subscriptions

discovery

Figure 2: Structure of <sclBase> resource tree [3].

Thanks to the RESTful approach, a binding between the defined M2M REST
resources/primitives and the HTTP REST resources/methods can be easily
done [12]. Similarly, a mapping can be performed with the Constrained Ap-
plication Protocol (CoAP), which has been standardized to introduce the web
service paradigm into low power and lossy networks with constrained devices
[13].

A rough taxonomy of constrained devices, according to their device capa-
bilities, can be found in [14]: class 0, class 1, class 2, in increasing complexity
order. Class 0 devices due to memory or programming limitations (RAM < 10
KiB, Flash « 100 KiB) will participate in Internet communications with the
help of larger devices acting as proxies, gateways, or servers. Class 1 devices
are quite constrained in processing capabilities, they cannot easily talk to other
Internet nodes employing standard protocol stack (based on HTTP) and use
CoAP over the User Datagram Protocol (UDP). Class 2 devices are basically

capable of supporting most of the same protocol stacks as used on laptops and
servers.

ETSI M2M also considers non-compliant devices (e.g., nodes without REST /TP
connectivity) and allows them to connect by using an interworking proxy capa-
bility, which can be located in the SCL of an interfacing node, e.g., the Gateway
in Figure 3. However, interworking proxy capabilities are out of the scope of
the standardization document [3].

Gateway
Application
A
b
Device G5eL e > NSCL
Gateway

Figure 3: Deployment scenario with Gateway Interworking Proxy (GIP) Capa-
bility.

In this paper, we focus on extremely constrained devices (i.e., class 0) and
implement for them a lightweight protocol stack based on ICN. The Gateway
runs the GIP functionality so ICN devices can participate to the ETSI M2M
system. One of the target of this work is indeed the GIP implementation to
enable interactions between ICN and ETSI M2M systems and show the ICN
potential within a global standardized architecture.

3 ICN for M2M communications

ICN in a nutshell. ICN is a new communication paradigm centered around
content names: an ICN consumer application requests a content by directly
using the content name, and the request is routed in the network until the
content is found. The content packet transmitted by the producer carries a
correspondent unique and persistent name and some information for security
purposes. As a result, in-network caching is extremely facilitated, by letting
potentially every network element cache the data packets that traverse it, so
that they will be available to serve future requests. By doing so, asynchronous
communication is enabled that effectively decouples consumers and producers.

Related work. Originally proposed for content dissemination in the Inter-
net, today ICN is an appealing solution also in other domains, including Internet
of Things (IoT) [15, 16, 17] and M2M [9]. In fact, by enabling direct name-based
routing and in-network caching, ICN (i) does not need resolution systems that
translate application-level names into IP addresses, (i) simplifies and speeds

up resource discovery and delivery, and (iii) well-matches information-centric
applications.

So far, a few recent works considered ICN in local M2M scenarios, e.g., to
enable building automation systems [10, 18, 19] and smart energy management
[11]. Specifically, in [10], the initial design of a secure Building Management
System is presented, with focus on a data sensor acquisition system that imple-
ments encryption-based access control. The system uses a proprietary protocol
for the communication between sensors and the gateway that collects the sensing
data. The gateway publishes data in ICN repositories and responds to requests
of authorized users.

In [18], the initial design of an ICN based homenet is presented with a fo-
cus on naming and service configuration. The ICN logic is only in the home
gateway and interior routers, i.e., the powerful nodes, but not in the sensors. A
comparison against an IPv6-based home network shows that ICN significantly
reduces the traffic overhead. The case of securing a lighting control system
running over ICN is discussed in [19]. The proposed framework includes a con-
figuration manager, which assigns fixtures and applications their namespace and
identity, represented by a unique public/private key pair; and an authorization
manager, which determines the applications allowed to access each fixture, signs
applications’ public keys and issues signed access control lists.

An ICN-based system for home energy management services called iHEMS is
presented in [11]. The work defines a set of secure publish/subscribe primitives
built on top of ICN to exchange environment sensing and power data.

The potentialities of ICN in a large scale M2M scenario is discussed in [9],
where a smart grid domain is considered. A high-level architecture is proposed
where ICN forms a publish/subscribe overlay network that includes end-systems
(e.g., phasor measurement units, control centers) and special network nodes
which act as rendezvous point and organize information in location-independent
topics. A feasibility study simulating a real power distribution network in the
Netherlands demonstrates the ability of ICN to disseminate topic-based infor-
mation with low latency.

A first work that introduces ICN in the ETSI M2M architecture is in [20],
where the authors conceive the idea of an ICN-based Overlay Service Capa-
bility Layer that improves the NSCL functions by realizing distributed service
discovery, peer-to-peer subscription, data exchange and Quality of Service (QoS)
monitoring.

Our work differs from [20] since we do not alter the ETSI M2M architec-
ture, but we define a new GIP capability to allow interoperability with an ICN
M2M Area Network. The resulting framework allows remote NAs registered
to the NSCL to interact with constrained devices through light ICN primitives
following a demand-response or a publish/subscribe model.

4 Extending the ETSI M2M architecture with
ICN principles

4.1 Basics

In our study we consider an M2M Area Network, where resource-constrained de-
vices, equipped with a low-power wireless access technology, e.g., IEEE 802.15.4,
expose their services through an M2M Gateway. We rely on ICN as a network-
ing technology between the devices and the Gateway, which also implements the
GIP functionality and the GSCL to communicate with the ETSI M2M Network
Domain.

Among several information-centric architectures [7], we refer to Named Data
Networking (NDN) [21] for the design of the M2M-ICN Layer. Indeed, NDN
offers important features that facilitate interworking with ETST M2M systems.

First, NDN uses hierarchical, sometimes user-friendly, namespaces to name
resources. NDN names are URI-like strings with a variable number of compo-
nents and virtually unbounded lengths. This implies that NDN names can be
built that match the ETSI M2M resource tree structure described in Section
2.2.

Second, NDN facilitates wireless networking because communication is just
based on two packet types, Interest and Data, used respectively to request by
name the content and transfer it. Interests are usually broadcasted over the
wireless medium [22], thus any node holding the Data can answer the request.

Third, NDN natively supports multi-consumer communication through In-
terest aggregation and Data caching. Specifically, each node maintains three
tables: the Content Store (CS), used for caching incoming Data, the Forward-
ing Information Base (FIB), used to route Interests, and the Pending Interest
Table (PIT), used to track the forwarded (and not yet satisfied) Interests and the
arrival interface(s), thus Data can be sent back to the requester(s). The M2M
Gateway, which bridges the local network to the Internet, can receive queries or
subscriptions from many external consumer applications interested in the same
data (e.g., the house owner and the smart grid stakeholders interested in energy
consumption data). Interests with the same name can be aggregated in the PIT
of the Gateway and transmitted only once, thus limiting the number of accesses
to the device and saving network and energy resources. Moreover, requests can
be also satisfied by using the Data cached in the CS of the Gateway, if not stale,
so to reduce the interaction with constrained devices.

Multi-source communications (i.e., to target more resources simultaneously
with a single Interest, instead of transmitting multiple separate requests) can be
also handled by NDN, provided that name conventions and packet processing
rules are defined [23].

In the following, we present our communication framework by describing (i)
the design of the NDN naming scheme for M2M communications, (i) the design
of NDN multi-source communications, (#i4) the interactions between remote NAs
and NDN constrained-devices across the ETSI M2M systems.

4.2 Naming scheme

According to the ETSI M2M specifications, each DA, running in devices able
to host an SCL, is modeled as a resource, identified by a unique name and
associated with a set of hierarchically organized sub-resources, e.g., each content
produced by the application can be identified by the string: /applications/-
<app>/containers/< container> /contentInstances/<instance>.

In our proposal, NDN names could be defined according to the ETSI M2M
hierarchical tree and directly used to fetch data by leveraging the Interest/Data
exchange. For instance, in a smart home, the Gateway could ask for the cur-
rent value of the temperature in the kitchen by sending an Interest with name:
/applications/TemperatureSensing/containers/kitchen/contentInstances/current-
Value.

However, it is worth noticing that some M2M access technologies (e.g., IEEE
802.15.4) support small payloads and names should be maintained thin to avoid
packet fragmentation and limit the load on constrained devices.

To this aim, we define an NDN namespace characterized by short, abbrevi-
ated names that can be used locally and, on the occurrence, easily mapped into
ETSI M2M names to enable interactions with the external Network Domain.

The proposed naming scheme is application-specific and currently designed
to support simple services offered by sensors and actuators in a local environ-
ment. Basically, each sensor in our scenario is provided with a sensing DA
(sDA), whose only task is to generate a single type of measurement in response
to a query (request-response pattern) or a subscription (publish-subscribe pat-
tern).

An actuator, instead, executes a set of elementary actions, like switch-on and
switch-off an appliance. The Gateway sends commands in Interest packets by
using proper names that concatenate the identifier of the actuation DA (aDA)
and the action type. Therefore, the namespace must codify not only the names
of DAs, but also every resource related to them.

As regards the namespace setting, we assume that the DA name is com-
posed of two parts: (i) a two-component principal prefix that describes the
general application task, e.g., sense/temp, action/airConditioning, (ii) a set of
subsequent components that further qualify the application, e.g., the location.
The principal prefix can be shared by different devices, e.g., there are many
temperature sensors in a house, but the concatenation of all the name com-
ponents uniquely identifies a DA in the local environment. For instance, in
a home network, the sDA that reports the temperature in the kitchen can be
named as sense/temp/kitchen, while the sDA that reports the temperature in
the bedroom can be named as sense/temp/bedroom.

Each DA-related resource is identified by the DA name followed by other
components that characterize the resource, e.g., the temperature in the kitchen
in a specific time instant can be identified by the name sense/temp/kitchen/data,/-
<timestamp>, the command for switching-off the air conditioning in the kitchen
can be defined as action/airConditioning/kitchen/command/<off>.

The namespace is assigned to devices during the registration procedure with

10

the Gateway.

M2M gateway M2M device M2M device

28 o © Pl

INDN INDN
XBee XBee
Interest
sense/temp/*
Data
sense/temp/living/23C
Data
sense/temp/kitchen/19C
(a)
M2M gateway M2M device M2M device
e e o -
‘mmn‘,pa wx') 00,
ARDUTNO ARDUINO
INDN INDN INDN
XBee XBee XBee
Interest
sense/*/kitchen
Data

ense/temp/kitchen/23C

Data
sense/energy/kitchen/0.63kW

(b)

Figure 4: Interest/Data exchange with the wildcard option set to query devices
according to the offered resources (a) and to their physical location (b).

4.3 Multi-source communications

In addition to the perfect name matching that allows to query a specific DA, we
define name conventions that enable a Gateway-initiated procedure for multi-

11

source communications in the M2M Area Network. This would allow the Gate-
way to query more devices with a single Interest, with consequent advantages
in terms of reduced traffic and overhead.

To this purpose, we introduce in the designed namespace the wildcard char-
acter “x” as part of the resource name to be carried in the multi-source Interest.
The “«” character is used as a name component to indicate “all resources that
share the parts of the name preceding and/or following the % character”.

Without loss of generality, DAs can be grouped (i) logically based on offered
resources, or (i) physically based on their location.

For instance, the common need to retrieve many sensing parameters at once
(e.g., temperature, humidity, energy consumption) in a given location, e.g., a
room in a house, could be supported by sending an Interest packet with name
e.g., sense/*/kitchen to obtain the data from all sensors in the kitchen. The
first name component, sense, in fact, identifies the first part of the application’s
principal prefix; the second name component would identify the sensing data
type (e.g., temperature, humidity), but in this case the wildcard character is
used to indicate any type of sensing; finally, the third component identifies the
location, i.e., the kitchen.

If the Gateway intends to retrieve the temperature data from all the rooms
in the house to decide if switching-on the heating system, it will send only one
Interest with the name /sense/temp/*/. Such name identifies all DAs that use
the prefix /sense/temp/, wherever they are located. The third component of
the name would represent a location parameter, e.g., kitchen, bedroom, but the
wildcard character is used in this case to indicate any location. Therefore, when
receiving the Interest, all temperature sensors deployed in the house will answer
to the request.

It is worth noticing that also in the vanilla NDN, thanks to the longest-prefix
matching rule, all sensors sharing the name prefix /sense/temp could reply with
a Data packet upon receiving an Interest with name /sense/temp. However, the
1-to-1 Interest-Data matching of vanilla NDN does not allow to collect data
from multiple sources with the one Interest. In fact, with NDN a pending entry
is deleted from the PIT upon the first Data packet arrival, and successive Data
packets matching the same Interest are consequently discarded. Here, instead,
we disable the PIT entry deletion upon receiving a Data packet as a reply to a
multi-source Interest. The deletion is associated to a timeout, set large enough
to accommodate the replies from the queried devices, whose number is known
in advance thanks to a preliminary registration procedure.

Examples for the two types of Interest/Data exchanges are shown in Figure
4.

4.4 Resource access via ETSI M2M

Services offered by DAs in the M2M Area Network can be accessed by an ex-
ternal NA provided that the Gateway is registered to the NSCL and maintains
the resources representation in the GSCL. The GIP functionality in the Gate-
way translates NDN names into ETSI M2M names (and vice-versa), while the

12

GSCL follows the standard ETSI hierarchical tree representation to expose the
resources. Thanks to the designed namespace, translation rules, implemented
by the GIP, are quite easy, as discussed in the following.

As shown in Figure 5, we assume that the principal prefix of the DA name is
used as application identifier in the GSCL, while subsequent name components
are mapped as sub-resources, e.g., containers, subscriptions, contentInstances.
This implies, for instance, that all the temperature sensing applications in a
smart home are placed under the senseTemp application resource name, while
the location name component is treated as a container sub-resource. Hence,
if an NA wants to be notified about the temperature values in a room, it can
subscribe to a content instance of the senseTemp application, by following the
standard ETSI M2M routines. Then, the Gateway translates the subscription
into an Interest packet and enables the indirect communication between the
temperature sensors and the NA.

i
|
=

sense/temp/kitchen ’ -

~J homeGSCL «—————— | m2nNSCL [«—» KA
sense/temp/bedroom
—)l applications |

_)l SEI'ISETEiTIp |

contentInstances

subscriptions

contentInstances

Figure 5: Translation of NDN names in the ETSI M2M format in a smart home.

In our design, we use long-lived Interest! as subscription packets: when an

IThe term long-lived means that the Interest has a longer validity time w.r.t. the legacy

13

NA wants to subscribe to a resource, the Gateway sends an Interest with a
name composed of the resource name and a set of subscription attributes de-
fined by ETST M2M: /resourceName/subscription/subscriptionAttributel /... /-
subscriptionAttribute N. Currently, as mandatory attributes of the subscription,
we consider the exprTime, which is the validity time of the subscription, and the
typology, which can be periodic or persistent. A periodic subscription enables the
device to periodically send the data (the time period between subsequent mea-
surements is specified in the Interest), while a persistent subscription enables
the device to send the data whenever a modification of the measured parameter
(or event) occurs.

As an example, the subscription to obtain temperature data from the sensor
in the kitchen at every 5 minutes for 60 minutes will be: /sense/temp/kitchen-
/sub/exprTime/60/periodic/5. A subscription Interest remains active in the
PIT of the Gateway until the expiration time, thus allowing the reception of
multiple Data from the producer DA. Then it can be renovated or deleted.

The entire procedure is shown in Figure 6, which describes the subscription
to a content reporting temperature values in the kitchen.

The simpler case of synchronous request-response communications can be of
course implemented, where the single query from a NA is converted in a legacy
Interest packet, without the subscription attributes.

The case of multi-source communications can be also easily implemented.
In fact, ETSI M2M defines the so-called group resource to identify and access
groups of resources with a single query. Thanks to the proposed names con-
ventions, a group-based query from a NA can be translated into a multi-source
Interest in the M2M Area Network.

5 The deployed Test-bed

To showcase the viability of the proposed framework we built a demonstrator
that implements a smart home system, as the one depicted in Figure 7, with
off-the-shelf low cost devices. A remote NA retrieves information about the
home environment by leveraging the ETSI M2M framework augmented with
ICN functionalities in the M2M Area Network.

Details about the hardware and software modules are provided in the fol-
lowing.

Devices features. The Gateway is implemented over a Raspberry Pi device
[24], which is a single-board computer equipped with a SD memory card, an
Ethernet interface and a XBee [25] external interface, which is IEEE 802.15.4e
compliant [26]. M2M devices are temperature and humidity sensors attached
to open-source Arduino micro-controller boards [27] (as representatives of class
0 devices) including XBee shields for communications with the Raspberry Pi.
The choice to use Arduino for prototyping is because it is a highly flexible and
cost-effective solution, providing a processor core, memory and input/output

Interest that retrieves only a single Data packet. The validity time corresponds to the sub-
scription time.

14

|
Ill homeGSCL m2mNSCL

sDA NA
(kitchen sensor) ‘
NDN ((T)) mId mIa
— — I S = L 4
= < CREATE> subscription to
| Name translation kitchen temperature data

"~ sense/temp/kitchen/sub/
exprTime/60/periodic/5

L

|sense/temp/bedroom/20°C

<homeGSCL=>/applications/senseTemp/
containers/kitchen/contentinstances/
subscriptions/tempSubscrip

smin response &
<NOTIFY> data

sense/temp/bedroom/23°C

<homeGSCL=>/applications/senseTemp/
lcontainers/kitchen/contentinstances/tempNewy

<NOTIFY> new
sDA's data

Figure 6: Subscription procedure in a smart home: a NA subscribes to obtain
the temperature in the kitchen.

peripherals, that can be attached to any variety of sensors. Each M2M device is
one-hop far away from the Gateway. The NA runs over a remote Desktop-PC,
which also hosts a web interface to explore and monitor the M2M resources.
Finally, a workstation is used to host the NSCL.

Table 1 details the hardware features of M2M devices and the Gateway.

M2M-NDN implementation. The OM2M open source implementation
of the ETSI M2M standard? is used to deploy GSCL and NSCL modules, run-
ning over the Gateway and the workstation, respectively. Such modules are
not modified, but an interworking function (i.e., the GIP) is implemented in
the Gateway to enable the communication between the GSCL and the NDN
network, as it will be clarified in the following.

In the M2M Home Area Network, the M2M devices and the Gateway run
a customized lightweight NDN (INDN) implementation, (called INDN-arduino

20M2M project available at http://eclipse.org/proposals/technology.om2m/.

15

Table 1: Hardware features of M2M Gateway (Raspberry Pi) and M2M devices
(Arduino)

Feature Raspberry Pi | Arduino
CPU ARMI1176JZF-S | ATmega 2560
Clock speed 700 MHz 16 MHz
Storage type Micro SD Flash Memory
Storage Max 32GB 256 KB
RAM 256 MB 8 KB

M2M device BiSeL. NA

(DA/INDN) " (INDN/GSCL)

M2M area
network

Figure 7: Reference scenario.

and INDN-java, respectively), for in-home communications over IEEE 802.15.4.
We originally devised INDN in [28] to implement the basic NDN Interest and
Data generation and processing; here it has been extended to support the
M2M-ICN routines and features discussed in the previous Section, i.e., the DA
namespace, group-based (multi-source) communications with the wildcard op-
tion, request-response and subscription-based delivery.

The implemented INDN-arduino for the M2M device is a C/C++ library pro-
viding an abstract method that is customized depending on the sensor/actuator
hardware characteristics. Vice versa, the INDN-java library is written in Java
and it can run over Linux-based systems.

The standard OM2M GSCL implementation at the Gateway is augmented
with the newly defined GIP functionalities, targeting the interworking between
the NDN-based M2M Home Area Network and the ETSI M2M system. The GIP
module (i) creates a descriptor of the home resources in the GSCL by following
the ETSI M2M URI format to make them accessible from remote NAs, and (i)
translates the ETSI M2M messages based on CRUD verbs into NDN packets
and vice versa. For instance, when a NA requires the temperature in the kitchen
with a Retrieve message carrying the ETSI M2M URI of the requested resource,
the GIP translates it into an Interest packet targeting the kitchen temperature
resource. When the named data is received, the GIP creates a response message

16

containing the retrieved information and sends it back to the NA.

Figure 8 summarizes the software modules implemented in the Gateway and
in the Arduino board. The XBee-arduino [29] and XBee-API [30] libraries
provide basic routines to let the Arduino board and the Raspberry device, re-
spectively, interact with XBee radios.

- ~
g ™,

- OM2M
L ™

2
/5 GSCL

!

i -
03 .
Xeee-APl [<—> © INDN-java ¢

IEEE 802.15.4

~,
#

Ly

B T

~

~,
AY

XBEE- @
Arduino
IEEE 802.15.4

g —————————

ARDUINO

(b)

Figure 8: Software modules implemented in the M2M Gateway (a) and in the
Arduino board (b).

6 Performance assessment
In this Section we report some experimental results obtained over the deployed

test-bed to assess the performance of the proposed INDN modules and the
resulting integration with the ETSI M2M system.

17

Table 2: M2M devices: memory footprint
Library ROM RAM
INDN-arduino 12.096 KB | 795 bytes
Arduino-uIPv6Stack 34.972 KB | 3.690 KB

Table 3: M2M devices: processing footprint
Library Action type Time[usec]
INDN-arduino name matching success | 0.358
name matching failure | 0.266

Since a major contribution of our proposal is the support of NDN group-
based communications in the M2M Area Network, the experiments also compare
the data collection performance when using the legacy NDN one Interest-one-
Data exchange and the multi-source data retrieval based on the designed name
conventions.

For the sake of completeness, an IP-compliant solution has been also assessed
as benchmarking. To this purpose, the Arduino boards were equipped with
an IPv6 stack ported from the Contiki operating system, Arduino-ulIPv6Stack
[31]. Such implementation has been conceived with a reduced set of CoAP
functionalities to keep an ultra small memory footprint, hence not natively
deploying advanced features like group-based communications.

It is worth remarking that, according to [13], CoAP supports group-based
communications. However, this requires additional signalling for the join/leave
operation of each producer to the multicast group and for allocation of the group
’s URIL. Our NDN with wildcard Interest solution, instead, easily allows groups
to be created without additional signalling, thanks to the expressiveness and
granularity of the conceived naming scheme.

6.1 Implementation footprint

First, our analysis aims to measure the footprint of the software implemented
in the extremely resource-constrained M2M devices and in the Gateway.

6.1.1 MZ2M devices analysis

Table 2 shows the memory, ROM and RAM, sizes of the INDN-arduino binary
and of the IP-based implementation.

Results show that the INDN-arduino footprint is significantly lower com-
pared to the Arduino-pIPv6Stack (more than halved, both in terms of ROM
and RAM). This is mainly because of the huge IP-based stack load, i.e., CoAP /-
UDP/6LoWPAN. Our proposal, instead, runs directly over the layer 2 (there is
no need for the IP stack).

Such results, proving that the proposed approach is lightweight, confirm its
viability and encourage us to go more deeply into its performance assessment.

18

Table 3 reports the processing time of common operations on the deployed
INDN-arduino, after the reception of the Interest: (i) name matching success,
which includes the time needed to perform a successful name matching; (i)
name matching failure, which includes the time needed to perform the name
check when no matching is found. It is worth noticing that both time values
are almost negligible. In particular, in case of name matching failure, the device
can soon go back to the sleep mode operation, so to save battery.

6.1.2 Gateway analysis

Results in Figure 9 report the CPU and RAM allocations at the Gateway for
the deployed modules, i.e., GSCL, INDN-java, XBee-API. For the sake of com-
pleteness, the footprint of the Java Virtual Machine (JVM), needed to run java
software, is also reported.

It can be observed that most of the CPU consumption has to be ascribed
to the XBee-API module, while the INDN-java module incurs a negligible load,
especially if compared to the heavier GSCL module.

Overall, the proposed solution can be easily deployed over the Raspberry
device, although it is not a high-end node, which is expected to be dedicated to
smart home monitoring tasks.

35
I gSCL

30+ I INDN—-java| 1
[xbee-api

o5 I JVM

N
o

—_
[,

Resource Occupancy [%]

—_
(=]

CPU RAM

Figure 9: M2M Gateway: footprint of the implemented software modules.

6.2 Data delivery performance

To study the performance of data delivery in our integrated ETSI M2M-ICN
system, we consider two different experiments:

19

e First, we focus on the data retrieval from the perspective of a remote
application and show the information visualized via the OM2M web in-
terface;

e Second, we deepen the analysis in the M2M Area Network by considering
group-based communications and evaluate two performance metrics: the
data collection time and the energy consumption at the M2M devices.

In our scenario, the GSCL running on the home Gateway registers with the
NSCL and makes accessible to the NAs a set of sensing applications able to
report environmental parameters. Specifically, the house consists of five rooms
(i.e., kitchen, bedrooml, bedroom2, bathroom, living), physically coincident
with our laboratory facilities, and each one holds an M2M device provided with
a temperature and a humidity sensor. Therefore, each M2M device hosts the so-
called senseTemp and senseHumidity applications, following the DA namespace
conventions described in Section 4.2. The resources exposed by the GSCL are
identified by URIs, in the ETSI M2M format, and represented in a hierarchical
tree.

Logout
OM2M SCL Resource Tree
http:filocalhost:8080/om2migscliapplications/senseTemp/containers/kitchen

gscl
scls
applications
applicationCollection
senseTemp
containers
containerCollection
kitchen_DESCRIPTOR
contentinstances
contentinstanceCollection
Cl|_645078071
subscriptions
subscriptions
kitchen_DATA
containerAnncCollection
locationContainerCollection
locationContainerAnncCollection
subscriptions
groups
accessRights
subscriptions
natificationChannels
senseHumidity
applicationAnncCollection
subscriptions
mgmtObjs
containers
groups
accessRights
subscriptions
discovery

Figure 10: GSCL resource tree visualized with the OM2M web interface.

20

Attribute Value

senseTemp
content
path fitchen

getintent gscVapplications/senseTemp/containers/kitchen_DATA/contentinstancesfatest/content

Successful GET Request:

Name Value

path kitchen

Figure 11: The requested temperature value (25.5°C) is visualized via the
OM2M web interface.

After registering to the NSCL, an NA discovers the services hosted at the
GSCL.

In the first experiment, we assume that the GSCL exposes only the sDAs
(senseTemp, senseHumidity) in the kitchen, as shown in Figure 10. The NA
sends a Retrieve message to obtain the temperature value, which is visualized
as a response data in the OM2M web interface, as shown in Figure 11.

The processing time required by the GIP to translate the Retrieve message
into an NDN Interest (and vice-versa) is negligible compared to the retrieval
delay, thanks to the similarities between the hierarchical names. The measured
retrieval delay consists of two main factors: (i) the round-trip-time between
the Gateway and the Desktop-PC hosting the NA (about 100ms) and (%) the
round-trip-time between the Gateway and the M2M device (about 140ms).

In the second experiment, centred around the multi-source data retrieval,
we refer to the groups resource in the GSCL hierarchical tree. The NA sends a
Retrieve message to obtain all the available temperature data from the house.
When the collection is completed, the Gateway sends back the retrieved content.
Again, from the user high-level perspective, the time to process the request and
build the ETSI M2M Response packet is almost negligible compared to the
retrieval delay. We compare the communication in the M2M Area Network in
the following NDN cases:

e The legacy NDN Interest/Data exchange, where an Interest packet re-
trieves a single Data packet; this implies that Interests must be sent by
the Gateway in a round-robin scheme for each named resource, individu-
ally.

e The proposed multi-source retrieval, which retrieves all the temperature
data with a single Interest, thanks to the proposed name conventions.

Results are also reported for the IP-based protocol suite (COAP/UDP /6LoWPAN),
with the Arduino-uIPv6Stack installed on M2M devices. Being our study fo-

21

1000

oo | CONPIUDELELONEAN § /ég
Multi-source NDN

800

600

400

300 %

200 3

mOEWL

1 2 3 4 5

Time (ms)

In)
[

M2M active devices

Figure 12: Average data collection time when varying the number of active
M2M devices.

cused on assessing the preliminary viability and deployability of the proposed
M2M solution, security features are not implemented in neither case.

We vary the number of M2M devices (i.e., the temperature sensors acting
as producers) available in the test-bed, from 1 to 5, and repeat the experiment
to get values averaged over 50 experimental runs (95% confidence intervals are
reported in the plots).

Figure 12 reports the mean collection time required for the Gateway to
obtain the Data replies from all the M2M devices, starting from the request
transmission(s). Such a time includes (i) the transmission delay of both Data
request (i.e., the Interest in NDN) and response (i.e., the Data in NDN) packets
over the XBee radio interface, (ii) the communication delay between the Rasp-
berry/Arduino devices and the Xbee shield®, and (i) additional processing
times at the Arduino board.

First, we can observe that there are no remarkable differences between the
legacy NDN and the COAP/UDP/6LoWPAN solutions. In fact, similarly to
the legacy NDN, the devices implementing Arduino-ulPv6Stack are sequen-
tially polled by the Gateway through request/response. In both cases, the
request /response packets carry the same URI, i.e., the name that identifies
the requested data. Moreover, since the 6LoWPAN header is compressed,
COAP/UDP/6LoWPAN packets are only a few bytes larger than NDN pack-
ets. Therefore, the mildly better performance of legacy NDN w.r.t. the IP-based
solution can be ascribed to the slightly smaller packet transmission and process-
ing times and, as previously discussed, to the lower implementation footprint
compared to the Arduino-ulIPv6Stack.

In presence of a single source, the performance of legacy and multi-source
NDN coincides with the CoAP-based solution. Overall, when varying the num-
ber of producers, the delay increases and more heavily when each single source
needs to be addressed with an Interest packet. Specifically, with five producers,

3The communication occurs through standard Arduino serial commands, with a maximum
baud rate of 115200 bps.

22

the collection time values get significantly lower for the proposed multi-source
retrieval compared to the legacy NDN retrieval. The available temperature
data, in fact, are collected in around 300ms with multi-source retrieval, while
the legacy NDN takes 900ms. This is due to the fact that the legacy NDN re-
quires an individual polling of the sources, and a single Interest-Data exchange
takes about 140ms. Processing operations at the Arduino are indeed slow, due
to the intrinsic hardware constraints of the device. Vice versa, the multi-source
Interest allows the Arduino devices to process in parallel the single request, and
to build in parallel the correspondent answers. Data packets are then sent with
a short deferring time just to avoid the collision.

In addition to a reduction in the data collection time, the multi-source re-
trieval further benefits from a reduced network traffic and load on the con-
strained devices. The devices, in fact, will receive and process only one request
from the Gateway, instead of being forced to receive multiple (useless) Interests,
which will be discarded since they target a different temperature resource.

To capture the beneficial effect of this reduced traffic and processing load,
we compute the energy consumption at the Arduino devices. To enable mea-
surements, the Arduino is powered with a stabilized power supplier, configured
to provide a 9 V output voltage (the same as the nominal value of the Arduino
board). A 5 1/2 digit multimeter is also inserted, as illustrated in Figure 13,
in order to measure the current passing through the board. The multimeter
is connected via an USB interface to a laptop, where a Labview application
collects measurements of current.

Figure 14 shows the average energy consumption for a target Arduino device
during the collection process.

Since the energy consumption is directly related to the time spent in trans-
mitting, processing and receiving packets, the performance in terms of energy
consumption follows the trend of the data collection time. The legacy NDN
solution slightly outperforms the IP-based implementation, while, in presence
of multiple devices, the multi-source retrieval is more energy efficient than the
legacy NDN.

The difference between legacy and multi-source NDN is again mainly due to
the fact that the legacy NDN generates an Interest for any resource that must be
retrieved. Therefore, each Arduino is involved in the reception and processing
of multiple Interests, with consequent energy waste. With multi-source NDN,
instead, a multi-source Interest is sent only once, thus reducing the load (and
energy consumption) on the constrained devices.

7 Conclusion

In this paper, we presented a communication framework that leverages the ICN
paradigm for local M2M communications and enables global access to the re-
sources through the ETSI M2M architecture.

ICN and, in particular, the NDN instantiation, exhibits unique features that
well suit the requirements of M2M communications (e.g., information-centric

23

Figure 13: Setup for our power measurements: the laptop on the left hosts the
application for evaluating performance of the M2M device.

applications, group-based communications). Moreover, the hierarchical naming
scheme is quite similar to the one devised within the ETSI M2M reference
architecture, hence facilitating the interoperability with remote entities. We
made the best of such factors and our work capitalized on the design of an ICN-
based framework to support lightweight interactions in an M2M Area Network
with resource-constrained devices.

We have assessed the viability of the proposed framework through the de-
ployment of a test-bed mimicking a home network with off-the-shelf low-cost
devices equipped with an IEEE 802.15.4 interface and embedding environmen-
tal sensors.

The OM2M open source platform has been used to implement the ETSI
M2M system. It has been integrated with the ICN-capable Home Area Network
through an interworking proxy capability deployed at the home Gateway.

Achieved experimental results confirmed that the proposed solution provides
a good trade-off in terms of simplicity of implementation and performance.
Moreover, the proposed solution for group-based communications outperforms
the legacy NDN one Interest-one Data exchange and the IP-based implementa-
tion, and it is flexible enough to group M2M devices according to their physical
location or the sensed parameter, thanks to an expressive naming scheme.

References

References

[1] J. Kim, J. Lee, J. Kim, J. Yun, M2M Service Platforms: Survey, Issues,
and Enabling Technologies, Communications Surveys & Tutorials, IEEE
16 (1) (2014) 61-76.

24

340

T T

T
CoAP/UDP/6LoWPAN F$—
Legacy NDN
Multi—so%rcg NDN :8:

320

Energy consumption (mJ)

240 ' ' '
1 2 3 4 5

M2M active devices

Figure 14: Average energy consumption per received request per device when
varying the number of active M2M devices.

[2]

C. Antén-Haro, T. Lestable, Y. Lin, N. Nikaein, T. Watteyne, J. Alonso-
Zarate, Machine-to-Machine: an emerging communication paradigm,
Transactions on Emerging Telecommunications Technologies 24 (4) (2013)
353-354.

ETSI TS 102 690 v2.1.1: Machine-to-Machine Communications (M2M);
Functional Architecture (2013).

J. Swetina, G. Lu, P. Jacobs, F. Ennesser, J. Song, Toward a Standardized
Common M2M Service Layer Platform: Introduction to oneM2M, Wireless
Communications, IEEE 21 (3) (2014) 20-26.

M. B. Alaya, Y. Banouar, T. Monteil, C. Chassot, K. Drira, OM2M: ex-
tensible ETSI-compliant M2M service platform with self-configuration ca-
pability, Procedia Computer Science 32 (2014) 1079-1086.

E. Borgia, The Internet of Things vision: Key features, applications and
open issues, Computer Communications 54 (2014) 1-31.

B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman, A Sur-
vey of Information-Centric Networking, Communications Magazine, IEEE
50 (7) (2012) 26-36.

M. Amadeo, C. Campolo, A. Molinaro, G. Ruggeri, Content-centric wireless
networking: A survey, Computer Networks 72 (2014) 1-13.

K. Katsaros, W. Chai, N. Wang, G. Pavlou, H. Bontius, M. Paolone,
Information-centric networking for machine-to-machine data delivery: a
case study in smart grid applications, Network, IEEE 28 (3) (2014) 58-64.

25

[10]

[21]

[22]

[23]

W. Shang, Q. Ding, A. Marianantoni, J. Burke, L. Zhang, Securing Build-
ing Management Systems using Named Data Networking, Network, IEEE
28 (3) (2014) 50-56.

J. Zhang, Q. Li, E. M. Schooler, iHEMS: an information-centric approach
to secure home energy management, in: IEEE SmartGridComm, 2012.

ETSI TS 102 921 v1.1.1: Machine-to-Machine Communications (M2M);
mla, dla and mld Interfaces (2012).

Z. Shelby, et al., Constrained Application Protocol (CoAP), draft, RFC
7252, The Internet Engineering Task Force-IETF.

C. Bormann, M. Ersue, A. Keranen, Terminology for Constrained-Node
Networks, Internet Engineering Task Force (IETF), RFC 7228.

E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, M. Wahlisch, Informa-
tion Centric Networking in the IoT: experiments with NDN in the wild,
in: Proceedings of the 1st international conference on Information-Centric
Networking, (ACM ICN), 2014.

M. Amadeo, C. Campolo, A. Tera, A. Molinaro, Named Data Networking
for IoT: an Architectural Perspective, in: IEEE EuCNC, 2014.

M. Amadeo, C. Campolo, A. Molinaro, Internet of Things via Named Data
Networking: The support of push traffic, in: Network of the Future (NOF),
2014 International Conference and Workshop on the, IEEE, 2014, pp. 1-5.

R. Ravindran, T. Biswas, X. Zhang, A. Chakraborti, G. Wang,
Information-centric Networking based homenet, in: IFIP/IEEE ManFI
Workshop, 2013.

W. Shang, Q. Ding, A. Marianantoni, J. Burke, L. Zhang, Securing In-
strumented Environments over Content-Centric Networking: the Case of
Lighting Control and NDN, in: IEEE Infocom NOMEN Workshop, 2013.

L. A. Grieco, M. Ben Alaya, T. Monteil, K. Drira, Architecting Infor-
mation Centric ETSI-M2M Systems, in: Pervasive Computing and Com-
munications Workshops (PERCOM Workshops), 2014 IEEE International
Conference on, IEEE, 2014, pp. 211-214.

L. Zhang, et al., Named Data Networking (NDN) Project, Tech. Rep. NDN-
0001, PARC (October 2010).

M. Meisel, V. Pappas, L. Zhang, Ad hoc networking via named data, in:
Proceedings of the fifth ACM international workshop on Mobility in the
evolving internet architecture, 2010, pp. 3-8.

M. Amadeo, C. Campolo, A. Molinaro, Multi-source data retrieval in IoT
via Named Data Networking, in: Proceedings of the 1st international con-
ference on Information-Centric Networking, (ACM ICN), 2014.

26

Raspberry Pi, [on-line] http://www.raspberrypi.org/.
XBee tecnology, [on-line] http://www.digi.com/xbee/.

IEEE standard for local and metropolitan area networks—part 15.4: Low-
rate wireless personal area networks (LR-WPANs) amendment 1: Mac sub-
layer, IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011)
(2012) 1-225.

Arduino, [on-line] http://www.arduino.cc/.

J. P. Meijers, et al., A Two-Tier Content-Centric Architecture for Wireless
Sensor Networks, in: IEEE ICNP, 2013.

Xbee-arduino, [on-line] https://code.google.com/p/xbee-arduino/.

Xbee-api, [on-line] https://code.google.com/p/xbee-api/.

Arduino-ipv6stack, [on-line] https://github.com/telecombretagne/Arduino-IPv6Stack.

27

