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Abstract

The “Internet of Things” (IoT) provide humans and smart objects with attractive services, based

on the advanced features of the IoT devices, like high sensing, real-time acting and reasoning.

In our previous research we have highlighted that these features can be improved by promoting

cooperation between smart objects, and we introduced the association between Multi-Agent Systems

and IoT devices. In that context, we focused on the issue of accurately choosing the best partners

for cooperation, in a scenario composed by several federations. We proposed a reputation model and

we have shown that the model leads to detect agents having unreliable or misleading behaviors and

that the model itself can be profitably used to form groups of agents that mutually cooperate for

improving the effectiveness of their tasks. In this further contribution, we focus on the important issue

of the group formation, by arguing that in practical IoT situations it is necessary to improve the group

formation strategy to provide it with greater adaptability. To this end we introduce – in a particular
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IoT context described in this work – a two-phase group formation algorithm to support the reputation

model. Experimental results prove that the adoption of the group formation algorithm, along with the

proposed reputation model provides a few benefits to the whole IoT ecosystem.

Index Terms

Blockchain, IoT, Reputation Capital, Group Formation, Multi-agent System.

I. INTRODUCTION

The main actors in the “Internet of Things” (IoT) [2] are the IoT “smart” objects (i.e., things),

that are physical (or virtual) entities with embedded computational, sensing and communication

abilities [3], where each object is identifiable and traceable in space and time. In order to

reach their goals, these smart objects need to be provided with human-like capabilities. In our

previous research [1], we have highlighted that the features above can be improved by introducing

complex forms of collaboration between smart objects. This consideration leaded us to propose

the association of the Multi-Agent Systems technology with the IoT devices. The convergence

of IoT and MAS allows ubiquitous and heterogeneous devices to exploit the needed services in

a scalable and pervasive way, thanks to the agent’s social attitude to interact and collaborate.

In this scenario, the possibility of constructing a wide network composed by heterogeneous

smart objects becomes very interesting, since this type of objects are capable of living, acting

as prosumers and moving among different, federated environments.

In [1] we already focused on the issue of accurately choosing the best partners for cooperation,

in a scenario where IoT devices migrate among different federated environments, where the IoT

objects will be unreferenced in terms of its trustworthiness. To this aim, in [1] we proposed a

reputation model for characterizing the social reputation of each agent. We have proved that the

proposed model leads to detect agents having unreliable or misleading behaviors, designing a

strategy by which these agents pay higher costs for obtaining services in the IoT environment,

with respect to more reliable and honest agents. However, the cooperation among objects, also

small and low-cost, implies their capability of having social interactions with other devices.

Then, as preliminary result, we have proved that the designed model can also be profitably used

for forming groups of agents that cooperate for improving the effectiveness of their tasks.

In this work, we further delve into the significant aspect of group formation. In particular, we
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argue that in practical situations the group formation strategy should be adaptive with respect

to the characteristics of the global IoT network [4], [5]. This leads us to introduce, with respect

to our past researches, a group formation algorithm which is particularly suitable to also extend

the reputation model already introduced in [1] to take into account the perspective above.

With respect to [1], in this work we extend the idea of modeling the reputation of each agent

by using a sort of “personal capital” represented by the sum of the feedback received by the

agents during the interactions with the other agents. Furthermore, we also propose to employ

blockchain technology to maintain information about agents trustworthiness (i.e, the personal

capital). Blockchain technology can ensure trust and data integrity to anonymous entities through

decentralized, distributed P2P network [6], and the use of cryptographic validation techniques,

representing the safe replacement of third parties or centralized authorities to certify such a

reputation. Then we extend the original idea of using blockchain to support a trust and reputation

model, that we have presented in [7].

While in that paper we only focused on the reputation model, and presented a first version

of an algorithm to form groups of agents, in this new paper we particularly deal with the group

formation strategy. This new strategy is based on a two-phases algorithm that, differently from

the approach presented in [7] fixing the number of the groups and the threshold of reputation

for joining with a group, gives instead the possibility to compute the aforementioned parameters

based on the characteristics of the IoT objects. Moreover, a new, large experimental campaign

has been here implemented to validate the advantage introduced by our approach.

Then, as the core of our contribution, we introduce a new algorithm to support the group

formation based on the trustworthiness stored in the blockchain. In particular, this new technical

contribution consists of proposing an approach based on a competitive IoT scenario, able to

enhance the whole social capital of the community, by implementing a strategy conceived to

prevent possible collusive and misleading activities to incorrectly increasing the personal capital

of the agents. Moreover, the new strategy of group formation we have introduced implies that

an agent desiring to join with a group having a high average reputation, needs to first obtain a

high personal capital of reputation.

As further contribution with respect to the previous work, we will present the results of a

large experimental campaign aimed at verifying the good performance of the group formation

procedure in terms of group composition; in particular we will show that the group formation
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procedure is capable to increase the overall reputation capital of the IoT community.

The paper is organized as follows. In Section II, we survey the related work of the recent

literature, while in Section III the competitive IoT scenario is presented. Section IV illustrates

the reputation-blockchain mechanism. Section VI presents our group formation algorithm and

Section VII describes and discusses the results of our experimental campaign and in Section VIII

the conclusions are carried out.

II. RELATED WORK

Distributed Systems (DS) are subject to a greater number of threats for malicious and/or

disliked behaviors [8] than Centralized ones. This problem becomes critical in the case of open

and competitive DSs, but cryptographic techniques [9], trust and reputation systems [10], [11],

can reduce risks and support user (i.e., agents) activities.

In particular, cryptographic techniques guarantee protection from external attacks by assuring

privacy and counterparts authentication [12]. Conversely, trust and reputation systems allow to

esteem the trustworthiness of possible partners, to restrict the possibility of interacting with

unreliable users [13], considering the direct experiences (reliability) and
/

or view point of others

(reputation) [14], [15], [16], [17].

A. Trust and reputation systems

Trust criteria are adopted both in real and virtual contexts [18], [19]. Many existing studies

propose different points of view [20], [21], [22], and a lot of analysis, architectures and models.

The accuracy in esteeming trust depends on three principal factors: quality and number of the

information sources [23], the use of a centralized or distributed context [24] and the type of

aggregation used for the trust (i.e., local or global way) [25].

As shown in [26], a reputation system must content the following properties: i) Entities must

have a strong background of past experience so that they can predict future behavior and prevent

whitewashing strategies; ii) New interactions must be based on past experiences; iii) Entities must

grant and spread their feedback in the scenario (that is more complicated into DSs).

Reputation scores in DSs can be propagated by means of: i) a distributed and synchronized

repositories; ii) data collected from feedbacks of participants having mutual interactions and/or

the opinion of others [27].
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In real and virtual communities, trust and reputation systems are helpful also in the formation

of groups. In particular, they are used to recommend to a group (member) of a community which

are the best members (groups) for the affiliation with (i.e., group recommendation) [28]. In this

way, the formed groups result more stable over time with respect to other strategies [29]. For

example, Aikebaie et al. [30] propose a trust-based procedure to form groups in a Peer-to-Peer

(P2P) system through the agent trustworthiness. The advantages of this model are witnessed

by the simulation campaigns. In [31], the authors demonstrated that a formation mechanism

for long-term coalitions based on trust agent relationships brings benefits to the system and the

agents.

Furthermore, the IoT world can benefit from the adoption of trust and reputation criteria

for improving the device performance [32], [33]. Bao et al. [34] proposed a system in which

the IoT devices mutually trust their counterparts and propagate their trust value in the form of

recommendations with a word of mouth mechanism. In [35], a trust system that is adaptable

to the evolution of social relationships over time is proposed. The convergence among IoT,

software agents and cloud computing to form groups of agents (each one associated with an

IoT device and living on the cloud) by means of an algorithm that combines reliability and

reputation collected by the agents is described in [36]. Finally, Alshehri et al. [37] introduced

a scalable trust management algorithm to form trust-based clusters/groups of IoT devices and

allowing trust-based inter-cluster migration of IoT nodes. Recall that the IoT nodes can gain or

lose trust values when collaborate with other nodes of their clusters.

B. Blockchain

A blockchain is a chain of data blocks chronologically ordered and replicated on more ledgers

that, by means of a distributed consensus protocol, autonomously maintain their local copies

“synchronized” making the blockchain difficult to be controlled, tampered or deleted. After

that each block has been validated by the consensus it becomes permanent, immutable and

accessible [38]. More in detail, each block consists of a header (i.e., identifier, timestamp, number

of stored transactions, size of the block and the hash of the previous block in the chain) and the

data stored.

The use of the blockchain technology to support smart-contracts (i.e., “a computerized trans-

action protocol that executes the terms of a contract” [39]), which has been realized for the
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first time by the Ethereum [40] blockchain, has allowed new applications of blockchain. To this

purpose, many features are made available to develop smart contracts, for example, Ethereum [40]

makes available a Touring-complete language programming to develop code for smart-contracts.

Nowadays, a great number of blockchain platforms allow to implement smart contracts, for

example Hyperledger [41], Ripple [42], Stellar [43] and Tendermint [44].

A very critical aspect of blockchains is represented by the computational complexity placed on

the ledger by the exploited consensus protocol. For this reason, different consensus protocols have

been proposed/implemented [45], which mainly differ in computational complexity which, in

turn, is tightly linked to the robustness against manipulations. These factors need to be considered

when applying blockchain to the IoT contexts. For example, the Proof of Work (PoW) initially

adopted by the Bitcoin currency [46] demands to resolve a computationally expansive hashing

puzzle for making valid and adding a new block. Hence, the application of the PoW in an IoT

context often requires the adoption of other technologies as, for instance, the cloud computing.

Also the long latency, low scalability and poor environmental friendly of the PoW given impulse

to the development of other consensus mechanisms [47] by relaxing some security requirements.

There are several alternatives to the PoW, such as the Proof of Stake (PoS) that is based on the

concept that there is something at stake; different its variants have been presented [48], [49],

[50].

In the IoT area, Christidis et al. [51] discussed a proposal relying on blockchain and smart-

contract technologies, to validate transactions by facilitating and supporting the autonomous

workflows and services sharing occurring among IoT devices with benefits in terms of payments,

trading, shipping and supply-chain management. In a distributed context, also including IoT

devices, the auhors [52] designed Trustchain, which allows blockchain-based trusted transactions

in an scalability, openness and Sybil-resistance environment by introducing a consensus protocol

alternative to the PoW.

Recently, in the literature, different types of blockchains have been proposed that allow to

propagate trust and reputation scores without the use of trusted and powerful third-party. We

mention for example Islands of Trust, proposed in [53], that consents to spread trust across

different IoT domains by using two blockchains: one is a private credit-based blockchain based

on the reputation and the other is used for payments. Respect to the system in [53], our proposal

has three important differences: i) the adoption of a reputation system based on the reputation
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capital score; ii) we use a single blockchain; iii) the use of smart contracts;

III. THE UNDERLYING IOT SCENARIO

We suppose that our scenario contains a number N of heterogeneous IoT objects (see Figure 1),

each of them supported by a software agent. In such a scenario, the agents can interact in the

execution of a task on the basis of smart contracts.

Let A denote the set of software agents, and GN the Global Network consisting of several

federated Local Networks (say LN ). A particular agent, called Local Network Administrator

(LNAm), is delegated to administrate each local network by providing some basic administrative

service to the agents of its network. Moreover, we assume that in each local network agents

can form groups taking into account their reputation capital verified by the blockchain and, in

turn, each group can affiliate agents exclusively belonging to its local network. We highlight

that agents are free both of requesting to join with or leave a group active on their current local

network and of shifting from a local network to another one and, in this case, they will have to

leave the groups they belonged to in the local network of origin. Furthermore, we also assume

that each group of a local network m is administrated by the respective LNAm that, to maximize

the effectiveness of the group itself, can also contact other agents to join with or delete from its

administrated group those agents having an insufficient reputation capital.

For convenience, the set of agents A in GN and their relationships are represented by means of

a graph G = 〈N,L〉, where N and L represent its sets of nodes and oriented links, respectively.

In particular, each node of N is associated with a unique agent and each link of L represents a

relationship occurring between two agents (see intermediate layer of Figure 1).

IV. THE REPUTATION MODEL

Here we will introduce the notion of Reputation Capital. In this approach, the reliability of

a consumer is guaranteed by the blockchain (in this case, it must pay the service to another

agent), while the reputation capital of a provider witnesses its ability to provide quality service.

The Reputation Capital (RC) is represented by a numerical value – a real positive number

– computed on the basis of the past interactions among agents on the basis of the following

requirements:

• the more recent the activities, the better the weight of the feedback;



8

GN
Global
Network

G
Graph

RC
Reputation
Capital

a

LNA3

LN3

LN1
LN2

a

d
a

d

a

d

a

d

a

da

da

d

a

d

a

d

a

d

a

d

a

d

a

da

d

LNA1

LNA2

Fig. 1. The proposed IoT scenario

• countermeasures should be taken against collusive behaviors among agents (i.e., behaviors

aiming at mutually and incorrectly increasing their reputation capitals);

• alternate behaviors should be hindered, by assigning a feedback value which indicates a

“bad” behavior;

• the behavior of “habitual” complainers should be limited by measuring their “credibility”,

as reasonably proposed in [54].

In particular, high (resp., small) values of RC indicate a good (resp., bad) reputation.

An initial value of reputation capital is introduced as a countermeasure over whitewashing

strategies of dishonest agents that aim at coming back in the system to take a fresh favorable

reputation [55]. Moreover, the value should be chosen in order not to penalize a newcomer [56].

In particular, when the provisioning of a service is required to an agent ai (the provider) by

another agent aj (the consumer), this latter provides a feedback φji ∈ [0, 1] ⊂ R representing the
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satisfaction of aj for the service received from ai. For convenience, we introduce a threshold

equal to 0.5 to discern “bad” and “good” feedbacks. A value φ < 0.5 will represent a “bad”

feedback. This choice is based on the assumption that the evaluations given by the agents follow

a linear scale. Anyway the threshold can be selected in many different ways, depending on the

evaluation model behind the rational of the agents.

In order to calculate RC, we do not take into account all the interactions, but only those

classified as qualified interactions: to this end, whenever a provider agent ai releases a service

s to a consumer agent aj , the latter assigns a feedback φji ∈ [0, 1] ⊂ R to express its own

satisfaction. If the interaction is “qualified” then φji is used to update the RCi of ai (the same

considerations are made if the agent aj is a provider). Therefore, the Relevance R of an interaction

is calculated as cs/C, if cs < C, otherwise it is set to 1. The parameter cs is the cost of a service s

and the term C represents the price threshold at which the relevance is computed at its maximum

value 1. The previous definition of relevance allow us to give the further definition of “qualified

interaction”: an interaction is qualified if i) φ < 0.5 or ii) R ≥ φ ≥ 0.5. The ratio behind this

last definition is to discern interactions having values φ ≥ 0.5 and, at the same time, a value of

relevance R < 0.5.

Based on the last h qualified interactions of the provider agent ai occurred with different h

agents (a measure aimed to contrast collusive behaviors), its RCi is updated in the following

way:

RCi =
h∑

n=1

ωn · δn ·Rn,i · φn,i (1)

where i) ω gives more importance to the most recent qualified interactions and ii) δ mitigates the

impact of agents that release a low feedback (e.g., φ < 0.5) in order to obtain personal benefits

(for an agent, it is set as the complement to 1 of the ratio between the number of low feedbacks

(NF ) with respect to the total number of its interactions (NT )).

V. USING SMART CONTRACTS FOR MANAGING THE REPUTATION CAPITAL

It is well known that security for distributed IoT can be supported by the blockchain technol-

ogy, as discussed in Section II. In particular, the blockchain [46] ensures trust and data integrity to

unknown and anonymous entities (permissionless), through decentralized, distributed, open, and
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unchangeable ledger saving data across a peer-to-peer (P2P) network by using cryptographic

technologies to identify source and sink of the data, support transactions and management

of complex digital assets, smart contracts and data content. Thus, the blockchain represents

the safe replacement of third parties or centralized authorities to certify information about

trustworthiness [57], [58]. In an IoT context, the choice of the most suitable blockchain platform

tightly depends on several characteristics like, for instance, device characteristics (including

communication and power capabilities), the operative context, the permisioned or permissionless

nature of the blockchain and so on. To this purpose, there are several protocols potentially

suitable (in a native or not way) for the IoT world including, for instance, Ethereum [40]

(for permissionless blockchain but with some limitations), Hyperledger Fabric [59] (for private,

permisisoned blockchains) and IOTA [60] (supporting both the modalities).

In the following, we provide a short description of the role of the blockchain technology –

as part of our proposal – to “certify” the trustworthiness of the reputation associated with the

agents.

Into a LN , the request for a service is equivalent to run a smart contract on the blockchain

platform in order to check and implement all the contractual obligations. Even though our

proposal is independent from a specific (smart-contract) blockchain, in this setting we propose

to exploit the Ethereum platform for convenience: (i) the presence of documented API; (ii) the

availability of an own cryptocurrency (i.e., Ether) to pay in GN and (iii) the availability of several

simulation tools to create a personal local Ethereum blockchain for testing and development.

However, we remark as our proposal is independent from a specific (smart-contract) blockchain

and other blockchain platforms could be used in place of Ethereum without it affects our

simulations results (see Section VII).

The smart contract encloses the necessary steps to update both RC of the provider and the

following information about:

• the identifier of the agent who is associated the reputation capital and the identifier of its

LN ;

• the number of interactions of the agent (i) successfully completed, (ii) aborted, (iii) with a

low feedback (i.e., φ < 0.5), (iv) with no feedback;

• the list of the q transactions concurring to form the current RC, where each rows is a tuple

composed by:
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– the identifier of the counterpart agent and its LN ;

– the price and the date of the transaction;

– φ assigned to the interaction.

Each LNA administrates a private list of the agents currently living in the LN (sorted

according to its identifiers), and saving the actual (e.g., updated) RC, a timestamp and the

reference on the blockchain that link to where the interesting information is stored. Observe that

the list is accessible only by the LNA and the blockchain managers. Also, when an agent starts

an interaction, it receives a certificate signed by a private key that contains all the information

mentioned above.

VI. THE GROUP FORMATION PROCEDURE

Now, we will illustrate the procedure designed to be executed by each LNA to form groups

of objects on the basis of their RC values. In this context, the role of a group is that of offering

the possibility to implement a form of collaboration among the smart objects, whenever a service

s is free only if the consumer agent belongs to the same group of its provider.

The approach for group formation is composed by two temporal phases, as described in

sections VI-A and VI-B. In fact, the design of this procedure represents a new strategy that,

differently from the approach presented in [7], fixing the number of the groups and the threshold

of reputation for joining with a group, gives instead the possibility to compute the aforementioned

parameters based on the characteristics of the IoT objects.

A. Phase 1: Determining number of groups and RC Thresholds

In this phase, we determine the number ng of the groups and the thresholds n1, n2, .., nng that

result as optimal from the viewpoints of the social capital of the whole community.

To this end, we consider that each of the N objects of the IoT community has its reputation

capital RC, and thus the problem to solve can be viewed as that of partitioned a set of N objects

into ng groups in the best way from the viewpoint of the homogeneity of each group (i.e., the

objects of each groups should be the most similar as possible in terms of reputation capital). In

our approach, we propose to solve this problem by applying the well-known K-means clustering

algorithm, that has the goal of minimizing the total variance intra-cluster [61].
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Therefore, the input of this phase is the vector composed by the N values of reputation capital

of the IoT objects, and the output will be the number of determined clusters, that we will use

as the value ng in the next phase, and the minimum reputation capital of each cluster, that we

will use as threshold value in the next phase.

We highlight that actually, the number ng of clusters in the K-means algorithm is an input

parameter. Indeed, for an integer k ≥ 1, the so-called k-means clustering method consists in

partitioning a random sample X1, .., Xn of real values in k groups by minimizing the empirical

distortion W (k) = 1
n

∑n
i=1min

k
j=1‖Xi − cj‖2.

Therefore, a good choice of k is essential for building meaningful clusters. Several procedures

for choosing k can be found in [62], while [63] compares the performances of the main

approaches. The proposed methods existing in the literature can be divided in two main types,

global or local. Global procedures consist in performing clustering for different values of k and

then retaining the value minimizing or maximizing some function of k. In local procedures, it

must be decided at each step whether a cluster should be partitioned (or two groups merged

into a single one). In our proposal, we have decided to adopt the classical approach of Calinski

and Harabasz [64], that proposes to choose the value of k which maximizes an index based on

the quotient B(k)/(k−1)
W (k)/(n−k)

, where n is the number of values to be clustered, W (k) is the empirical

distortion whereas B(k) =
∑k

j=1 ‖cj − c̄‖, where c̄ is the mean of the values, is the between

sum of squares. The value of k determined as above is that we will use as ng parameter in

the next phase. Moreover, for each cluster l, l = 1, ., ng, we compute the minimum value nl

of the reputation capitals RCj belonging to the cluster gl, and we use the set of all these nl as

threshold parameters (Γl) for the next phase. In addition, the approach of Calinski and Harabasz

[64] establishes that the sum of all k is equal to n, where n is the number of agents. For this

reason, an agent cannot be part of more than one group. In addition, the agent aims to join the

group with the highest reputation and which offers him the opportunity to join.

B. Phase 2: Populating the groups

The parameters computed in the first phase represents only a starting point of the designed

strategy. Indeed, the reputation capital of the agents will change in time, therefore the procedure

aimed at determining parameters ng. Since such a repetition will be actually infeasible in a

practical situation, we choose to maintain the parameters computed in the phase 1 (ng and ni),
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and to periodically execute the second phase of the algorithm, which dynamically moves an

object from a group to another based on the varying value of each individual reputation capital.

Now, we explain the procedure executed by each LNA, which is shown in Algorithm 1.

The affiliation of each agent will be checked periodically by the administrator in order to

maximize its RC. Therefore, an agent undergoes the following procedures:

(i) it is displaced to another group that better matches with it, in terms of reputation capital

(RC), or (ii) it is eliminated from all group because its RC value is not enough to join the

groups in the local network.

More in detail:

1) A denotes the agents currently inserted in LN ;

2) G denotes the groups in LN ;

3) gl denotes the l-th group in G (i.e., G = {gl}).

The Agent administrator LNA operates on two datasets named DA and DG. The two dataset

store the following information:

1) the reputation capital RCi and the timestamp (τi) of the last measurement for the each agent

ai living in the local network LN ;

2) the data of each group gl sorted by its value Γl (i.e., the RC threshold), the IDs of the

agents present in every gl, the timestamp (ρl) of the last “group analysis” (see Algorithm 1)

The procedure shown in the Algorithm 1 is performed periodically. It is also triggered when-

ever an agent asks to be part of a group. In particular, the LNA checks on the blockchain the

RC of all the agents in the LN and updates the dataset DA with the RC values (Lines 1− 5).

In particular, Ψ represents the time threeshold after which the value of RC can be considered

“old”. Then, for each group gl of the LN , LNA verifies whether its members ai still satisfies

the affiliation requirements (RCi > Γl), otherwise the procedure Assign( ) is executed (Lines

6− 14) to find another suitable group for ai, as explained later in this section. Finally, for each

agent asking to join a group gk, the LNA tests if its RC is greater or equal to the threshold Γk;

in this case the agent can join the group gk, (lines 17− 18) otherwise the request is rejected.

In Algorithm 2, the function Assign( ) receives the following inputs: ai, the number of groups

ng and the datasets DA and DG. First of all, Assign ( ) verifies if RCi is lower than the lower

threshold Γ1; in this case ai is removed from any group in G as long as RCi will have an

inadequate value to be part of a new group. Otherwise, ai is assigned to any group gk having a
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threshold Γk lower than RCi. To this end, we remark to the reader that the scanning order of G

is not specified. If G is visited in ascending order (k = 1, 2, . . . ), the agent ai would be assigned

always to the first group g1. Viceversa (descending order) the selected group will be the first one

having a suitable threshold Γk < RCi. In our implementation the groups are selected at random

(and each group already selected is excluded from the set for the subsequent extraction) in order

to not fill the groups from the first one or the last one. Such strategy allowed us to provide to

the groups (those having a suitable threshold Γk < RCi), the same chance to host the agent ai.

Algorithm 1 The procedure performed by every LNA of the IoT ecosystem.
Input: DA,DG,Ψ, ng;

1: for all ai ∈ LN do

2: if (t− τi) ≥ Ψ then

3: ask to the blockchain to update RC of ai and DA

4: end if

5: end for

6: for all gl ∈ G do

7: if ((t− ρl) ≥ Ψ) then

8: for all ai ∈ gl do

9: if (RCi < Γl) then

10: Assign (ai, ng, DA, DG)

11: end if

12: end for

13: end if

14: end for

15: for all ai ∈ LN requesting to be a member of a group gk do

16: if RCi ≥ Γk then

17: put data of ai into the dataset DG for the group gk

18: else

19: reject the request of ai and communicate the decision to ai

20: end if

21: end for
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Algorithm 2 Assign (ai, ng,DA,DG).

1: if (RCi < Γ1) then

2: remove ai from the dataset DA

3: remove ai from each group in DG

4: else

5: for all gk ∈ G do

6: if RCi ≥ Γk then

7: put data of ai into the dataset DG for the group gk

8: return

9: end if

10: end for

11: end if

VII. EXPERIMENTS

An experimental campaign has been carried out to evaluate the performance of our approach

also with respect to the two phases of the group formation algorithm. In particular, the experi-

ments have been performed by adopting different values for both the horizon parameter (h) and

the number of active malicious devices living in the IoT environment. In such a way, we have

investigated on: i) the effectiveness in identifying malicious actors by implementing several types

of attacks at the same time, as described in Section IV; ii) the dynamics of group affiliations

occurred in presence of a competitive scenario (see Section VI); iii) the costs sustained for

services by the IoT members.

Simulations have been carried out on an IoT simulator based on the ACOSO methodology and

platform, which can simulate IoT networks and IoT devices in a scalable way and can support

also the construction of real IoT systems [5], [65]. This choice has provided greater versatility in

developing and executing experiments and elaborating the results (also) in real time. To simulate

smart-contracts, although we remark as our proposal is independent from a specific (smart-

contract) blockchain, we referred to the well known Ethereum blockchain platform [40] (see

Section V). To this aim, a local Ethereum environment has been exploited to simulate smart

contracts. More specifically, smart contracts have been written in Solidity [66], compiled on the

Ethereum Virtual Machine and public JAVA scripting libraries for Ethereum and the open source
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Truffle Suite [67] have been used. However, as a verification, some test smart contracts have

been executed on the Ethereum blockchain confirming the simulation results.

In the following of the section, both the parameter setting and the experimental results will

be presented and analyzed.

A. Parameter Setting

In our experiments we considered a single federated LN ∈ GN where each IoT device belongs

to the LN , and it is supported by a personal software agent. For each of these agents we simulated

a long sequence of interactions with the other members. In performing the experiments, we varied

in LN the percentage of cheaters device/agents. In particular, during the simulations cheaters

carried out, in an endless manner, different sequences of malicious activities (i.e., collusive,

alternate, complainer and noising). More in detail, simulations have been carried out by adopting

for the main parameters the following setting:

• The number of IoT devices/agents in LN has been set to 103 units.

• For each interaction two agents have been randomly chosen, the former played the role of

consumer of the service while the other one played the role of service provider.

• Simulations consisted of 103 epochs where each epoch, in turn, is formed from 103 inter-

actions so that, in average, each agent plays the role of consumer and provider one time

for epoch1. Note as less than 10 epochs are necessary to have “stable” results.

• The initial RC score has been set to 1.0 as the result of a preliminary trial and error procedure

we carried out. We verified that such a value is effective in discouraging whitewashing

strategies without penalizing the honest ones too much.

• The parameters cs and C are respectively the cost of a service s (randomly set between

0.1$÷ 1.5$) and the maximum cost (set to 1$) after which the relevance (R) of the service

is assumed as “saturated” (i.e., R = 1). Note that the setting of cost parameters depends

closely on the reference scenario.

• The horizon parameter values h = 4, 6, 8 and 10 have been adopted. In particular, h = 4

and h = 10 can be considered as two bounds; in fact, for horizons lower than 4 the system

1Note that after four epochs (i.e., h = 4) only the 0.17% of the overall agent population has not carry out any interaction

neither as provider nor as consumer; as the epochs increase this percentage decreases until the 0.01% at the 6th epochs and

zero from the 7th epoch onward.
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performances are not acceptable, while they become quite stable with horizons equal or

higher than h = 10.

• The percentage of cheaters varied from 5% to 20% (with a step of the 5%) of the LN

population.

• Malicious behaviors (e.g., alternative, collusive, complainer or noising) are carried out by

cheating agents. To make their discovery more difficult for our reputation model, regardless

of the type of attack they perform, each of these agents adopt a different strategy. In

particular, with respect to the number of time that a cheater has been selected, an attack

may occur randomly, or with a frequency (i.e., “malicious:correct”) of 1 : 1, 1 : h/2 and

1 : h. In detail, the malicious behaviors carried out are:

– alternate - this behavior consists of gaining reputation in low value interactions for

then spending it by cheating in presence of interaction having a high value; this type

of behavior has been simulated by adopting the rates above specified;

– collusive - this activity happens when two or more devices performs mutual interactions

aimed to increase their RCs;

– complainer - a malicious behavior aimed to damage own counterparts by systemically

releasing low feedback; also this activity has been simulated with the same rates

previously adopted;

– noising - it is a voluntarily interruption of an interaction; it is performed with a rate

of 1 each 100 interactions. The presence of the blockchain contributes to hinder the

possibility to carry out noising interactions in presence of unreliable consumer devices

so that any RC penalization will be given in this instance to the involved actors.

The execution of the first phase of the group formation algorithm allowed us, as the best

choice, to set the number of groups of LN to 3 and to adopt as thresholds to be affiliated to

them the RC values of 2.5, 4.5 and 6.0, respectively.

B. Results

This section describes the results of the performed simulation campaign. Such results have

proved the advantages given in a competitive scenarios by the use of i) the reputation capital,

ii) the proposed group formation strategy and iii) a blockchain.
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1) Malicious identification: Firstly, our approach highlighted a high accuracy in recognizing

cheaters (only based on the values of their RC scores) as both the horizon and the number of

malicious increase. The sensitivity of our model is represented in Figure 2. Results show that

the reputation capital, for the considered horizons, works well until the percentage of malicious

is less than 25%, while as soon as the percentage of malicious agents is higher than 25%, the

performance decreases. This percentage of malicious may appears as a kind of limitation of the

presented approach; however, note that in a community, having about 25% of malicious members

is unrealistic.

The results related to the capability of recognizing honest agents are quite heterogeneous.

Indeed, for h = 4 the performance decreases when malicious are more than 50%, while for

h = 10 this happen only when the malicious are more than 95% of the overall LN population.

This led us to define as a bound on the reputation capital, that its capability to recognize malicious

agents decreases when they are ≥ 25% of all the LN members and this almost independently

from the considered horizon. Therefore, this experiment highlighted that the adoption of the

reputation capital provides high accuracy in recognizing the nature of agents and a high resilience

to the presence high percentages of cheaters.
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2) Group affiliation: To test the effectiveness of the group formation algorithm (see Sec-

tion VI) another series of experiments have been carried out and the obtained results are depicted

in the Figures 3, 4, 5, 6, corresponding to different horizons h = 4, 6, 8, 10, and different

percentage of malicious, i.e. 5%, 10%, 15%, 20% and 25%. In particular, as above specified by

means of the first phase of the group formation algorithm, the number of groups has been set

to 3, and their admittance RC thresholds for the agent affiliation were determinate in 2.5, 4.5

and 6.0 (see Section VI).

The experimental results confirmed our expectancy by showing has the group formation

algorithm allows a correct dynamic about the distributions of the devices among the groups

and permit us to highlight the following considerations:

• the RC of honest agents increases significantly more quickly than malicious ones that,

however, never assume high values of RC;

• the malicious devices cannot be affiliated with any group being their RC score lower of

the lowest group admittance threshold and, in average, this result becomes stable in few

epochs (i.e., about 5÷ 10 epochs);

• a low horizon implies that honest agents can reach no so high values of RC and, conse-

quently, the number of agents affiliated with the best groups having a higher admittance

threshold is generally limited;

• a high horizon leads honest agents to reach high values of RC so that the most part of

them is able to belong to the the best groups.

Finally, we observe that, as soon as malicious agents increase in percentage, high horizons

become desirable and with an horizon h = 8, or greater, all the malicious agents are correctly

recognized and do not belong to any group (e.g., it is easy to note that the number of agents

not belonging to any groups corresponds to the number of malicious agents).

3) Costs: The results of the third experiments, represented in Figures 7 and 8, highlighted

that there are not economic advantages for malicious devices that pay from 1.5 to 4.2 times

always more than honest devices. This results are referred to the 25-th epoch.

C. Discussion

The results of the experiments we carried out to test our approach allows us to argue that it

is resilient against malicious attacks. Almost all the simulated attacks have been detected in few
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Fig. 3. Group affiliation for h = 4 and a presence of the 5%, 10%, 15%, 20% and 25% of malicious devices with respect the

overall agent population.

epochs (usually in less than 5) when the percentage of malicious agents is lower than ∼ 25%

of all the agents, which is a high enough threshold. Furthermore, the new group formation

algorithm works correctly and malicious agents always pay more than honest ones for services.

We highlight as such results strongly depend on the adopted horizon, the percentage of cheaters

and the number of groups active in LN . However, the benefits in terms of performance and

resilience, given by the adoption of the reputation capital, the group formation algorithm and

the blockchain, are evident. In particular, the opportunity of dynamically setting the number of

groups and their RC admittance thresholds provides high adaptivity with respect to any changes

that may occur in the LN population and/or the percentage of malicious agents.

VIII. CONCLUSIONS

In this work, we deal with Federations of IoT networks comprises myriad of heterogeneous,

smart IoT devices. In our context, devices shift among local networks, and cooperate to attain

own targets with their peers.

The level of “satisfaction” of the singol device must be fairly high at the end of interactions,

therefore it is important to select reliable collaborators. This is complex problem when device
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Fig. 4. Group affiliation for h = 6 and a presence of the 5%, 10%, 15%, 20% and 25% of malicious devices with respect the

overall agent population.

interactions embroil critical and/or complex activities (like, the release of resources). In this

case, the reputation is a measure that can help in that choice, if it is appropriately spread. For

this reason, we present an approach where a software agent is associated with an IoT device in

order to use its social attitudes to collaborate to perform groups. To ensure reliable partnerships,

we define the reputation capital, a score that depends on the devices’ feedback. In our scenario,

we utilize the blockchain technology to propagate the reputation, without the use of centralized

component. Also, based on the reputation capital scores, every device can expect satisfactory

interactions and economic advantages if it associates with groups of reliable agents.

In detail, we introduce i) a appropriate reputation capital model that develops the countermea-

sures against collusive and malicious behaviors and ii) a distributed group formation algorithm

that subdivides the agents in groups considering their reputation capital score. Finally, we carry

out an experimental campaign to check efficiency and effectiveness of the presented solution.

The results highlights how the synergy obtained by the combined adoption of the reputation

capital model, the group formation algorithm along with the blockchain provides benefits to

the agents operating in the IoT environment. In the future, we will perform an experimental
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campaign in a real IoT scenario to best prove the benefits inserted by our model.
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[1] G. Fortino, F. Messina, D. Rosaci, and G. M. L. Sarné, “Using blockchain for reputation-based cooperation in federated

iot domains,” in Intelligent Distributed Computing XIII, I. Kotenko, C. Badica, V. Desnitsky, D. El Baz, and M. Ivanovic,

Eds. Springer International Publishing, 2020, pp. 3–12.

[2] K. Ashton, “That’ internet of things’ thing. rfid journal, june,” 2009.

[3] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Middlewares for smart objects and smart environments: overview

and comparison,” in Internet of Things Based on Smart Objects. Springer, 2014, pp. 1–27.

[4] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart objects as building blocks for the internet of things,”

IEEE Internet Computing, vol. 14, no. 1, pp. 44–51, 2010.



23

0 5 10 15 20 25

epochs

0

200

400

600

800

1000

d
ev

ic
es

No Group

Mal =   5 %

Mal = 10 %

Mal = 15 %

Mal = 20 %

Mal = 25 %

0 5 10 15 20 25

epochs

0

200

400

600

800

1000

d
ev

ic
es

Group 1

0 5 10 15 20 25

epochs

0

200

400

600

800

1000

d
ev

ic
es

Group 2

0 5 10 15 20 25

epochs

0

200

400

600

800

1000

d
ev

ic
es

Group 3

Fig. 6. Group affiliation for h = 10 and a presence of the 5%, 10%, 15%, 20% and 25% of malicious devices with respect

the overall agent population.

[5] G. Fortino, W. Russo, C. Savaglio, W. Shen, and M. Zhou, “Agent-oriented cooperative smart objects: From iot

system design to implementation,” IEEE Transactions on Systems, Man, and Cybernetics: Systems - in press (2018).

DOI:10.1109TSMC.2017.2780618, 2018.

[6] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems: concepts and design. pearson education, 2005.
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