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Abstract—Edge computing is a key paradigm to offload the
core network and effectively process massive Internet of Things
(IoT) raw data without sending them to the cloud. This paradigm
normally relies on a set of purpose-built and pre-planned servers,
which host storage and processing resources to provide IoT
services close to the data sources, thus saving core network
resources and offloading the remote cloud infrastructure.

In this paper, we propose to turn the network edge into a
dynamic, distributed computing environment that supports the
provisioning of IoT services, by exploiting the recent evolution of
Named Data Networking (NDN), supporting both name-based
data retrieval and computation. Specific name structure and
novel NDN forwarding mechanisms are designed; a distributed
strategy is also engineered to select the service executor among
edge nodes, with the objectives to (i) limit the raw IoT data
traffic crossing the network, and (ii) allocate the service exe-
cution according to the nodes’ available processing resources.
Numerical analysis shows that the performance of the proposed
framework approaches the one of the optimal solution of a
formulated Integer Linear Programming problem. System-level
ndnSIM simulations confirm that the proposal also outperforms
the considered state-of-the-art benchmark solutions in terms of
service provisioning time.

Index Terms—Internet of Things, Named Data Networking,
Mobile Edge Computing, Information-Centric Networking

I. INTRODUCTION

The future Internet will be dominated by the big amount of
Internet of Things (IoT) data traffic generated by billions of
heterogeneous devices serving different applications, including
smart building, smart transportation and health care. [oT ser-
vices typically rely on the processing of such — sometimes raw
and redundant — data, and may span from simple computations,
e.g., identifying the average temperature over a set of mon-
itored values, up to computing-intensive image compression,
video transcoding or data analytics. The dominant strategy is to
place the application logic for data processing in a cloud server
[1], thus guaranteeing a common interface to different players
and easy application deployment. This approach, however,
might require carrying a big amount of raw IoT data across the
network to the remote data center, where cloud resources are
available. Placing the IoT service execution in the cloud may
cause network congestion and burden the cloud infrastructure,
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getting inadequate to sustain the ever growing demands for
massive IoT processing services.

Mobile edge computing [2] can solve the mentioned issues
by bringing computing resources closer to where IoT data
are produced. However, making this concept viable implies
addressing and solving some key challenges, including: (i)
deploying computing servers in ad-hoc places close to the
network edge, and (ii) retrieving data from IoT sources, man-
aging service allocation to the best edge server, and securing
all operations.

Information Centric Networking (ICN) and, in particular, its
prominent Named Data Networking (NDN) instantiation, have
been recently re-engineered to enable in-network processing
[3]-[8], besides content dissemination in the future Internet.
In the original ICN design, a consumer requests a content “by
name”, and the producer, or any in-network node storing a
valid copy of that content, may answer with a named Data
packet. This simple logic has been extended to support named
function execution: a consumer requests a named function to
be applied over a content (e.g., video compression), and the
network uses advanced routing-by-name mechanisms to find
the node executing that function and returning the processed
content. Unlike host-centric approaches, ICN decouples the
function from the identity of the node able to execute it. Hence,
there is no need to know in advance the IP address of the
executor. This revolutionary paradigm is still at a very early
stage of development, and deserves further investigation.

In this paper, we extend NDN to support IoT data processing
services at the network edge, i.e., the execution of a named
function over a named IoT dataset. The reference services for
our study are of two types: “data-intensive”, which involve
a large set of raw IoT data to be collected and processed,
and “compute-intensive”, where the function requires high
processing capability to be executed. The type of processing
function applied over the collected IoT dataset can be as
simple as finding the maximum value in a set of sensed data
or more complex such as compressing a set of images.

We design an effective and efficient strategy to select the
NDN edge node among those capable of executing a specific
processing service over a set of IoT data, retrieved through
legacy NDN procedures. The selection of such node is driven
by the following objectives: (i) to limit the raw data traffic
across the network, by moving the computation closer to
the IoT data sources, and (ii) to consider the edge nodes’



processing capability when allocating the service execution
function. This paper provides the following contributions:
1. We design a framework, referred to as loT-Named Com-
putation Networking (IoT-NCN), where the retrieval of IoT
data and their processing at the network edge is distributedly
orchestrated through a re-engineered NDN solution. The pro-
posal extends the NDN naming scheme, the packets format
and the forwarding strategy to support the IoT data collection
and service execution.
2. We formulate the optimal service allocation through a sim-
ple Integer Linear Programming (ILP) problem, and enclose
the aforementioned objectives in a weighted cost function to
be minimized, in order to identify the set of candidate service
executors at the network edge. The cost function considers
both the latency in the IoT data retrieval by the executor and
the processing footprint for function execution. The problem
solution is used as a upper bound for performance comparison,
since it represents what is achievable through a centralized
scheme, not implemented in practical realization.
3. We design a practically feasible distributed service alloca-
tion strategy, which is included in the forwarding fabric of IoT-
NCN and is based on the same cost function specified for the
ILP. It allows edge nodes to compute the cost function locally
and to make on line decisions independently, and orchestrates
the service allocation in a distributed manner.
4. We evaluate the performance of the distributed strategy
against the formulated optimal solution through Matlab sim-
ulations, and we study the impact of the service popularity
and the effect of the weighting factor in the cost function.
Numerical results demonstrate that the proposed distributed
solution exhibits performance close to the optimal centralized
one under a wide range of network and data settings, and
correctly trades off the two contributions in the cost function.
5. Finally, we implement IoT-NCN as an extension to the
NDN protocol stack, and conduct system-level simulations in
ndnSIM [9], the official ns-3-based NDN simulator. Achieved
results confirm the numerical ones and give more insights
about the behaviour of the proposed framework, when con-
sidering a realistic NDN design and the comparison with
alternative state-of-the-art solutions.

The remainder of the paper is organized as follows. Section
IT provides NDN basics, scans the closest related works in
the field of in-network processing via NDN and identifies the
motivations of our work. The main pillars of the proposed
distributed IoT-NCN framework are summarised in Section
III. The system model, problem statement and ILP formulation
are reported in Section IV. Section V specifies the details of
IoT-NCN for the edge orchestration of IoT data processing ser-
vices. The performance evaluation methodology and the main
settings are discussed in Section VI. Numerical and ndnSIM
simulation results are, respectively, presented in Section VII
and Section VIII. Open research directions are discussed in
Section IX, and Section X concludes the paper.

II. BACKGROUND AND MOTIVATIONS
A. NDN pillars

The NDN architecture has evolved over the years, and it has
been enriched with additional components to support routing

and advanced forwarding mechanisms. In the following, we
refer to the latest reference implementation in [10] that con-
siders named content retrieval in the Internet.

Packets and data structures. NDN communication is
receiver-driven and is based on the exchange of Interest
packets requesting contents, and Data packets carrying them.
They both include hierarchical content names. Security is
performed per packet: producers create digital signatures on
their Data packets; the signature binds the Data name with
the generated content, so that its authenticity can be verified
at any time, even if the Data is provided by an intermediate
in-network node caching the content.

Each NDN node implements the model in Figure 1 that
consists of the following data structures.

The Content Store (CS) caches Data packets traversing the
node. The Pending Interest Table (PIT) records all incoming
unsatisfied Interests forwarded by the node and tracks the
related arrival time. There is a one-to-one matching between
the Interest and the requested Data. Data received without a
matching Interest, or Data arriving after the Interest lifetime
expiration, are discarded. The Forwarding Information Base
(FIB) is used to route Interests. Each entry records a name
prefix with a collection of outgoing node’s faces towards a
potential content provider and the related routing cost. There
are network faces (i.e., lower-level network interfaces) and
application faces. In the latter case, the request is forwarded
to the Application layer of the node.

The Routing Information Base (RIB) records routing infor-
mation, which are registered and updated by different parties,
e.g., the routing protocol and the application services. The RIB
Manager handles the RIB and updates the FIB when needed.

The Strategy Choice Table (SCT) collects a set of named
forwarding strategies associated with namespaces, since dif-
ferent names may require different forwarding semantics.
The so called Strategy Choice (SC) Manager is the software
component in charge of the SCT management, i.e., to set/unset
strategies. It can also store measurement information regarding
a name prefix in the so-called Measurements Table so to
improve the forwarding strategy decisions.

Packet processing. At the Interest reception, an NDN
content router first looks into the CS for the matching Data
packet to send back. If the content is not found, it looks in
the PIT. If there is a matching entry, the node updates the
PIT with the incoming Interest’s face and discards the request.
Vice versa, it looks into the FIB for an outgoing face to send
the Interest. Data packets simply follow the chain of the PIT
entries back to the requester(s).

NDN for IoT data retrieval. Recent works showed that
NDN is particularly suited to IoT data retrieval [11], even from
low-powered devices [12]. Indeed, NDN names can be used
to address heterogeneous things (e.g., sensors, cameras) and
their data, directly at the network layer. NDN names have been
proposed for different IoT contexts, like smart home [13] and
lighting control [14]. Names can reflect application semantics
and their scope, but they are not tied to a specific location,
like for IP addresses.
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Fig. 1. NDN node model.

B. In-network processing via NDN

NDN has been recently recognized as a potential enabler of
distributed in-network computation.

Named Function Networking (NFN) [4] was the pioneering
proposal that complemented NDN data access by data process-
ing. In NFN, a name interchangeably represents a mapping to a
content, a function for processing the content, or an expression
that combines the two. Therefore, the Interest can carry, in
the NAME field, expressions involving named data as well as
named functions, and the network is in-charge of discovering
the node executing the function, by interlacing expression-
resolution with name-based forwarding. For this purpose, the
NDN forwarding machine is augmented with a A—expression
resolution engine, which processes all Interests that have
the postfix name component /NFN. The NFN strategy has
been recently adapted for targeting IoT services and avoiding
function execution at the data owner (i.e., the IoT node or the
data center) by forcing execution at the edge [15].

Another work customizing NFN in the IoT domain is
Programmable IoT (PIoT) [6], an application layer solution,
statically installed in the most capable network nodes. It also
includes a centralized management functionality that performs
the service allocation in the IoT domain.

Closer to NFN, Named Function as a Service (NFaaS) has
been deployed as a general purpose framework for in-network
function execution [5]. Instead of using A—functions that
have expressiveness limits, NFaaS supports more sophisticated
processing with lightweight virtual machines in the form of
named unikernels. A Kernel Store in the node keeps the func-
tion codes, computes statistics and makes decisions on which
functions to download and execute. Functions can migrate
in the edge domain based on their demands: functions move
closer to the data source to satisfy delay-sensitive applications
and go towards the core for bandwidth-hungry applications.

With focus on IoT data processing, the authors in [16]
propose a hybrid naming scheme composed of the following
parts: (i) hierarchical NDN names to be used in the core
network to locate a given IoT domain, (ii) a function tag,
which identifies the function that will process IoT data in
the identified IoT domain, (iii) a set of unordered tags that
describe the relevant IoT data. Although tags can improve the
expressiveness of naming, their use separates the IoT domain
from the NDN network and requires ad-hoc designed delivery

mechanisms, which are restricted to tree topologies.

With a similar objective of IoT data processing, in our
previous work in [7], we advocate both data retrieval and
processing to occur at an edge node. We propose a simple
procedure for the selection of the executor node, with the
relevant workflow aimed to process data as close as possible to
the IoT sources, in order to limit the amount of raw data traffic
across the network and to reduce the data retrieval latency.

C. Contributions

Compared to previous related works, our proposal shows
the following distinctive features.

o It extends NDN to support in-network processing over IoT
data. Unlike the previous literature on mobile edge computing
[17], we target a more holistic solution in that the networking
protocol for data retrieval and the computing schemes are
designed in a closely-knit manner to make the best of the
available edge resources and to satisfy the service demands.
IoT data retrieval occurs through the legacy NDN solution, by
benefiting from all its well recognized advantages [11].

e Unlike PIoT [6], in our framework in-network processing
is distributed and relies on NDN capabilities augmented with
the cognition of “named services”.

e Being distributed, our proposal shares design principles
with NFaaS [5] and NFN [3], although there are also important
differences. While NFaaS is a general framework focusing
on functions to be executed and migrated according to their
requirements, our proposal is specifically tailored for IoT
scenarios, where the [oT data retrieval has a key impact in the
service provisioning performance. In NFaaS, the name prefix
identifies the function first, thus Interests are forwarded, based
on this prefix, to an executor. In IoT-NCN, instead, the Interest
carries a composite name that identifies first the content and,
then, the function. As a result, the Interest is routed towards
the data sources and the executor must be located in the path
to the data sources.

e The proposed IoT-NCN logic is similar to the one in
NFN. What is mainly new w.r.t. NFN is the forwarding
process coupled with the executor selection strategy, based on
a multi-criteria cost function. The function aims to improve the
service provisioning performance by accounting for the node’s
resource capability, the service type, and the closeness to the
IoT data sources. This is also the crucial improvement w.r.t.
our previous work in [7], which only considers the closeness to
data sources for the executor selection and remains oblivious
of the other contextual information.

e Unlike [16], which executes tag-named functions only
inside the IoT domain, and other edge-based solutions where
computation is demanded to purpose-built nodes [17], in IoT-
NCN any node at the network edge can execute a service,
according to its capabilities. This increases the flexibility
of the framework and the overall performance, while better
distributing the load across network nodes.

e Similar to what happens in NDN for contents requested
by multiple users, in the proposed [oT-NCN the same service
can be also requested by multiple consumers. In this context,
the same service means the same function applied to the same



input data. If this happens, an IoT-NCN node executes the
function only once over the same dataset and, with the cached
results, it serves different consumers [18] in several contexts.
This is what we call service reuse. These could be the cases
of, for instance, augmented reality services required by users
attending the same event (e.g., in a museum, in a concert);
requests of the same analytics over a given road traffic status
information, by both the municipality and the road authority.
Caching computing results comes for free thanks to the NDN
name-based communications, which allows each network node
to detect different requests for the same (service) name. On the
contrary, this is less viable when a data-agnostic networking
protocol like IP is implemented, and the service request must
be inspected at the application layer. This limits the service
execution to purpose-built nodes in an ossified network edge
deployment [18], [19]. Certainly, in IocT-NCN the service reuse
cannot be applied to those services that rely on personal
information that cannot be cached, or on volatile data, whose
validity would expire rather quickly [3].

III. THE IOT-NCN FRAMEWORK: AN OVERVIEW

IoT-NCN provides IoT named services by leveraging the
NDN communication architecture. The conceived framework
is intended to entail minor modifications of the legacy NDN
to keep backward compatibility with it. To this purpose, we
use a naming scheme that identifies IoT contents and functions
without affecting the NDN routing logic. A few novel fields in
the legacy Interest/Data packets, and a couple of new modules
in NDN nodes are added to enable the distributed edge service
orchestration, as detailed in the following. The interaction
workflows are also specified which involve the edge nodes
with the aim to identify the best executor — i.e., the one
minimizing the conceived cost function — on the path between
the consumer and the IoT data to be processed.

A. Reference scenario and service assumptions

The reference IoT services for our study can be data-
intensive, here meaning that they involve a large amount of
raw [oT data to be collected and processed; and compute-
intensive, i.e., requiring high processing capability. Executing
such services at the network edge would offload the core
network, with the additional benefit of reducing the latency
incurred by consumers to retrieve the service output. This
is because it is quite common in IoT contexts to process
massive data (e.g., from a multitude of sensors) in order to
extract meaningful information, with a computed result which
typically has a smaller size w.r.t. the input raw data.

The framework is intentionally conceived to be quite general
for what concerns the types of supported processing functions.
They may imply simple computation such as finding the
maximum, minimum, or mean value over a set of sensed
IoT data (e.g., temperature, C'O5 emissions, vehicle speed);
more complex data aggregation, spatial/temporal correlation or
filtering operations on the raw data; compute-intensive image
compression, video transcoding or analytics from different
surveillance cameras; augmented reality creation of a scene
(e.g., in a museum, a concert, an autonomous vehicle).

Named services are requested by consumer end nodes,
and executed by in-network (edge) IoT-NCN nodes, in the
following referred to as executors. All the nodes, includ-
ing consumers and IoT sources, communicate through the
NDN Interest/Data exchange. [oT-NCN can work alongside
the cloud, which is used for long-term data analysis and
storage, and when no edge node is available for the requested
processing.

We refer to a general network topology composed of a core
network, with high-speed content routers, that is interfaced
through Border Router(s) to multiple edge domains. These
latter separate the core from the IoT sources and include mul-
tiple nodes acting as potential executors. Each edge domain
may resemble the backhaul segment of a cellular network.

The following main assumptions hold:

e Multiple consumers can issue requests for heterogeneous
10T services. Consumers do not execute services, but they only
request service executions with a named Interest packet. In
the following, we assume the more general case in which
consumers are remote w.r.t. the IoT data sources, therefore
service requests traverse the core network and reach the edge
domain through the Border Router.

e Core routers may cache incoming Data packets, as in
the traditional NDN implementation, but they do not execute
services to maintain a light and fast core network.

e A service can be executed in any IoT-NCN edge node on
the path between the consumer and the IoT data source(s). It
is not executable in an IoT data source, because of the limited
computational capacity and because, in the most general case,
a service requires data collection from multiple IoT sources.

e Services are atomic in that they cannot be split in multiple
sub-tasks, so each service is allocated to a single node.

e A service is uniquely named and characterized by a
self-consistent function code with well-defined data input
parameters and information about the computing resources
requested for its execution. We pose no restrictions about the
IoT function implementation; functions could be implemented
as unikernels like in [5], as containers like in [6], as Python
scripts [19], which are quite common in IoT applications.
Identifying the best implementation approach is out of the
scope of the current paper.

B. IoT services naming

Like in [7], IoT-NCN leverages an ad-hoc specified naming
scheme that identifies both the IoT data and the processing
function that will be applied over them. Specifically, both
data and functions are hierarchically named, with the function
name added after the data name, in order to not affect the
legacy NDN forwarding. The prefix NCN is used to delimit
the function name from the data name. If the NCN tag is
not included, the Interest is treated as a legacy NDN content
request by IoT-NCN nodes.

The service name can also include a limited set of param-
eters as input for the execution. For instance, an Interest with
name /unirc/buildingA/temp/NCN/avg/{p1=10} requests the
execution of an average operation over the last 10 temperature
values collected from building A of the University of Reggio
Calabria.



Nodes without computing capabilities maintain information
only on the data name prefix (e.g., /unirc) and route the packet
according to it. This guarantees backward compatibility with
legacy NDN implementations.

C. Service Provisioning

At high level, service provisioning in IoT-NCN consists of
the following steps.

Interest forwarding with executor selection. IoT-NCN
uses persistent Interests, a.k.a. Long-Lived Interests [20], to
request a service. A persistent Interest is used to maintain
active the Interest in the PIT for the entire service provisioning
time — since the Interest transmission by the consumer to the
reception of the response including the output of the compu-
tation — and to retrieve more Data packets if the processing
result needs to be conveyed in multiple packets.

To prevent parallel execution of the same service, broad-
cast/multicast forwarding is forbidden in IoT-NCN: the persis-
tent Interest is sent only on a single outgoing face, the one with
the lowest cost in the FIB. The Interest is forwarded towards
the IoT sources according to the data name component(s) only.
When the request reaches the edge domain, the service name
component is considered and a distributed process selects the
edge node with the lowest service execution cost as the IoT
service executor. Information about the decision engine and
the cost calculation will be given in the following sections.

Service Execution. Service execution is split into two
phases: Data collection and Computation. According to the
data name component and the service input parameters, the
selected executor first collects the IoT Data using legacy
NDN Interest-Data exchange, and then processes them. Data
collection generally implies the retrieval of multiple Data
packets, either from the same producer (single-source) e.g.,
generating a video stream, or from multiple producers (multi-
sources) e.g., measuring a set of sensed values in a specific
region. Data provided by devices equipped with the same
type of sensors (e.g., for measuring temperature, traffic con-
ditions) usually share a common name prefix, but differ in
the last component(s), e.g., unirc/buildingA/temp/rooml and
unirc/buildingA/temp/room2 are used to collect temperature
values from two different rooms of the same building.

In legacy NDN, several strategies can be used to collect
more Data under the same prefix [21]. The classic approach
is based on the so-called exclusion-filters: Exclude selectors
in the Interest header specify a list and/or ranges of name
components that must not appear as a continuation of the
name prefix in the responding Data packet'. By applying this
technique to the example of temperature values collection, if
the first Interest unirc/buildingA/temp/ retrieves the Data unir-
c/buildingA/temp/rooml from rooml, then a second Interest
must be issued with rooml! in the Exclude field in order to
retrieve Data from room2.

Result delivery. The computed result is sent back to the
consumer into one or more Data packets, which carry the same
name of the original persistent Interest. Results that include
shareable contents can be cached to satisfy future requests.

Ihttps://mamed-data.net/doc/ndn-tlv/interest.html

IV. OPTIMAL SERVICES ALLOCATION

In this section, we formulate the optimal IoT service
allocation problem in IoT-NCN. The optimization problem
solution is based on the ideal availability of a centralized
service orchestration, which conflicts with the NDN distributed
philosophy. Therefore, this solution will be taken as an upper
bound for the performance comparison shown in Section VII.

Plenty of literature works have studied the optimal services
allocation problem — sometimes referred to as task allocation
problem — being it crucial in cloud computing and its recent
edge evolutions. In the context of mobile edge computing [17],
the main solutions can be classified as: (i) single-user edge
systems, where the decision is on whether a particular task
should be (partially, if split in sub-tasks) offloaded for edge
execution or instead computed locally on the mobile device;
(ii) multi-user edge systems comprising multiple mobile de-
vices that share one edge server; and (iii) systems with multiple
edge servers, where the issue is to determine the destination
server of the computation offloading.

The problem of service allocation in IoT-NCN especially re-
sembles the third category. The main difference lies in the fact
that nodes which can act as executors are not just purpose-built
edge servers, but also in-network (edge) NDN content routers.
This is viable thanks to (i) the gradual shift of ICN network
nodes from simple forwarders to more capable computing and
storage platforms; and (ii) the network function virtualization
(NFV) paradigm, whereby services can be flexibly hosted
at any network location that has virtualized resources, e.g.,
provided by commodity servers [22]. Overall, this makes the
problem different from existing literature and quite unique,
being tightly coupled with the NDN philosophy.

In the following, we will consider the service execution
cost as the cost function to be minimized in the defined
optimization problem; the same cost function will be used to
define the practical distributed strategy for service allocation
detailed in Section V.

A. System model

The reference network edge topology for our study in Figure
2 is a metropolitan area network (MAN) built as a ring
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TABLE I
SUMMARY OF THE MAIN NOTATIONS
Symbol Description
S catalog of services (|S| = s)
N set of nodes in the topology (|N| = n)
R set of service requests (|R| = r)
Sk a generic service in the catalog
Cs, set of consumers requesting service sy (|Cs, | = ¢)
Qs weight for the service execution cost function related to sg
ri, j-th request of service s, (with j € Cs,)
i a generic JoT-NCN node in the edge domain
ﬂri set of nodes in the consumer-source path for rfv
aCPUy, available computation capability (i.e., CPU cycles per second)
at node n;
CPUs, number of CPU cycles required for executing service sy
CT‘IJ; the consumer issuing service request rfﬂ for service sy
ARs,, access router to which is(are) connected the IoT sources(s)
which own(s) the input data for service sg
SECh, s, | cost for executing service s at node n;
CChn, sy, closeness cost for executing service si at node n;
i, Sk processing cost for executing service s at node n;
Dy, A Ray latency measured over the path connecting n; and AR,
D maximum diameter of the topology
X sy, binary variable taking the value 1 if sj is executed by node
n; and 0, otherwise

backbone, with 4 backbone routers connected through a 3-
layered tree topology to leaf nodes, which are the Access
Routers (ARs) towards the IoT domains. ARs may operate as
base stations to which the IoT devices are directly connected,
e.g., in case of Low Power Wide Area Network (LPWAN) or
Narrowband-IoT cellular solutions. IoT devices may be also
connected to the ARs through short-range connectivity with
loT gateways.

We assume that a Border Router, which links the MAN to
the core network, receives the service requests from the remote
consumers. The core network, being not involved in the service
allocation performed at the edge, is simply modeled as a link
with a fixed delay.

All ARs, intermediate edge nodes and backbone nodes,
including the Border Router, implement IoT-NCN, therefore
they have computing capabilities and participate in the service
allocation process.

We refer to N as the set of [oT-NCN nodes in the topology,
thus excluding consumers, IoT data sources and gateways.
Each node n; € N has aCPU,, computing resources avail-
able to perform service(s) execution (expressed in CPU cycles
per unit time). We reasonably assume that nodes closer to the
backbone ring have more available computing resources and
they could better manage resource-intensive tasks.

We consider a catalog of services sp,...,ss € S. Each
service s is characterized by (i) a name that, as previously
described, identifies the function, its parameters and the input
data; (ii) a CPU,, value, which is the amount of computing
resources required to execute the service (i.e., the number of
CPU cycles).

IoT devices are typically deployed on the ground to
monitor/measure physical phenomena in a given area, e.g.,
within a smart building, a smart city. For example, different
surveillance cameras capture multiple angles of the same city

neighbourhood; multiple smart meters in the same building
transmit their regular measurements. Due to this co-locality of
IoT data sources, it is reasonable to assume that they are under
the coverage of the same AR, which provides connectivity to
the area over which monitoring is enforced. When the set of
IoT data is spread over more ARs, the paths from the Border
Router towards these ARs will cross in a common upper-
level node that we call Branching Node (BN). Without loss
of generality, we assume that the input IoT data for a given
service si are reachable through a common IoT entry point,
which is the AR, denoted as AR,,, when the IoT sources
are all under the coverage of the same AR, and is the BN,
denoted as BN, , when the IoT sources are distributed under
the coverage of different ARs. For the sake of simplicity, in
the remainder of this paper we will use the term AR, to refer
to both situations.

Each service s;, in the catalog can be requested by different
consumers in the set Cs,. When different consumers require
the same service, an [oT-NCN node may serve different
requests by executing the same function over the same set
of data only once. We refer to R as the set of distinct
service requests by different consumers. A specific request
for a service s by consumer j in Cj, is denoted as 7y, with
j=1,..,cand k=1,... s.

For each service request, prior to allocation, the minimum
routing path is computed between each consumer j € Cf,
requesting service Sg, €l and the IoT sources generating the
input data. This is done according to the Dijkstra algorithm,
which is currently used in NDN routing implementations [9].
Without loss of generality, the latency measured over each link
is chosen as the routing metric. Thus, the minimum routing
path is the one ensuring the minimum latency between the
consumer and the IoT data sources.

“Once the path has been identified, for each service request,
ri, we additionally have: Ty C N, which is the set of
IoT-NCN nodes in the forwarding path between consumer j
requesting service s, and AR, .

B. Optimization problem

Defining the problem. Given the system model, our aim is
to compute the service allocation optimally. The problem can
be formulated as an integer (binary, O or 1) LP problem, as it
will be clarified in the following.

We assume that each IoT-NCN node n; € N can execute
any service in the catalog, according to its available CPU
capability, aC PU,,,. Not all feasible assignments produce de-
sirable application performance, thus we introduce the service
execution cost function to be minimized, which analytically
defines an order relationship among all feasible solutions.
The definition of the service execution cost does not target a
single performance metric to be minimized/bounded, instead
it is a multi-criteria cost function that reflects our twofold
aim of: (i) limiting the amount of raw IoT data traversing
the network, and (ii) allocate service execution to nodes
according to their available processing resources. The two
goals are conflicting in most cases. Executing services closer
to the IoT data sources would relieve the network from the



burden of carrying a big amount of raw IoT data. However,
nodes closer to the IoT sources, such as the AR, , may have
limited computing capabilities compared to a Border Router
and could not effectively manage the computing load related
to s, execution.

Thus, we transform a multi-objective optimization problem
into a single-objective problem, using the Simple Additive
Weighting (SAW) technique [23]. According to SAW, we
define the service execution cost as the weighted sum of the
normalized closeness cost (CC) and the normalized processing
cost (PC) at each potential executor. The CC indicates the
proximity of the potential executor to the IoT sources, while
the PC reflects its available computing capabilities w.r.t. the
ones requested by the service.

For the sake of the reader’s convenience, the main notations
of the problem are summarized in Table 1.

The Cost function. The cost of executing service sj at
node n; is defined as:

SECy, s, = (1 — s, )CCh, s + 05, PCh 5, - (1)

The first contribution, CC), 4., is the closeness cost for
node n; to collect input IoT data for service si. Minimizing
this contribution limits the injection of raw IoT data into the
network. Being AR, the closest node to the IoT sources
feeding service sk, the minimum closeness cost (zero) is
achieved when AR, is chosen as the service executor. In a
more general case, the closeness cost depends on the proximity
between node n; (candidate as executor of the service request)
and the relevant AR, . This value can be measured in terms
of the chosen routing metric, that is the latency between node
n; and AR, . We define the closeness cost as:

D ni, ARg,
D 7
where: Dy, 4 R., 1s the latency between the potential execu-
tor n; and AR, , which is normalized over D, representing
the latency over the path between the Border Router and
AR, . It is worth observing that the closeness cost reflects
the performance in terms of IoT data collection latency.
Indeed, the closer the executor to the IoT sources, the shorter
the latency of the raw data retrieval by the executor. The
latency increases when the executor moves away from the AR
especially if the amount of raw data to be transferred towards
the executor is huge.

The second contribution, the processing cost PC,, s, de-
pends on the total number of CPU cycles, C PUs, , required to
execute service s, and the computation capability available
at node n; when the service allocation procedure is executed,
aCPU,,. It is defined as:

Ccni,sk = (2)

cPU,,

“Is St OPU,, < aCPU,,
PC,, .. = { aCPU, ' k=4 C3)

00 if CPU,, > aCPU,,

Nodes with higher computing capabilities have a lower pro-
cessing cost and they are preferred to execute CPU-intensive
services. Since service preemption is not included in our

framework, PC,, ,, is set to oo if the node cannot execute

the computation due to lack of currently available processing
resources.

The weight parameter o, . This parameter (a;, € [0,1])
has a main role in weighting the two cost contributions in
Equation (1). It is service-specific, in that it characterizes a
service and, thus, is the same for different requests, ri, of
the same service sp, whichever the consumer j. We define
o, 1n a systematic way, in order to capture the requirements
of heterogeneous services, namely CPU-intensive and data-
intensive services. In the literature, e.g., [24], it is common to
distinguish such services by defining the ratio between the
computation cost and the communication cost, namely the
Computation-to-Communication Ratio (CCR). Intuitively, in
a data-intensive service the data to be retrieved outweigh the
computational requirements for processing them. Services with
a high CCR are CPU-intensive in nature, vice versa they are
data-intensive. We compute the CCR of a service si as the
ratio between the execution time and content retrieval time.
More in detail: CCR,, = g}f&:f/é)r‘;}, where CPU, .. and
B,y are, respectively, the minimum computation capability
and data rate measured in the domain and D,, is the size
of the input content. CCR,, can be computed per each
service sy in the catalog S. According to the above formula,
a service is CPU-intensive if CCR;, > 1 and data-intensive,
otherwise. Then, a feature scaling operation is performed
on all services in the domain’s catalog S to normalize the

independent CC Ry, in the range [0,1] in order to obtain askzz

CCR,, -0.5 ifCOR,, <1
CCR;, — 1
Qg = ] B . if 1
A GO = 08 +05 ifCCR,, >
s;ES J
“4)

For data-intensive services, which require the collection of a
huge amount of data prior to computation, o, is set to values
lower than 0.5. The lower oy, in Equation 1, the closer the
executor will be to the IoT data sources. In so doing, the
amount of raw data traffic traversing the network is reduced.
Vice versa, for o, values higher than 0.5, CPU-intensive
services are modeled. Values of oy, close to 1 push the CPU
load for service execution to more capable nodes.

Problem formulation. Let X, ,, be a binary variable
taking the value 1 if service s, is executed by node n;, and the
value 0, otherwise. We formulate the problem of the optimal
allocation of services s, € S to potential node executors n;
€ N as follows:

min » Y SECh, o Xn, s, 5)
skES n;EN
S.t.
> CPU, Xy, s, <aCPU,, Vn; € N (6)
SLES

> X =1VrleRj=1,.,ck=1.,s (7)

niETrTj

k
Xn; s = 10,1} Vs, € S,¥n; € N )

2In this work, we are considering a fixed set of services S, but in a real
scenario the catalog could reasonably vary over time and s, values will
change with it.



The constraint in Equation (6) limits the allocation of a
service on a node according to its available resources. Equation
(7) guarantees that each service, sy, is executed in one and
only one node in a given consumer-AR;, path, s computed

for a service request ri. Such a constraint prevents the same
service to be executed multiple times on the same path. In
case of two partially overlapping paths, let say 7 v and Ty s
Equation (7) still allows service sg: (i) to be executed only
once on the nodes n, € 7 ; N, i Or (ii) to be replicated
on the nodes n, & 7 ; N, 1k Indeed, Equation (6) sums all
the resources requlrecf fo execute services s € S and not
each distinct service request. Finally, constraint in Equation
(8) reminds that we conveniently model the allocation problem
with binary variables.

The defined problem will be solved as described in Section
VI and related results will be shown in Section VII.

V. DISTRIBUTED SERVICE ALLOCATION IN IOT-NCN

In this Section, we describe how the distributed service
allocation is performed in the proposed [oT-NCN framework.
The mechanism allows each node to autonomously decide
if performing the IoT computation services and collect the
relevant data. The decision process takes into account the
available processing resources of the node, its closeness to the
data sources (the latency routing cost), and the peculiarities of
the requested service (through the «;, parameter).

Unlike [5], where nodes advertise the functions they can
execute, [oT-NCN does not include any publishing procedure,
since advertising both functions and content names could over-
whelm the network. This is especially true considering that
the service execution capability in a given node is dynamic,
e.g., because of the time-varying resource availability. So, IoT-
NCN adopts an implicit service discovery mechanism that runs
in piggybacking with the persistent Interest forwarding and
involves only IoT-NCN nodes.

A. Basics

The proposed distributed IoT-NCN framework requires the
following modifications in the NDN primitives and entities:

- IoT-NCN persistent Interests and related ACKs are in-
cluded that inherit the same formats of NDN Interest and Data
packets, respectively, and provide an additional header field,
called SERVICEEXECCOST, which carries the currently lowest
service execution cost.

- The SC Manager in each IoT-NCN edge node (see Figure
1) is extended with a decision engine that computes the cost
of a local service execution, upon the IoT-NCN persistent
Interest reception. This information, then piggybacked in the
Interest itself, allows service orchestration to be performed
in a completely distributed way, thus keeping low both the
complexity and the signaling overhead.

- The Available Service Table (AST) is added to IoT-NCN
nodes for fast checking the availability of the service and its
parameters, during the persistent Interest forwarding process.
The AST records the name of the functions that can be locally
executed, the requested CPU load and their status: (i) running,
if the function is in execution, or (ii) inactive, otherwise.

Each node could install or remove available service code
(i.e., function) according to parameters like the service popu-
larity, its local computing resources, for instance by following
the ranking engine deployed in [5].

B. The distributed IoT-NCN operation

Interest forwarding and executor selection. The consumer
sends the persistent Interest with the SERVICEEXECCOST set
to a default maximum value. This Interest is forwarded towards
the IoT domain at the network edge, considering only the
content name component.

When the Interest reaches the first IoT-NCN node (i.e., the
Border Router in our scenario), a novel IoT-NCN forwarding
strategy is started. Specifically, at the persistent Interest recep-
tion, the IoT-NCN node n; first looks in the CS for a cached
result. If no matching if found, n; looks in the AST:

o If the service code is available and already running locally,
the node just adds the arrival face of the request in the PIT
and discards the Interest. At the end of the computation, the
result will be sent also over the newly added face to reach the
other consumer.

o If the service code is available but inactive locally, then the
decision engine controlled by the SC Manager calculates the
local service execution cost (I-SEC) and compares it with the
one included in the SERVICEEXECCOST field of the received
Interest (SEC):

o If [-SEC is greater than the current SEC, there is a
previous more convenient service executor. Therefore,
the Interest is simply forwarded according to the content
name prefix.

o If [-SEC is lower than the current SEC, the SC Manager
updates the SERVICEEXECCOST field with the new value
before continuing the persistent Interest forwarding to-
wards the IoT source(s) (and the relevant AR), according
to the data name component. A PIT entry is created,
which includes also the estimated service execution cost
as an additional parameter.

o If [-SEC is equal to SEC, only a PIT entry is created to
record that the node is a candidate executor together with
the correspondent cost.

e If the service code is not available, then the Interest is
simply forwarded according to the content name prefix.

This process continues until the Interest reaches the last
IoT-NCN node before the IoT domain, i.e., the AR. Then, the
following cases may occur.

If the AR is able to execute the service with the lowest
cost, then it will act as the executor. Otherwise, it generates
the IoT-NCN executor acknowledgement (e-ACK) packet and
sends it backward. The e-ACK is a Data packet, with the
CONTENTTYPE field set to the newly defined value IOT-NCN
EXECUTOR ACK. It carries the same persistent Interest name,
the (lowest) service execution cost as read from the received
Interest, and a dummy payload. The e-ACK follows the
backward chain of PIT entries, thus each candidate executor
can check if the published cost is equal to the one stored
in its PIT. The nodes without a matching cost simply delete
the Interest from the PIT and continue forwarding the e-ACK



back. The first node with the matching cost finally stops the
e-ACK forwarding and acts as the service executor. Thus, the
e-ACK serves the purpose of letting the executor know that it
has been selected.

After the e-ACK processing, the executor starts the service
provisioning and, in parallel, confirms that the service is
running to the nodes back up to the consumer, by sending
an IoT-NCN service acknowledgement (s-ACK). This packet
has the same structure of the e-ACK, but the CONTENTTYPE
field is set to the newly defined value TOT-NCN SERVICE ACK,
which simply notifies that the service has been allocated and
the persistent Interest can be maintained in the PIT to allow
the forwarding of the result. If the s-ACK is not received
within a pre-defined time-to-live interval called s-AC Krrp,,
e.g., because some errors occur in the network or all the
nodes are busy, the persistent Interest is finally removed from
the PIT. The consumer can retransmit the Interest when the
s — AC Krpry, expires for a fixed number of retries and finally
give up if no acknowledgement is received. In the latter case,
to obtain the service, the consumer may forward the Interest
towards the cloud, similarly to e.g., [5].

Data Retrieval and Service Execution. The executor starts
the IoT data retrieval by sending legacy NDN Interest(s) with
the content name obtained from the IoT-NCN Interest name,
as described in Section III. Interests are routed towards the
IoT sources according to the standard NDN forwarding mech-
anism. Thanks to in-network caching, the requested Data could
be retrieved without interactions with the original sources, if
they are already available in the CS of intermediate nodes or
also right at the executor.

When the data collection is completed, the executor per-
forms the requested computation and, eventually, it sends
the result to the consumer(s) in one or more Data packets,
depending on the output’s size. Thanks to the persistent
Interest pending in the PIT, the nodes behind the executor,
maintaining the persistent Interest in the PIT, can forward back
the Data packets. The persistent Interest is finally consumed
by the last Data packet that composes the result. According to
the legacy NDN specification, the final packet in a sequence
is identified by the meta-info field called FINALBLOCKID.

C. Local Service Execution Cost Calculation

The local service execution cost, [-SEC, is computed by
each IoT-NCN node as in Equation 1.

The closeness cost is computed by reading the routing
cost from the FIB entry per the requested content name. It
is normalized w.r.t. the maximum routing cost in the edge
domain, which is assumed to be advertised by the routing
protocol.

The processing cost considers the resource requested for
the service computation (C'PUs, ) that is recorded in the AST,
and the currently available node’s resource (aC PU,,,) that is
provided by a standard CPU monitoring utility available in
the node. For what concerns the weight parameter «,, it is
an attribute of the service name and expressed as a globally
recognizable weight factor, similarly to [25].

c BR E1 AR SRC, SRC,
I0T-NCN Int .
SEC
computation
I-SEC=0.9
IoT-NCN Int
(SEC=0.9) |
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e-ACK —_\-SEC=038
Executor
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Fig. 3. Main steps of the Interest/Data exchange in IoT-NCN: a consumer C'
requests a service execution over data provided by IoT data sources SRCH,
... SRCy, and it is executed by the edge node Ej.

D. A toy example

In order to better figure out how the proposed forwarding
strategy works in IoT-NCN, let us refer to the toy example
reported in Figure 3. A consumer transmits an [oT-NCN
persistent Interest to request a named service. First, the Interest
traverses the core network routers (not reported in the Figure),
where it is forwarded according to the legacy NDN rules,
considering only the content name component that drives
the Interest towards the IoT domain where data sources are
located.

Once the packet reaches the Border Router and enters the
[IoT-NCN edge domain, each crossed IoT-NCN node computes
the service execution cost (SEC) and replaces the current value
of the SERVICEEXECCOST field in the forwarded persistent
Interest, only if the cost is lower than the one carried in the
received Interest. The persistent Interest is then forwarded until
it reaches the AR towards the IoT data sources.

In the example, the AR is not able to execute the service
with the lowest cost, thus it transmits an e-ACK back. Once the
e-ACK packet reaches the edge node that advertised the lowest
cost, it realizes to be the executor because it has the matching
lowest cost. Therefore, it sends an s-ACK to the consumer
and starts the data retrieval from the IoT domain through
legacy NDN Interest/Data packets. Once Data are collected,
the executor performs the requested computation and sends
the result to the consumer with the same name as the original
persistent Interest.

VI. PERFORMANCE EVALUATION: METHODOLOGIES,
SCENARIO AND SETTINGS

Performance evaluation of the proposed IoT-NCN architec-
ture is carried out in two steps including both numerical and



TABLE 11
MAIN SIMULATION SETTINGS
Parameter Value
S| 1000
R| 50
Zipf’s parameter (Z) | 0; 0.4; 0.8; 1.2; 1.6
Qs varying
CPU; X uniformly distributed in [25, 375] Mcycles
aCPUn, [1500-1000-500] MHz at the inner, intermediate
and leaf nodes

simulation results.

First, we derive the optimal 10T service allocation by solv-
ing the problem formulated in Equation (5) with linprog, the
Matlab linear programming solver. This is aimed to understand
to which extent the formulated ILP problem and the cost
function in Equation (1) are able to capture the targeted
objectives, and to set the upper-bound solution for performance
comparison.

A simplified distributed IoT-NCN framework is also im-
plemented in Matlab to get a preliminary insight about the
viability of the distributed proposal and compare it against the
optimal bound computed by assuming a centralized service
orchestration. The distributed allocation is carried out by
considering each service request in isolation in a sequential
order. For each request, the service execution cost at each
candidate executor node along the path is computed according
to Equation 1 and the service is allocated to the one that
provides the minimum value.

Then, IoT-NCN is evaluated in a realistic way by means
of ndnSIMv2.5 [9], the official discrete-event ns-3-based
simulator deployed by the NDN community. Being based
on the ndn-cxx library and the NDN Forwarding Daemon
(NFD), ndnSIM enables reliable simulation experiments and
their reproducibility in real environments with no need to
modify the source code. We have modified ndnSIM from its
stock installation to implement the IoT-NCN features and the
benchmark schemes chosen for performance comparison (see
Section VIII). Specifically, (i) the structure of Interest and Data
packets has been modified to include the new information
for the service allocation procedure; (ii) the NFD modules
have been extended to accommodate the new devised naming
scheme, the novel decision engine, the service execution cost
computation, and the service execution at the selected executor
nodes.

The reference topology for all evaluations is the same as in
Figure 2. It includes: (i) 29 edge nodes, including the Border
router, 4 Backbone Routers, 8 intermediate nodes and 16
ARs; (ii) 100 IoT sources, uniformly attached to the different
ARs, (iii) 50 (remote) consumers that are connected to the
Border Router through the core network, simulated as link
with a delay of 50ms. All the edge nodes implement the IoT-
NCN architecture; they can execute services according to their
processing capabilities, which are assumed to be lower for
ARs, and higher as moving towards the Border Router.

We consider a catalog of 100 services, each one requiring a
randomly selected amount of CPU resources, in the range [25-
375] Mcycles. Since there are no datasets containing traces

of the service workloads in real IoT scenarios, similarly to
[18], we rely on a synthetic workload as generated through
the well-known Zipf’s distribution. Results are reported when
varying the popularity parameter Z, from 0 to 1.6, in order
of increasing popularity. The main simulation settings are
reported in Table II, and they hold unless differently stated
in the text.

VII. OPTIMAL VS. DISTRIBUTED SOLUTIONS:
NUMERICAL RESULTS

Metrics. The following metrics are computed for the pur-
pose of performance comparison.

The average CPU usage per node: it is computed as the ratio
between the CPU resources required by the allocated services
over the available CPU at each node, and this is averaged over
all edge nodes. This metric allows measuring to which extent
edge nodes are loaded w.r.t. their capabilities. The higher the
value the more likely services are executed at the edge, so
in less powerful nodes which easily saturate their computing
resources. On the contrary, lower values of the metric reflect
the case in which services are executed by more powerful
nodes farther from the IoT domain.

The average executor-source latency: it is derived as the
latency experienced over the path (set of links) interconnecting
the node acting as executor and the IoT data source(s) for each
service. Raw data provided by IoT sources are delivered over
this path before being processed at the executor. The closer
the executor to the data the lower such a latency value. Thus,
in case of data-intensive services, it is crucial to choose a
low-latency executor-source path.

The average service reuse factor: it is defined as the ratio
between the overall number of service requests (|R|) over the
total number of executed services in the IoT-NCN-capable
edge nodes. The higher the metric the higher the service reuse,
meaning that the same node has served multiple requests from
different consumers for the execution of the same service, and
it has executed it only once, i.e., the execution always produces
the same output given the same input. For a reuse equal to 1,
each request entailed a service allocation in a different node,
which reflects the low service popularity condition.

Results. Figure 4 compares the optimal (i.e., centralized)
and the distributed solutions in terms of the aforementioned
metrics.

First, it is evident that the optimal solution represents
the best theoretically achievable performance. Differences
between the optimal and the distributed solutions can be
explained as follows. The distributed solution only aims to
allocate a service execution in the node on the consumer-
source path which provides the minimum cost function for
a given service request. This choice would not necessarily
translate into the minimum sum of the cost functions of all
considered services.

It is worth remarking that the distributed IoT-NCN approach
is practically viable when relying on the plain NDN philos-
ophy, according to which the service orchestration can be
performed autonomously by in-network nodes. Furthermore,
the distance from the optimal solution performance is accept-
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Fig. 4. Optimal solution (ILP) Vs. the distributed algorithm (IoT-NCN) when varying the o parameter for different Zipf popularity settings (Z).

able for all metrics in Figure 4 and for every value of the o
parameter?.

Looking at the average CPU usage in Figure 4(a), it
decreases as « increases; the opposite trend is observed for
the executor-source latency in Figure 4(b). Results confirm
that the o parameter properly weights the two contributions
of the service execution cost in the cost function. In particular,
for a < 0.5, the computation is moved closer to the IoT
domain. This turns into (i) higher average CPU usage, since
less powerful nodes are involved in the computation; and
(ii) lower average executor-source latency, being the executor
located closer to the IoT sources.

Figure 4 also reports the performance results when varying
the service popularity through the Z parameter. In Figure 4(a),
the higher the Z parameter the lower the CPU usage per node.
Reasonably, the higher service popularity allows the same
service to be executed once in a single node, which serves
multiple requests. The same behavior is observed in Figure
4(b): the latency decreases as the Z parameter increases,
because there is no need to retrieve the IoT data again. As
an additional positive side effect, if multiple requests can
be served with a single execution then, more resources are
available to allocate the services close to the data sources,
thus implying a lower latency.

The average service reuse factor shown in Figure 4(c) allows
better understanding the impact of service popularity. Results
are shown for a fixed o when varying the Z parameter. As
the Z parameter increases the reuse factor increases as well,
witnessing that a node may satisfy multiple requests (up to
3.5 on average for Z=1.6) for the same popular service by
executing it only once.

For more insights into the CPU usage, let us refer to Figure
5 which reports a heatmap of the average CPU usage at
each node of the reference network topology, when varying
the o parameter for a fixed value of Z. It can be observed
that for low « values (Figure 5(a)) the executors are mainly
selected among nodes close to the IoT domain, being for
them the average CPU usage close to 1 (dark red). As o gets
higher (Figure 5(c)), nodes acting as executors are those more
powerful and farther from the IoT domain.

3Please notice that in the following, the same « applies for all services,
thus, o, is replaced by a, Vsi € S.

VIII. NDNSIM RESULTS

In this Section we use a realistic network deployment thanks
to ndnSIM and compare the IoT-NCN framework against
two benchmark state-of-the-art solutions. The first one is
representative of a legacy mobile edge computing approach
(it is labeled as M FEC in the plots), according to which
all requested services are executed in a single server only,
which is co-located with the Border Router. The second one is
representative of NDN-based approaches in the literature, i.e.,
[71, [15], according to which services are executed as close as
possible to the IoT data sources; it is labeled as aCaP (that
stands for as close as possible) in the plots.

Simulation results are averaged over 20 independent runs
and reported with the 95% confidence intervals.

A. Impact of IoT data size

For the first set of results, the Zipf parameter Z is fixed to
0.8, while parameter v and the number of IoT Data packets
over which services should be computed vary. Two different
workload settings are considered to evaluate the impact of
the o parameter and to investigate the capabilities of IoT-
NCN to manage services with different requirements. The
first one resembles a low workload setting, labeled as LW
in the plots, which considers a set of service requests with
heterogeneous low CPU demands (i.e., « < 0.5). The second
one mimics a high workload scenario, labeled as HW in the
plots, which considers a set of heterogeneous CPU-intensive
service requests (i.e., a > 0.5).

The following metrics are derived: (i) the average service
provisioning time, computed as the time since the first Interest
is transmitted from a consumer to request the service until the
output of the service execution is sent back (thus including the
computation time); and (ii) the number of transmitted Interest
packets to collect the input raw IoT data for execution of the
requested service.

In Figure 6(a) the average service provisioning time is
reported. Not surprisingly, for all the considered solutions,
the metric reasonably increases with the increasing number of
Data packets over which the processing should be executed.
This is because the latency contribution due to the data
retrieval gets higher. This trend is more remarkable when the
HW scenario is considered. In such a case, the NDN-based
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Fig. 5. Heatmap of the average CPU usage at each node when varying the o parameter (Z = 0.8).

approaches, aCaP and IoT-NCN, select for service execution
more powerful nodes, which are farther from the IoT sources.
The proposed scheme outperforms the two benchmarks, un-
der all the considered settings, hence witnessing that the
cost function properly reflects the designed trade-off, and
the weight parameter flexibly captures heterogeneous service
requirements. In particular, the aCaP solution approaches the
[IoT-NCN proposal under the LW scenario, since they both
prefer nodes closer to the data for service execution. The
MEC solution, instead, gets close to IoT-NCN under the HW
scenario, since CPU-intensive services are better allocated in
more powerful nodes, hence close to/into the Border Router.

Figure 6(b) compares the three solutions in terms of number
of transmitted Interest packets for IoT data retrieval. Please
note that the metric considers the number of transmitted
Interests per-link. This means that, to retrieve new (not cached)
Data from an IoT source in the considered topology, an Interest
sent by the Border Router will be replicated over 4 hops, while
an Interest sent by an AR will be transmitted over a single
hop. The MEC solution always experiences the highest Interest
signaling, since the input content needs to be transferred to the
Border Router. The aCaP is the most efficient one, because it
places the service execution close to the data sources, hence
reducing the number of Interests.

B. Impact of service popularity

The last simulation campaign is intended to showcase the
benefits of IoT-NCN when varying the service popularity,
under a heterogeneous workload setting with uniformly dis-
tributed CPU-intensive and data-intensive service requests.
Specifically, the input content size is uniformly distributed in
the range [200 — 1600] packets, the CPU requests of services
are uniformly distributed in the range [25,375] Mcycles and
« is computed accordingly.

Results in Figure 7(a) demonstrate that when the service
popularity increases, the service provisioning time is reduced.
Such a trend can be observed for all the compared schemes.
The network traffic load due to Interest packets is also reduced
(Figure 7(b)). Indeed, the more popular a service, the more
likely this service is already running at the edge, or even
already computed; so, there is no need to send Interests
to collect novel input IoT raw data for service execution.
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Fig. 6. Performance metrics when varying the number of IoT raw data packets
(1kB-large Data packets, 50 service requests).

Under the considered settings, the aCaP scheme exhibits the
lowest number of exchanged Interests, which is paid at the
expenses of the highest service provisioning time. IoT-NCN
always outperforms the benchmarking schemes in terms of
service provisioning time, further confirming its capability to
adequately treat heterogeneous services.

IX. OPEN CHALLENGES AND RESEARCH DIRECTIONS

The topicality of the work and the flexibility of the proposed
[IoT-NCN framework leave many open challenges as well as
options for future research, summarized in the following.

Function migration. Migration strategies could be investi-
gated for future work, which move the service code from a
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Fig. 7. Performance metrics when varying the Zipf parameter Z (1kB-large
Data packets, 50 service requests).

node to another one in order to cope with changing service
demands and the mobility of consumers and data sources.

Beyond IoT services. The proposed framework could be
extended to manage more generic services besides the ones
related to IoT data processing investigated in this paper. This
is viable thanks to the semantically-rich naming and the
flexibility of the conceived service allocation strategies.

Service allocation policy. The devised strategy trades-off
between the quality perceived by the consumers, i.e., in terms
of service provisioning time, and the amount of raw traffic
traversing the edge domain. Other policies could be easily
integrated in the conceived framework, which could be com-
pletely operator-centric, for instance if targeting computing
load balancing and reduction of the amount of exchanged
traffic.

Signalling mechanisms. Alternatives to the use of persis-
tent Interests is also left for future work. Despite the simplicity
of the mechanism, persistent Interests need to be stored in
the PIT for all the service provisioning time, thus they could
impact the PIT scalability. To limit this issue, PIT compression
methods could be considered, such as the ones based on Bloom
filters [26], or novel signaling mechanisms could be deployed
to release the PIT during the service execution time. For
instance, the consumer can send a regular Interest to request
the service and the selected executor can acknowledge it with a
s-ACK packet that carries also the estimated service execution

time. At the reception of the s-ACK, the intermediate nodes
delete the correspondent PIT entry; the consumer, instead, sets
up a timer and sends a new Interest to retrieve the result after
the execution time.

Security. NDN natively secures Data at the network layer

but, when dealing with in-network computations, other secu-
rity mechanisms must be considered. First, before the compu-
tation, an executor should verify that the service is requested
by an authorized and authenticated consumer. To this purpose,
signed Interests have been introduced in the literature [14],
where requesters sign Interests using their private key. This
not only prevents that unauthorized users access computation
resources, but generally it could limit denial-of-service attacks.
So far, however, signed Interests have been considered in small
IoT environments, e.g., in a building automation scenario, and
their use on a network domain scale has not been properly
investigated. Second, since the computation is performed over
an input content, the security property of this latter (e.g.,
access control) should be extended to the result. Also, if the
computation must preserve the user’s privacy, input data must
be encrypted and the user’s information, e.g., its location, must
be protected. Which encryption algorithm is more convenient
in this case and - generally - how to preserve the user’s privacy
and the access control are open challenges, although some
interesting findings are reported in [27].
Third, since the result of a computation is in practice a new
content, its integrity and authenticity must be verified by the
user. Being the actual producer of the result the executor
node, it could be convenient to assign a private key to each
executor and let it sign the result. Alternatively, as proposed
in [28], the result could be signed by the “function” itself,
providing that it has access to the key of the original function
provider/developer. Moreover, if the output is a private content,
an encryption mechanism is needed.

X. CONCLUSIONS

In this paper, we proposed IoT-NCN, a novel framework
for IoT data processing at the network edge, which leverages
the NDN paradigm for data retrieval from IoT sources and
overhauls it to encompass a distributed service allocation
procedure. The designed strategy selects as service executor
the edge node which ensures to minimize a weighted cost
function balancing between two objectives: (i) limiting the
raw IoT data traffic across the network, and (ii) allocating
the execution based on available nodes’ processing resources.

Achieved numerical results confirm that the proposed dis-
tributed approach is not so far from an optimal solution,
formulated through an ILP problem and minimizing the same
cost function. Realistic system-level simulations show the
superiority of the proposal in terms of service provisioning
time, under different workload settings, against state-of-the-
art alternative solutions. Such improvement is achieved at the
expenses of a higher signaling load to retrieve input Data
packets by the service executors.
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